3GPP TSG-SA5 (Telecom Management)
 S5-081541
Meeting SA5#61, 13-17 October 2008, Dalian, CHINA
Source:
Ericsson
Title:
Data types in IS level specifications
Document for:
Discussion
Agenda Item:
6.04.1 Methodology
1 Intent & Background
SA5 IS-level specifications define semantics (meanings) of the various IS-level constructs (e.g. operation parameters, IOC’s attributes, notification parameters) while SS-level specifications define syntax of various SS-level constructs, mapped from corresponding IS-level constructs.
ITU-T suggests the use of standardized data type in IS level specification. See section 7.2 of [1]. The proposed data types are extracted and placed in Appendix A for ease of reference.

This paper argues that the use of proposed data types are related to syntax and therefore, not appropriate for use in IS-level that deals strictly with semantics of IS‑level constructs.

This paper further suggests that we should investigate if the proposed data type be used in the SS-level specifications.

2 Reasons why not applicable - Data types indicate syntax and not semantics

Ref [1] defines the following data types: Integer, Real, String, Boolean, Enum, BitString, Null, Any, Name. It also defines a number of complex (data) types: Struct, Choice, SetOf. It further defines “Useful types”: ObjectIdentifier (which is SetOf Integer) and Time (which is String).
The set of proposed data types and the goal of using data type are almost identical to those defined by ASN.1 (Abstract Syntax Notation number One). ASN.1 has Integer, Real, String, Boolean, Enum, etc.
The name ASN.1 is explicit in that it deals with syntax and not semantics of protocol elements. Note that the syntax it deals with is the abstract level. The binding of the abstract syntax to concrete syntax (i.e. observed in protocol data units) is based on various standardized encoding rules such as BER (Basic Encoding Rules), PER (Packed Encoding Rules).
ASN.1 is a syntax notation that describes abstract types and values. It can also describe the complex types in terms of combination of simpler types.
Nevertheless, ASN.1 does not indicate the semantics (i.e. it does not define the meaning of the typed values, for example, it does not say if a type means Successful or “a call has failed”).
3 Proposal

1. Advise ITU-T not to use the proposed data types (whose purpose are identical to those of ITU-T’s Abstract Syntax Notation One) for IS-level specification and maintain “semantics only” for IS-level specifications.

2. Advise ITU-T to use the proposed data types for SS-level specifications and specifically for use in the Mapping Tables section of SS-level specifications.

Appendix A (Proposed M.3020 Annex E from MALL v6)
 “

Annex E - Type definitions - guideline for attributes and parameters

It is needed to specify a type for attributes and parameters definitions. This section define types that can be use in attributes and parameters definitions, including basic types, which can be used directly, and complex types, which must be defined before using to define attributes and parameters.

E.1 Basic types

Basic types are simple types that can be used directly to define attributes and parameters. Basic types can also be used to construct complex types. Basic types including the following types:
E.1.1 Integer

Integer represents an Integral number, including positive, zero, and negative values. It can be infinitive or ranged. The ranging notation using ‘[]’ and ‘()’, which ‘[’ means greater or equal , ‘]’ means less or equal , ‘(’ means greater, ‘)’ means less .

For example:

	Attribute Name
	Definition
	Legal Values

	a
	Integer
	

	b
	Integer
	[0,100]

E.1.2 Real

Real represents a real number. It can be infinitive or ranged. The ranging notation is defined in E.1.1 Integer.

For example:

	Attribute Name
	Definition
	Legal Values

	a
	Real
	

	b
	Real
	(0.15,100.43]

E.1.3 String

String represents a string of characters, the character set is not restricted.

E.1.4 Boolean
Boolean represents an enumerated value that only including true and false.

E.1.5 Enum

Enum represents enumerated values. All values that may be used by a specific attribute or parameter shall be listed in the Legal Value column. If the number of these values is more than 50, it is recommended to define them in appendix or an independent document.
The values listed can be in three different styles as following, but for a specific type definition , it can only be one style.

1) Listed names

2) Listed names with number in parenthesis.

3) Listed character strings in quotation.

The string length measuring method is implementation dependent and is out of the scope of this document.

For example:

	Attribute Name
	Definition
	Legal Values

	a
	Enum
	on

off

	b
	Enum
	“xxx”
“yyy”

	c
	Enum
	protected(1)

Unprotected(2)

E.1.6 BitString
BitString represents a string of binary bits, which only has two values : 0 and 1.
E.1.7 Null

Null represents a single value as null.

E.1.8 Any

Any represents an indetermined value that may be determined in later processing.

For example:

	Attribute Name
	Definition
	Legal Values

	a
	ANY

It will be determined after Function A.
	

E.1.9 Name

Name represents a exclusive name of an object instance in name space. It might including object containment tree hierarchy information, but it is implementation dependent and is out of the scope of this document
For example:

	Attribute Name
	Definition
	Legal Values

	affectedObject
	Name
	

E.2 Complex type definitions

Complex type are defined using basic types, by means of construction ,selection or sub-typing . Complex type can be used to represent complex data information . The leading character of new defined type name shall be upper case.

E.2.1 Struct

Struct represents a list of fields, each fields has a values type that may different from others. The types of these fields may be basic types or complex types. The symbol ‘{ }’ are used to including all these fields, commas are used to separate between fields, and ‘:’ are used to separate between field name and file type. The leading character of field name shall be lower case. The fields may be declared as OPTIONAL. Comments shall started with symbol // .

For example:

Struct {

 fieldname1: FieldType1,

 fieldname2: FieldType2 OPTIONAL, //if supported

 …..

}

E.2.2 Choice

Choice represents a selection from a list of fields, each fields has a values type that may different from others. The types of these fields may be basic types or complex types. The symbol { } are used to including all these fields, and commas are used to separate between fields. The leading character of field name shall be lower case. Comments shall started with symbol // .

For example:

Choice {

 fieldname1: FieldType1,

 fieldname2: FieldType2,

 …..

}

E.2.3 SetOf

SetOf represents an array of value of the same component type.

For example:

SetOf ComponentType

E.3 Useful types
E.3.1 ObjectIdentifier
ObjectIdentifier ::= SetOf Integer

E.3.2 Time

Time is a string represents a time in certain format. The format is identical as that defined in ASN.1 GeneralizedTime.

Time ::= String

References
[1] Joint 3GPP-ITU-T Methodology Alignment Living List (MALL) v6[image: image1.png]

