Contribution to the TeleManagement Forum

Project Name:
Multi-Technology Operations Systems Interface (MTOSI) 

TITLE:

Study of  an MTOSI Implementation via the JAX-WS Architecture 
and SOAP/XML Performance Evaluation  
Author: 
Steve Orobec  

Contact:
Steve Orobec (steve.orobec@bt.com)
PP15 FLOOR 5
Orion Building (B62-MH) 
Adastral Park
Martlesham Heath
Ipswich 
Suffolk   IP5 3RE
DATE:

June 9th 2006
DISTRIBUTION:
MTOP Architecture Team, MTOP Reference Implementation Team & TMF
ABSTRACT:
Implementing MTOSI Web Services for Non-Developers 
FILE NAME: 
JAX-WS-Perf - 9th June 2006 

ISSUE: 

1.0
NOTICE

This whitepaper has been prepared to assist the TeleManagement Forum. This document is offered to the TM Forum as a basis for discussion and is not a binding proposal on BT or any other company. The requirements are subject to change in form and numerical value after more study. BT specifically reserve the right to add to, amend, or withdraw statements contained herein. 

Contents
4Evaluation of MTOSI Notification Interface via JAX-WS HTTP


4Scope


4Software


5Performance


5Development Environment


5Method


10Performance over LAN


11Observation


11Critique of MTOSI XSD Structure


12Conclusion


13Appendix A Getting Started


13Manual edits to the WSDL file


14Appendix B - Building Server Side


14Set up IDE Environment


24Persistence


29Appendix C Client Side Development


34Appendix D Sequence Diagrams


35Appendix E  Fault Service Filter


36Appendix E  Fault Service Filter


37Appendix F XML & SOAP used for test





Evaluation of MTOSI Notification Interface via JAX-WS HTTP 
Scope
This document is a whitepaper investigating the new web service technology JAX-WS 2.0 which replaces the traditional JAX-RPC architecture used for HTTP transport which has some limitations.

It is an attempt to address the following un-substantiated claims

· XML/SOAP is too slow to process
· DCN routers will have insufficient bandwidth to cope with the XML volumes

· MTOSI is too complex and too hard to understand

In writing this document I am not promoting, selling or endorsing any web-service product or toolkit. It is a purely technical study following on from an internal SP discussion which has been donated to the TMF.

In addition it is an attempt to provide implementation detail to architects, designers and consultants who may be familiar with architectural discussions but without actually development experience of web services and what they entail. There are books on Java architecture and also Java programming but they tend to be written for their respective disciplines – I haven’t found anything which bridges the gap and covers real industrial problems as opposed to simple examples. I find that many architects & designers only have a fuzzy concept of web service implementation (and I classified myself in this position) so I hope to show that at a basic level there is no spooky magic here! The best way to understand is to give it a try.
I decided that the software used should be open source and freely available and that it should be as standards compliant as possible. For this reason I chose the Sun Java Reference Implementation and the Sun Application Server v9.0 Reference Implementation (Glassfish) along with Netbeans IDE which offers support for these tools out of the box.

Software

The following software is open source and free to download and develop.
At the time of writing most of this software is beta or pre-beta however I have not had any major issues. 
Download Glassfish (including Apache Derby Database) from

https://glassfish.dev.java.net/public/downloadsindex.html
Choose the v2 Main branch or Nightly build 
Download Netbeans from http://www.netbeans.org/ 

(Try to install in a path without spaces if possible if you intend to use the Profiler)

Select the 5.5 beta or higher including the nightly builds (it is quite stable just that later builds have newer features and wizards added. It is expected to be released around August/September. Most of the work I did was with pre-beta versions and I did not have any major issues even though I only had the JSR specification for instructions.
Glassfish v1.0 is the open source ESB for JEE5 (J2EE for Java 5.0+) and is the Java reference implementation covering JAX-WS, JAX-B, JAX-P, EJB 3.0 and supporting HTTP. Other transports such as JMS, SMTP and FTP are being developed for v2 including JAX-WS over JMS.

The Netbeans IDE is also open source and its development is also tied in with Glassfish lifecycle providing the capability to develop JAX-WS and EJB services out of the box.

Performance
Development Environment

· One single CPU 2.4 GHz single-core 32 bit Pentium  Laptop with 1GB RAM and Windows XP SP-1 (no hyper-threading)
· One single CPU 2.5 GHz single core 32 bit Athlon XP Desktop with 1GB RAM and Windows XP-SP-2

· Glassfish V2 b03 nightly  (un-tuned)
· Derby Database v10 (un-tuned)

· Netbeans 5.5 Beta

· 54Mbit/s WiFi Router Lan

Method 

The client and server were first built as described in Appendix A along with the necessary database configurations.
Setting up the client to perform a pre-defined number of iterations (2000) I first tested the performance of a stateless servlet of the alarm interface. 
The client posts alarm events and the Glassfish decodes the SOAP message auto-magically to provide two java objects as parameters at the notification service method (MTOSI header and body respectively). These are manipulated in the same way as any java object can be. In this first test no data is persisted.
There is no XML visible to the server side developer – although if desired it is simple to generate.

Using default settings it was found that over 3 or 4 batches of 2000 iterations performance increases from approximately 110 transactions per second (after 2000) to a peak of 143 transactions per second (after 8000). This can be explained by the Java HotSpot compiler (a type of JIT or “Just in Time” compiler) optimising the byte code during operation.

By manipulation of the Glassfish configurations this average can vary to as little as 100 transactions per second to as much as 200 transactions per second.

