Page 1

3GPP TSG-SA5 (Telecom Management)
(
S5-081661
Meeting SA5#61, 13 - 17 October 2008, Dalian, CHINA
revision of S5-080xyz
	CR-Form-v9.4

	CHANGE REQUEST

	

	(

	32.612
	CR
	CRNum
	(

rev
	-
	(

Current version:
	7.2.0
	(

	

	For HELP on using this form look at the pop-up text over the (
 symbols. Comprehensive instructions on how to use this form can be found at http://www.3gpp.org/specs/CR.htm.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	X
	Core Network
	X

	

	Title:
(

	Enhancements to Bulk CM IRP IS for multiple download

	
	

	Source to WG:
(

	Huawei

	Source to TSG:
(

	SA5

	
	

	Work item code:
(

	OAM8
	
	Date: (

	17/10/2008

	
	
	
	
	

	Category:
(

	B
	
	Release: (

	Rel-8

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)
Rel-7
(Release 7)
Rel-8
(Release 8)
Rel-9
(Release 9)

	
	

	Reason for change:
(

	The Bulk CM IRP IS currently does not support the multiple download. Hower, the multiple download, i.e., an IRPManager can download the data repeatedly in the same session, is very efficient for network maintenance. Using multiple download, there is no need to start multiple sessions for multiple data files.

	
	

	Summary of change:
(

	Add Bulk CM IRP IS support for multiple download in one session.

	
	

	Consequences if
(

not approved:
	

	
	

	Clauses affected:
(

	9.1, 9.2, 9.2.2, 9.2.3, 9.3, Annex A, Annex B

	
	

	
	Y
	N
	
	

	Other specs
(

	
	X
	 Other core specifications
(

	

	affected:
	
	X
	 Test specifications
	

	
	
	X
	 O&M Specifications
	

	
	

	Other comments:
(

	

	1st Modified Section

9.1
State Machine Overview

The Bulk CM IRPAgent state machine satisfies the following general requirements and characteristics for Bulk CM IRP:

1) Each configuration session is associated with one state machine. The session is identified by the sessionId. If a session is started (startSession operation) an instance of the state machine is created. If the session is ended (endSession operation) the instance of the state machine is deleted.

2) Under normal operation without errors the IRPManager is able to supervise a configuration session by just monitoring the state change notifications (notifySessionStateChanged) triggered by the IRPAgent

3) Under abnormal conditions where the IRPManager is not notified of a change, the getSessionStatus operation can be invoked to determine current state of the session. The IRPManager does not need to maintain a history of the state machine.

4) On the IRPAgent there is one or more download configuration data files (clause 10) associated with a session at a time.

5) Multi configuration session must be supported by the IRPAgent. E.g. it must be possible to invoke an upload session in parallel with an active activate session.

6) The IRPAgent resolves concurrency problems on a "first come - first serve" basis. E.g. an upload and an activation requested on the same configuration data cannot be performed at the same time and in this case the first will be progress to completions and the second request rejected.

7) It must be possible to abort a configuration session within a transition state.

8) The operator/IRPManager decides on whether or not enabling the fallback option is required before requesting an activation or preactivation Enabling the fallback option will maintain the disposition of the configuration before the activation or preactivation . The fallback configuration information is established at point before the first activation or preactivation is started. If there is multiple activation or preactivation attempts during a session only one (first) fallback configuration is maintained.

9) The session log file can be requested in any state. The uploaded log file contains information which is specific to the configuration session.

10) Clause 7.3 defines the valid state machine pre and post conditions for each operation.
11) The state machine shall support multiple download, thus the IRPManager can call download operations for different CM data files and do the validation in the same session.
	Next Modified Section

9.2
State Machine Description

The IRPAgent progresses Bulk CM operations and associated configuration data changes (clause 10) within a session according to the state machine defined here. The IRPManager can manage a configuration session using session state change notifications which are triggered by the IRPAgent. Not all state changes defined here are notified to the IRPManager. The transition states (UPLOAD_IN_PROGRESS, DOWNLOAD_IN_PROGRESS, VALIDATION_IN_PROGRESS, PREACTIVATION_IN_PROGRESS, ACTIVATION_IN_PROGRESS) are not notified to the IRPManager as they are not required.

