3GPP TSG-SA WG6 Meeting #20
S6-171534
Reno, Nevada, USA, 27th Nov – 1st Dec 2017
(revision of S6-17xxxx)
Source:
NEC
Title:
Issues of functionalities in the CAPIF TS 23.222
Agenda Item:
8.8
Contact:
Taka Yoshizawa (takahito dot yoshizawa at neclab dot eu)
Abstract: This contribution discusses issues in the current CAPIF TS 23.222 ver0.1.0 and proposes to modify some procedures and introduce some new procedures.
1
Introduction

The latest CAPIF TS 23.222 (v0.1.0) [1] has several architectural issues that need to be resolved before completing this WI.
In high level, there're two types of issues:

1. General issues in security mechanism
2. Missing functionality

The rest of this document discusses these points in detail and propose changes to correct and gap-fill the functionalities.

2
Discussion

2.1
Security related issues
2.1.1
Relationship between API invoker onboarding and authentication

Annex A in the latest CAPIF TS [1] has the following figure:

[image: image4.png]i Pl provider domain
API publishing | |API exposing function|| APImanagement
APl invoker CAPIF corefunction fonction (ach) Tancton
I I

Publish service APls

senvice API policy
configuration

I 1
\ ‘ Onboarding API invoker to the CAPIF ‘

—F==============fF=====-

2 distinct / separate steps

Authentication between the APl invoker and the CAPIF core function

__‘_______________+______I

‘ AP invoker discovering service APIs ‘
‘ Subscription and notifications for the CAPIF events ‘ 2 distinct / separate steps
[[

‘ AP invoker obtaining authorization to access service APl ‘

Authentication between the API invoker and the AEF ‘ 1
I I J 4o

- - -
‘ Service API invocation by the API invoker with access control ‘ !

T --=-=--==f-=-—=—=======—======9=-

\ e— !

Charging the invocation of service APIs ‘

\ S ——— \

I
\ oo v o s |

Figure 1: "Figure A.1-1: Overview of CAPIF operations" from [1], modified
Also, subclause 8.1 and 8.5 in [1] define onboarding and API invoker authentication, respectively, as two distinctive procedures. The figures are quoted below.

[image: image2.emf]API invoker CAPIF core function

2. Onboarding approval

1. Onboard API invoker request

3. Onboard API invoker response

4. API invoker is

onboarded

Figure 2: "Figure 8.1.3-1: Procedure for onboarding API invoker to the CAPIF" from [1]

[image: image3.emf]API invoker CAPIF core function

2. Identity verificationand authentication

1. Authentication request

3. Authentication response

Figure 3: "Figure 8.5.3-1: Procedure for authentication between the API invoker and the CAPIF core function" from [1]
This does not appear to be the correct way to represent the steps necessary to grant a new user (API invoker) to the system as it introduces several issues from both architectural and security perspective.

Architectural issue:

From architectural perspective, having two distinctive steps implies that there can be a situation where the first step (onboarding) succeeds but the second step (authentication) fails – this is a logical observation simply because these are two distinctive procedures. In this case, some corrective action needs to be taken to rectify the situation. However, the current procedures in [1] define the "sunny day" scenario only and don't take "not-so-sunny day" scenarios into account, like the one described here. This is an architectural gap.
In order to define the full and complete stage 2 architecture for CAPIF, both "sunny day" and "not-so-sunny day" scenarios need to be covered equally.

Security issue:

The onboarding and authentication being two distinct procedures, as discussed above, have several issues from security perspective.

1) Authentication procedure initiated by the user (API invoker)

The authentication procedure is initiated by the user (API invoker). This goes against the basic principle that already exists in various procedures in 3GPP system. The authentication procedure defined in subclause 8.5 is essentially the user saying "please authenticate me" to the system. It is a self-serving procedure to achieve something for its own sake (i.e. have myself authenticated). However, user authentication is inherently an implicit action that gets triggered by the system (not by the user) as a consequence of the user's action to request something.
One prime example is the UE attach procedure or LAU / TAU procedure, where the network (MME) checks if the user (UE) is already authenticated or not. If not, it (MME) triggers the authentication procedure against this UE (without explicit request from the user). If the UE is successfully authenticated, then the system (MME) considers the user is a valid one and subsequently grant the service (i.e. successful attach, LAU/TAU). If, on the other hand, the authentication procedure fails, then the MME consider the user is an invalid one, and it does NOT grant service to the user (i.e. unsuccessful attach, LAU/TAU). During this procedure, NAS security context (ciphering and integrity protection) is also established.
In CAPIF, as is defined in TS 23.222 [1] now, what happens to the user who successfully completes onboarding procedure, but the subsequent authentication procedure does not succeed (or the authentication procedure is not even triggered)? This is a gap and the current TS doesn't address this area.

