
Contact: WANG Ying
MIIT/BUPT
China

Tel: +86-10-62283119 ext. 8514
Fax: +86-10-62283412
Email: wangy@bupt.edu.cn

Contact: WANG Zhi-li
MIIT/BUPT
China

Tel: +86-10-62283119 ext. 8726
Fax: +86-10-62283412
Email: zlwang@bupt.edu.cn

Contact: Cheng Qiao-gang
ZTE
China

Tel: +86-755-26770000-3711
Fax: +86-755-26773583
Email: chen.qiaogang@zte.com.cn

Attention: This is not a publication made available to the public, but an internal ITU-T Document intended only for use by the
Member States of ITU, by ITU-T Sector Members and Associates, and their respective staff and collaborators in their ITU related
work. It shall not be made available to, and used by, any other persons or entities without the prior written consent of ITU-T.

INTERNATIONAL TELECOMMUNICATION UNION STUDY GROUP 2
TELECOMMUNICATION
STANDARDIZATION SECTOR

STUDY PERIOD 2009-2012

TD 318 Rev.1 (PLEN/2)-E
English only

Original: English

Question(s): 9/2 Geneva, 21-29 March 2012

TD

Source: Editors

Title: Draft X.782 (ex X.ws-xml): Guidelines for defining Web-services for managed
objects and management interfaces (for consent)

Draft Recommendation ITU-T X.782

Guidelines for defining Web-services for managed objects
and management interfaces

Summary

This Recommendation defines a set of services required to support service-oriented Web-services based
interfaces, and along with ITU-T X.782 composes a framework for Web-services based network
management interface. It specifies protocol requirements, how some well-known Web-services should be
used in network management interfaces, and defines some network management specific support services.
The WSDL interface definitions for the network management specific support services are also provided.

This Recommendation defines a set of guidelines for managed object modelling and management interface
for Web-service based network management. It specifies how service-oriented Web service interfaces should
be defined. It covers the suitable application scenario of Web-services in network management interfaces,
generic accessing methods of XML based managed objects, information modelling in Web-service WSDL
and XML Schema. Some WSDL definitions and XML Schema are provided defining some basic data types,
generic managed object (MO) and generic MO accessing methods. This Recommendation and ITU-T
Recommendation Q.818 together compose a framework for Web-service based network management
interfaces with a wide range of applications.

Keywords

Web Service (WS), Web Services Description Language (WSDL), eXtensible Markup Language (XML),
XML Schema, Distributed Processing, Managed Objects, Network Management Interfaces.

- 2 -
TD 318 Rev.1 (PLEN/2)-E

Contents

1 SCOPE ... 3

2 REFERENCES ... 3

3 DEFINITIONS .. 4

3.1 TERMS DEFINED ELSEWHERE:... 4
3.2 TERMS DEFINED IN THIS RECOMMENDATION ... 4

4 ABBREVIATIONS AND ACRONYMS .. 4

5 CONVENTIONS .. 5

6 OVERVIEW OF WEB-SERVICE TECHNOLOGY AND APPLICATION SCENARIOS IN NETWORK
MANAGEMENT INTERFACES ... ERROR! BOOKMARK NOT DEFINED.

6.1 CHARACTERISTICS OF WEB-SERVICE TECHNOLOGY ERROR! BOOKMARK NOT DEFINED.
6.2 SUITABLE AND UNSUITABLE APPLICATION SCENARIOS OF WEB-SERVICE IN NETWORK MANAGEMENT ERROR!

BOOKMARK NOT DEFINED.

7 PRINCIPLES FOR SERVICE-ORIENTED WSDL-BASED INTERFACE DESIGN 6

8 DEFINITION OF A GENERIC MANAGED OBJECT USING XML SCHEMA... 7

8.1 WEB SERVICE ROLE IN MANAGEMENT INTERFACE .. 7
8.2 DEFINITION OF MANAGED OBJECTS USING XML SCHEMA .. 8
8.2.1 DEFINITION OF GENERIC MANAGED OBJECT CLASS .. 8
8.2.2 INHERITANCE OF MANAGED OBJECTS .. 9

9 ACCESSING METHODS FOR MANAGED OBJECTS .. 11

10 INHERITANCE OF MANAGED OBJECTS AND INTERFACE OPERATIONS .. 13

10.1 ATTRIBUTES INHERITANCE OF MANAGED OBJECTS ... 13
10.2 INHERITANCE OF INTERFACE OPERATION .. 14

11 INFORMATION MODELLING GUIDELINES FOR WEB-SERVICE BASED INTERFACES 14

11.1 NAMESPACE ... 14
11.2 ELEMENT .. 14
11.3 ATTRIBUTE ... 15
11.4 REQUEST .. 15
11.5 RESPONSE ... 15
11.6 NOTIFICATION .. 15

12 STYLE IDIOMS FOR WEB-SERVICE WSDL AND XML SCHEMA SPECIFICATIONS 16

12.1 DATA MODEL USING XML SCHEMA ... 16
12.2 XML SCHEMA DESIGN CONSIDERATIONS .. 16
12.3 RECOMMENDAITONS FOR SCHEMA DEVELOPERS ... 18
12.4 GUIDELINES FOR SCHEMA EXTENSIONS ... 20

13 COMPLIANCE AND CONFORMANCE ... 21

A.1 XML SCHEMA DEFINITION FOR GENERIC MANAGEMENT OBJECT ... 27

A.2 WSDL AND XML SCHEMA DEFINITION FOR COMMON ABJECT ACCESSING METHODS 27

- 3 -
TD 318 Rev.1 (PLEN/2)-E

1 Scope

The network management architecture defined in [ITU-T M.3010] introduces the use of multiple
management protocols. So far, the GDMO/CMIP and CORBA GIOP/IIOP are possible choices at
the application layer. Based on the management interface specification methodology defined in
[ITU-T M.3020], more technology-based paradigm can be introduced into network management
interface, and Web-Service/XML is now an additional paradigm for network management.

This Recommendation, together with [ITU-T Q.818], sets out to define a framework for defining
how interfaces supported by management systems and network elements should be modelled using
Web-Service/XML schema. It is the scope of this Recommendation to provide the following
guidelines or instructions:

- Service-oriented WSDL-based interface design approach;

- Suitable and unsuitable application scenarios for Web-service in network management
interfaces;

- Generic accessing methods for managed objects;

- Inheritance of managed objects and interfaces;

- Information modelling guidelines for Web-service based interface;

- Style conventions for Web-service WSDL and XML schema specifications.

2 References

The following ITU-T Recommendations and other references contain provisions, which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision;
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the
currently valid ITU-T Recommendations is regularly published.

The reference to a document within this Recommendation does not give it, as a stand-alone
document, the status of a Recommendation.

[ITU-T M.3010] Recommendation ITU-T M.3010 (2000), Principles for a telecommunications
management network.

[ITU-T M.3020] Recommendation ITU-T M.3020 (2011), Management interface specification
methodology.

[ITU-T X.701] Recommendation ITU-T X.701(1997), Information technology – Open Systems
Interconnection – Systems management overview.

[ITU-T X.703] Recommendation ITU-T X.703(1997), Information technology – Open
Distributed Management Architecture.

[ITU-T Q.818] Recommendation ITU-T Q.818 (2012), Web Services based management
services.

[ITU-T E.164] Recommendation ITU-T E.164 (2011), The international public
telecommunication numbering plan.

[W3C XML] W3C Recommendation (2000), Extensible Markup Language (XML) 1.0
(Second Edition).

[W3C XS-P1] W3C Recommendation (2004), XML Schema Part 1: Structures (Second
Edition).

- 4 -
TD 318 Rev.1 (PLEN/2)-E

[W3C XS-P2] W3C Recommendation (2004), XML Schema Part 2: Datatypes (Second
Edition).

[W3C WSDL] W3C Recommendation (2001), Web Services Description Language (WSDL)
Version 1.1.

[W3C SOAP] W3C Recommendation (2007), SOAP Version 1.2 Part 1: Messaging
Framework (Second Edition).

[OASIS WSN] OASIS Specification (2006), Web Services Base Notification v1.3.

[OASIS UDDI] OASIS Specification (2004), Universal Description, Discovery and Integration
v3.0.2.