If the IRPManager becomes unaware or needs to confirm the current state of a configuration session it can request this by invoking getSessionStatus operation. It is not required to know the history of the state machine. The getSessionStatus operation will provide the "actual " current status.
An IRPManager may request the status when it detects loss of control, for example because of the following reasons:

1) Session state change notifications are not being received as expected, e.g. because IRPAgent is blocked in a transition state, e.g. ACTIVATION_IN_PROGRESS;
2) IRPManager gets disconnected from the IRPAgent, e.g. session state notification is not received.

The session state notification events are a considered a subset of the state machine (without transition state). The actual configuration state can be requested via getSessionStatus. Because of this common behaviour it is reasonable to define one interface type for the state machine handling which is used in the session state notification and in the getSessionStatus operation.
The IRPManager will only receive notifications if it registered itself at the IRPAgent with the subscribe operation.

For ease of description the state machine of a configuration session is introduced with the notion of substate machines but state itself is named unique. This kind of notion is not to be interpreted as providing implementation directions.

Within the description of the substate machines it is becoming clear that they have the following state symmetries:

· The state of the UPLOAD_PHASE, the DOWNLOAD_PHASE and the VALIDATION_PHASE are similar.

· The state of the ACTIVATION_PHASE, PREACTIVATION_PHASE and the FALLBACK_PHASE are similar.

The startSession operation creates a state machine. The initial state of the configuration session in the IDLE_PHASE is IDLE. The endSession deletes a state machine which is not in a transition state, more details are defined in the substate machines.

[image: image1.wmf]validate

download

upload

startSession

endSession

substate machine of

DOWNLOAD

_

PHASE

substate machine of

UPLOAD

_

PHASE

substate machine of

VALIDATION

_

PHASE

substate machine of

FALLBACK

_

PHASE

IDLE

IDLE

_

PHASE

activate

substate machine of

ACTIVATION

_

PHASE

fallback

activate

substate machine of

PREACTIVATION

_

PHASE

preactivate

fallback

download

Figure 1: State Machine for Controlled Upload and Controlled Upload & Provisioning

[image: image3.wmf]Upload

substate machine of

UPLOAD_PHASE_SIMPLE_UPLOAD

Figure 1a: State Machine for Simple Upload

The following figures describe the substate machine of a configuration session. The transition states, DOWNLOAD_IN_PROGRESS, UPLOAD_IN_PROGRESS VALIDATION_IN_PROGRESS, PREACTIVATION_IN_PROGRESS and ACTIVATION_IN_PROGRESS, are either left implicit if the IRPAgent finished the processing or explicit via an abortSessionOperation operation from the IRPManager.

In these figures solid transition lines indicate the transition is caused by an external event and dashed transition lines indicate the transition is caused by an internal event or decision as depicted in the following figure.

[image: image4.wmf]external event

STATE2

STATE1

STATE2

STATE1

internal event/decision

Figure 2: Depicting State Transition Lines for Internal and External Events and Decision

	Next Modified Section

9.2.2
Download Phase

When the download is triggered the IRP Agent copies the configuration data file (clause 10) from a given file area. The file is parsed and validated. If valid the state DOWNLOAD_COMPLETED is indicated. If the download fails a retry can be triggered in state DOWNLOAD_FAILED.

Once a session is associated with a download/validate/preactivate/activation behaviour then an upload phase cannot be triggered within this session.