The same discussion applies to the procedures of both authentication with the CAPIF core function (subclause 8.5) and authentication with the AEF (subclauses 8.8 and 8.9). This also implies that authentication procedure explicitly triggered by the user and the AEF (subclause 8.8) is not a valid scenario (i.e. self-serving procedure).

2) Authentication procedure as a distinctive procedure initiated by the user (API invoker)

The authentication procedure as distinctive step opens the door for DoS attack. For example, one can create a fake user (API invoker) which triggers millions of onboarding procedure to the system (each with unique identity) but never initiate authentication procedure. As defined in subclause 8.1 in [1], the onboarding procedure creates a user profile for each API invoker. It is easy to see that this can fill up the user database (or memory) in the system, eventually overflow the database / memory, resulting in DoS situation.
One can argue that this can be handled in the implementation (e.g. purge oldest entries in round-robin fashion). However, such handling can unintentionally delete legitimate users' information or create other problems. Above all, such argument goes against the principle of security design in the system by simply leaving the vulnerability open.
Observation 1: The existing separate procedures for onboarding and authentication create an architectural "gap" by introducing a situation where one procedure succeeds but the other procedure does not succeed. This aspect is not addressed in the current CAPIF TS.
Observation 2: The existing onboarding / authentication procedures introduce security issue and vulnerability that needs to be resolved.
Observation 3: The cause of these issues summarized in the above observations is due to the fact that onboarding and authenticaiton are two distinctive steps. These two steps needs to be fused into a single procedure in which the authentication step is embedded within the onboarding procedure, in which the system verifies the authentication of the user as a part of the onboarding procedure (i.e. follow the existing principle of UE attach / TAU / LAU procedures).

Observation 4: In general, the existing CAPIF TS [1] covers "sunny day" scenarios only, thus incomplete stage2 spec. Other "not-so-sunny day" scenarios equally need to be defined to make it as a complete stage 2 spec.

2.1.2
Authentication of API invoker vs. mutual authentication

Subclause 4.3.2 in CAPIF TS 23.222 [1] has the following requirements. The yellow-highlighted part is the focus of this discussion.
	4.3
Security
4.3.1
Introduction

This subclause specifies the security related requirements for API invokers.

4.3.2
Requirements

[AR-4.3.2-a] The CAPIF shall provide mechanisms to hide the topology of the PLMN trust domain from the API invokers accessing the service APIs from outside the PLMN trust domain.

[AR-4.3.2-b] The CAPIF shall provide mechanisms to authenticate API invokers prior to accessing the service APIs.

[AR-4.3.2-c] The CAPIF shall provide mechanisms to authenticate API invokers upon the service API invocation.
Editor's note:
[AR-4.3.2-d] The CAPIF shall provide mechanisms to authorize API invokers to access the service APIs.

[AR-4.3.2-e] The CAPIF shall provide mechanisms to validate authorization of the API invokers upon the service API invocation.

[AR-4.3.2-f] The CAPIF shall provide mechanisms for mutual authentication between the CAPIF and the API invoker.
[AR-4.3.2-g] The CAPIF shall provide mechanisms to control the service API access for every API invocation.

[AR-4.3.2-h] The communication between the CAPIF and the API invoker shall be confidentiality protected.

[AR-4.3.2-i] The communication between the CAPIF and the API invoker shall be integrity protected.

Figure 4: Subclause 4.3.2 from [1]

From the above requirements, [AR-4.3.2-b] and [AR-4.3.2-c] cover authentication of the API invoker, and [AR-4.3.2-f] covers mutual authentication between CAPIF and API invoker.
However, the existing authentication procedures under subclause 8.5 clearly cover the first case only (i.e. authentication of the API invoker), as shown from the procedural texts quoted below. It says nothing about API invoker authenticating the CAPIF, and there's no definition of mutual authentication procedure elsewhere. Or is the procedure in subclause 8.5 intended as mutual authentication? – if so, it's completely unclear and misleading in the way it's currently described in this procedure.
	<the figure is omitted (shown in figure 3 above already)>

Figure 8.5.3-1: Procedure for authentication between the API invoker and the CAPIF core function

1.
The API invoker triggers authentication to the CAPIF core function, including the identity confirmed after successful onboarding.

2.
Upon receiving the authentication request, the CAPIF core function verifies the identity with the API invoker profile and authenticates the API invoker.

NOTE 1:
The authentication process is outside the scope of the present document and will be defined by SA3.

3.
The CAPIF core function returns the result of API invoker identity verification in the authentication response.

NOTE 2:
CAPIF core function can share the information required for authentication of the API invoker at the AEF.

