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	1st Modified Section


9.1
State Machine Overview

The Bulk CM IRPAgent state machine satisfies the following general requirements and characteristics for Bulk CM IRP: 

1) Each configuration session is associated with one state machine. The session is identified by the sessionId. If a session is started (startSession operation) an instance of the state machine is created. If the session is ended (endSession operation) the instance of the state machine is deleted.

2) Under normal operation without errors the IRPManager is able to supervise a configuration session by just monitoring the state change notifications  (notifySessionStateChanged) triggered by the IRPAgent 

3) Under abnormal conditions where the IRPManager is not notified of a change, the getSessionStatus operation can be invoked to determine current state of the session. The IRPManager does not need to maintain a history of the state machine.

4) On the IRPAgent there is one or more download configuration data files (clause 10) associated with a session at a time. 

5) Multi configuration session must be supported by the IRPAgent. E.g. it must be possible to invoke an upload session in parallel with an active activate session. 

6) The IRPAgent resolves concurrency problems on a "first come - first serve" basis.  E.g. an upload and an activation requested on the same configuration data cannot be performed at the same time and in this case the first will be progress to completions and the second request rejected.

7) It must be possible to abort a configuration session within a transition state. 

8) The operator/IRPManager decides on whether or not enabling the fallback option is required before requesting an activation or preactivation Enabling the fallback option will maintain the disposition of the configuration before the activation or preactivation . The fallback configuration information is established at point before the first activation or preactivation is started. If there is multiple activation or preactivation attempts during a session only one (first) fallback configuration is maintained.

9) The session log file can be requested  in any state. The uploaded log file contains information which is specific to the configuration session. 

10) Clause 7.3 defines the valid state machine pre and post conditions for each operation.
11) The state machine shall support multiple download, thus the IRPManager can call download operations for different CM data files and do the validation in the same session.
	Next Modified Section


9.2
State Machine Description

The IRPAgent progresses Bulk CM operations and associated configuration data changes (clause 10) within a session according to the state machine defined here. The IRPManager can manage a configuration session using session state change notifications which are triggered by the IRPAgent. Not all state changes defined here are notified to the IRPManager. The transition states  (UPLOAD_IN_PROGRESS, DOWNLOAD_IN_PROGRESS, VALIDATION_IN_PROGRESS, PREACTIVATION_IN_PROGRESS, ACTIVATION_IN_PROGRESS) are not notified to the IRPManager as they are not required.

If the IRPManager becomes unaware or needs to confirm the current state of a configuration session it can request this by invoking getSessionStatus operation. It is not required to know the history of the state machine.  The getSessionStatus operation  will provide the  "actual " current status. 
An IRPManager may request the status when it detects loss of control, for example because of the following reasons:

1) Session state change notifications are not being received as expected, e.g. because IRPAgent is blocked in a transition state, e.g. ACTIVATION_IN_PROGRESS;
2) IRPManager gets disconnected from the IRPAgent, e.g. session state notification is not received.

The session state notification events are a considered a subset of the state machine (without transition state). The actual configuration state can be requested via getSessionStatus. Because of this common behaviour it is reasonable to define one interface type for the state machine handling which is used in the session state notification and in the getSessionStatus operation.
The IRPManager will only receive notifications if it registered itself at the IRPAgent with the subscribe operation.

For ease of description  the state machine of a configuration session is introduced with the notion of substate machines but state itself is named unique. This kind of notion is not to be interpreted as providing implementation directions.

Within the description of the substate machines it is becoming clear that they have the following state symmetries:

· The state of the UPLOAD_PHASE, the DOWNLOAD_PHASE and the VALIDATION_PHASE are similar.

· The state of the ACTIVATION_PHASE, PREACTIVATION_PHASE and the FALLBACK_PHASE are similar.

The startSession operation creates a state machine. The initial state of the configuration session in the IDLE_PHASE is IDLE. The endSession deletes a state machine which is not in a transition state, more details are defined in the substate machines.
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Figure 1: State Machine for Controlled Upload and Controlled Upload & Provisioning
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Figure 1a: State Machine for Simple Upload

The following figures describe the substate machine of a configuration session. The transition states, DOWNLOAD_IN_PROGRESS, UPLOAD_IN_PROGRESS VALIDATION_IN_PROGRESS, PREACTIVATION_IN_PROGRESS and ACTIVATION_IN_PROGRESS, are either left implicit if the IRPAgent finished the processing or explicit via an abortSessionOperation operation from the IRPManager.

In these figures solid transition lines indicate the transition is caused by an external event and dashed transition lines indicate the transition is caused by an internal event or decision as depicted in the following figure. 
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Figure 2: Depicting State Transition Lines for Internal and External Events and Decision
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9.2.2
Download Phase

When the download is triggered the IRP Agent copies the configuration data file (clause 10) from a given  file area. The file is parsed and validated. If valid the state DOWNLOAD_COMPLETED is indicated. If the download fails a retry can be triggered in state DOWNLOAD_FAILED. 