3 Definitions

3.1 Terms defined elsewhere:

This Recommendation uses the following terms defined elsewhere:

3.1.1 manager [ITU-T M.3020]

3.1.2 agent [ITU-T M.3020]

3.1.3 managed object class [ITU-T X.701]

3.1.4 notification [ITU-T X.703]

3.2 Terms defined in this Recommendation

This Recommendation does not define any new terms.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

B2B Business to Business

BPEL Business Process Execution Language

C2B Customer to Business

CMIP Common Management Information Protocol

CORBA Common Object Request and Broker Architecture

DCOM Distribute Component Object Model

DN Distinguished Name

DTD Document Type Definition

EMS Element Management System

GDMO Guideline for the Definition of Managed Object

GIOP General Inter-ORB Protocol

IDL Interface Definition Language

IIOP Internet Inter-ORB Protocol

IT Information Technology

LAN Local Area Network

MO Managed Object

- 5 -
TD 318 Rev.1 (PLEN/2)-E

MOC Managed Object Class

MOO Multiple Object Operation

NMS Network Management System

OASIS Advancing Open Standards for the Information Society

OOAD Object-Oriented Analysis and Design

OS Operating System

RDN Relative Distinguished Name

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

TMN Telecommunications Management Network

UDDI Universal Description Discovery and Integration

W3C World Wide Web Consortium

WS Web Services

WSDL Web Services Description Language

WSN Web Services Notification

XML eXtensible Markup Language

XSD XML Schema Definition

5 Conventions

A few conventions are followed in this Recommendation to make the reader aware of the purpose
of the text. While most of the Recommendation is normative, paragraphs succinctly stating
mandatory requirements to be met by a management system (managing and/or managed) are
preceded by a boldface "R" enclosed in parentheses, followed by a short name indicating the subject
of the requirement, and a number. For example:

(R) EXAMPLE-1 An example mandatory requirement.

Requirements that may be optionally implemented by a management system are preceded by an "O"
instead of an "R". For example:

(O) EXAMPLE-2 An example optional requirement.

The requirement statements are used to create compliance and conformance profiles.

Examples of WSDL and XML are included in this Recommendation and normative WSDL and
XML specifying the data types, base classes and other service-oriented modelling constructs of the
framework, is included in Annex A. The WSDL and XML are written in a 9-point courier typeface:

<!-- Example XML schema -->
<xsd:complexType name="AType">
 <xsd:sequence>
 <xsd:element name="a" type="xsd:string"/>
 <xsd:element name="b" type="xsd:long"/>
 </xsd:sequence>
</xsd:complexType>

- 6 -
TD 318 Rev.1 (PLEN/2)-E

6 Overview of Web-Services based management framework

Web Services has been widely used in the IT industry. Appendix I provides more information on
the features of Web services technology. Web services can be used in network management
interfaces, similarly as the CORBA technology.

This Recommendation jointly with [ITU-T Q.818], sets up a framework for defining how interfaces
supported by management systems and network elements should be modelled using WSDL and
XML schema.

The Web Services-based management framework includes the following aspects:

(1) Managed object and interface definition guidelines;

- Principles for the service-oriented WSDL-based interface design.

- Definition of managed objects using XML Schema.

- Accessing methods for MOs.

- Inheritance of MOs and interface operations.

- Information modelling guidelines for Web-services based interface operations.

- Style Idioms for WSDL and XML Schema specifications.

(2) Web Services supporting services for network management.

- Definition of Notification service using OASIS Web Service base Notification [OASIS
WSN].

- Usage of OASIS UDDI Service Registration [OASIS UDDI].

- Definition of Heartbeat service.

- Definition of Multiple Object Operations (MOO) Service.

- Definition of Containment Service.

This Recommendation mainly deals with the managed object and interface definition guidelines,
and [ITU-T Q.818] mainly deals with the Web Services supporting services for network
management. The two Recommendations together form a Web services based management
framework.

7 Principles for service-oriented WSDL-based interface design

This clause identifies some interface design considerations that should be addressed by this
framework through service-oriented interfaces. It provides the modelling principles for service-
oriented managed objects and their accessing methods.

The service-oriented design considerations related to WSDL and XSD repertoire and modelling
concern super-classes, naming of managed objects and service-oriented interfaces, operations and
notifications.

Web-service is a service-oriented technology compared with the traditional CORBA/IDL and
GDMO/CMIP management paradigm. An object-oriented interface analysis and design (OOAD)
focuses on the class level, i.e., encapsulates behaviour and related data in the same object, and an
object expose one or more interfaces for accessing their encapsulated states and attributes. The
service-oriented interface design separates the encaplolated data and state from the behaviour, thus

- 7 -
TD 318 Rev.1 (PLEN/2)-E

the loose coupling can be achieved in a higher level. In this approach, the behaviour of some
(shared) objects is no longer controlled by themselves, but by a few predefined interface operations.

This Recommendation, along with [ITU-T Q.818], defines a lightweight generic use of service-
oriented interface design pattern. The managemnet and controlling functions are defined using a
serivce-grained approach, that is, the interace operations are organized with the unit of a ceitain
service (management function sets, such as Cofiguration management, Performance management,
etc.), not a indivitual management object class.This service-orientation requires the flexibility of
application-specific access granularity where well-defined sets of TMN entity types are accessed
through prefdefined WSDL interfaces.

The framework has the following principles to define a service-oriented WSDL and XSD based
management information model and interfaces.

- All interface interactions are defined as WSDL operations, each of the operation includes a
request, and an optional corresponding response when needed.

- Each MOC is defined as a XML complexType when exchanged through the management
interface, and each attribute or state of the MOC is defined as an element in the complexType.

- The naming of MOC instances follows the DN concept, but it is a string containing all the RDN
list.

- A generic service is defined in this framework, which contains 5 generic object accessing
methods: createMO, deleteMO, getMOAttribute, setMOAttribute, and getPackages. And the
generic object accessing methods use “name-value” pairs to express the properties and their
values of different types of MOC instances.

- Other interface control functions are defined as WSDL interface operations, which are
organized as a service with the granularity of management function sets.

- Common data types are defined as XML schemas, which can be shared by application-specific
interface definitions.

- Notifications to be sent from the Agent to the Manager should follow the format and behaviour
defined in [OASIS WSN]. The controlling of Notification Management services are further
defined in [ITU-T Q.818].

8 Definition of a generic Managed Object using XML Schema

8.1 Web Service role in management interface

To support the software objects representing manageable resources, a base class is defined for use
in modelling network resources. Other MOCs (managed object class) in information models must
be derived from this base class in order to operate within this framework. Some generic accessing
methods and some other extended services are defined to provide interfaces to manage MOs.

- 8 -
TD 318 Rev.1 (PLEN/2)-E

Figure 1 Web services role

Figure 1 shows how a managing system accesses a managed system that supports Web services
interface. A Web services interface performs as an intermediate entity that enables a managing
system to manage proper MOs in a managed system representing manageable resources.

8.2 Definition of managed objects using XML Schema

A MO is the OSI Management view of a resource that is subject to management, such as a
connection, or an item of physical equipment. Thus, a MO is the abstraction of such a resource that
represents its properties for the purpose of management. A MO may include attributes that provide
information used to characterize itself and operations that represent its behaviors. The purpose of
the framework is to provide a collection of capabilities to manage these MOs. MOs need some
approaches to describe their properties and behaviors. A service-oriented MO is a managed entity
that represents a manageable service resource in terms of shared state and behavior where state and
behavior are separated through outsourcing of the behavior to an assigned so-called "managing
entity" (e.g., a service and its interface) that takes a steward role with regard to the behaviors of its
allocated managed entities. Since MO’s state and behavior can be separated, state can be described
by XML Schema and behavior by Web services’ interface in WSDL. One important benefit of
using XML document to store MO’s state is that Web services uses XML Schema to describe the
data type of its exchanged messages, and these XML-based MOs information can be exchanged
without any modification.

8.2.1 Definition of generic managed object class

Managed object class is the further abstraction of managed objects. All network resources have
some common attributes and all MOCs shall inherit, either directly or indirectly, from a super class,
namely ManagedObject. Using ManagedObject to define new MOCs will be easier and faster and
provide better maintenance. As mentioned above, all MOCs are described in XML Schema and the
data type of ManagedObject is given in Table 1 and the attributes is found in Table 2.

Table 1 - Data type of super class ManagedObject

<xsd:complexType name="ManagedObject_C">

<xsd:sequence>

<xsd:element name="objectClass" type="xsd:string"/>

<xsd:element name="objectInstance" type="x782:NameType"/>

<xsd:element name="packages" type="x782:PackageListType"/>

<xsd:element name="creationSource" type="x782:SourceIndicatorType"/>

</xsd:sequence>

</xsd:complexType>

- 9 -
TD 318 Rev.1 (PLEN/2)-E

Table 2 - Attributes of super class ManagedObject_C

Attribute name Support Qualifier Read Qualifier Write Qualifier

objectClass Mandatory Mandatory -

objectInstance Mandatory Mandatory -

packages Optional Mandatory -

creationSource Optional Mandatory -

As shown in Table 2, ManagedObject is made up of four attributes including objectClass,
objectInstance, packages and creationSource. An attribute has an associated value, which may have
a simple or a complex structure. Here, the “attribute” of MO is different from the “attribute” in
XML Schema specification, and it can be just mapped to the “element” in XML Schema. The
attribute “objectClass” is used to identify the class type of this MO instance. The attribute
“objectInstance” is used to uniquely identify a MO instance, and the data type is using NameType
(also it has the same semantic of DN, Distinguished Name) as specified in (1). The attribute
“packages” is a set of strings to indicate capacities the MO supports. The attribute “creationSource”
indicates whether a MO is created by automatically in managed system, or by a managing system
through a management operation, or unknown.