Figure 5: subclause 8.5.3, "Procedure for authentication between the API invoker and the CAPIF core function" from [1]

From these, the requirements [AR-4.3.2-b] / [AR-4.3.2-c] and the authentication procedure in subclause 8.5 focus on authentication of the user (API invoker) only.
However, mutual authentication has equal significance on both sides to authenticate each other.
· The authentication of the user ensures that no fake user can be admitted to the system.

· The authentication of the system ensures that no fake service provider posing as a legitimate one can be accepted by the user.
In the 2nd case, the user (API invoker) to authenticate CAPIF ensures that no fake service provider is trying to steal user information (i.e. "Phishing").

Therefore, explicit focus only on the user authentication gives an impression that the mutual authentication (i.e. authentication of the system by the user) is not important and out-of-scope.

All in all, these similar-but-different-looking requirements in subclause 4.3 and explicit focus on user authentication only in the procedure subclause 8.5 creates the whole authentication requirement unclear.

As stage 2 specification, CAPIF TS needs to clarify this area.

Observation 5: The existing authentication procedures in subclause 8.5 in CAPIF TS focuses on user authentication only, and no procedure is defined for mutual authentication. If the procedure in subclause 8.5 is intended as mutual authentication, then appropriate change is needed to make it clear.

2.1.3
Authentication between API invoker and CAPIF core function vs. between API invoker and AEF

The current CAPIF TS [1] specifies that CAPIF framework involves two levels of authentication:

· Authentication between API invoker and CAPIF Core Function

· Authentication between API invoker and AEF

Subclause 4.3.2 (security requirement), 6.3.2 (functional description of API invoker), 6.3.3 (functional description of CAPIF core function), and 6.4.2 (reference point CAPIF-1) all point to the first point only (i.e. mutual authentication between the API invoker and the CAPIF core function). However, this TS has no mention of whether mutual authentication between the API invoker and AEF is required or not.

The following is a quote on the description of AEF (subclause 6.3.4):

	6.3.3
CAPIF core function

The CAPIF core function consists of the following capabilities:

-
Authenticating the API invoker based on the identity and other information required for authentication of the API invoker;

-
Supporting mutual authentication with API invoker;

-
Providing authorization for the API invoker prior to accessing the service API;

-
Publishing, storing and supporting the discovery of service APIs information;

-
Controlling the service API access based on PLMN operator configured policies;

-
Storing the logs for the service API invocations and providing the service API invocation logs to authorized entities;

-
Charging based on the logs of the service API invocations;

-
Monitoring the service API invocations;

-
Onboarding a new API invoker;

-
Storing policy configurations related to CAPIF and service APIs; and

-
Support accessing the logs for auditing (e.g. detecting abuse).
6.3.4
API exposing function

The API exposing function is the provider of the service APIs and is also the service communication entry point of the service API to the API invokers. The API exposing function consists of the following capabilities:

-
Authenticating the API invoker based on the identity and other information required for authentication of the API invoker provided by the CAPIF core function;

-
Validating the authorization provided by the CAPIF core function; and

-
Logging the service API invocations at the CAPIF core function.

Figure 6: subclause 6.3.4, Functional description of "API exposing function" from [1]

The above yellow-highlighted text refers to the authentication. The text under subclause 6.3.4 refers to the authentication of the API invoker only.
It is our assumption that mutual authentication *is* needed between the API invoker and the AEF given that CAPIF core functions and AEF are two separate entities, possibly owned by two different organizations.
Observation 6: It unclear whether mutual authentication is required or not between the API invoker and the AEF, according to the current CAPIF TS. This point needs to be clarified in the TS.

Observation 7: Suitable changes in the CAPIF TS are needed to appropriately cover this aspect.
2.1.4
Security implication of 3rd party API provider
Interaction between the CAPIF core function and the service API provider domain functions are done over the following reference points:

· CAPIF-3: interface between CAPIF core function and service API exposure function (AEF)

· CAPIF-4: interface between CAPIF core function and service API publishing function

· CAPIF-5: interface between CAPIF core function and service API management function

The current definition of CAPIF framework in [1] shows that both CAPIF core function and the service API provider are within the same PLMN domain. At the same time, it also covers the scenario where the 3e party service API provider is allowed to be connected to the CAPIF core function (subclause 4.1.3, 4.3.3). It is probably safe to assume that this 3e party API provider exists under separate security domain from the one under PLMN operator domain. In this case, a suitable security mechanism is needed to ensure authentication, authorization, integrity protection, etc.

The current CAPIF TS [1] does not address the general security aspect involving the 3rd party API provider.