Once a session is associated with a download/validate/preactivate/activation behaviour then an upload phase cannot be triggered within this session. 
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Figure 9.2.2: Substate Machine - DOWNLOAD_PHASE

9.2.3
Validation Phase

After a download had been completed the configuration data can be semantically validated before being preactivated or activated into the real subnetwork of an IRPAgent. (see clause 7.5.6.2). A best effort strategy shall be applied. If validation was successful the state VALIDATION_COMPLETED is indicated. If the validate fails a retry can be triggered in state VALIDATION_FAILED. 
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Figure 9.2.3: Substate Machine - VALIDATION_PHASE
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9.3
State Machine Pre and Post Conditions Tables

For each operation the following tables identify the state machine pre and post conditions.

Table 9.3: State Machine Pre and Post Conditions (Controlled Upload and Controlled Upload & Provisioning)

	Operation
	Pre-condition
	Post Condition

	startSession
	No state – input sessionId provided by an IRPManager is not already in use in the IRPAgent by this or any other IRPManager
	State = IDLE 

	endSession
	not in a Transition status i.e. state <>. *_IN_PROGRESS
	sessionId is released  - No state.

	upload
	State = IDLE or UPLOAD_FAILED
	Initially while operation is being performed:

State= UPLOAD_IN_PROGRESS

Finally when operation has completed:

State = UPLOAD_COMPLETED or UPLOAD_FAILED

	download
	State = IDLE or DOWNLOAD_FAILED or DOWNLOAD_COMPLETED or  VALIDATION_FAILED or VALIDATION_COMPLETED
	Initially while operation is being performed:

State= DOWNLOAD_IN_PROGRESS 

Finally when operation has completed:

State = DOWNLOAD_COMPLETED or  DOWNLOAD_FAILED

	validate
	State = DOWNLOAD_COMPLETED or VALIDATION_FAILED
	Initially while operation is being performed:

State= VALIDATION_IN_PROGRESS

Finally when operation has completed:

State = VALIDATION_COMPLETED or VALIDATION_FAILED

	preactivate
	State = DOWNLOAD_COMPLETED or VALIDATION_COMPLETED or PREACTIVATION_PARTLY_REALISED or PREACTIVATION_FAILED
	Initially while operation is being performed:

State= PREACTIVATION_IN_PROGRESS

Finally when operation has completed:

State = PREACTIVATION_COMPLETED or PREACTIVATION_PARTLY_REALISED or PREACTIVATION_FAILED

	activate
	State = DOWNLOAD_COMPLETED or VALIDATION_COMPLETED or ACTIVATION_PARTLY_REALISED or ACTIVATION_FAILED or PREACTIVATION_COMPLETED or PREACTIVATION_PARTLY_REALISED or PREACTIVATION_FAILED
	Initially while operation is being performed:

State= ACTIVATION_IN_PROGRESS 

Finally when operation has completed:

State = ACTIVATION_COMPLETED or ACTIVATION_PARTLY_REALISED or ACTIVATION_FAILED

	fallback
	State = PREACTIVATION_COMPLETED or PREACTIVATION_PARTLY_REALISED or ACTIVATION_COMPLETED or ACTIVATION_PARTLY_REALISED or FALLBACK_PARTLY_REALISED or FALLBACK_FAILED 
	Initially while operation is being performed:

State= FALLBACK_IN_PROGRESS 

Finally when operation has completed:

State = FALLBACK_COMPLETED or FALLBACK_PARTLY_REALISED or FALLBACK_FAILED

	abortSessionOperation
	State = UPLOAD_IN_PROGRESS or DOWNLOAD_IN_PROGRESS or VALIDATION_IN_PROGRESS or
PREACTIVATION_IN_PROGRESS or ACTIVATION_IN_PROGRESS or FALLBACK_IN_PROGRESS
	State = 

UPLOAD_FAILED or DOWNLOAD_FAILED or VALIDATE_FAILED or PREACTIVATION_PARTLY_REALISED or PREACTIVATION_FAILED or ACTIVATION_PARTLY_REALISED or ACTIVATION_FAILED or FALLBACK_PARTLY_REALISED or FALLBACK_FAILED

	getSessionIds
	N/A – State Machine independent
	N/A

	getSessionStatus
	None 
	None

	getSessionLog
	None
	None

	getBulkCmIRPversion
	N/A – State Machine independent
	N/A
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Annex A (informative):
Scenarios

……
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Figure A.6: Example 6: Successful Upload Session – Simple Upload
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Figure A.7 : Example 7: Multiple Download and Activation with Validation
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Annex B (informative):
Bulk CM Application and Operation Principles

B.1
Key characteristics

1. Bulk CM operations are not transaction based.

2. 
3. If any errors are found in the configuration data, it should be possible to revise the configuration data during a session e.g. to try to resolve any problems found during a session. 
4. Non-transitional interface;

5. Sessions may be run in parallel. There should not be any exclusion of specified changes between parallel sessions.
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