
3GPP TSG-SA WG6 Meeting #17
S6-170525
Prague, Czech Republic, 8th – 12th May 2017
(revision of S6-17xxxx)
Source:
NEC
Title:
Pseudo-CR on miscellaneous corrections
Spec:
3GPP TR 23.722 ver.0.1.1
Agenda item:
9.4
Document for:
Approval
Contact:
Taka Yoshizawa (takahito dot yoshizawa at neclab dot eu)
1. Introduction
Miscellaneous corrections including, enhancement in wordings, readability, consistent subtitle naming, incomplete sentences, and editorial correction to the latest version TR.
2. Reason for Change
Some enhancement in wording and readability. Fixing inconsistent subclause titles and incomplete sentences. Some editorial corrections.
3. Conclusions

<Conclusion part (optional)>
4. Proposal

It is proposed to agree the following changes to 3GPP TR 23.722 version 0.1.1.
* * * First Change * * * *

	3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

Study on Common API Framework for 3GPP Northbound APIs

(Release 15)

* * * Next Change * * * *

5
Key issues
5.x
<key issue x>
Editor’s Note:
Add proper title for the key issue.

5.x.1
Description

Editor’s Note:
This clause will describe the key issue.

5.1
Discovery of service API information

5.1.1
Key issue description

There are several service APIs provided by the service provider. Applications require service API information to access these service APIs. Applications need to acquire the service API information from the service provider which includes information such as IP address, port number with details about interfaces, protocols, versions numbers, and environment details to enable access to the service API. Further study is required on the mechanism of providing service API information to the applications including registration of service API information by the service providers and discovery of the service API information by the applications.

* * * Next Change * * * *

 5.7
Monitoring service API invocations

5.7.1
Key issue description
To monitor the health of service API, capture system load information and prevent potential attacks, service API invocation monitoring functionalities are to be provided by the common API framework.
5.8
Logging service API invocations

5.8.1
Key issue description

The service APIs are typically invoked by various applications. It is necessary that the service API provider is able to log the service API invocation events for the purposes of tracing back and analysing statistics. Therefore the service API invocation logging and storage functionalities are to be included in common API framework.
The stored service API invocation log may contain private and sensitive information. Such information needs to be handled carefully to respect potential privacy rules.
5.9
Auditing service API invocations

5.9.1
Key issue description
While the service API provider is able to authorize applications with API invocation rights, it is necessary for the service providers to detect any abuse of service API invocations. To address this need, auditing capabilities (e.g. querying the service API invocations) will help the service API providers to identify illegal service API invocations.
* * * Next Change * * * *

6
Architectural requirements
6.1
General requirements
Editor’s Note:
This clause will investigate and describe general architectural requirements for common API framework.

6.x
<Common aspect x> requirements
Editor’s Note:
Add proper title describing the common aspect.

6.x.1
Description

Editor’s Note:
This clause will describe the common aspect.

6.x.2
Requirements

Editor’s Note:
This clause will describe the architectural requirements.

6.2
Service API discovery requirements
6.2.1
General

This subclause specifies the service API discovery related requirements.

6.2.2
Requirements

[AR-6.2.2-a] The API framework shall provide a mechanism to publish the service API information such as IP address, port number with details about interfaces, protocols, versions numbers, and environment details.
[AR-6.2.2-b] The API framework shall provide a mechanism to discover the service API information which is already published as specified in [AR-6.2.2-a].

6.3
Security requirements
6.3.1
General

This subclause specifies the security related requirements for applications accessing the service APIs.

6.3.2
Requirements

[AR-6.3.2-a] The API framework shall provide mechanisms to hide the topology of the service from the applications accessing the service APIs from outside the trust domain.

[AR-6.3.2-b] The API framework shall provide mechanisms to authenticate applications to access the service APIs.

[AR-6.3.2-c] The API framework shall provide mechanisms to authorize applications to access the service APIs.

6.4
Charging requirements
6.4.1
General

This subclause specifies the charging related requirements for the usage or invocation of service APIs.
6.4.2
Requirements

[AR-6.4.2-a] The common API framework shall provide mechanisms to record the invocation count of the service APIs for charging purpose.
[AR-6.4.2-b] The common API framework shall provide mechanisms to record identification of the application and the associated service API invocation for charging purpose.
[AR-6.4.2-c] The common API framework shall provide mechanisms to record timestamp of the service API invocation.

