Page 1

3GPP TSG-SA5 (Telecom Management)
S5-093344
Meeting SA5#67, Aug 31 – Sep 4, 2009, Vancouver, BC, Canada
revision of S5-09xyzw
	CR-Form-v9.6

	CHANGE REQUEST

	

	(

	32.152
	CR
	CRNum
	(

rev
	-
	(

Current version:
	8.0.0
	(

	

	For HELP on using this form look at the pop-up text over the (
 symbols. Comprehensive instructions on how to use this form can be found at http://www.3gpp.org/specs/CR.htm.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	X
	Core Network
	X

	

	Title:
(

	Align Repertoire with practice

	
	

	Source to WG:
(

	Ericsson

	Source to TSG:
(

	S5

	
	

	Work item code:
(

	OAM8
	
	Date: (

	04/09/2009

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	Rel-9

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)
Rel-7
(Release 7)
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)

	
	

	Reason for change:
(

	Common usage and style in IRP are not aligned properly with that proposed in Repertoire

	
	

	Summary of change:
(

	Deprecate the display of attributes in IOC. Use stereotypes when appropriate. Get rid of unused modelling elements.

	
	

	Consequences if
(

not approved:
	The styles and usage of UML constructs in current set of IRPs are not aligned with those documented in Repertoire.

	
	

	Clauses affected:
(

	5

	
	

	
	Y
	N
	
	

	Other specs
(

	
	x
	 Other core specifications
(

	

	affected:
	
	x
	 Test specifications
	

	
	
	x
	 O&M Specifications
	

	
	

	Other comments:
(

	

	1st Modified Section

5
Model Elements and Notations

5.1
Basic model elements

UML defined a number of basic model elements. This subclause lists the selected subset for use in the repertoire. The semantics of the selected ones are defined in [5].

5.1.1
aggregation
See subclause 3.43.2.5 of [5].

This sample shows a hollow diamond attached to the end of a path to indicate aggregation. The diamond is attached to the class that is the aggregate.

[image: image2.emf]MscFunction

<<InformationObjectClass>>

ManagedElement

<<InformationObjectClass>>

5.1.2
operation
See subclause 3.26 of [5].

This sample shows two operations, shown as strings in the operation compartment of class NotificationIRPManagement, that the instance of NotificationIRPManagement may be requested to perform. The operation has a name, e.g. subscribe and a list of arguments (not shown).

 [image: image3.emf]NotificationIRPManagement

subscribe()

unsubscribe()

<< Interface>>

5.1.3
association and association name
See subclause 3.41 of [5].

These two samples show a binary association between exactly two model elements. The association can include the possibility of relating a model element to itself. The first sample shows a bi-directional association in that each model element is aware of the other. The second sample shows a unidirectional association (shown with an open arrow at the target model element end) in that only the source model element is aware of the target model element and not vice-versa.

Association can be named, such as abcd and label6 in the following samples.
[image: image5.emf]XClass

<<InformationObjectClass>>

YClass

<<InformationObjectClass>>

abcd

[image: image7.emf]AClass

<<InformationObjectClass>>

BClass

<<InformationObjectClass>>

label6

5.1.4
realization relationship
See subclause 2.5.2.1 of [5].

This sample shows the realization relationship between a model element AlarmIRPOperations_1 and another model element, AlarmIRP. The latter (the target model element) implements the former. The target model element must be a <<Interface>>.
[image: image8.emf]AlarmIRP

<<SupportIOC>>

AlarmIRPOperations_1

getAlarmList()

acknowledgeAlarms()

<< Interface>>

5.1.5
generalization relationship
See subclause 3.50 of [5].

This sample shows a generalization relationship between a more general element (the IRPAgent) and a more specific element (the IRPAgent_vendor_A) that is fully consistent with the first element and that adds additional information.