DN(list of xsd:string) ::= "<attriubte_name_1>=<attibute_value_1>",
"<attribute_name_2>=<attribute_value_2>"
 …,
" <attribute_name_n>=<attribute_value_n>"

(1)

The attributes in the above formula should be naming attributes of MOCs.

A complete XML Schema definition for the generic ManagedObject_C is defined in Annex A.2.

(R) OBJECT-1. All the classes used to model resources on a managed system shall inherit (directly
or indirectly) from the ManagedObject_C described above and defined in the XML Schema in
Annex A.2. The capabilities described above shall be supported.

8.2.2 Inheritance of managed objects

One "MOC" shall be defined as a specialization of another "MOC" by utilizing inheritance such as
all the rest of MOs must directly or indirectly inherit from ManagedObject. Specialization of a
"MOC" implies that all attributes defined on the super class will be supported by the subclass too.
As attributes of MOs are described in XML Schema, the inheritance can be achieved by “extension”
of data types. For example, assume the Equipment MOC inherits directly from the base
ManagedObject class, and Equipment can inherit all attributes from ManagedObject by extension
and declare other attributes showed in Table 3, such as userLabel, for itself.

Table 3 - Data type of Equipment_C by extension

<xsd:complexType name="Equipment_C">

<xsd:complexContent>

<xsd:extension base="x782:ManagedObject_C">

<xsd:sequence>

<xsd:element name="userLabel" type="xsd:string"/>

…

- 10 -
TD 318 Rev.1 (PLEN/2)-E

</xsd:sequence>

</ xsd:extension>

</xsd:complexContent>

</xsd:complexType>

Some MOs may need multiple inheritance, but XML Schema only supports single inheritance for
data types and it is not suggested to use multiple inheritance. If semantic of multiple inheritance is
required, the derived MOC has to singly inherit from one of the superior MOCs and attributes from
the other superior class(es) should be added manually.

8.2.3 Package feature

Packages can be used to group a certain capabilities (for example, related attributes), or provide
conditional support capabilities. A package can be defined as a XSD complexType, with a “_P” as
its name suffix. When it is used, the element may have a type of the complexType representing for
this package, with minOccurs=“0” maxOccurs=“1” as the qualifiers, which indicates this package
can be conditional or optional. An example of package definition and usage is shown in Table 4.

Table 4 - Data type of Equipment by extension

<!-- definition of a Package -->

<xsd:complexType name="StatePackage_P">

<xsd:sequence>

<xsd:element name="adminstrativeState" type="x782:AdminstrativeStateType"/>

<xsd:element name="operationalState" type="x782:OperationalStateype"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="Equipment_C">

<xsd:complexContent>

<xsd:extension base="x782:ManagedObject_C">

<xsd:sequence>

<xsd:element name="equipmentId" type="xsd:string"/>

<xsd:element name="userLabel" type="xsd:string"/>

…

<!-- usage of the Package -->

<xsd:element name="statePackage" type="x782:StatePackage_P" minOccurs=”0”
maxOccurs=”1” /></xsd:sequence>

</ xsd:extension>

</xsd:complexContent>

</xsd:complexType>

8.2.4 Common attributes and data types

The following table shows some common attribute as well as some common data types that can be
shared by this framework.

- 11 -
TD 318 Rev.1 (PLEN/2)-E

Table 5  Standard Attributes and data types

Attribute Name Data Type Descriptions

administrativeState AdministrativeStateType See [M.3701] for more details

availabilityStatus AvailabilityStatusSetType See [M.3701] for more details

backedUpStatus BackedUpStatusType See [M.3701] for more details

controlStatus ControlStatusSetType See [M.3701] for more details

creationSource Note SourceIndicatorType See [M.3701] for more details

externalTime ExternalTimeType

objectClass Note ObjectClassType It indicates a MOC

objectInstance Note NameType It indicates a MO instance

operationalState OperationalStateType See [M.3701] for more details

packages Note StringSetType It indicates the packages that are
supported by a MO instance.

proceduralStatus ProceduralStatusSetType See [M.3701] for more details

standbyStatus StandbyStatusType See [M.3701] for more details

systemLabel SystemLabelType It indicates a label for a system.

unknownStatus UnknownStatusType See [M.3701] for more details

usageState UsageStateType See [M.3701] for more details

NOTE – These attributes are inherited by all managed objects.

The detailed XSD definitions for the above data types can be found in Annex A.1.

9 Accessing methods for managed objects

This clause describes a Web services-based network management framework and this framework
shall provide a collection of methods to control network resources. These methods provide basic
capabilities to manage MOs and so they are called generic accessing methods. Figure 2 gives the
accessing procedure and the framework uses Web services technology to exchange information of
MOs. Web services separates MOs’ states and behaviours and exposes their behaviours through
Web services interface. As Web service is a service-oriented technology, in this framework all MOs
are designed to be accessed through a single interface, and the interface must know which MO is
the actual target of an operation, and the unique identifier of the target MO should be provided in
each accessing request. According to above requirements, some necessary generic accessing
methods are given in table 1:

Table 6. Generic accessing methods

Operation name Input parameter Output parameter

getMOAtrributes - objectInstance : Name

- attributeNameList : SEQUENCE OF
String

- attributeNameAndValueList :
SEQUENCE OF

{attributeName, attributeType,
attributeValue}

- status : EEUMERATION

setMOAttributes - objectInstance : DN - status

- 12 -
TD 318 Rev.1 (PLEN/2)-E

- attributeNVMList : SEQUENCE OF

 {attributeName, attributeType,
attributeValue, modifyType}

createMO - objectclass

- objectClassInstance

- attributeNameAndValueList

- status

deleteMO - objectInstance - status

getPackages - objectInstance - packages : List of string

- status

Where,

1) getMOAttributes - to retrieve all, or any subset, of a MO's attribute values in one operation. It
uses the DN as the first parameter to uniquely identify the MO and a list of attribute names to be
queried. The return result is made up of attribute values and operation status. The
attributeNameAndValueList is a list of triples including attributeName, attributeType and
attributeValue. The attributeType indicates the original type of attributeValue and attribute values
are returned through the “any” element of XML Schema for arbitrary type values. The status
parameter indicates whether the operation is performed successfully or failed. As “any” is defined
for the data type of the return attribute value, when receiving such an request from the client, the
server will return the requested attributes into the output parameter attributeNameAndValueList,
where the attributeValue field will be encoded from an variable element to a piece of XML text,
which can be decoded by the client application with the help of the attributeType parameter.

2) setMOAttributes - to modify attribute values of a MO in existence. Besides using objectInstance
to indicate the target MO whose values are to be modified, the operation also use a list of
quadruples including attributeName, attributeType, attributeValue, and modifyType to set MO
attributes. The first three attributes are the same as above. The modifyType indicates how to set
corresponding MO attribute values. It is an enumeration type consisting of “REPLACE”,
“ADDValues”, “REMOVEValues” and “SETToDefault”. “REPLACE” means the attribute value(s)
specified shall be used to replace the current values(s) of the attribute. “ADDValues” means the
attribute values(s) specified shall be added to the current value(s) of the attribute.
“REMOVEValues” means the attribute value(s) specified shall be removed from the current
values(s). “SETToDefault” means the attribute shall be set to its default value. The modifyType is
optional, and if it is not specified, the “REPLACE” shall be assumed.

3) createMO - to create a MO in the managed system. It must specify the created MO’s class and
name. The attributeNameAndValueList parameter is used to provide attribute values, but it can be
omitted, and if it is omitted the attributes are set to default values.

4) deleteMO - to release any resources associated with the MO and to delete it. It uses DN to
identify the target MO and then return the operation status. If the target MO cannot be removed or
any of its contained MO cannot be removed, the operation will return OperationFailed status.

5) getPackages - to return the capabilities of the target MO (a group of attributes and/or operations).
An MO instance may or may not support all the capability groups defined in an MOC, and this
operation is used by the client to get the actually supported capacities of the MO instance.

