3GPP TSG SA WG5 (Telecom Management) Meeting #96
S5-144266
18-22 August 2014 Sophia Antipolis (France)
revision of S5-140abc
Source:
Cisco, Vodafone, Deutsche Telekom
Title:
pCR to TR 32 860 MLB parameters alignment
Document for:
Approval
Agenda Item:
6.9.3 Study on Enhancements of OAM aspects of Distributed Mobility Load Balancing (MLB) SON function
1
Decision/action requested

Approval
2
References

[1]
3GPP TR 32.860 V0.4.0 (2014-05) Study on Enhancements of OAM aspects of distributed Self-Organizing Networks (SON) functions
3
Rationale

The purpose of this contribution is to clarify the scenario outlined in [5], 4.2.1.3 and to provide analysis. The contribution has been derived from merge of two contributions, S5-143233 (Cisco) and S5-143070 (Ericsson).

The example algorithm in the proposed text in 4.2.1.3.1, mimics the following aspects that may be used in real MLB implementations:

A. If the load on the eNB is low, it does not try to offload

B. Otherwise the MLB tries to offload to the neighbors which, according to their load reports, may agree to accept the offload

C. If the eNB is not overloaded, it accepts offload requests from neighbours

The “Detailed proposal” section contains agreed text. The following potential text additions a), b) and c) were discussed, but not agreed:
a) The Algorithm description assumes a peculiar (may not be common) D-MLB behaviour (e.g. eNB#2 would not increase its threshold to offload (the H2) or drop some Non-GBR traffic when its offload request is rejected multiple times; but would repeat offload request again and again).
The latest arguments against this addition were as follows:

1. It is unusual for TRs, when specific examples are provided, characterize them as common or uncommon. In particular, none of numerous examples of proprietary algorithms brought to consideration in TR 32.836 and TR 36.921 is specified as common or uncommon. The word “example” already carries precise message.
2. The statement in a) is that the example of MLB algorithm in 4.2.1.3.1 is peculiar [strange, odd, unusual] because it does not drop traffic of certain type. So there is a statement that MLB implementations normally include the function of dropping some traffic. However the MLB definition in 36.300/22.4.1 does not include the function of dropping traffic.
3. Another part of the statement a) relates to thresholds which in certain MLB algorithms may be set and sometimes updated by the algorithm itself. The statement in a) says that the algorithm in 4.2.1.3.1 is peculiar [strange, odd, unusual] because it does not do that. This is equivalent to the statement that MLB algorithms usually [normally] set / modify their thresholds. No proof of that was offered.
b) The solution allows NM to over-ride eNB#1 decision (to reject offload request) and force eNB#1 to accept offload request. Over-riding eNB#1 decision is harmful when eNB#1 have (and proper D-MLB algorithm should have) a reason to reject offload request. For example, there is a tight coordination between MRO and D-MLB, which in general has to adapt to the adjustment done by distributed MRO. Another example would be: a D-MLB may want to reject offload request in preparation of entering into energy saving mode. The NM is not aware of the needs of such distributed SON functions in eNB#1 and therefore, its instructions to over-ride eNB#1 decisions can be wasteful on network resources and most probably, contradicting the goals of the collaborating D-MLB functions.

The latest arguments against this addition were as follows.

The text in b) is based on misperception that in 4.2.1.3.1 eNB (MLB) sets the values of thresholds which are subsequently re-set by the OAM.
In 4.2.1.3.1 the values of thresholds are hard coded (e.g. factory configuration); then the eNB#1 and eNB#2 are deployed, start their operations based on (not aligned) thresholds values and then bad situation may happen when eNB#2 improperly interoperates with eNB#1 from another vendor. NM is not involved.
In another design (4.2.1.3.3), the thresholds are not hard coded; they are available for configuration via OAM. Then, after the eNBs are deployed, the thresholds in both eNB#1 and eNB#2 are properly configured by the operator via OAM and the eNBs start their operations. Then the bad situation will not happen.
Clarification “All thresholds in this example are hard coded” was included into 4.2.1.3.1.

c) The solution assumes eNodes’ local environments/situations are identical (so, using the same L value and same H value for all eNodes would load balance optimally). If such assumption can be true, then there is no need for running D-MLB but simply instruct all eNBs to have the same values for L and H.

The proposed solution does not imply that all nodes are using same values L, H. The following text was added in 4.2.1.3.3 to clarify the situation
The described algorithm (4.2.1.3.1) and the proposed solution address a single pair of eNBs. For multiple eNBs, the solution will be to align the threshold parameters L, H in every pair. For example suppose that there are three eNBs: A, B and C. The corresponding threshold parameters are denoted HAB, LAB (parameters of eNB A, towards B) HAC, LAC (parameters of eNB A, towards C) etc. Then alignment means HAB = HBA, LAB = LBA, HAC = HCA, etc.