[image: image1.png]
The above result can thus be said to give a benchmark of 143 transactions per second (or average response time of 7ms)  for the SOAP XML manipulation on the server even if it is handled in a way transparently to the user.

The next step was to add persistence of the data (approx 3.75KB per message for a good size alarm including SOAP Header). This was achieved using the EJB 3.0 persistence API whereby an ordinary POJO e.g. a Servlet can exhibit some of the persistence features of an EJB Entity Bean via use of annotations.  In the code below the persistence aspects are highlighted in red and the JAX-WS aspects in blue – which gives any POJO the ability to become a Servlet.




Note that EJB 3.0 annotations have to be added to all required classes in the persisted alarm hierarchy e.g. AlarmT, ProbableCauseT and all such classes must implement java.io.Serializable  (Serialization is all or nothing!). 
Using the same test methodology as before but saving the alarm to the embedded database results in a minimum figure of 25 transactions per second (after 2000 iterations) rising to about 36 transactions per second after approximately 8000 iterations. 
It can be seen that that the cost of writing to the database is approximately 21ms per transaction which is three times the cost of decoding the actual SOAP/XML message.
As before the server and database just use default settings.

[image: image2.png]
Performance over LAN

The next batch of testing was achieved using a second PC and a home Wi-Fi  LAN (54Mb/s). It was necessary to remove the firewall from the client PC as it dropped over 75% of the http traffic.

The previously deployed Servlet was transferred to a second instance of Glassfish on the server and the database configured as before. The client code was recompiled to send to the remote server IP address rather than the localhost.

It had been claimed that XML verbosity may overload network DCN routers so this was an opportunity to test the claim.
It was observed that performance actually increased by deploying the App Server on a second machine. 
· Over a run of 11000 tests performance rose from similar levels previously to 52.6 transactions per second. 
· Load on the server stayed between 2 and 4% 

· Utilisation of the LAN averaged 0.08% with an alarm volume 25% greater than the mean daily alarm volume for a typical SDH network. 
In terms of flooding from individual network elements, it was considered obscene that in a previous network issue several years ago, a network element generating flapping alarms had raised 100K alarms in 24 hours i.e. 1 alarm per second. Typically the management link would have been 150Kb/s CBR into the DCN router, this would have hardly registered in terms of network utilisation.
[image: image3.png]

[image: image4.png]
Observation

Being an architect rather than a developer by trade, I found developing MTOSI interfaces was not unduly difficult and I was able to teach myself  web services, JEE5 and MTOSI implementation techniques and then implement two MTOSI v1 interfaces in one man month

Developing such a test on a regular work laptop is not an optimal design platform. In addition to the development environment my laptop was running additional company specified software such as virus scanning, firewall etc. Also Windows scheduling priorities were difficult to predict.
Critique of MTOSI XSD Structure

Based on initial tests with the Netbeans profiler the server side costs are mainly a function of the core java class implementation, not that they are bad, to the contrary they are good. However the MTOSI methods hardly register, those aspects that do are the handling of embedded classes and lists so a fractional improvement may be obtained by minimising their use.

Load was significantly higher on the client side (i.e. EMS) during instantiation but did never rise above 40% CPU load. The use of embedded lists caused some complication in persisting entities to the database, I minimised this by using a single table and marking the lists transient but other implementations may wish to use multiple tables and joins
Conclusion

The above testing was undertaken with non-optimal development environment and represents a worse case scenario. A target bench mark can be defined from a typical Service Provider SDH/WDM network which may generate 3.5 million alarms over a 24 hour period from the whole network. This is a mean of 40.5 alarms per second. 
The aim of this test was not to identify the ‘fastest’ technology but rather to verify that web services could support a reasonable real-life performance requirement. There are other factors that need to be considered such as ease of development, extensibility, agility of deployment and ability to create rich message exchange patterns which weighs in favour of web services.  (Received suggestions in review for alternative mechanisms included RMI, TCP sockets)
The tests done with and without persistence demonstrate that the SOAP/XML decoding weighs in at approximately 25% of the total transaction including persistence, but what is important is not the percentage but the actual time i.e. (transactions per second). There is still much scope in the test method to improve this further even though I exceeded my initial targets.
Suggestions for a more rigorous test would include using java profiler results (included in Netbeans) and using a separate UNIX multiprocessor workstation to host the server and database along with multiple clients. 
Initial tests were difficult on my machine due to the limited memory available but did not show any hot spots in the MTOSI code server side.
I would assert that further performance increases could be gained from the following 

· Use of a faster database – anecdotal evidence suggest a factor of 2

· Use of sc-si disks rather that PC-ATI disks – perhaps a  factor 2

· Use of multiple dual-core 64 bit cpu’s 

· Tuning JVM and database cache size 

Initial findings indicate that SOAP/XML in MTOSI can meet the OSS performance requirements of Service Providers provide that it is implemented correctly and the correct application architecture is used

Appendix A Getting Started

I initially oriented myself with web service development using command line tools e.g. wsimport, xjc and ant plus the common industry tools for xml/xsd manipulation. This was a useful activity to understand the ‘under the hood’ processes that are hidden when using an IDE

· wsimport is a tool for converting wsdl files to java classes, java interface classes for the server side implementation plus a service stub for the client side

· xjc is a similar tool that builds all the binding classes used in the API and is similar to wsimport but does not generate the server interfaces or service stub. In practise I found I didn’t need it but it can be useful in some circumstances. This tool builds from xsd’s rather than wsdl. 