- 13 -
TD 318 Rev.1 (PLEN/2)-E

List and tabular structures are used extensively to provide a compact and efficient representation of
potentially complex data that is to be conveyed as a single unit. At the same time, it also brings in
some problems such as difficulty of data validation and comprehension. For Web services is
service-oriented and service inheritance will brake up its loose coupling, it is not recommended. In
order to keep data consistency of MOs, it can be considered using singleton design pattern.

All the methods mentioned above just operate on one MO. With potentially millions of entities to
manage, there is a need for the framework to support operations on multiple objects with a single
method invocation or perhaps a small number of invocations. The Multiple-Object Operation
(MOO) Service provides this capability, which can be found in Recommendation [ITU-T Q.818].

A complete XML Schema and WSDL interface definition for the generic MO accessing methods
can be found in Annex A.3.

(R) OBJECT-2. An implementation of the MO Accessing methods shall support all the
operations describe above, whose WSDL is defined in Annex A.3.10 Inheritance of
managed objects and interface operations

10.1 Attributes inheritance of managed objects

One "Managed Object Class" may be defined as a specialization of another "Managed Object
Class" by utilizing inheritance. Specialization of a "Managed Object Class" implies that all methods
and attributes defined on the super class will also be supported by the subclass. In case of service-
Oriented interfaces based on web services, only attributes of managed object classes are supported.
Operations inheritance introduced will lead to weaken these characteristics such as good
interoperability and loosely couple.

While attributes of managed objects are described with XML Schema, it can be followed the part
4.2 Deriving Types by Extension in XML Schema Part 0: Primer Second Edition to create attributes
inheritance. Since attributes data types of base managed objects are defined in complex type in
XML Schema, Subclass can extend the base managed objects data type by the value of base
attribute on the extension element in XML Schema.

When a complex type is derived by extension, its effective content model is the content model of
the base type plus the content model specified in the type derivation. Furthermore, the two content
models are treated as two children of a sequential group. In the case of UKAddress, the content
model of UKAddress is the content model of Address plus the declarations for a postcode element
and an exportCode attribute.

<complexType name="Address">

 <sequence>

 <element name="name" type="string"/>

 <element name="street" type="string"/>

 <element name="city" type="string"/>

 </sequence>

 </complexType>

 <complexType name="USAddress">

 <complexContent>

 <extension base="ipo:Address">

 <sequence>

- 14 -
TD 318 Rev.1 (PLEN/2)-E

 <element name="state" type="ipo:USState"/>

 <element name="zip" type="positiveInteger"/>

 </sequence>

 </extension>

 </complexContent>

 </complexType>

USAddress equals to the following:

 <sequence>

 <element name="name" type="string"/>

 <element name="street" type="string"/>

 <element name="city" type="string"/>

 <element name="state" type="ipo:USState"/>

 <element name="zip" type="positiveInteger"/>

 </sequence>

</complexType>

The above approach can be use for element inheritance, which supports the semantics for Managed
Object attribute inheritance.

10.2 Considerations for inheritance of interface operation

Although higher version of WSDL (version 2.0) supports the syntax of inheritance for operations,
but it is not widely supported by the industry. Lower versions of WSDL (version 1.1) do not
support this syntax, but it is fully supported by the industry. Thus the expression of operation
inheritance is not allowed in this Recommendation. This feature can be supported semantically by
repeating the interface operation definitions inherited from super interfaces.

11 Information modelling guidelines for Web-service based interfaces

11.1 namespace

This framework uses the following URI for the target namespace:

Table 5 Target Namespace in this Framework

Recommendation Target namespace

ITU-T X.782 http://www.itu.int/xml-namespace/itu-t/x.782/

ITU-T Q.818 http://www.itu.int/xml-namespace/itu-t/q.818/

Other, such as X.nnnn http://www.itu.int/xml-namespace/itu-t/x.nnnn

When developing other Recommendations, the actual Recommendation number should be used to
replace “X.nnnn” in the last row of the above table.

11.2 complexType

When using XML Schema to define the content of a MOC, the XSD complexType is used for
modelling the MOC. A XSD complexType contains a sequence, which can include one or more

- 15 -
TD 318 Rev.1 (PLEN/2)-E

XSD element(s). Each compleType corresponding to a MOC should have a “_C” as the suffix to the
name.

Other common attribute data types can also be defined as complexTypes, but they should use the
suffix “Type” in the type name.

11.3 attribute

Attributes and states of a MOC are defined as the elements in the complexType corresponding to a
MOC. Note here the attribute is the conceptual property of an entity which is modelled as a MOC, it
is not the same as the keywords “attribute” in XSD. In this framework, the XSD keywords
“attribute” of “element” will not be used.

11.4 request

Request is used to define a message for interactions between a Web service client and a Web
service server application. A request message is sent from the Web Service client to the server. A
request contains all the input parameters of an operation in a Web service. The input parameters can
be multiple parts, or a request can only define one part, which combines all the input parameters as
its internal elements, contained in its corresponding complexType.

11.5 response

 Response is used to define a message sent from the Web Service server back to the client. A
response contains all the output parameters as well as the return value of an operation in a Web
service. The output parameters can be multiple parts, or a response can define one part, which
combines all the output parameters as its internal elements, contained in its corresponding
complexType.

11.6 notification

The format of any notifications to be sent across the management interface should follow the format
in [OASIS WSN] specification. [ITU-T Q.818] provides a common header for all the notifications,
and the notification contents for some commonly used notification types, including:

objectCreation, objectDeletion, attributeValueChange, stateChange, communicationAlarm,
environmentalAlarm, equipmentAlarm, processingErrorAlarm, qualityOfServiceAlarm, Violation,
integrityViolation, operationalViolation, physicalViolation, securityViolation,
timeDomainViolation, relationshipChange, and heartbeat notifications.

Implementers of this framework should follow the notification definitions in [ITU-T Q.818] for the
known notification types. Any new notification definitions should follow the same approach as well
as the notification header.

11.7 Name conventions for MOCs, packages, attributes and data types

The following name conventions are applied for the XML schema based modelling:

- All the attributes of a MOC is defined as a XSD complexType, the name of the MOC should
have a “_C” as name suffix, with the first character in capital, so that this complexType can be
distinguished from other normal data type definitions. For example: ManagedObject_C,
Equipment_C.

- An attribute of a MOC is defined as an element within the complexType presenting a MOC,
and the first character of an attribute name should be in lower case.

- 16 -
TD 318 Rev.1 (PLEN/2)-E

- A package can be defined as a XSD complexType, with a “_P” as its name suffix, with the first
character in capital.

- A normal data type definition should have a “Type” as its name suffix, with the first character
in capital, which helps to provide more readability. For example: AdminstrativeStateType.

- Use lowerCamelCase e.g. “personName” for Elements.

- Use UpperCamelCase for defining simpleType and complexType names.

- A set-valued type (unordered set) should have “SetType” as its name suffix, and a list-valued
type (ordered sequence) should have “ListType” as its name suffix.

12 Style Idioms for XML schema specifications1

12.1 Data Model using XML Schema

12.1.1 Overview of using XML Schema

XML allows arbitrary data definitions using ad-hoc tags. The XML document becomes practical for
use when it is constrained by a well defined structure. XML Schema provides a means to define
rules, semantics and structure for XML documents. A schema provides programmatic validation of
a structured XML document. An XML Schema is defined using a XML format in a file with a
“.xsd” extension.

12.1.2 Schema specification version

The namespace for XML Schema 1.1 http://www.w3.org/2001/XMLSchema is same as XML
Schema for 1.0 document and the namespace for XML instance document remains
http://www.w3.org/2001/XMLSchema-instance. This allows schema developers to develop XML
schema 1.0 documents without worrying about updating namespace when adding 1.1 features.
XML Schema 1.1 introduces a new namespace for version control
(http://www.w3.org/2007/XMLSchemaversioning).

This Recommendation uses XML Schema version 1.1 as specified in clause 7.2 in [ITU-T Q.818].

12.2 XML Schema Design Considerations

12.2.1 Developing a single schema or a collection of related schemas

The schema definition language allows constructs to import schema from other documents. When
developing a set of related schemas, namespace considerations become important in how the
resulting XML instance document references other schemas.

- Reference using <xsd:import>: The import element allows references to schema components
from schema documents with different target namespaces. This is the most common schema
design approach and is also referred to as heterogeneous namespace design.

- Reference using <xsd:include>: The include element adds the schema components from other
schema documents that have the same target namespace (or no specified target namespace) to
the containing schema. The “include” element thus allows you to add all the components of an
included schema to the containing schema. This gives rise to two different design approaches:

1 The text in this clause is originally described in [b-ATIS-I-000001], with some updates to fit this

Web services based management framework.