4
Detailed proposal

	1st proposed change

4.2.1.3
MLB algorithms misalignment, algorithm version 1
4.2.1.3.1
 Algorithm description
The following example includes two eNBs from different vendors in which MLB decision algorithms are not aligned and the load is measured using one of metrics defined in TS 32.425 or their derivatives (average, peak etc.)... This problem statement is not applicable in case when the distributed MLB is implemented with Composite Available Capacity (CAC) indicator. For the purpose of comparison it is assumed that 100% of load at the eNB#1 are equivalent to 100% of load at the eNB#2. In this example two eNBs are using similar algorithms and only configuration parameters of the algorithm are different:

-
eNB#1 (vendor #1) does not accept offload requests when it is loaded at L1 = 70% or above and tries to offload when it is over H1 = 85%

-
For eNB#2 (vendor #2) these thresholds are L2 = 80% and H2 = 90%.
-
When eNB#2 receives load information from eNB#1, it compares the load value to its own threshold value L2, In case it is below L2, the eNB#2 is expecting eNB#1 to accept offload requests, otherwise the eNB#2 does not try to offload.

All thresholds in this example are hard coded.

Suppose that eNB#1 is at 70% and eNB2 goes over 90%.
4.2.1.3.2
Analysis #1

In this scenario the eNB#2 will permanently try to offload because it is over 90% and the eNB#1 signals load (70%) that is below L2 = 80% . However eNB#1 will be rejecting offload requests because it is above its internal threshold of L1 = 70%. From the point of view of eNB#2, offload to eNB#1 is needed and must be accepted by the eNB#1, but in fact no load balancing actions will happen
4.2.1.3.3
Possible solution

One possible solution is to make the thresholds L, H controlled via OAM interface. Then these parameters can be aligned between neighbour eNBs by the operator using network management tools. For example, the operator can set L1 = H1 = L2 = H2= 90% at both eNBs. Then every of two eNBs will do nothing if it is below 90% or if another eNB is above 90% (therefore is supposed to reject the offload request). Otherwise the eNB will request offload and the request will be accepted by the other eNB. Such behavior of two eNBs will be properly coordinated and reasonable.
The described algorithm (4.2.1.3.1) and the proposed solution address a single pair of eNBs. For multiple eNBs, the solution will be to align the threshold parameters L, H in every pair. For example suppose that there are three neighbor eNBs: A, B and C. The corresponding threshold parameters are denoted HAB, LAB (parameters of eNB A, towards B) HAC, LAC (parameters of eNB A, towards C) etc. Then alignment means HAB = HBA, LAB = LBA, HAC = HCA, etc.
4.2.1.3.3
 Analysis #2

In this analysis, we examine the consequence of using the possible solution of 4.2.1.3.3.

The following Table shows the node setting
Table 1: Node setting

	
	Rejects offload request when load is…
	Attempts offload when load is…

	eNB#1
	>= 70, the L1
	> 85, the H1

	eNB#2
	>= 80, the L2
	> 90, the H2

The algorithm description 4.2.1.3.1 points out that if the eNB#1 load = = 70 and eNB#2 load > 90 (see Table below), eNB#2 attempt to offload will fail.

Table 2: Node setting and load combination (Failure)

	
	Rejects offload request when load is…
	Attempts offload when load is…
	Load is…
	Load is…

	eNB#1
	>= 70
	> 85
	= = 70
	

	eNB#2
	>= 80
	> 90
	
	> 90

The possible solution of 4.2.1.3.2.1 suggests adjusting the settings in the eNBs (see column two and three of the following table). With these new settings and the ‘old’ loads of Table 2 above, the eNB#2 will attempt to offload because its load is above 90 and the load signaled by the eNB#1 is < 90 (the L2). The offload request will be accepted by the eNB#1.