Early editions of Netbeans did not yet support these tools and used the JAX-RPC tool wscompile (which is synonymous with the Axis tool wsdl2java) and so some manual manipulation of the build file was required to use wsimport. This is no longer the case and wsimport now has direct IDE support.

When I was using the command line I discovered that there are switches for WS-I compliance which I used (this specification essentially ties up most of the loose ends in the original  W3C specification). This is actually an important feature since this will be one of the SPLC requirements for the NGOSS TAM possibly along with OASIS WSDM.

I had initial problems with some of the MTOSI xsd’s in that some of them contained multiple references to certain xsd’s which is regarded as an error. Additionally problems maintaining the paths for all of the imports/includes statements in xsd and wsdl files. This was simple to fix, using a free SOA tool from the internet (sadly no longer free). I was able to import all xsd’s and wsdl files into a single wsdl file which was much more portable (this can still be achieved with other tools if you are patient)

Manual edits to the WSDL file

You will need to make a couple of small edits to the downloaded wsdl file

Change the binding style to http for Notification Consumer

<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
I’m not using Notification Broker for point to point HTTP so I disable it by leaving it as jms. Wsimport doesn’t understand jms as yet so it just ignores this port – there are no standard jms bindings as yet although there are proprietary ones (There is an EJB binding defined though and it is possible to implement JMS via EJB)

<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/jms"/>
Put the host machine and desired port number in the soap address 
<soap:address location="http://localhost:8080/mtosi/v1/NotificationConsumer"/>
Port 8080 is a commonly used port for HTTP but not mandatory - you may need to build any alternatives yourself  on the App Server. 
Appendix B - Building Server Side

Set up IDE Environment

First step is to create a new library for all the JAX-WS jars. In Netbeans select Tools, Library Manager

[image: image5.png]
Create a new Library called Glassfish and include all jar files in the Glassfish Application Server lib directory in the classpath and save. Do not be tempted to use the JWSDP or included JAX-WS 2.0 libraries since they are not suitable for J2EE development and are for simple demos only – using them will also cause conflicts.

[image: image6.png]
In the Netbeans runtime window right click on server and use the wizard to add a new server if Glassfish isn’t displayed. Glassfish is categorised as the Sun Java System Application Server, just follow the wizard instructions. Aside: Apache Tomcat is not a J2EE application server but a Web Server – it lacks the EJB support required to be classed as a J2EE server and does not scale to enterprise deployments whereas all J2EE Application Servers are also Web Servers by default, i.e. they have containers that run both ‘Servlets’ and ‘EJB’s)

[image: image7.png]
[image: image8.png]
To start building a JAX-WS project, create a new project from the file menu. Create new project in Netbeans 5.5 with JDK 1.5 & set J2EE version = Java EE 5. This is important otherwise you will get JAX-RPC rather than JAX-WS 2.0 (domain 1 = instance 1 of Glassfish – you can define multiple instances but only 1 instance is required for this demo)

Add Glassfish library to project, you don’t need the listed JAX-WS/JAX-B libraries since they are “correctly” integrated in the Glassfish library. Uncheck package – if you don’t, all the J2EE java jars will be put in your WAR file (web service deployment file) and bloat it. If you plan to run on Glassfish you won’t need them.

[image: image9.png]
[image: image10.png]
[image: image11.png]
Note Context Path is the string found in your wsdl file addresslocation i.e.

<soap:addresslocation="http://localhost:8080/mtosi/v1/NotificationConsumer"/>

Then press Finish when complete

Now Select File – New File – Web Service – Web Service from WSDL

Select a package name (unique directory structure) under which the files will be generated i.e. com.bt.server and the location of the now combined wsdl file 

[image: image12.png]
[image: image13.png]

 The following java server stub is generated in com.bt.server – In addition approximately 100 java & java class files are generated in package ws.v1.tmf854 – i.e. the reverse of the xsd namespace

Also shown is EventInformationT which is one of the many generated files, these are fully formed and do not need modifying (except for annotation later when discussing persistence). This class actually represents the SuperClass with NotificationID being the unique identifier – see later critique 




Next step is to take the generated java stub and put a business method  in it – This piece of code will become a Servlet when compiled and deployed on the J2EE Application Server. First take a look at the following file “NotificationConsumerInterface.java” which can be found in directory “build.generated.webservice.wsimport.service.ws.v1.tmf854” – the actual location in not important.
The file is a java “interface” a useful tool in OO Polymorphism  - the compiler has obligingly provided a stub for a concrete implementation which is AlarmService.java. The interface below can be considered a contract by which server and client communicate using agreed verbs and nouns. Any concrete classes implementing this interface can communicate together. 


Back in the AlarmService class add the items highlighted in red to this class. Note that portName, targetNamepace and serviceName match the definitions in the wsdl file – they are now auto-generated by wsimport. The @ annotations are new in Java 5.0 – in this scenario they are used as in line deployment descriptors. In JAX-WS you no longer have to write explicit deployment descriptor files for your application server. (you use them by adding the appropriate import statement which is analogous to C’s include statement but not quite the same)

In the IDE do Run – Run Main Project F6

This will compile and deploy the service. Right click on Runtime – servers – Sun and choose “view admin console”. This will open the App server’s management GUI in your web browser. Log in (the default userid/password is admin/adminadmin. Click on Web Services - AlarmService

[image: image14.png]
If deployed correctly a test page opens if you press Test

[image: image15.png]
If you click on WSDL you will see the WSDL file as deployed with the details of the machine replacing localhost


Go to Monitor - Configuration and turn on monitoring to High – This will display throughput statistics

The web service is now built on the server side but it does not yet do anything other than decode the soap message, get the alarm and discard it. If you send an alarm now you would achieve in the order of 100 – 200 transactions per second. To make things more realistic we add persistence to the service i.e. writes each alarm to a database.