[image: image10.emf]IRPAgent

<<InformationObjectClass>>

IRPAgent_vendor_A

<<InformationObjectClass>>

5.1.6
 dependency relationship
See subclause 3.51 of [5].

This sample shows that BClass instances have a semantic relationship with AClass instances. It indicates a situation in which a change to the target element will require a change to the source element in the dependency.
[image: image11.emf]AClass

<<InformationObjectClass>>

BClass

<<InformationObjectClass>>

5.1.7
note
See subclause 3.11 of [5].

This sample shows a note, as a rectangle with a "bent corner" in the upper right corner. The note contains arbitrary text. It appears on a particular diagram and may be attached to zero or more modelling elements by dashed lines.

[image: image12.emf]SubNetwork

<<InformationObjectClass>>

This is a sample of

a note.

5.1.8 multiplicity, a.k.a. cardinality
See subclause 3.44 of [5].

This sample shows a multiplicity attached to the end of an association path. The meaning of this multiplicity is that one to many. Network instance(s) is associated with zero, one or more SubNetwork instances.

In Release 7 and earlier versions, the cardinality zero can indicate that the IOC has the so-called “transient state” characteristic. For example, it indicates that the instance is not yet created but it is in the process of being created. In Release 8 and onwards, the cardinality zero will not be used to indicate this characteristic since such characteristic is considered inherent in all IOCs. In Release 8 and onwards, all IOCs defined are considered to have such inherent “transient state” characteristics.
[image: image13.emf]Network

<<InformationObjectClass>>

SubNetwork

<<InformationObjectClass>>

0..* 0..*

5.1.9
rolename
See subclause 3.43.2.6 of [5].

This sample shows a Person (say instance John) is associated with a Company (say whose DN is “Company=XYZ”). We navigate the association by using the opposite association-end such that John’s Person.theCompany would hold the DN, i.e."Company=XYZ". Use noun for the rolename.
[image: image14.emf]Company

<<InformationObjectClass>>

Person

<<InformationObjectClass>>

+theCompany

5.2
Stereotype

This subclause lists all allowable stereotypes to be used in IRP IS specifications. One stereotype <<Interface>> is defined in [5]. This document lists it out for ease of reference and completness. Other stereotypes are defined in this document.

Table: Stereotypes

	Stereotype
	Base Class
	Affected Metamodel Elements

	Interface
	Class
	

	
	
	

	ProxyClass
	Class
	

	Notification
	Class
	

	Archetype
	Classifier (subclause 2.5.2.10 of [5])
	

	InformationObjectClass
	Classifier
	

	agent-internal-usage
	Association
	

	use
	Association
	

	may use
	Association
	

	may realize
	Association
	

	
	
	

	names
	Composition
	--

	
	
	

5.2.1
<<Interface>>
Subclause 2.5.2.25 of [5]:

"An interface is a named set of operations that characterize the behaviour of an element. In the metamodel, an Interface contains a set of Operations that together define a service offered by a Classifier realizing the Interface. A Classifier may offer several services, which means that it may realize several Interfaces, and several Classifiers may realize the same Interface.

Interfaces may not have Attributes, Associations, or Methods. An Interface may participate in an Association provided the Interface cannot see the Association; that is, a Classifier (other than an Interface) may have an Association to an Interface that is navigable from the Classifier but not from the Interface."

Subclause 2.5.4.6 of [5]: "The purpose of an interface is to collect a set of operations that constitute a coherent service offered by classifiers. Interfaces provided a way to partition and characterize groups of operations. An interface is only a collection of operations with a name. It cannot be directly instantiated. Instantiable classifiers, such as class or use case, may use interfaces for specifying different services offered by their instances. Several classifiers may realize the same interface. All of them must contain at least the operations matching those contained in the interface. The specification of an operation contains the signature of the operation (i.e. its name, the types of the parameters and the return type). An interface does not imply any internal structure of the realizing classifier. For example, it does not include which algorithm to use for realizing an operation.”