- 17 -
TD 318 Rev.1 (PLEN/2)-E

- Homogeneous namespace design approach: In this design approach all related schemas being
developed are assigned the same target namespace.

 - Chameleon namespace design approach: In chameleon namespace design approach, there is
one or more supporting schema defined with no target namespace, the main schema includes the
supporting schema(s). The supporting schema(s) take the namespace of the main schema.

The homogeneous or the chameleon design approach allows ability to redefine a type, group and
attribute group definitions defined in a supporting schema. Type redefinition affects the elements in
the including schema as well as those in the included schema. Thus redefined types can interact
with derived types and generate conflicts.

In this Recommendation and [ITU-T Q.818], only the [xsd:import] approach will be used.

12.2.2 Schema design patterns

There are following four structural design patterns commonly mentioned related to XML schema
design:

- Russian Doll: The Russian Doll design provides a single global element in the schema file. All
child elements are defined within this single element definition hierarchy. The design does not
promote element reusability and requires definition of element in a single schema file.

- Salami Slice: In this design approach, multiple root elements are defined but no complexType
is defined. The design supports reusability of individual elements.

- Garden of Eden: A schema design approach in which all elements and types are exposed
globally, complex types are defined through reference to reusable global elements. The
characteristic of this design pattern is that there are many possible root elements.

- Venetian Blinds: A schema design approach in which types are created first from which
elements are built. The simpleTypes and complexTypes are created so as to maximize reuse.
The characteristic of this design approach is that there is a single root element.

In this framework, the “Garden of Eden” is used.

12.2.3 Designing for resiliency

When developing a schema one of the goals is to make it resilient to changes and provide flexibility
that anticipates future needs of the schema users. This section discusses some of the mechanisms
that are available for providing flexibility and extensibility in an XML schema model.

12.2.3.1 Using wildcards

The W3C schema allows constructs such as <xsd:any> and <xsd:anyAttribute> to allow instance
document to contain XML data not directly constrained by the content model of the defining XML
Schema. This allows extensibility mechanism with some degree of control that can be specified
using “namespace” and “processContents” attributes (See [W3C XS-P1] and [W3C XS-P2]). The
namespace attribute, for example, can be used to constrain the XML data to a set of predefined
namespaces thus providing some data validation that can be performed on these extended XML data
within an instance document. The “processContents” attribute controls how this extended XML
data is validated by the XML validator.

The <xsd:any> wildcard can allow vendors to develop vendor specific functionalities not defined in
the defining Schema. A careful use of <xsd:any> and <xsd:anyAttribute> can help build a schema
content model more resilient to change and less prone to schema churn. However on a note of
caution, with <xsd:any> it is possible to inadvertently allow creation of non-deterministic content
models which can cause issues with some XML parsers. A schema developer will have to be
consider this constraint when deciding to use <xsd:any>.

- 18 -
TD 318 Rev.1 (PLEN/2)-E

It is allowed to use <xsd:any> in this Framework, but explanations for the usage should also be
provided whenever <xsd:any> is used.

12.2.3.2 Using substitutionGroup

The content model of substitution group members is related to each other by type derivation. The
replaceable element is called the head element and has to be defined in the schema’s global scope.
In essence, the substitutionGroup construct helps build a collection of elements that can be specified
using a generic element.

The substitutionGroup construct can be helpful in following cases:

- Development of related class hierarchies: Creating class hierarchies can enable object oriented
programming languages to take advantages of such inheritance.

- Customizing an external schema for a specific need: If an element in an imported schema is
defined globally, it is possible to create a substitutionGroup for this element through
construction of a derived type and allowing substitution of this derived type in a complex data
structure.

Class hierarchies and substitutionGroup results in tight coupling between data structures and can
lead to brittle and unmodifiable design. Constructs such as <xsd:choice> can be used instead to
create composite content model. The composite design can lead to simplicity and a decoupled
design.

This Recommendation uses extension to complexType to present class hierarchy, and
substitutionGroup is not used in this framework.

12.3 Recommendaitons for Schema Developers

12.3.1 XML Schema Design Recommendations

The author of an XML based interface should:

- Create shared schemas whenever feasible.

The author shall:

- Use the following namespace format is to be used for ITU-T generated schemas:

 “http://www.itu.int/schemas/<ITU-T document number>” or

 “http://www.itu.int/schemas/<ITU-T document number>/<data model identifier>”

- Use only lowercase characters for namespace names.

- It is possible that the document could change with little or no change to the Schema (e.g.
updated references).

For this reason, the <ITU-T document number> does not include the document version number.
Including the document version number would force a change in namespace with every document
update.

The author should:

- Declare all Simple and Complex Types globally.

- Declare elements and attributes locally. One main element encapsulates all others.

- Ensure the Schema version attribute (Schema minor version number) is present and increments
with any change to the Schema. The initial value is expected to be “0”.

- 19 -
TD 318 Rev.1 (PLEN/2)-E

- Ensure all schemas have at least 2 namespaces: the W3C XML Schema namespace and the
namespace related to the companion Standard.

- Example Schema attributes for version 1.0 of the EAS schema
<?xml version="1.0" encoding="UTF-8"?>

<schema

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.itu.int/schemas/itu-t/x.782"

xmlns:eas="http://www.itu.int/schemas/itu-t/x.782"

version="0">

.....

</schema>

12.3.2 XML Schema Coding Recommendations

The author should utilize the following guidelines for Types, Elements, and Attribute TAG names:

- Utilize common industry or business names where possible to ensure consistency between
industry or business documentation and schemas.

- Make names descriptive, avoid use of unnecessary abbreviations.

- Do not use the same name twice in any one schema.

- Avoid acronyms but if they are used, the capitalization remains.

- Avoid period and dash characters.

- Use only Alpha-Numeric characters to define Elements and Type names.

- Use singular names unless the concept itself is plural.

The author should consider element as the default model type and use the following guidelines:

- If the item can be considered an independent object, make it an element.

- If the item needs to be re-usable, make it a global type.

The author should utilize the following general guidelines:

- Declare elements as optional unless absolutely required.

- Use minOccurs=“0” instead of nillable=“True”.

- Use maxOccurs. If dimension is more than 1, define it. Otherwise use
maxOccurs=”unbounded”.

- Create simpleTypes as much as possible.

- Create a global Type when the element is to be reusable. (Global Types are defined directly under
the Schema element.)

- All Types are to be defined globally.

- Use elementFormDefault = “qualified”.

- Use attributeFormDefault = “unqualified”.

- Use UTF-8 character encoding: <?xml version="1.0" encoding="UTF-8"?>

- The <documentation> elements are to be used wherever re-use is likely and more clarity is
desired. (The xsd:lang attribute is to be used to specify language.)

- 20 -
TD 318 Rev.1 (PLEN/2)-E

- Use annotations to describe all Types definitions; minimally include the Type name.

- Use only xsd:dateTime element for date and time items.

- Use only <sequence> or <choice> where a compositor is required.

The author should utilize the following guidelines when adding constraints:

- When designing new schema, the new simple types are to be constrained and appropriate
restrictions applied whenever possible.

- Identify facets that constrain the range of values.

- Choose the appropriate simple type. For example, when a number is required, use of
nonNegativeInteger or positiveInteger simple type is preferred to integer if possible.

- When defining string type, if possible use maxLength and patterns to provide additional
restrictions. For example when defining a 15 digit international phone number, the pattern can
be ([ITU-T E.164]):

 <xsd:restriction base="xsd:string">

 <xsd:pattern value="([1-9][0-9]{0,2})(-[1-9][0-9]{0,4})?(-[1-9][0-9]{0,13})(-[0-9]+)?"/>

 </xsd:restriction>

- When a simple type takes only a predefined set of values, use enumeration facet to restrict the
legal values of the simple type.

- Use Union Types if the data types take two or more different set of values that can
independently be constrained. For example, State Code or Zip Code.

12.3.3 XML Schema Constructs to Avoid

The author should use the following guidelines for XML Schema Constructs:

- Do not use <xsd:all> (use <sequence> or <choice>). The <xsd:sequence> and <xsd:choice>
forces a fixed ordering of child elements in the instance document.

- Do not use processing instructions. Processing instructions don’t form part of the document but
are passed to the application to perform application specific functions. Processing instructions
don’t have to follow internal structure and as such have little use in schema definitions.

- Do not use DTD or XML style comments. The annotation and documentation elements provide
construct for comments and information. The XML style comments are not useful for
processing of an instance document.

- Do not use XML Groups or Group redefinition. The redefinition of a group can generate
conflict between processing of redefined type and derived type instance data.

- Do not use Substitution Groups. The substitution group construct creates tight coupling and
adds complexity, which can lead to brittle and unmodifiable designs.