Persistence

I chose to use the new EJB 3.0 persistence mechanism for simplicity. New to this is the lightweight Java Persistence API. This allows any plain old java object (POJO) to be persisted in a similar fashion to an EJB Entity bean simply by adding java EJB 3.0 annotations to desired class files (i.e. @Entity is the simplest form), there are no deployment descriptors required – this is now part of the standard java implementation having recently being recently declared final (http://jcp.org/en/jsr/detail?id=220)

Down load the specification from here describing the use of various annotations 

https://sdlc4a.sun.com/ECom/EComActionServlet;jsessionid=0E9A520083FE81FB006891119FDB6C8D
[image: image16.png]
Create a new Database in Netbeans 

Tools – Java DB Database – Create Java DB Database

[image: image17.png]
Right click – connect will reveal an empty database with an icon for Tables, Views , Procedures

Go back to the Glassfish GUI – go to Resources – JDBC – Connection Pools

Create a new connection pool with DataSource = org.apache.derby.jdbc.ClientConnectionPoolDataSource and the following properties

(note the statement  ;create=true   the ; is not a typo!) and save

[image: image18.png]
Create a new JNDI name jdbc/Alarm and set it to point at the connection pool (AlarmDB)

[image: image19.png]
The database and Application Server are now configured. 

In Netbeans type File – Persistence – Persistence Unit (notice the session façade template!)

Persistence Unit is an XML file describing the EJB 3.0 persistence mechanism and database

JNDI name (jdbc/Alarm in this case) – use the template or the XML view to edit

Give the persistence unit a name e.g. AlarmService and set jta-data-source to the JNDI name


Add the code in red and magenta to the existing AlarmService Servlet code – the magenta code is the code that actually writes the alarm to the database.  The IDE will warn about the need for all the try-catch statements and generate them after a  prompt

Note: In the following code 

· unitName is AlarmService

· PersistenceContext name is the JNDI name (jdbc/Alarm) as is the value of the cryptically named env.Ctx.lookup (this is just boilerplate code)

The only thing remaining is to annotate the embedded classes in AlarmT with EJB 3.0 annotations (there are only a dozen or so - see the source code for examples) and ensure that all the classes in the AlarmT hierarchy implement java.io.Serializable e.g. 

public class AlarmT  implements java.io.Serializable

Next Run (F6) this will recompile and deploy the finished server side implementation

On deployment, depending on how the EJB 3.0 annotations were applied, the database table or tables will be automatically created and a unique sequence number (database primary key) will be given to each new row written to the database

The server side is finished – notice there is actually very little code to write and having done one server implementation it is straightforward to extrapolate the technique to other MTOSI web services.
Note: Conventional J2EE pattern wisdom suggests that the following code should be put inside a “caching service locator “ object. (uses GoF singleton pattern)

        try {

            initCtx = new InitialContext();

            envCtx = (Context) initCtx.lookup("java:comp/env");

            em = (EntityManager)envCtx.lookup("jdbc/Alarm");

        } catch (NamingException ex) {

            System.out.println("NamingException");

            ex.printStackTrace();

        }
This is not necessary since I confirmed with the Glassfish developers it is not a real JNDI lookup, I implemented the caching service locator pattern to confirm this, it made no noticeable improvement at this level so I removed it again.



Appendix C Client Side Development
Client side development is straightforward if only a little more hands on in terms of java coding.

The classes required for the API all created by wsimport however the developer needs to create the classes to generate the SOAP encoding and to instantiate the AlarmT, EventT and NotifyT objects along with the embedded classes and list. Since this is achieved using provided getter and setter methods it is easy enough to accomplish. 

[image: image20.png]
This time the generated files can be located in directory build.generated.wsimport.client.com.bt.client

The file of interest here is NotificationService.java (this takes its name from the name of the service defined in the WSDL)

This file is the equivalent of the stub class in JAX-RPC and is only used client side.

The rest of the effort here is to use the generated files along side the stub and to build a user friendly front end to the client (this could be a rich client GUI built with the java swing library)

Design of the client architecture requires some thought (see source code for example) however I will not focus on that here rather just describe the method of SOAP encoding and calling the web service built earlier.

The AlarmT object is a subclass of EventT so once we populate the AlarmT object we pass it as a parameter to the EventT object setter. This EventT object is then passed as a parameter to a NotifyT object  which is then returned to the calling method when complete. Care needs to taken to ensure that all fields defined non-nullable in the XSD are given non-null values, in addition some classes require additional JAX-B annotation i.e. @XmlRootElement(name="Alarm",namespace="tmf854.v1")
but these occurrences can be identified by the looking at the JAX-B output from marshalling – the annotation is again boiler print.


The next step is to take the instantiated NotifyT object containing the Alarm and wrap it in the SOAP Envelope along with the MTOSI Header. There are four stages here, instantiation of an MTOSIHeaderT object with all non-nullable fields complete, creation of a SOAP Envelope, marshalling the java object NotifyT into the SOAP body and marshalling the MTOSIHeaderT object into the SOAP Header. Again MTOSIHeaderT requires annotating with @XmlRootElement

The final stage is to take the SOAP message and send it to the server, this can be done in several ways but I chose to use the dispatch service from JAX-WS. JAX-WS allows any POJO class to become web service enabled by using the appropriate annotation . The items in red represent the actual call set up – the items in orange are the data attributes required and these are obtained from the WSDL file. This is the client side development, next stage is to compile and run!


