- 3 -

TD 39 (WP 3/4)

	INTERNATIONAL TELECOMMUNICATION UNION
	STUDY GROUP 4

	TELECOMMUNICATION
STANDARDIZATION SECTOR

STUDY PERIOD 2005-2008
	TD 304Rev1 (PLEN/4)

	
	English only

Original: English

	Question(s):
	9/4
	Geneva, 5-14 February 2007

	TEMPORARY DOCUMENT

	Source:
	Rapporteur Q9/4

	Title:
	M.3020 status document

DRAFT RECOMMENDATION M.3020 STATUS DOCUMENT

TABLE OF CONTENTS
21.
Introduction

22.
Document history

23.
Status overview

24.
Level 1 - complete amendments

25.
Level 2 - agreed amendments

26.
Level 3 - proposed amendments

26.1
Type definitions

1. Introduction

This document is a compilation of proposed and agreed amendments to M.3100:1995 classified as

· Level 1

Complete amendment. Complete text is this document.

· Level 2

Agreed amendment. Further contributions required to complete the proposal.

· Level 3

Proposed, not agreed amendment. Further contribution is required.

2. Document history

	Version
	Comment

	1.0
	First version, Geneva, 2007-02-14

3. Status overview

	Status
	Section
	Subject Matter

	3
	6.1
	Type definitions

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

4. Level 1 - complete amendments

None.

5. Level 2 - agreed amendments

None
6. Level 3 - proposed amendments

6.1 Type definitions
When writing new document using M.3020 as template, it is needed to specify the types of parameters and attributes. But the specification for type definition is absent in M.3020, so the definition of type might be different and inconsistent for the same meaning in different documents, e.g. for an array of integer, it might be defined as list of integer, or sequence of integer, or set of integer.
It is suggested to define a protocol-neutral methodology to be added as ANNEX E in M3020 for the types definition that can be used to define attributes and parameters.

It is suggested to add a new section as “B.2.2.5.2 type definitions”, to define new constructed complex types in the new written document.
Annex E Type definitions Guideline for attributes and parameters

It is needed to specify a type for attributes and parameters definitions. This section define types that can be use in attributes and parameters definitions, including basic types, which can be used directly, and complex types, which must be defined before using to define attributes and parameters.

E.1 Basic types

Basic types are simple types that can be used directly to define attributes and parameters. Basic types can also be used to construct complex types. Basic types including the following types:
E.1.1 Integer

Integer represents an Integral number, including positive, zero, and negative values. It can be infinitive or ranged. The ranging notation using ‘[]’ and ‘()’, which ‘[’ means greater or equal , ‘]’ means less or equal , ‘(’ means greater, ‘)’ means less .

For example:

	Attribute Name
	Definition
	Legal Values

	a
	Integer
	

	b
	Integer
	[0,100]

E.1.2 Real

Real represents a real number. It can be infinitive or ranged. The ranging notation is defined in E.1.1 Integer.

For example:

	Attribute Name
	Definition
	Legal Values

	a
	Real
	

	b
	Real
	(0.15,100.43]

E.1.3 String

String represents a string of characters, the character set is not restricted.

E.1.4 Boolean
Boolean represents an enumerated value that only including true and false.

E.1.5 Enum

Enum represents enumerated values. All values that may be used by a specific attribute or parameter shall be listed in the Legal Value column. If the number of these values is more than 50, it is recommended to define them in appendix or an independent document.
The values listed can be in three different styles as following, but for a specific type definition , it can only be one style.

1) Listed names

2) Listed names with number in parenthesis.

3) Listed character strings in quotation.

The string length measuring method is implementation dependent and is out of the scope of this document.

For example:

	Attribute Name
	Definition
	Legal Values

	a
	Enum
	on

off

	b
	Enum
	“xxx”
“yyy”

	c
	Enum
	protected(1)

Unprotected(2)

E.1.6 BitString
BitString represents a string of binary bits, which only has two values : 0 and 1.
E.1.7 Null

Null represents a single value as null.

E.1.8 Any

Any represents an indetermined value that may be determined in later processing.

For example:

	Attribute Name
	Definition
	Legal Values

	a
	ANY

It will be determined after Function A.
	

E.1.9 Name

Name represents a exclusive name of an object instance in name space. It might including object containment tree hierarchy information, but it is implementation dependent and is out of the scope of this document
For example:

	Attribute Name
	Definition
	Legal Values

	affectedObject
	Name
	

E.2 Complex type definitions

Complex type are defined using basic types, by means of construction ,selection or sub-typing . Complex type can be used to represent complex data information . The leading character of new defined type name shall be upper case.

E.2.1 Struct

Struct represents a list of fields, each fields has a values type that may different from others. The types of these fields may be basic types or complex types. The symbol ‘{ }’ are used to including all these fields, commas are used to separate between fields, and ‘:’ are used to separate between field name and file type. The leading character of field name shall be lower case. The fields may be declared as OPTIONAL. Comments shall started with symbol // .

For example:

Struct {

 fieldname1: FieldType1,

 fieldname2: FieldType2 OPTIONAL, //if supported

 …..

}

E.2.2 Choice

Choice represents a selection from a list of fields, each fields has a values type that may different from others. The types of these fields may be basic types or complex types. The symbol { } are used to including all these fields, and commas are used to separate between fields. The leading character of field name shall be lower case. Comments shall started with symbol // .

For example:

Choice {

 fieldname1: FieldType1,

 fieldname2: FieldType2,

 …..

}

E.2.3 SetOf

SetOf represents an array of value of the same component type.

For example:

SetOf ComponentType

E.3 Useful types
E.3.1 ObjectIdentifier
ObjectIdentifier ::= SetOf Integer

E.3.2 Time

Time is a string represents a time in certain format. The format is identical as that defined in ASN.1 GeneralizedTime.

Time ::= String

B.2.2.5.2 type definitions
This section defines the compound types referenced in attribute and parameter definition that needs more description or be referenced more than once.

Using the following template:

	Type Name
	Description
	Type Definition

	AssignableCoSBWType
	Indicates the assignable bandwidth per CoS. Where the Name is a pointer to // ETHServiceClassProfile object.
	Struct

{

serviceClass: Name,

bandwidth: Integer //Units: bits per second
}

	CtrlProtocolProcType
	Indicates the layer 2 control protocol processing.
	Struct

{
controlProtocol : String,

destMAC :String,

processing: ENUM { discard, peer, pass, peer&pass },

fDFrEVCPtr: Name // used only when xxx is set to Pass and Peer&Pass

}

	Contact:
	Knut Johannessen

Telenor

Norway
	Tel: +47 90 10 18 10

Fax: +47 940 53 977

Email:

knut-hakon.johannessen@telenor.com

	Attention: This is not a publication made available to the public, but an internal ITU-T Document intended only for use by the Member States of ITU, by ITU-T Sector Members and Associates, and their respective staff and collaborators in their ITU related work. It shall not be made available to, and used by, any other persons or entities without the prior written consent of ITU-T.