[image: image5.wmf]download

endSession

abortSessionOperation

DOWNLOAD

_

IN

_

PROGRESS

download

DOWNLOAD

_

FAILED

DOWNLOAD

_

COMPLETED

DOWNLOAD

_

PHASE

download

,

precheck

,

preactivate

,

activate

Internal

:

Download

successful

Internal

:

Download

failed

Figure 9.2.2: Substate Machine - DOWNLOAD_PHASE

9.2.3
Validation Phase

After a download had been completed the configuration data can be semantically validated before being preactivated or activated into the real subnetwork of an IRPAgent. (see clause 7.5.6.2). A best effort strategy shall be applied. If validation was successful the state VALIDATION_COMPLETED is indicated. If the validate fails a retry can be triggered in state VALIDATION_FAILED.

[image: image7.wmf]validate

download

,

endSession

abortSessionOperation

VALIDATION

_

IN

_

PROGRESS

validate

VALIDATION

_

FAILED

VALIDATION

_

COMPLETED

VALIDATION

_

PHASE

download or activate

or preactivate

Internal

:

Check

successful

Internal

:

validate

failed

Figure 9.2.3: Substate Machine - VALIDATION_PHASE

	Next Modified Section

9.3
State Machine Pre and Post Conditions Tables

For each operation the following tables identify the state machine pre and post conditions.

Table 9.3: State Machine Pre and Post Conditions (Controlled Upload and Controlled Upload & Provisioning)

	Operation
	Pre-condition
	Post Condition

	startSession
	No state – input sessionId provided by an IRPManager is not already in use in the IRPAgent by this or any other IRPManager
	State = IDLE

	endSession
	not in a Transition status i.e. state <>. *_IN_PROGRESS
	sessionId is released - No state.

	upload
	State = IDLE or UPLOAD_FAILED
	Initially while operation is being performed:

State= UPLOAD_IN_PROGRESS

Finally when operation has completed:

State = UPLOAD_COMPLETED or UPLOAD_FAILED

	download
	State = IDLE or DOWNLOAD_FAILED or DOWNLOAD_COMPLETED or VALIDATION_FAILED or VALIDATION_COMPLETED
	Initially while operation is being performed:

State= DOWNLOAD_IN_PROGRESS

Finally when operation has completed:

State = DOWNLOAD_COMPLETED or DOWNLOAD_FAILED

	validate
	State = DOWNLOAD_COMPLETED or VALIDATION_FAILED
	Initially while operation is being performed:

State= VALIDATION_IN_PROGRESS

Finally when operation has completed:

State = VALIDATION_COMPLETED or VALIDATION_FAILED

	preactivate
	State = DOWNLOAD_COMPLETED or VALIDATION_COMPLETED or PREACTIVATION_PARTLY_REALISED or PREACTIVATION_FAILED
	Initially while operation is being performed:

State= PREACTIVATION_IN_PROGRESS

Finally when operation has completed:

State = PREACTIVATION_COMPLETED or PREACTIVATION_PARTLY_REALISED or PREACTIVATION_FAILED

	activate
	State = DOWNLOAD_COMPLETED or VALIDATION_COMPLETED or ACTIVATION_PARTLY_REALISED or ACTIVATION_FAILED or PREACTIVATION_COMPLETED or PREACTIVATION_PARTLY_REALISED or PREACTIVATION_FAILED
	Initially while operation is being performed:

State= ACTIVATION_IN_PROGRESS

Finally when operation has completed:

State = ACTIVATION_COMPLETED or ACTIVATION_PARTLY_REALISED or ACTIVATION_FAILED

	fallback
	State = PREACTIVATION_COMPLETED or PREACTIVATION_PARTLY_REALISED or ACTIVATION_COMPLETED or ACTIVATION_PARTLY_REALISED or FALLBACK_PARTLY_REALISED or FALLBACK_FAILED
	Initially while operation is being performed:

State= FALLBACK_IN_PROGRESS

Finally when operation has completed:

State = FALLBACK_COMPLETED or FALLBACK_PARTLY_REALISED or FALLBACK_FAILED

	abortSessionOperation
	State = UPLOAD_IN_PROGRESS or DOWNLOAD_IN_PROGRESS or VALIDATION_IN_PROGRESS or
PREACTIVATION_IN_PROGRESS or ACTIVATION_IN_PROGRESS or FALLBACK_IN_PROGRESS
	State =