The GUI Client 

[image: image21.png]
Performance tests can be selected by setting the slider to an appropriate number of iterations (see above). Progress counter runs in its own thread and updates the user on progress. There is a call for garbage collection on the client side after every 750th loop of the test cycle. This will slow down the test but is necessary because the loop is too tight to allow normal garbage collection and without it the client runs out of memory on the heap. The alarm is generated once using hard coded values and fired off multiple times (single threaded since I only have a single CPU), this is OK since I’m not currently testing client side alarm generation but rather the ability of the server to process them.

Alternatively a single alarm can be posted to the server, this will generate a display of the XML and SOAP message on the GUI window (The next development of the tool will include the addition of a pop-up menu allowing the user to generate a bespoke alarm). All other notifications can be posted and displayed from the Notifications menu, they are not persisted nor would I expect them to be since they are business actions affecting state models etc.

A further feature is the ability to perform facet tests or validation, this can be done from the validation menu, select Layer Rate or Probable Cause and a windows pop-up file menu allows the user to select a csv file containing layer rates or probable causes – (these could be supplied by a vendor as an example of the layer rates they support). The method of validation is to use JAX-P 1.3 and the result of each string test is displayed on the GUI. It was found that JAX-P supports all the MTOSI facets used in MTOSI v1 

N.B JAX-WS decouples validation from data binding. JAX-B does no validation and as a consequence you need to use JAX-P or alternative to validate.

JAX-B = binding

JAX-P = processing

[image: image22.png]
The final feature is the Fault interface i.e. GetActiveAlarmsCount and GetActiveAlarms, by selecting either radio button and picking from the drop down menus a filter (list of searchable items) can be built and posted to the server. Currently dummy data is returned but I intend to tie in the search to the data posted to the database by the alarm tests – this will take about a one man week to develop and test

The following is the scenario that is modelled i.e. EMS communicating with J2EE style Fault OS (using web, business and persistence tiers that may be on several hardware platforms).

Appendix D Sequence Diagrams

The following are examples of 
· how notification and fault services may be implemented

· how they have been modelled for this demo (I incorporated the business logic EJB functionality into the Servlets themselves)
[image: image23.png]
[image: image24.png]

Appendix E  Fault Service Filter 


Appendix F XML & SOAP used for test




[image: image25]


<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<ActiveAlarmFilter xmlns="tmf854.v1">