An operation may, however, include a specification of the effects [e.g. with pre and post-conditions] of its invocation.
5.2.1.1
Sample

This sample shows an AlarmIRPOperations_1 <<Interface>> that has two operations. The input and output parameters of the operations are hidden (i.e. not shown). The AlarmIRP has a unidirectional mandatory realization relationship with the <<Interface>>.
[image: image16.emf]AlarmIRP

<<SupportIOC>>

AlarmIRPOperations_1

getAlarmList()

acknowledgeAlarms()

<< Interface>>

<<Interface>> Notation

5.2.2
Void

5.2.3
<<ProxyClass>>

It is a form or template representing a number of <<InformationObjectClass>>. It encapsulates attributes, links, methods (or operations), and interactions that are present in the represented <<InformationObjectClass>>.

The semantics of a <<ProxyClass>> is that all behaviour of the <<ProxyClass>> is present in the represented <<InformationObjectClass>>. Since this class is simply a representation of other classes, this class cannot define its own behaviour other than those already defined by the represented <<InformationObjectClass>>.

A particular <<InformationObjectClass>> can be represented by zero, one or more <<ProxyClass>> or <<Archetype>>. For example, the ManagedElement <<InformationObjectClass>> can have MonitoredEntity <<ProxyClass>> and ManagedEntity <<ProxyClass>>.

The attributes of the <<ProxyClass>> are accessible by the source entity that has an association with the <<ProxyClass>>.

5.2.3.1
Sample
This shows a <<ProxyClass>> named MonitoredEntity. It represents all NRM <<InformationObjectClass>> (e.g. GgsnFunction <<InformationObjectClass>>) whose instances are being monitored for alarm conditions.

Note that <<MonitoredEntity>> does not define any attribute. The attributes are already defined by all NRM <<InformationObjectClass>>.

[image: image19.emf]MonitoredEntity

<<ProxyClass>>

It represents all

NRM IOCs that

can have alarms.

<<ProxyClass>> Notation
See Annex A for more samples that use <<ProxyClass>>.

5.2.4
<<Archetype>>
It is a form or template representing common class properties (e.g. attributes, links, operations and interactions) of a number of represented <<InformationObjectClass>>.
The semantics of an <<Archetype>> is that all attributes, links operations and interactions encapsulated by the <<Archetype>> may or may not be present in the represented <<InformationObjectClass>>. The <<Archetype>> represents a placeholder class that is most useful in technology neutral analysis models that will require further specification and/or mapping within a more complete construction model.
5.2.4.1
Sample

This shows an <<Archetype>> StateManagement. It also shows an <<InformationObjectClass>> IRPAgent that depends on this StateManagement. Note that the StateManagement has defined a number of attributes (not shown in the UML diagram).

The classes that depend on this StateManagement may or may not use all of the StateManagement attributes. In other words, at least one of the attributes of StateManagement is present in the IRPAgent. The precise set of StateManagement attributes used by the IRPAgent is specified in specification that defines the IRPAgent.
Note that <<Archtetype>>StateManagement has defined some attributes. The represented <<InformationObjectClass>>IRPAgent shall use at least one of the <<Archetype>>StateManagement attributes.
[image: image21.emf]StateManagement

<<Archtetype>>

IRPAgent

<<InformationObjectClass>>

<<Archetype>> Notation

5.2.5
<<InformationObjectClass>>

It is the descriptor for a set of network resources and network management capabilities. Each <<InformationObjectClass>> represents a set of instances with similar structure, behaviour and relationships.

This <<InformationObjectClass>> and other information classes such as <<Interface>> are mapped into technology specific model elements. The mapping of IS modelling constructs to technology specific modelling constructs are captured in the corresponding IRP Solution Set specifications.

The name of an <<InformationObjectClass>> has scope within the 3GPP IRP IS document in which it is specified and the name must be unique among all <<InformationObjectClass>> names within that 3GPP IRP IS document. The IRP IS document name is considered in the similar way as the UML Package-name.