Observation 8: The current CAPIF TS does not address security aspects for interactions involving the 3rd party API provider.
2.2
Missing functionalities
2.2.1
Introduction
CAPIF TS specifies the generic "framework" of providing 3GPP services to the northbound interface via API. This framework needs to include the entire life cycle of service API, which may include the following aspects:

· Introducing new service (e.g. announcing, discovering, etc.)
· Providing new service

· Modifying (maintaining) existing service

· Retiring existing service

However, the existing content in CAPIF TS [1] covers the first 2 aspects only (i.e. mechanisms to bring service API into use). It does not define mechanisms to maintain or retire service APIs. However, there are situations / use cases where other aspects mentioned above needs to be taken into account to make the stage 2 spec a complete one.
As the architecture specification, CAPIF TS should cover functionalities to cover all aspects of the entire life cycle of service API. Otherwise, as a stage 2 specification, it covers only half of the story.

Observation 9: The existing content in CAPIF TS covers only the aspects to bring the service API into use. Other use cases from the perspective of API "life cycle" are not covered.
2.2.2
"Un-doing" things from life cycle perspective (i.e. reverse actions)

From the discussion in the preceding section, the following functionalities are missing in the CAPIF TS [1].

1. "Unsubscribe" a user from a service API (i.e. reverse action of subscribing)
2. "Off-boarding" a user (i.e. reverse action of onboarding)

These actions are likely necessary functionalities from both user and system perspective due to the following reasons / use case scenarios. Some possible examples may include the following scenarios:
· A user (API invoker) wishes to stop using a particular service API

· e.g. a user has no more interest to use a particular service, wants to change to another similar but different (better) service API, etc.

· A user (API invoker) wishes to stop using the entire service API framework

· e.g. a user wishes to stop using the entire service, wishes to stop paying altogether, etc.

· The system (e.g. CAPIF) determines to block a particular user with the privilege to use a particular service API

· e.g. service provider wants to block delinquent non-paying user or repeated "abuser / policy violator", etc.
· The system (e.g. CAPIF) determines to remove multiple users from using a particular service API

· e.g. unavailability of the service itself due to service API provider's issues/problems (e.g. bug fix) (temporary unavailability), service API provider stops providing a particular service (retire old service), service API provider going out of business (permanent unavailability), etc.

· The system (e.g. CAPIF) determines to remove/de-register a particular user from the "system"

· e.g. Service API prover / operator react to a report of lost/stolen phone, non-paying user, repeated "abuser / policy violator", etc.

Observation 10: From the service API "life cycle" perspective, the reverse operations need to be defined for onboarding and subscription actions.

Observation 11: These reverse operations need to be able to be initiated from both the user (API invoker) as well as the system (e.g. CAPIF) side to meet the needs of various use case scenarios.

Observation 12: These functionalities are currently missing but need to be defined to make the stage 2 specification "complete".

2.2.3
Modification / update of service API already in service
There may be use case scenarios where the currently deployed service API needs to be modified or updated for various reasons, including cases such as:

· Change of service API feature / content (e.g. "service upgrade")

· Other scenarios where service API provider may want to change the characteristics of the service API.
To accommodate these scenarios, a mechanism needs to be defined in stage 2 to dynamically modify or update the information or service characteristics of the service API that is already in service in an on-demand manner. This type of functionality is not defined in CAPIF TS [1].
Observation 13: There is no functionality and mechanism currently defined in CAPIF TS to accommodate scenarios where the already-in-service service API needs to be modified / updated "on-the-fly" per on-demand needs of the service API provider / operator.
3
Conclusion
Based on the above discussion, we propose that the corresponding pCRs in [3] through [7] are approved to be captured in the next revision of TS 23.222 [1].
4
Reference
[1]
TS 23.222 "Functional architecture and information flows to support Common API Framework for 3GPP Northbound APIs; Stage 2" ver.0.1.0 (2017-10)
[2]
TR 23.722 "Study on Common API Framework for 3GPP Northbound APIs", ver.1.1.0 (2017-10)

[3]
S6-171535 "pCR on CAPIF authentication related requirements and procedures", NEC

[4]
S6-171536 "pCR on CAPIF security related to 3rd party API provider", NEC

[5]
S6-171537 "pCR on missing functionalities in CAPIF – unsubscription", NEC

[6]
S6-171538 "pCR on missing functionalities in CAPIF – offboarding", NEC

[7]
S6-171539 "pCR on missing functionalities in CAPIF – update", NEC
[image: image1]_1569393704.vsd
The height of the text box and its associated line increase or decrease as you add text. To change the width of the comment, drag the side handle.

The height of the text box and its associated line increase or decrease as you add text. To change the width of the comment, drag the side handle.

_1569247992.vsd
The height of the text box and its associated line increase or decrease as you add text. To change the width of the comment, drag the side handle.

The height of the text box and its associated line increase or decrease as you add text. To change the width of the comment, drag the side handle.