    <perceivedSeverityList>

        <perceivedSeverity>PS_CRITICAL</perceivedSeverity>

        <perceivedSeverity>PS_MAJOR</perceivedSeverity>

        <perceivedSeverity>PS_MINOR</perceivedSeverity>

        <perceivedSeverity>EVENT_UNACKNOWLEDGED</perceivedSeverity>

    </perceivedSeverityList>

    <probableCauseList>

        <probableCause>

            <type>AIS</type>

        </probableCause>

        <probableCause>

            <type>DEMODULATION_FAIL</type>

        </probableCause>

        <probableCause>

            <type>EMS_ALM_AND_LIFECYCLE_LOSS</type>

        </probableCause>

        <probableCause>

            <type>INSUFF_LINKS_FE</type>

        </probableCause>

        <probableCause>

            <type>OS_ALM_AND_LIFECYCLE_LOSS</type>

        </probableCause>

    </probableCauseList>

</ActiveAlarmFilter>





<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<Notify xmlns="tmf854.v1">

    <topic>HTTP</topic>

    <message>

        <Alarm>

            <eventInfo>

                <notificationId>1786917863</notificationId>

                <objectName>

                    <mdNm>CuMSAN</mdNm>

                    <meNm>Felixstowe/01</meNm>

                    <eqNm>Some equipment</eqNm>

                    <ptpNm>some ptp</ptpNm>

                    <ctpNm>some ctp</ctpNm>

                </objectName>

                <objectType>OT_CONNECTION_TERMINATION_POINT</objectType>

                <osTime>20060517230336.36+0100</osTime>

                <neTime>20060517230336.36+0100</neTime>

                <edgePointRelated>false</edgePointRelated>

            </eventInfo>

            <isClearable>true</isClearable>

            <aliasNameList>

                <alias>

                    <aliasName>nativeName</aliasName>

                    <aliasValue>nativeValue</aliasValue>

                </alias>

            </aliasNameList>

            <layerRate>LR_Line_OC768_STS768_and_MS_STM256</layerRate>

            <probableCause>

                <type>AIS</type>

            </probableCause>

            <nativeProbableCause>nativeProbableCause</nativeProbableCause>

            <additionalText>Additional Text</additionalText>

            <perceivedSeverity>PS_CRITICAL</perceivedSeverity>

            <affectedTPList>

                <name>

                    <mdNm>CuMSAN</mdNm>

                    <meNm>Felixstowe</meNm>

                    <eqNm>Equipment</eqNm>

                    <ptpNm>ptp</ptpNm>

                    <ctpNm>ctp 1</ctpNm>

                </name>

            </affectedTPList>

            <serviceAffecting>SA_NON_SERVICE_AFFECTING</serviceAffecting>

            <rcaiIndicator>true</rcaiIndicator>

            <acknowledgeIndication>AI_EVENT_ACKNOWLEDGED</acknowledgeIndication>

            <X733_EventType>X733_eventType</X733_EventType>

            <X733_SpecificProblems>

                <specificProblem>Specific problem 1</specificProblem>

                <specificProblem>Specific problem 2</specificProblem>

                <specificProblem>Specific problem 3</specificProblem>

            </X733_SpecificProblems>

            <X733_BackedUpStatus>X733_BackedUpStatus</X733_BackedUpStatus>

            <X733_BackUpObject>

                <mdNm>CuMSAN</mdNm>

                <meNm>Felixstowe</meNm>

                <eqNm>Equipment</eqNm>

                <ptpNm>ptp</ptpNm>

                <ctpNm>ctp 1</ctpNm>

            </X733_BackUpObject>

            <X733_TrendIndication>X733_TrendIndication</X733_TrendIndication>

            <X733_CorrelatedNotifications>

                <correlatedNotifications>

                    <name>

                        <mdNm>CuMSAN</mdNm>

                        <meNm>Felixstowe</meNm>

                        <eqNm>Equipment</eqNm>

                        <ptpNm>ptp</ptpNm>

                        <ctpNm>ctp 1</ctpNm>

                    </name>

                    <notifIDs>

                        <notificationId>Notification ID 1</notificationId>

                    </notifIDs>

                </correlatedNotifications>

            <X73

    </mes

</Notify>





           </X733_CorrelatedNotifications>

            <X733_MonitoredAttributes>

                <SpecificProblemList>

                    <specificProblem>Specific problem 1</specificProblem>

                    <specificProblem>Specific problem 2</specificProblem>

                    <specificProblem>Specific problem 3</specificProblem>

                </SpecificProblemList>

            </X733_MonitoredAttributes>

            <X733_ProposedRepairActions>

                <proposedRepairAction>Replace card</proposedRepairAction>

            </X733_ProposedRepairActions>

        </Alarm>

    </message>

</Notify>



<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

<SOAP-ENV:Header>

<ns2:header xmlns:ns2="tmf854.v1" extAuthor="Steve" extVersion="1.0" tmf854Version="1.0">

<ns2:domain>CuMSAN</ns2:domain>

<ns2:activityName>notification</ns2:activityName>

<ns2:msgName>Alarm</ns2:msgName>

<ns2:msgType>NOTIFICATION</ns2:msgType>

<ns2:payloadVersion>1.0</ns2:payloadVersion>

<ns2:senderURI>http://senderEndpoint</ns2:senderURI>

<ns2:destinationURI>http://replytoEndpoint</ns2:destinationURI>

<ns2:correlationId>0001</ns2:correlationId>

<ns2:communicationPattern>Notification</ns2:communicationPattern>

<ns2:communicationStyle>MSG</ns2:communicationStyle>

<ns2:timestamp>20060517230336.36+0100</ns2:timestamp>

</ns2:header>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

<ns2:Notify xmlns:ns2="tmf854.v1"><ns2:topic>HTTP</ns2:topic><ns2:message><ns2:Alarm><ns2:eventInfo><ns2:notificationId>1786917863</ns2:notificationId><ns2:objectName><ns2:mdNm>CuMSAN</ns2:mdNm><ns2:meNm>Felixstowe/01</ns2:meNm><ns2:eqNm>Some equipment</ns2:eqNm><ns2:ptpNm>some ptp</ns2:ptpNm><ns2:ctpNm>some ctp</ns2:ctpNm></ns2:objectName><ns2:objectType>OT_CONNECTION_TERMINATION_POINT</ns2:objectType><ns2:osTime>20060517230336.36+0100</ns2:osTime><ns2:neTime>20060517230336.36+0100</ns2:neTime><ns2:edgePointRelated>false</ns2:edgePointRelated></ns2:eventInfo><ns2:isClearable>true</ns2:isClearable><ns2:aliasNameList><ns2:alias><ns2:aliasName>nativeName</ns2:aliasName><ns2:aliasValue>nativeValue</ns2:aliasValue></ns2:alias></ns2:aliasNameList><ns2:layerRate>LR_Line_OC768_STS768_and_MS_STM256</ns2:layerRate><ns2:probableCause><ns2:type>AIS</ns2:type></ns2:probableCause><ns2:nativeProbableCause>nativeProbableCause</ns2:nativeProbableCause><ns2:additionalText>Additional Text</ns2:additionalText><ns2:perceivedSeverity>PS_CRITICAL</ns2:perceivedSeverity><ns2:affectedTPList><ns2:name><ns2:mdNm>CuMSAN</ns2:mdNm><ns2:meNm>Felixstowe</ns2:meNm><ns2:eqNm>Equipment</ns2:eqNm><ns2:ptpNm>ptp</ns2:ptpNm><ns2:ctpNm>ctp 1</ns2:ctpNm></ns2:name></ns2:affectedTPList><ns2:serviceAffecting>SA_NON_SERVICE_AFFECTING</ns2:serviceAffecting><ns2:rcaiIndicator>true</ns2:rcaiIndicator><ns2:acknowledgeIndication>AI_EVENT_ACKNOWLEDGED</ns2:acknowledgeIndication><ns2:X733_EventType>X733_eventType</ns2:X733_EventType><ns2:X733_SpecificProblems><ns2:specificProblem>Specific problem 1</ns2:specificProblem><ns2:specificProblem>Specific problem 2</ns2:specificProblem><ns2:specificProblem>Specific problem 3</ns2:specificProblem></ns2:X733_SpecificProblems><ns2:X733_BackedUpStatus>X733_BackedUpStatus</ns2:X733_BackedUpStatus><ns2:X733_BackUpObject><ns2:mdNm>CuMSAN</ns2:mdNm><ns2:meNm>Felixstowe</ns2:meNm><ns2:eqNm>Equipment</ns2:eqNm><ns2:ptpNm>ptp</ns2:ptpNm><ns2:ctpNm>ctp 1</ns2:ctpNm></ns2:X733_BackUpObject><ns2:X733_TrendIndication>X733_TrendIndication</ns2:X733_TrendIndication><ns2:X733_CorrelatedNotifications><ns2:correlatedNotifications><ns2:name><ns2:mdNm>CuMSAN</ns2:mdNm><ns2:meNm>Felixstowe</ns2:meNm><ns2:eqNm>Equipment</ns2:eqNm><ns2:ptpNm>ptp</ns2:ptpNm><ns2:ctpNm>ctp 1</ns2:ctpNm></ns2:name><ns2:notifIDs><ns2:notificationId>Notification ID 1</ns2:notificationId></ns2:notifIDs></ns2:correlatedNotifications></ns2:X733_CorrelatedNotifications><ns2:X733_MonitoredAttributes><ns2:SpecificProblemList><ns2:specificProblem>Specific problem 1</ns2:specificProblem><ns2:specificProblem>Specific problem 2</ns2:specificProblem><ns2:specificProblem>Specific problem 3</ns2:specificProblem></ns2:SpecificProblemList></ns2:X733_MonitoredAttributes><ns2:X733_ProposedRepairActions><ns2:proposedRepairAction>Replace card</ns2:proposedRepairAction></ns2:X733_ProposedRepairActions></ns2:Alarm></ns2:message></ns2:Notify>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>