UPLOAD_FAILED or DOWNLOAD_FAILED or VALIDATE_FAILED or PREACTIVATION_PARTLY_REALISED or PREACTIVATION_FAILED or ACTIVATION_PARTLY_REALISED or ACTIVATION_FAILED or FALLBACK_PARTLY_REALISED or FALLBACK_FAILED

	getSessionIds
	N/A – State Machine independent
	N/A

	getSessionStatus
	None
	None

	getSessionLog
	None
	None

	getBulkCmIRPversion
	N/A – State Machine independent
	N/A

	Next Modified Section

Annex A (informative):
Scenarios

……

[image: image9.wmf]IPRManager

IRPAgent

subscribe()

upload()

notifySessionStateChanged()

unsubscribe()

IRPManager subscribes to receive

Bulk CM notifications.

IRPManager requests and upload

When the upload has completed

IRPAgent sends notification

IRPManager unsubscribes from

Bulk CM notifications.

Figure A.6: Example 6: Successful Upload Session – Simple Upload

[image: image10.wmf]IRPManager

IRPAgent

subscribe

()

startSession

()

notifySessionStateChange

()

download

()

notifySessionStateChange

unsubscribe

()

activate

()

IRPManager subscribes to receive

Bulk CM notifications

.

IRPManager starts a new Bulk CM session

When session started state becomes IDLE

,

and notification is sent to IRPManager

IRPManager requests a download

When the download has completed

IRPAgent sends notification

IRPManager ends the session

IRPManager unsubscribes from

Bulk CM notifications

.

IRPAgent starts the activation

notifySessionStateChange

()

IRPAgent completes activation

and sends notification

endSession

()

notifySessionStateChange

()

IRPAgent starts the validation

notifySessionStateChange

IRPManager requests a

multiple

 download

notifySessionStateChange

notifySessionStateChange

IRPManager requests a

multiple

 download

IRPAgent starts the

multiple

 validation

download

()

download

()

validate

()

validate

()

Figure A.7 : Example 7: Multiple Download and Activation with Validation
	Next Modified Section

Annex B (informative):
Bulk CM Application and Operation Principles

B.1
Key characteristics

1. Bulk CM operations are not transaction based.

2.
3. If any errors are found in the configuration data, it should be possible to revise the configuration data during a session e.g. to try to resolve any problems found during a session.
4. Non-transitional interface;

5. Sessions may be run in parallel. There should not be any exclusion of specified changes between parallel sessions.

	End of modifications

�PAGE \# "'Page: '#'�'" �� � HYPERLINK "http://www.3gpp.org/ftp/Information/DocNum_FTP_structure_V3.zip" ��Document numbers� are allocated by the Working Group Secretary. Use the format of document number specified by the � HYPERLINK "http://www.3gpp.org/About/WP.htm" ��3GPP Working Procedures�.

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least four digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR was written and (normally) to which it will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line, but if this is not possible, do not enter hard new-line characters. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

One or more organizations (3GPP Individual Members) which drafted the CR and are presenting it to the Working Group.

For CRs agreed at Working Group level, the identity of the WG. Use the format "xn" where �	x = "C" for TSG CT, "R" for TSG RAN, "S" for TSG SA, "G" for TSG GERAN; �PAGE \# "'Page: '#'�'" ���	n = digit identifying the Working Group; for CRs drafted during the TSG meeting itself, use "P". �Examples: "C4", "R5", "G3new", "SP".

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, A, B & C CRs for Release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See �� HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm" ��http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm� .

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2006.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed. For more detailed help on interpreting these categories, see Technical Report �HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/21900.htm"��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR were to be rejected. It is mandatory to complete this section only if the CR is of category "F" (i.e. correction), though it may well be useful for other categories.

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes. Be as specific as possible (ie list each subclause, not just the umbrella clause).