- Do not use default/fixed values. Including such attribute uses will tend to mislead readers of the
schema document, because the attribute uses would have no effect.

12.4 Guidelines for schema extensions

It is understood that the schema authors cannot in advance anticipate all future needs of a schema.
The author should utilize schema definition that provides flexibility and allow implementers to
carry private or custom data. In general, schema authors should anticipate the need for supporting

- 21 -
TD 318 Rev.1 (PLEN/2)-E

private data by including constructs to support inclusion of some data in a generic way (for example
name-value pair).

However such inclusion might not suffice a more complex need, where for example validation,
rules assertions and policies might be required.

The schema author should utilize one of two possible ways of extending support for private data in
a schema:

1) Anticipate needs of extensions to specific portions of schema and allow users to add private
openContent data.

2) Type Inheritance using <xsd:extension>.

Use of such extension is discouraged as this potentially will lead to interpretability issues. For
example, if an implementer extends a standard schema using xsd:extension to add an implementer
specific elements and attributes, a resultant XML data might not parse correctly by other
implementers who base their applications on the original standard schema.

Such cases can be avoided if both sides use the same XML schema. Extension can be used in this
framework, but the extended types should also be included as a public standard.

13 Compliance and Conformance

This clause defines the criteria that must be met by other standards documents claiming compliance
to these guidelines and the functions that must be implemented by systems claiming conformance to
this Recommendation.

13.1 Standards Document Compliance

Any specification claiming compliance with these guidelines shall:

1) Define all classes that model resources as a derivation (direct or indirect) from the
ManagedObject_C described in clause 8.2.1 and defined in the XML Schema in Annex A.2.

2) Support the Attributes inheritance using the mechanism specified in clause 10.1.

3) Use the definitions for generic attribute types found in clause 8.2.4 wherever applicable.

4) Use the common data types defined in the XML Schema in Annex A.1 whenever appropriate.

5) Adhere to the modelling guidelines for Web-services based interfaces specified in clause 11.

6) Adhere to the XML schema design conventions specified in clause 12.

13.2 System Conformance

An implementation claiming conformance to this Recommendation shall:

1) Support all of the capabilities of the MO Accessing methods described in clause 9, and the
corresponding WSDL interface as defined in A.3.

13.3 Conformance Statement Guidelines

The conformance statement must identify a document and year of publication to make sure the right
version of XML schema and WSDL is identified.

- 22 -
TD 318 Rev.1 (PLEN/2)-E

Annex A

 Common WSDL and XML Schema definitions

(This annex forms an integral part of this Recommendation)

In this annex, the common definitions of WSDL interfaces as well as some common XML Schema
based data types are defined.

A.1 XML Schema definitions for common data types
<!-- XML Schema Definition for common date types to be used in this framework.

 Filename : x782.xsd

-->

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema

xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:x782="http://www.itu.int/xml-
namespace/itu-t/x.782" targetNamespace="http://www.itu.int/xml-namespace/itu-t/x.782"
elementFormDefault="qualified" attributeFormDefault="unqualified">

<xsd:simpleType name="RDNType">

 <xsd:restriction base="xsd:string"/>

</xsd:simpleType>

<xsd:complexType name="NameType">

 <xsd:sequence>

 <xsd:element name="rdn" type="x782:RDNType" minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name="UIDType">

 <xsd:sequence>

 <!-- uri indicates the namespace where the constant is defined. -->

 <xsd:element name="uri" type="xsd:string"/>

 <!-- value indicates the constant value for this item in the above namespace. -->

 <xsd:element name="value" type="xsd:unsignedLong"/>

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name="UIDSetType">

 <xsd:sequence>

 <xsd:element name="uid" type="x782:UIDType" minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

</xsd:complexType>

- 23 -
TD 318 Rev.1 (PLEN/2)-E

<xsd:complexType name="MOClassListType">

 <xsd:sequence>

 <xsd:element name="moClass" type="xsd:string" minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name="AttributeValueType">

 <xsd:sequence>

 <xsd:any namespace="##any" processContents="lax" minOccurs="0"
maxOccurs="unbounded"/>

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name="AttributeNameAndValueType">

 <xsd:sequence>

 <xsd:element name="attributeName" type="xsd:string"/>

 <xsd:element name="attributeType" type="xsd:string"/>

 <xsd:element name="attributeValue" type="x782:AttributeValueType"/>

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name="AttributeNameAndValueSetType">

 <xsd:sequence>

 <xsd:element name="attributeNameAndValue" type="x782:AttributeNameAndValueType"
minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="SourceIndicatorType">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="resourceOperation"/>

 <xsd:enumeration value="managementOperation"/>

 <xsd:enumeration value="unknown"/>

 </xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="AdditionalTextType">

 <xsd:restriction base="xsd:string"/>

</xsd:simpleType>

<xsd:complexType name="AnyValueType">

 <xsd:sequence>

 <xsd:element name="typeURI" type="xsd:string"/>

 <xsd:element name="value" type="x782:AttributeValueType"/>

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name="AdditionalInformationSetType">

- 24 -
TD 318 Rev.1 (PLEN/2)-E

 <xsd:sequence>

 <xsd:element name="additionalInfo" type="x782:AnyValueType" minOccurs="0"
maxOccurs="unbounded"/>

 </xsd:sequence>

</xsd:complexType>

<xsd:simpleType name="NotificationIDType">

 <xsd:restriction base="xsd:string"/>

</xsd:simpleType>

<xsd:complexType name="NotificationIDSetType">

 <xsd:sequence>

 <xsd:element name="source" type="x782:NameType" minOccurs="0"
maxOccurs="unbounded"/>

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name="CorrelatedNotificationType">

 <xsd:sequence>

 <xsd:element name="source" type="x782:NameType"/>

 <xsd:element name="notifIDs" type="x782:NotificationIDSetType"/>

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name="AttributeChangeType">

 <xsd:sequence>

 <xsd:element name="attribugteName" type="xsd:string"/>

 <xsd:element name="attributeTypeURI" type="xsd:string"/>

 <xsd:element name="oldValue" type="x782:AttributeValueType"/>

 <xsd:element name="newValue" type="x782:AttributeValueType"/>

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name="AttributeChangeSetType">

 <xsd:sequence>

 <xsd:element name="attributeChange" type="x782:AttributeChangeType" minOccurs="1"
maxOccurs="unbounded"/>

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name="ProbableCauseType">

 <xsd:complexContent>

 <xsd:extension base="x782:UIDType"/>

 </xsd:complexContent>

</xsd:complexType>

<xsd:simpleType name="PerceivedSeverityType">

- 25 -
TD 318 Rev.1 (PLEN/2)-E

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value=" indeterminate"/>

 <xsd:enumeration value="critical"/>

 <xsd:enumeration value="major"/>

 <xsd:enumeration value="minor"/>

 <xsd:enumeration value="warning"/>

 <xsd:enumeration value="cleared"/>

 </xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="TrendIndicationType">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="lessSevere"/>

 <xsd:enumeration value="noChange"/>

 <xsd:enumeration value="moreSevere"/>

 </xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="ThresholdIndicationType">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="up"/>

 <xsd:enumeration value="down"/>

 </xsd:restriction>

</xsd:simpleType>

<xsd:complexType name="ThresholdLevelIndType">

 <xsd:sequence>

 <xsd:element name="indication" type="x782:ThresholdIndicationType"/>

 <!-- observed value -->

 <xsd:element name="low" type="xsd:float" minOccurs="0" maxOccurs="1"/>

 <xsd:element name="high" type="xsd:float"/>

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name="ThresholdInfoType">

 <xsd:sequence>

 <xsd:element name="attributeID" type="xsd:string"/>

 <xsd:element name="observedValue" type="xsd:float"/>

 <xsd:element name="thresholdLevel" type="x782:ThresholdLevelIndType"/>

 <xsd:element name="armTime" type="xsd:dateTime"/>

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name="ProposedRepairActionSetType">

 <xsd:complexContent>

 <xsd:extension base="x782:UIDType"/>

 </xsd:complexContent>

- 26 -
TD 318 Rev.1 (PLEN/2)-E

</xsd:complexType>

<xsd:complexType name="SuspectObjectType">

 <xsd:sequence>

 <xsd:element name="moClass" type="xsd:string"/>

 <xsd:element name="suspectedMOInstance" type="x782:NameType"/>

 <xsd:element name="failureProbability" type="xsd:unsignedShort" minOccurs="0"
maxOccurs="1"/>

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name="SuspectObjectSetType">

 <xsd:sequence>

 <xsd:element name="suspectedMO" type="x782:SuspectObjectSetType" minOccurs="0"
maxOccurs="unbounded"/>

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name="SecurityAlarmCauseType">