/*

 * NotificationConsumer.java

 *

 * Created on 27 March 2006, 23:15

 *

 * To change this template, choose Tools | Template Manager

 * and open the template in the editor.

 *

 @WebServiceProvider(

            serviceName="NotificationService",

            portName =  "NotificationConsumerInterface",

            targetNamespace = "tmf854.v1.ws",

            wsdlLocation = "http://localhost:8080/mtosi/v1/NotificationService?wsdl")

@BindingType(value="http://schemas.xmlsoap.org/wsdl/soap/http")

@ServiceMode(value=javax.xml.ws.Service.Mode.PAYLOAD)

@SOAPBinding(parameterStyle = ParameterStyle.BARE)

 *

 

 *

 */



package com.bt.server;





import javax.jws.Oneway;

import javax.jws.WebMethod;

import javax.jws.WebService;

import javax.naming.InitialContext;

import javax.naming.NamingException;

import javax.persistence.EntityManager;

import javax.transaction.HeuristicMixedException;

import javax.transaction.HeuristicRollbackException;

import javax.transaction.NotSupportedException;

import javax.transaction.SystemException;

import javax.xml.bind.JAXBContext;

import javax.xml.bind.Unmarshaller;

import javax.xml.bind.util.JAXBSource;

import javax.xml.soap.MessageFactory;

import javax.xml.soap.SOAPMessage;

import javax.xml.transform.Source;

import javax.xml.transform.stream.StreamSource;

import javax.xml.ws.BindingType;

import javax.xml.ws.Provider;

import javax.xml.ws.Service;

import javax.xml.ws.ServiceMode;

import javax.xml.ws.WebServiceProvider;

import javax.xml.ws.soap.SOAPBinding;

import javax.jws.soap.SOAPBinding.ParameterStyle;

import javax.persistence.PersistenceContext;

import javax.annotation.Resource;

import javax.persistence.*;

import javax.transaction.UserTransaction;

import javax.naming.*;

import java.util.*;

/**

 *

 * @author 802998277

 */

@WebService(

name="NotificationConsumerInterface",

endpointInterface="com.bt.server.NotificationConsumerInterface" ,

wsdlLocation="WEB-INF/wsdl/NotificationService.wsdl",

targetNamespace = "tmf854.v1.ws",

serviceName="NotificationService",

portName="NotificationConsumerInterface")

        

@ServiceMode(value=Service.Mode.PAYLOAD)

@PersistenceContext(name="jdbc/MTOSI",unitName="NotificationInterface")

public class NotificationConsumer implements NotificationConsumerInterface {

    @Resource private UserTransaction utx;

    private EntityManager em;

    private Context initCtx;

    private Context envCtx;



@WebMethod(operationName = "Notify", action = "http://localhost:8085/mtosi/v1/NotificationConsumer")

    @Oneway

    public void notify(MTOSIHeaderT mtosiHeader,  NotifyT mtosiBody) {

        EventT event;

        AlarmT alarm;



	//AlarmWrap is just an invented class to simplify persistence since it can be given an automatic sequence number

	//The alternative is to use EventInformationT’s attribute NotificationID but this is complex since it requires a composite

	//primary key to be created along with a table join



        AlarmWrap alarmw = new AlarmWrap();

        

        

        event = mtosiBody.getMessage();

        alarm = event.getAlarm();

        alarmw.setAlarm(alarm);

        try {

            initCtx = new InitialContext();

            envCtx = (Context) initCtx.lookup("java:comp/env");

            em = (EntityManager)envCtx.lookup("jdbc/MTOSI");

        } catch (NamingException ex) {

            System.out.println("NamingException");

            ex.printStackTrace();

        }

        

        try {

            utx.begin();

            em.persist(alarmw);

            

            try {

                utx.commit();