The <<InformationObjectClass>> is identical to UML class except that it does not include/define methods or operations.

Subclause 3.22.1 of [5]: "A class represents a concept within the system being modelled. Classes have data structure and behaviour and relationships to other elements."

5.2.5.1
Sample

This sample shows an RncFunction <<InformationObjectClass>>.

[image: image23.emf]RncFunction

<<InformationObjectClass>>

<<InformationObjectClass>> Notation

5.2.6
<<use>> and <<may use>>

The <<use>> and <<may use>> are unidirectional associations. The target must be an <<Interface>> or <<Notification>>.
In the case where the target is <<Interface>>, the <<use>> states that the source class must have the capability to use the target <<Interface>> in that it can invoke the operations defined by the <<Interface>>. Support of the capability by the source entity is mandatory. The <<may use>> states that the source class may have the capability to use the target <<Interface>> in that it may invoke the operations defined by the <<Interface>>. Support of the capability by the source entity is optional.
In the case the target is <<Notification>>, the <<use>> states that the source class must be the originator of the notifications defined by the target <<Notification>>. Support of the capability by the source entity is mandatory. The <<may use>> states that the source class may be the originator of the notifications defined by the target <<Notification>>. Support of the capability by the source entity is optional.

5.2.6.1
Sample for target <<Interface>>
This shows that the IRPManager shall use the operations defined by AlarmIRPOperations_1 and may use the operations defined by AlarmIRPOperations_2.
[image: image25.emf]AlarmIRPOperations_1

getAlarmList()

acknowledgeAlarms()

<< Interface>>

IRPManager

<<SupportIOC>>

AlarmIRPOperations_2

getAlarmCount()

<< Interface>>

<<use>>

<<may use>>

<<use>> and <<may use>> Notation for target <<Interface>>
5.2.6.2 Sample for target <<Notification>>
This shows that the PMIRP shall have the capability to emit or originate notifications defined by PMIRPNotifications_1 and may have the capability to emit or originate notifications defined by PMIRPNotifications_2.
[image: image26.emf]PMIRPNotifications_1

notifyMeasurementJobStatusChanged()...

<<Notification>>

<<use>>

PMIRP

<<SupportIOC>>

<<may use>>

PMIRPNotifications_2

notifyThresholdMonitorStatusChanged()...

notifyThresholdMonitorObjectCreation()

notifyThresholdMonitorObjectDeletion()

<<Notification>>

<<use>> and <<may use>> Notation for target <<Notification>>
5.2.7
<<may realize>>

The <<may realize>> is an unidirectional association. The target must be an <<Interface>>. The <<may realize>> shows that the source entity may realize the operations defined by the target <<Interface>>.
Note that the UML basic element has defined the realize association (and therefore, there is no need to define a stereotype of such association). The realize association shows that the source entity must realize (or implement) the operations defined by the target <<Interface>>.

5.2.7.1
Sample

This shows that the AlarmIRP may realize the operation of AlarmIRPOperations_2.
[image: image28.emf]AlarmIRPOperations_2

getAlarmCount()

<< Interface>>

 AlarmIRP

<<SupportIOC>>

<<may realize>>

<<may realize>> Notations

5.2.8
Void

5.2.9
<<names>>

It specifies a unidirectional composition. The target instance is uniquely identifiable, within the namespace of the source entity, among all other targeted instances of the same target classifier and among other targeted instances of other classifiers that have the same <<names>> composition with the source.

Composition used as the act of name containment provides a semantic of a whole-part relationship between the domain and the named elements that are contained, even if only by name. From the management perspective access to the part is through the whole. Multiplicity shall be indicated on both ends of the relationship.

A target can not have multiple <<names>> with multiple sources, i.e. a target can not participate in or belong to multiple namespaces.