Table 3: New node setting and same load combination as in Table 2 (Succeed)

	
	Rejects offload request when load is…
	Attempts offload when load is…
	Load is…
	Load is…

	eNB#1
	>= 90
	> 90
	= = 70
	

	eNB#2
	>= 90, the L2
	> 90
	
	> 90

	2nd proposed change

4.2.1.4

MLB algorithms misalignment, algorithm version 2

4.2.1.4.1
Algorithm description

The following example includes two eNBs from different vendors in which MLB decision algorithms are not aligned and the load is measured using one of metrics defined in TS 32.425 or their derivatives (average, peak etc.). This problem statement is not applicable in case when the distributed MLB is implemented with Composite Available Capacity (CAC) indicator. For the purpose of comparison it is assumed that 100% of load at the eNB#1 are equivalent to 100% of load at the eNB#2. In this example two eNBs are using similar algorithms and only configuration parameters of the algorithm are different:

-
eNB#1 (vendor #1), does not accept offload requests when it is loaded at L1 = 70% or above and tries to offload when it is over H1 = 85%

-
For eNB#2 (vendor #2) these thresholds are L2 = 80% and H2 = 90%.
Note: The algorithm assumed here is different from that described in 4.2.1.3.1 as the eNB#2 always expects eNB#1 to accept offload requests, independently of the load report received from eNB#1.
Suppose that eNB#1 is at 70% and the load at eNB#2 goes over 90%.
4.2.1.4.2
Analysis
The Table 4.2.1.4.2-1 captures the eNB#1 and eNB#2 settings used in the Problem Statement (subclause 4.2.1.4.1).
Table 4.2.1.4.2-1: Node setting

	
	Rejects offload request when load is…
	Attempts offload when load is…

	eNB#1
	> 70
	> 85

	eNB#2
	> 80
	> 90

The Problem Statement points out that if the eNB#1 load = = 70 and eNB#2 load > 90 (see Table 2), eNB#2 attempt to offload will fail.

Table 4.2.1.4.2-2: Node setting and load combination (Failure)

	
	Rejects offload request when load is…
	Attempts offload when load is…
	Load is…
	Load is…

	eNB#1
	>70
	> 85
	= = 70
	

	eNB#2
	>80
	> 90
	
	> 90

It is certain, using Table 4.2.1.4.2-1 settings and with Table 4.2.1.4.2-2 traffic loading, the offload attempts fails.

To avoid failure in such scenario, one might want to adjust the setting in the eNBs. For example, the NM would adjust the setting to that shown in Table 4.2.1.3.3-3 below. This new settings would eliminate the problem stated (because, using the new setting suggested by the NM, eNB2 attempts to offload will succeed).

Table 4.2.1.4.2-3: New node setting and same load combination as in Table 4.2.1.4.2-2 (Success)

	
	Rejects offload request when load is…
	Attempts offload when load is…
	Load is…
	Load is…

	eNB#1
	> 80
	> 82
	= = 70
	

	eNB#2
	> 80
	> 82
	
	> 90

1. The Problem Statement assumes a D-MLB behaviour (i.e. eNB#2 would not increase its threshold to offload at the moment it realises its load is at 90) and that its offload target would reject any incoming offload request. This assumed D-MLB implemention would trigger MLB actions only when its load threshold is reached.
2. It is true that the NM new settings (see Table 4.2.1.4.2-3) can eliminate the problem stated, if that loading (see Table 4.2.1.4.2-3) happens. However, the new settings introduce a problem if eNB1 load=80 and eNB2=82 (see Table 4.2.1.4.2-4 below).

Table 4.2.1.4.2-4: Node setting and load combination (Fail)

	
	Rejects offload request when load is…
	Attempts offload when load is…
	Load is…
	Load is…

	eNB#1
	> 80
	> 82
	= = 80
	

	eNB#2
	> 80
	> 82
	
	> 82

In other words, there is always a problem given a set of node settings with loads combination, regardless if we use NM to reconfigure the thresholds or not. The problem is due to the constraint of limiting offloading to situations of load threshold crossing and can be generalized as follows:

Problem occurs when eNB#1 load reaches its threshold to reject offload request and when eNB#2 load reaches its threshold to attempt offload. This generalization is shown in Table 4.2.1.4.2-5.

Table 4.2.1.4.2-5: Node setting and load combination (Fail)

	
	Rejects offload request when load is…
	Attempts offload when load is…
	Load is…
	Load is…

	eNB#1
	> X1
	> X2
	= = X1
	

	eNB#2
	> Y1
	> Y2
	
	> Y2

3. The configuration described in the Table 4.2.1.4.2-4 increases frequency of handovers unnecessarily. Using Table 4.2.1.4.2-2 and Table 4.2.1.4.2-3, we note that the configuration would require eNB#1 to reject offload request at load > 80 (instead of load > 70). It also requires eNB#1 to trigger handovers when load > 82 (instead of load > 85). The resources to handle this higher frequency of handovers may or may not be necessary (therefore, wasted) because there is no guarantee that the estimated load (eNB#1 load = = 70, eNB2 load=90) would occur in the future.
	End of proposed changes