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

_1162060417.vsd

_1284100840.vsd
VALIDATION_ FAILED

VALIDATION_ COMPLETED

VALIDATION_PHASE

download or activate or preactivate

VALIDATION_ IN_PROGRESS

Internal: Check successful

Internal: validate failed

validate

download, endSession

validate

abortSessionOperation

_1284120995.vsd
IDLE

IDLE_PHASE

substate machine of UPLOAD_PHASE

substate machine of VALIDATION_PHASE

substate machine of FALLBACK_PHASE

activate

substate machine of ACTIVATION_PHASE

validate

download

upload

fallback

startSession

endSession

activate

substate machine of PREACTIVATION_PHASE

preactivate

fallback

substate machine of DOWNLOAD_PHASE

download

_1284791372.vsd
IPRManager

IRPAgent

subscribe()

startSession()

notifySessionStateChanged()

upload()

notifySessionStateChanged()

unsubscribe()

endSession()

IRPManager subscribes to receive
Bulk CM notifications.

IRPManager starts a new Bulk CM session

When session started state becomes IDLE,
and notification is sent to IRPManager

IRPManager requests and upload

When the upload has completed
IRPAgent sends notification

IRPManager ends the session

IRPManager unsubscribes from
Bulk CM notifications.

IRPManager

IRPAgent

subscribe()

startSession()

notifySessionStateChange()

download()

notifySessionStateChange()

unsubscribe()

activate()

IRPManager subscribes to receive
Bulk CM notifications.

IRPManager starts a new Bulk CM session

When session started state becomes IDLE,
and notification is sent to IRPManager

IRPManager requests a download

When the download has completed
IRPAgent sends notification

IRPManager ends the session

IRPManager unsubscribes from
Bulk CM notifications.

IRPAgent starts the activation

notifySessionStateChange()

IRPAgent completes activation
and sends notification

endSession()

IRPManager

IRPAgent

subscribe()

startSession()

notifySessionStateChange()

download()

notifySessionStateChange

unsubscribe()

activate()

IRPManager subscribes to receive
Bulk CM notifications.

IRPManager starts a new Bulk CM session

When session started state becomes IDLE,
and notification is sent to IRPManager

IRPManager requests a download

When the download has completed
IRPAgent sends notification

IRPManager ends the session

IRPManager unsubscribes from
Bulk CM notifications.

IRPAgent starts the activation

notifySessionStateChange()

IRPAgent completes activation
and sends notification

endSession()

IRPAgent starts the validation

notifySessionStateChange()

download()

notifySessionStateChange

validate()

notifySessionStateChange

IRPManager requests a multiple download

validate()

notifySessionStateChange

IRPManager requests a multiple download

IRPAgent starts the multiple validation

download()

_1283877453.vsd
DOWNLOAD_ FAILED

DOWNLOAD_ COMPLETED

DOWNLOAD_PHASE

download, precheck, preactivate, activate

DOWNLOAD_ IN_PROGRESS

Internal: Download successful

Internal: Download failed

download

endSession

download

abortSessionOperation

_1075381476.vsd

_1081844094.vsd

_1159276079.vsd
�

�

�

�

�

�

IPRManager�

IRPAgent�

subscribe()�

upload()�

notifySessionStateChanged()�

unsubscribe()�

IRPManager subscribes to receive
Bulk CM notifications.�

IRPManager requests and upload�

When the upload has completed
IRPAgent sends notification�

IRPManager unsubscribes from
Bulk CM notifications.�

IRPManager�

IRPAgent�

subscribe()�

startSession()�

notifySessionStateChange()�

download()�

notifySessionStateChange()�

unsubscribe()�

activate()�

IRPManager subscribes to receive
Bulk CM notifications.�

IRPManager starts a new Bulk CM session�

When session started state becomes IDLE,
and notification is sent to IRPManager�

IRPManager requests a download�

When the download has completed
IRPAgent sends notification�

IRPManager ends the session�

IRPManager unsubscribes from
Bulk CM notifications.�

IRPAgent starts the activation�

notifySessionStateChange()�

IRPAgent completes activation
and sends notification�

endSession()�

_1081844035.vsd

_1051961455.vsd