 <xsd:complexContent>

 <xsd:extension base="x782:UIDType"/>

 </xsd:complexContent>

</xsd:complexType>

<xsd:complexType name="SecurityAlarmDetectorType">

 <xsd:sequence>

 <xsd:element name="mechanism" type="x782:UIDType"/>

 <xsd:element name="obj" type="x782:NameType"/>

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name="ServiceUserType">

 <xsd:sequence>

 <xsd:element name="typeURI" type="xsd:string"/>

 <xsd:element name="value" type="x782:AttributeValueType"/>

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name="ServiceProviderype">

 <xsd:sequence>

 <xsd:element name="typeURI" type="xsd:string"/>

 <xsd:element name="value" type="x782:AttributeValueType"/>

 </xsd:sequence>

</xsd:complexType>

</xsd:schema>

- 27 -
TD 318 Rev.1 (PLEN/2)-E

A.2 XML Schema definition for generic Managed Object
<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema

xmlns:x782="http://www.itu.int/xml-namespace/itu-t/x.782"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.itu.int/xml-namespace/itu-t/x.782" >

<xsd:complexType name="ManagedObject_C">

<xsd:sequence>

<xsd:element name="objectClass" type="string"/>

<xsd:element name="objectInstance" type="x782:NamteType"/>

<xsd:element name="packages" type="x782:PackageListType"/>

<xsd:element name="creationSource" type="x782:SourceIndicatorType"/>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

A.3 WSDL and XML Schema definition for common object accessing methods

(1) ITU MO Access Service XML Schema definition
<?xml version="1.0" encoding="UTF-8"?>

<schema xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:nmfd="http://www.itu.int/xml-namespace/itu-t/x.782/MOService.xsd"
targetNamespace="http://www.itu.int/xml-namespace/itu-t/x.782/MOService.xsd"
elementFormDefault="qualified" attributeFormDefault="unqualified">

 <complexType name="PackageList">

 <sequence>

 <element name="package" type="string" minOccurs="0"
maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 <complexType name="AttributeNameList">

 <sequence>

 <element name="attributeName" type="string" minOccurs="0"
maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 <element name="getMOAttributes">

 <complexType>

 <sequence>

 <element name="objectInstance" type="string"/>

 <element name="attributeNameList" type="nmfd:AttributeNameList"/>

 </sequence>

 </complexType>

- 28 -
TD 318 Rev.1 (PLEN/2)-E

 </element>

 <simpleType name="StatusType">

 <restriction base="string">

 <enumeration value="OperationSucceed"/>

 <enumeration value="OperationFailed"/>

 </restriction>

 </simpleType>

 <complexType name="AttributeValueType">

 <sequence>

 <any namespace="##any" processContents="lax" minOccurs="0"
maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 <complexType name="AttributeNameAndValueType">

 <sequence>

 <element name="attributeName" type="xsd:string"/>

 <element name="attributeType" type="xsd:string"/>

 <element name="attributeValue" type="nmfd:AttributeValueType"/>

 </sequence>

 </complexType>

 <complexType name="AttributeNameAndValueSetType">

 <sequence>

 <element name="attributeNameAndValue"
type="nmfd:AttributeNameAndValueType" minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 <element name="getMOAttributesResponse">

 <complexType>

 <sequence>

 <element name="attributeNameAndValueList"
type="nmfd:AttributeNameAndValueList"/>

 <element name="status" type="nmfd:StatusType"/>

 </sequence>

 </complexType>

 </element>

 <simpleType name="ModifyType">

 <restriction base="string">

 <enumeration value="REPLACE"/>

 <enumeration value="ADDValues"/>

 <enumeration value="REMOVEValues"/>

 <enumeration value="SETToDefault"/>

 </restriction>

 </simpleType>

 <complexType name="AttributeNVMType">

- 29 -
TD 318 Rev.1 (PLEN/2)-E

 <sequence>

 <element name="attributeName" type="string"/>

 <element name="attributeType" type="string"/>

 <element name="attributeValue" type="nmfd:AttributeValueType"/>

 <element name="modify" type="nmfd:ModifyType"/>

 </sequence>

 </complexType>

 <complexType name="AttributeNVMList">

 <sequence>

 <element name="attributeNVMList" type="nmfd:AttributeNVMType"
minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 <element name="setMOAttributes">

 <complexType>

 <sequence>

 <element name="objectInstance" type="string"/>

 <element name="attributeNVMList" type="nmfd:AttributeNVMList"/>

 </sequence>

 </complexType>

 </element>

 <element name="setMOAttributesResponse">

 <complexType>

 <sequence>

 <element name="status" type="nmfd:StatusType"/>

 </sequence>

 </complexType>

 </element>

 <element name="createMO">

 <complexType>

 <sequence>

 <element name="objectClass" type="string"/>

 <element name="objectInstance" type="string"/>

 <element name="attributeNameAndValueList"
type="nmfd:AttributeNameAndValueList"/>

 </sequence>

 </complexType>

 </element>

 <element name="createMOResponse">

 <complexType>

 <sequence>

 <element name="status" type="nmfd:StatusType"/>

 </sequence>

 </complexType>

- 30 -
TD 318 Rev.1 (PLEN/2)-E

 </element>

 <element name="deleteMO">

 <complexType>

 <sequence>

 <element name="objectInstance" type="string"/>

 </sequence>

 </complexType>

 </element>

 <element name="deleteMOResponse">

 <complexType>

 <sequence>

 <element name="status" type="nmfd:StatusType"/>

 </sequence>

 </complexType>

 </element>

 <element name="getPackages">

 <complexType>

 <sequence>

 <element name="objectInstance" type="string"/>

 </sequence>

 </complexType>

 </element>

 <element name="getPackagesResponse">

 <complexType>

 <sequence>

 <element name="status" type="nmfd:StatusType"/>

 <element name="packages" type="nmfd:PackageList"/>

 </sequence>

 </complexType>

 </element>

</schema>

(2) ITU MO Access Service WSDL definition
<?xml version="1.0" encoding="UTF-8"?>

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:nmfd="http://www.itu.int/xml-
namespace/itu-t/x.782/MOService.xsd" xmlns:nmfs="http://www.itu.int/xml-namespace/itu-
t/x.782/MOService.wsdl" name="MOService" targetNamespace="http://www.itu.int/xml-
namespace/itu-t/x.782/MOService.wsdl">

 <types>

 <schema xmlns="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">

 <import namespace="http://www.itu.int/xml-namespace/itu-
t/x.782/MOService.xsd" schemaLocation="MOService.xsd"/>

 </schema>

- 31 -
TD 318 Rev.1 (PLEN/2)-E

 </types>

 <message name="getMOAttributesRequest">

 <part name="parameter" element="nmfd:getMOAttributes"/>

 </message>

 <message name="getMOAttributesResponse">

 <part name="parameter" element="nmfd:getMOAttributesResponse"/>

 </message>

 <message name="setMOAttributesRequest">

 <part name="parameter" element="nmfd:setMOAttributes"/>

 </message>

 <message name="setMOAttributesResponse">

 <part name="parameter" element="nmfd:setMOAttributesResponse"/>

 </message>

 <message name="createMORequest">

 <part name="parameter" element="nmfd:createMO"/>

 </message>

 <message name="createMOResponse">

 <part name="parameter" element="nmfd:createMOResponse"/>

 </message>

 <message name="deleteMORequest">

 <part name="parameter" element="nmfd:deleteMO"/>

 </message>

 <message name="deleteMOResponse">

 <part name="parameter" element="nmfd:deleteMOResponse"/>

 </message>

 <message name="getPackagesRequest">

 <part name="parameter" element="nmfd:getPackages"/>

 </message>

 <message name="getPackagesResponse">

 <part name="parameter" element="nmfd:getPackagesResponse"/>

 </message>

 <portType name="MOServicePortType">

 <operation name="getMOAttributes">

 <input message="nmfs:getMOAttributesRequest"/>

 <output message="nmfs:getMOAttributesResponse"/>

 </operation>

 <operation name="setMOAttributes">

 <input message="nmfs:setMOAttributesRequest"/>

 <output message="nmfs:setMOAttributesResponse"/>

 </operation>

 <operation name="createMO">

 <input message="nmfs:createMORequest"/>

 <output message="nmfs:createMOResponse"/>

 </operation>

 <operation name="deleteMO">

 <input message="nmfs:deleteMORequest"/>

- 32 -
TD 318 Rev.1 (PLEN/2)-E

 <output message="nmfs:deleteMOResponse"/>

 </operation>

 <operation name="getPackages">

 <input message="nmfs:getPackagesRequest"/>

 <output message="nmfs:getPackagesResponse"/>

 </operation>

 </portType>

 <binding name="MOServiceBinding" type="nmfs:MOServicePortType">

 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="getMOAttributes">

 <soap:operation soapAction="http://www.itu.int/xml-namespace/itu-
t/x.782/MOService/getMOAttributes"/>