[AR-6.4.2-d] The common API framework shall provide mechanisms to record the service API related information, e.g. API location.

6.5
Lifecycle management requirements
6.5.1
General

This subclause specifies the lifecycle management aspects such as monitoring the running status of services API and related operations.
6.5.2
Requirements

[AR-6.5.2-a] The common API framework shall provide mechanisms to monitor the lifecycle of service APIs, e.g. starting and stopping of the service API.

[AR-6.5.2-b] The common API framework shall provide mechanisms to monitor and report the performance status about the service APIs.

[AR-6.5.2-c] The common API framework shall provide mechanisms to monitor and report the fault information about the service APIs.

[AR-6.5.2-d] The common API framework shall provide mechanisms to record change events of service APIs, e.g. service APIs relocation.

6.6
Monitoring service API invocation requirements
6.6.1
General

The monitoring function shall be included into common API framework. It ennables API provider to monitor service API invocations in near real-time, to determine cirtical aspects such as system load, API usage information, uncover potential overload and attacks(e.g. DDOS) conditions.

6.6.2
Requirements
[AR-6.6.2-a] The common API framework shall provide mechanisms to capture service API invocation events and make them available to service API provider in near real-time (second level).

[AR-6.6.2-b] The common API framework shall provide mechanisms to analyse system load and resource usage information, detect overload conditions and existence of threat conditions.
[AR-6.6.2-c] The common API framework shall provide mechanisms to allow service API provider to apply monitoring filters based on criteria such as invoker's ID and IP address, service API name and version, input parameters, and invocation result.

6.7
Logging service API invocation requirements
6.7.1
General

The ability to logging service API invocations and its storage shall be supported by the common API framework. This enables API providers to record service API invocation events for the purpose of tracing back and statistical anlaysis.
6.7.2
Requirements
[AR-6.7.2-a] The common API framework shall provide mechanisms for service API invocation event logging and storage functionality. For each service API invocation, the service API invocation log shall at least include: invoker's ID and IP address, service API name and version, input parameters, invocation result, and time stamp information.
[AR-6.7.2-b] The service API invocation log shall be stored for a configurable time period, according to the service API provider's policy.
[AR-6.7.2-c] The service API invocation log shall be stored securely, and shall only be accessed by authorized administrators of the service API provider.
Editor's note: The relationship between logging and charging is FFS.
6.8
Auditing service API invocation requirements
6.8.1
General

Auditing capabilities shall be included in the common API framework. It enables the service API provider to identify illegal service API invocations, e.g. by querying the service API invocation log.
6.8.2
Requirements
[AR-6.8.2-a] The common API framework shall provide mechanisms to audit service API invocation, which enables the service API provider to trace back a specific API invocation, e.g. by querying the service API invocation log.
* * * Next Change * * * *

Annex A:
OMA API Program

A.1
General

The OMA API program has inventory of APIs [6] which provides standardized interfaces to the service infrastructure residing within communication networks and on devices. Focused primarily between the service access layer and generic network capabilities, OMA API specifications allow operators and other service providers to expose device capabilities and network resources in an open and programmable way to any developer community independent of the development platform. By deploying OMA APIs, fundamental capabilities such as SMS, MMS, Location Services, Payment and other core network assets are now exposed in a standardized way.

[image: image1.emf]

OMA APIs provide an abstracted view of network capabilities

SCEF

e.g., 3GPP network

Figure A.1.1: OMA Service Exposure Framework

OMA API landscape spreads across various dimensions:

-
Abstract APIs: Focus on functional aspects and Protocol independent i.e., does not include a specific protocol binding for its operations

-
API Binding Technologies: SOAP/WSDL web services, HTTP protocol binding using REST architectural style

-
Network API: exposed by a resource residing in the Network

-
Device API: exposed by a resource residing/running on a Device
A.2
OMA API Architecture

This subclause discusses the OMA API architecture for Abstract APIs and HTTP/SOAP APIs.

A.2.1
OMA Next Generation Service Interfaces (NGSI) for Abstract APIs
The reference architecture of Abstract APIs or NGSI [7] is shown below:

[image: image2.emf]

OMA service e nablers, 3 GPP network capabilities via native interfaces

Figure A.2.1: NGSI Architectural Diagram

Although the scope of NGSI is standardization of functional interfaces and framework aspects, the excerpts below give more emphasis those related to framework aspects.