5.2.9.1
Sample

This shows that all instances of MscFunction are uniquely identifiable within the ManagedElement namespace.
Cardinality must be shown on both ends of the relation.
[image: image32.emf]MscFunction

<<InformationObjectClass>>

ManagedElement

<<InformationObjectClass>>

0..*

1

<<names>>

1

0..*

<<names>> Notation
5.2.10
Void

5.2.11
<<Notification>>

<<Notification>> is a named set of notifications.
5.2.11.1
Sample
This sample shows a <<Notification>> named “PMIRPNotifications_1” and another <<Notification>> named “PMIRPNotifications_2”. Both of them have notification(s). An example of a notification can be notifyMeasurementJobStatusChanged().
[image: image36.emf]PMIRPNotifications_1

notifyMeasurementJobStatusChanged()...

<<Notification>>

PMIRP

<<SupportIOC>>

PMIRPNotifications_2

notifyThresholdMonitorStatusChanged()...

notifyThresholdMonitorObjectCreation()

notifyThresholdMonitorObjectDeletion()

<<Notification>>

<<Notification>> Notation

5.2.12
<<agent-internal-usage>>

This is a unidirectional association. The source passes network management information to target. The source and target are entities or processes running in different IRP instances such as AlarmIRP, PMIRP. The instances may be name-contained by the same IRPAgent or different IRPAgent instances. The precise network management information passed and the information transfer mechanism are not standardized and are vendor-specific.

5.2.12.1
Sample

This shows that NLIRP (NotificationLog IRP) can pass some network management information to FTIRP.

[image: image39.emf]NLIRP

<<SupportIOC>>

FileTransferIRP

<<SupportIOC>>

<<agent-internal-usage>>

 <<agent-internal-usage>> Notation

5.3
Void

5.4
Association classes

Subclause 3.46 of OMG: "Unified Modelling Language Specification, Version 1.51" [5] http://www.omg.org/technology/documents/formal/uml.htmd defines an association class as

"An association class is an association that also has class properties (or a class that has association properties).
Even though it is drawn as an association and a class, it is really just a single model element.".

Association classes are appropriate for use when an «InformationObjectClass» needs to maintain associations to several other «InformationObjectClass»'s and there are relationships between the members of the associations within the scope of the "containing" «InformationObjectClass». For example, a namespace maintains a set of bindings, a binding ties a name to an object. A Binding «IOC» can be modelled as an Association Class that provides the binding semantics to the relationship between a name and some other «InformationObjectClass». This is depicted in the following figure (exemplary only, not taken from another 3GPP specification).

[image: image41.wmf]Namespace

<<InformationObjectClass>>

Binding

<<InformationObjectClass>>

0..*

0..*

Name

Object

<<InformationObjectClass>>

1

1

1

1

Example of an Association Class

	End of Modified Sections

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least four digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR was written and (normally) to which it will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line, but if this is not possible, do not enter hard new-line characters. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

One or more organizations (3GPP Individual Members) which drafted the CR and are presenting it to the Working Group.

For CRs agreed at Working Group level, the identity of the WG. Use the format "xn" where �	x = "C" for TSG CT, "R" for TSG RAN, "S" for TSG SA, "G" for TSG GERAN; �PAGE \# "'Page: '#'�'" ���	n = digit identifying the Working Group; for CRs drafted during the TSG meeting itself, use "P". �Examples: "C4", "R5", "G3new", "SP".

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, A, B & C CRs for Release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See �� HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm" ��http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm� .

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2006.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed. For more detailed help on interpreting these categories, see Technical Report �HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/21900.htm"��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR were to be rejected. It is mandatory to complete this section only if the CR is of category "F" (i.e. correction), though it may well be useful for other categories.

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes. Be as specific as possible (ie list each subclause, not just the umbrella clause).

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

_1175511951.doc

BulkCMActive

+ download()

<<opt>> + validate()

<<opt>> + preactivate()

+ activate()

+ fallback()

<< Interface>>