 <input>

 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace=" http://www.itu.int/xml-namespace/itu-t/x.782/MOService/" use="encoded"/>

 </input>

 <output>

 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace=" http://www.itu.int/xml-namespace/itu-t/x.782/MOService/" use="encoded"/>

 </output>

 </operation>

 <operation name="setMOAttributes">

 <soap:operation soapAction=" http://www.itu.int/xml-namespace/itu-
t/x.782/MOService/setMOAttributes"/>

 <input>

 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.itu.int/xml-namespace/itu-t/x.782/MOService/" use="encoded"/>

 </input>

 <output>

 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace=" http://www.itu.int/xml-namespace/itu-t/x.782/MOService/" use="encoded"/>

 </output>

 </operation>

 <operation name="createMO">

 <soap:operation soapAction="http://www.itu.int/xml-namespace/itu-
t/x.782/MOService/createMO"/>

 <input>

 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.itu.int/xml-namespace/itu-t/x.782/MOService/" use="encoded"/>

 </input>

 <output>

 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.itu.int/xml-namespace/itu-t/x.782/MOService/" use="encoded"/>

 </output>

 </operation>

 <operation name="deleteMO">

 <soap:operation soapAction="http://www.itu.int/xml-namespace/itu-
t/x.782/MOService/deleteMO"/>

 <input>

- 33 -
TD 318 Rev.1 (PLEN/2)-E

 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.itu.int/xml-namespace/itu-t/x.782/MOService/" use="encoded"/>

 </input>

 <output>

 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.itu.int/xml-namespace/itu-t/x.782/MOService/" use="encoded"/>

 </output>

 </operation>

 <operation name="getPackages">

 <soap:operation soapAction="http://www.itu.int/xml-namespace/itu-
t/x.782/MOService/getPackages"/>

 <input>

 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.itu.int/xml-namespace/itu-t/x.782/MOService/" use="encoded"/>

 </input>

 <output>

 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="http://www.itu.int/xml-namespace/itu-t/x.782/MOService/" use="encoded"/>

 </output>

 </operation>

 </binding>

 <service name="MOServiceService">

 <port name="MOService" binding="nmfs:MOServiceBinding">

 <soap:address location="http://www.itu.int/xml-namespace/itu-
t/x.782/MOService"/>

 </port>

 </service>

</definitions>

- 34 -
TD 318 Rev.1 (PLEN/2)-E

Appendix I

Overview of Web-service technology and application scenarios in network
management interfaces

(This annex does not form an integral part of this Recommendation)

In this appendix, the overview of Web-services technologies is given.

I.1 Characteristics of Web-Service technology

Web Services provide a simplified mechanism to connect applications regardless of the technology
or devices they use, or their location. They are based on industry standard protocols with universal
vendor support that can leverage the internet for low cost communications, as well as other
transport mechanisms. The loosely coupled messaging approach supports multiple connectivity and
information sharing scenarios via services that are self describing and can be automatically
discovered.

Unlike traditional distributed environments, Web services emphasize interoperability. Web services
are independent of a particular programming language, whereas traditional environments tend to be
bound to one language or another. Similarly, since they can be easily bound to different transport
mechanisms, Web services offer more flexibility in the choice of these mechanisms. Furthermore,
unlike traditional environments, Web services are often not bound to particular client or server
frameworks. Overall, Web services are better suited to a loosely coupled, coarse-grained set of
relationships. Relying on XML gives Web services an additional advantage, since XML makes it
possible to use documents across heterogeneous environments.

Web-Service is a XML Schema based technology which has the following benefits in software
applications.

1) Good interoperability

Web service is universally interoperable because it uses platforms and language independent
protocols such as SOAP. Web services technology provides a new level of interoperability between
software applications. Many platform providers, software developers, and utility providers enable
their software with SOAP, WSDL, and UDDI capabilities.

2) Loosely coupled

Web Services are self-describing software modules which encapsulates discrete functionality. Web
Services are accessible via standard Internet communication protocols like XML and SOAP. These
Web Services can be developed in many implementation languages, and any other applications or
Web Services can access these services. Therefore, Web Services are loosely coupled applications.

3) Broadly used

Web services are now broadly used in IT services industry, for example e-business, business-to-
business applications. Now several stable platforms are already provided to support the
development of Web service applications.

4) Software and data reusability

- 35 -
TD 318 Rev.1 (PLEN/2)-E

Web services support the component-based model in software development, which allows
developers to reuse the building blocks created by others to assemble complex applications and
extend them in new ways.

It is not only allowed to reuse source code but also data behind source code of reuse in Web
services. Another kind of software reuse in Web services is to integrate these functions in several
relevant applications and expose them via web service interfaces.

5) Easy for service composition

Web services allow the definition of increasingly complex applications by progressively
aggregating components at higher levels of abstraction. A client invoking a composite service can
itself be exposed as a web service. Combining the functionality of several web services can form a
new web service, which is called service composition. Service composition can be either performed
by composing elementary or composite services.

Web Services provide standardized way to expose and access the functionality of applications as
services, and there are specialized languages (such as BPEL) for business process definition and
execution.

6) Low cost

Currently, there are many tools, products, and technologies supporting Web service standards. This
gives organizations a wide variety of choices, which help lower the cost in developing new
applications and running environment and integration.

I.2 Suitable and unsuitable application scenarios of Web-service in network management

(1) Suitable application scenarios in general

Generally speaking, based on the characteristics of Web-services, it is suitable for the following
application scenarios.

- Communication across firewall

As Web-Services use standard SOAP as the transferring protocol, it can easily pass firewalls or
proxy servers which may be located between different related applications without difficult. It is
usually more complex when using other communication middleware.

- Application Integration

It is known applications often need to run on programs in one kind of platform and obtain data from
or send data to applications in some other platforms. Even in the same platform, a variety of
software provided by different manufacturers often need to be integrated. Over Web-services,
applications can expose functions and data to other applications to use in standard ways.

- B2B interface integration

Integration of cross-enterprise business transactions are usually called B2B integration. Through
Web-services, enterprise can integrate critical business applications and then expose them to the
designated suppliers and customers, and the greatest benefit using web services to implement B2B
integration is that it can easily achieve interoperability.

- Open interface supporting good changeability

Web services' interfaces are defined in Web Services Description Language (WSDL). The WSDL
defines services as collections of network endpoints, or ports. The WSDL specification provides an
XML format for documents for this purpose. The abstract definition of ports and messages are
separated from their concrete use or instance, allowing the reuse of these definitions. In this way,

- 36 -
TD 318 Rev.1 (PLEN/2)-E

WSDL describes the public open interface to the web service. Because of the separation of data
definition and interfaces definition, client and server of web service applications can be developed
separately and communicate though this open interface, and the change of interfaces will result less
impact on the development of web service applications.

(2) Unsuitable application scenarios in general

As Web-Service is a loosely coupled technology mainly designed for application interoperability
and integration in heterogeneous environment, it also has week points, such as lower execution
speed and less encoding efficiency compared to some other technologies (such as CORBA or
DCOM). In certain use cases, it may not be the best choices to use Web-Service. For example,

- Single machine system

- Isomorphic LAN applications (applications interworking in a single LAN environment with the
same platform and underlying middleware)

- Online interaction with large amount of data

(3) Considerations for Web-services application scenarios in network management

Based on the above analysis, the following interfaces in network management domain are
considered more suitable for Web-services application:

- B2B/C2B interface

- F interface, and

- high level OS-OS interface (service management layer or business management layer), etc

In the above cases, the benefit of Web-services, such as loosely coupled, inter-enterprise application
integration, web-based access, good extensibility for new service applications, can be made good
use of.

It may not be a good choice to use Web-Services on EMS-NE management interfaces, as they are
usually provided by the same vender, and may not be necessary as open interfaces.

For NMS-EMS management interfaces, Web-Services may be used, but it may not be the best
choice for some cases. For example, CORBA is more encoding efficient and has higher execution
speed in LAN environment.

- 37 -
TD 318 Rev.1 (PLEN/2)-E

Bibliography
[b-ITU-T X.780] ITU-T Recommendation X.780 (2001), TMN guidelines for defining CORBA

managed objects

[b-ITU-T X.780.2] ITU-T Recommendation X.780.2 (2007), TMN guidelines for defining service-
oriented CORBA managed objects and façade objects.

[b-ATIS-I-000001] ATIS Specification ATIS-I-000001 (2011), ATIS XML Schema Development
Guidelines.