A.2.1.1 Service Registration and Discovery

The Service Registration and Discovery component supports NGSI interface messages for the following functions:

-
Registration of Services

-
Search for Services.

This component exposes the NGSI-11 and NGSI-12 interfaces. The NGSI-11 interface supports Registration of Services. The NGSI-12 interface supports Search for Services.

A.2.1.2 Identity Control

The Identity Control component supports NGSI interface messages for the following functions:

-
Management of the Identity including Identifiers

-
Control of the Federation of the Identity.

This component exposes the NGSI-13 and NGSI-14 interfaces.

A.2.1.3 Data Configuration and Management

The Data Configuration and Management component supports NGSI interface messages for the following functions:

-
Management (i.e. create, read, update, delete) of data stored in a document

-
Subscription management of notifications regarding data change in the content of a document

-
Notifications of data change in the content of a document.

The data supported can be of the type of XML or non-XML data. This component exposes the NGSI-1, NGSI-2 and NGSI-3 interfaces.

A.2.2
OMA RESTful APIs

A.2.2.1 Authorization Framework for Network APIs

The Authorization Framework for Network APIs enables a Resource Owner owning network resources exposed by Network APIs and RESTful APIs in particular, to authorize third-party Applications (desktop, mobile and web Applications) to access these resources via that API on the Resource Owner’s behalf.

OMA RESTful Network APIs may be complemented with a common delegated authorization framework based on IETF OAuth 2.0, for access of third party Applications via those APIs.

A.2.2.2 RESTful Network API for Capability Discovery

The RESTful Network API for Capability Discovery contains HTTP protocol bindings for Capability Discovery, using the REST architectural style. The specification provides resource definitions, the HTTP verbs applicable for each of these resources, and the element data structures, as well as support material including flow diagrams and examples using the various supported message body formats (i.e. XML and JSON).

A.3
API consistency within OMA APIs

OMA has developed following specifications in order to ensure consistency across all the APIs that are developed.

-
Common Definitions and Specifications for RESTful Network APIs: To ensure consistency for developers using the various RESTful Network APIs specified in OMA, this “Common” technical specification aims to contain all items that are common across all HTTP protocol bindings using REST architectural style for the various individual interface definitions, such as naming conventions, content type negotiation, representation formats and serialization, and fault definitions. It also provides a repository for common data types.

-
Common specifications for RESTful Network APIs include use of REST guidelines, handling of unsupported formats, API authoring style, resource creation, encoding in HTTP requests/responses

-
Data items include addressing, common data types

-
Error handling

-
Whitepaper on Guidelines for RESTful Network APIs: This whitepaper is intended to provide the guidelines and best priorities for defining RESTful Network APIs in OMA.

-
Generic principles for defining RESTful Network APIs include:

-
Services should be defined in terms of resources that are addressable as URLs
-
Use of nouns in URLs is recommended over the use of verbs

-
Mapping of HTTP i.e., verbs POST, GET, PUT, DELETE for CRUD (Create, Read, Update, Delete) operations

-
Use standard HTTP Status codes in responses for both successful and failed operations

-
It is recommended to specify API versioning by inserting the API version in the resource URL path

-
The API specifications should include examples

-
APIs should support ability to add extra data elements in the request/reply body and extra query parameters in the URL to enhance usability

-
If a message contains sensitive data, such as passwords, account numbers, and card numbers (as in account management and payment APIs), security consideration to protect these information is required
-
API Documentation:

-
Each RESTful Network API should be specified in a resource-oriented manner and the resources used by the API should be defined and explained. Use cases and sequence diagrams should be provided.

-
RESTful Network API data types and enumeration types must be specified with an associated detailed description including optionality. This will enable a developer to understand how to use the parameter.

-
Error handling, examples, common data formats, backward and forward compatibility

* * * Next Change * * * *

�wrong font size (should be 17pt)

_1553441803.doc
[image: image1.png]Sy Advertise:
Integrator

Content
Provider

Developer
Provider Program
APIs

Exposure Layer

Native Network
Signaling Protocols

Network
p—,

OMA APIs provide an abstracted view of network capabilities

SCEF

e.g., 3GPP network

_1553439468.doc
[image: image1.emf]

OMA service enablers, 3GPP network capabilities via native interfaces