            } catch (IllegalStateException ex) {

                System.out.println("IllegalStateException");

                ex.printStackTrace();

            } catch (SecurityException ex) {

                System.out.println("SecurityException");

                ex.printStackTrace();

            } catch (SystemException ex) {

                System.out.println("SystemException");

                ex.printStackTrace();

            } catch (javax.transaction.RollbackException ex) {

                System.out.println("javax.transaction.RollbackException");

                ex.printStackTrace();

            } catch (HeuristicRollbackException ex) {

                System.out.println("HeuristicRollbackException");

                ex.printStackTrace();

            } catch (HeuristicMixedException ex) {

                System.out.println("HeuristicMixedException");

                ex.printStackTrace();

            }

        } catch (SystemException ex) {

            System.out.println("SystemException");

            ex.printStackTrace();

        } catch (NotSupportedException ex) {

            System.out.println("NotSupportedException");

            ex.printStackTrace();

        }

    }

    

}























package com.bt.server;



import javax.jws.WebService;



@WebService(serviceName = "NotificationService", portName = "NotificationConsumerInterface", endpointInterface = "ws.v1.tmf854.NotificationConsumerInterface", targetNamespace = "tmf854.v1.ws", wsdlLocation = "WEB-INF/wsdl/AlarmService_1/NotificationService.wsdl")

public class AlarmService implements ws.v1.tmf854.NotificationConsumerInterface {



    public void notify(ws.v1.tmf854.MTOSIHeaderT mtosiHeader, ws.v1.tmf854.NotifyT mtosiBody) {

        throw new UnsupportedOperationException("Not yet implemented");

    }

}



.

 package ws.v1.tmf854;



import javax.xml.bind.annotation.XmlAccessType;

import javax.xml.bind.annotation.XmlAccessorType;

import javax.xml.bind.annotation.XmlElement;

import javax.xml.bind.annotation.XmlType;





/**

 *  The structure of the  .       

 * 

 * <p>Java class for EventInformation_T complex type.

 * 

 * <p>The following schema fragment specifies the expected content contained within this class.

 * 

 * <pre>

 * &lt;complexType name="EventInformation_T">

 *   &lt;complexContent>

 *     &lt;restriction base="{http://www.w3.org/2001/XMLSchema}anyType">

 *       &lt;all>

 *         &lt;element name="notificationId" type="{http://www.w3.org/2001/XMLSchema}string"/>

 *         &lt;element name="objectName" type="{tmf854.v1}NamingAttributes_T"/>

 *         &lt;element name="objectType" type="{tmf854.v1}ObjectType_T"/>

 *         &lt;element name="osTime" type="{tmf854.v1}ITU-Time_T"/>

 *         &lt;element name="neTime" type="{tmf854.v1}ITU-Time_T"/>

 *         &lt;element name="edgePointRelated" type="{http://www.w3.org/2001/XMLSchema}boolean"/>

 *       &lt;/all>

 *     &lt;/restriction>

 *   &lt;/complexContent>

 * &lt;/complexType>

 * </pre>

 * 

 * 

 */

@XmlAccessorType(XmlAccessType.FIELD)

@XmlType(name = "EventInformation_T", propOrder = {



})

public class EventInformationT {



    @XmlElement(namespace = "tmf854.v1", required = true)

    protected String notificationId;

    @XmlElement(namespace = "tmf854.v1", required = true)

    protected NamingAttributesT objectName;

    @XmlElement(namespace = "tmf854.v1", required = true)

    protected ObjectTypeT objectType;

    @XmlElement(namespace = "tmf854.v1", required = true)

    protected String osTime;

    @XmlElement(namespace = "tmf854.v1", required = true)

    protected String neTime;

    @XmlElement(namespace = "tmf854.v1")

    protected boolean edgePointRelated;



  /**

     * Gets the value of the notificationId property.

     * 

     * @return

     *     possible object is

     *     {@link String }

     *     

     */

    public String getNotificationId() {

        return notificationId;

    }



    /**

     * Sets the value of the notificationId property.

     * 

     * @param value

     *     allowed object is

     *     {@link String }

     *     

     */

    public void setNotificationId(String value) {

        this.notificationId = value;

    }



   

    public NamingAttributesT getObjectName() {

        return objectName;

    }



    public void setObjectName(NamingAttributesT value) {

        this.objectName = value;

    }



    public ObjectTypeT getObjectType() {

        return objectType;

    }



    

    public void setObjectType(ObjectTypeT value) {

        this.objectType = value;

    }



    public String getOsTime() {

        return osTime;

    }



    public void setOsTime(String value) {

        this.osTime = value;

    }



    public String getNeTime() {

        return neTime;

    }



    public void setNeTime(String value) {

        this.neTime = value;

    }



    

    public boolean isEdgePointRelated() {

        return edgePointRelated;

    }



    

    public void setEdgePointRelated(boolean value) {

        this.edgePointRelated = value;

    }



}



package ws.v1.tmf854;



import javax.jws.Oneway;

import javax.jws.WebMethod;

import javax.jws.WebParam;

import javax.jws.WebService;

import javax.jws.soap.SOAPBinding;

import javax.jws.soap.SOAPBinding.ParameterStyle;





/**

 * The MTOSI NotificationConsumer interface (porttype)

 * 

 * This class was generated by the JAXWS SI.

 * JAX-WS RI 2.0-b11-fcs

 * Generated source version: 2.0

 * 

 */

@WebService(name = "NotificationConsumerInterface", targetNamespace = "tmf854.v1.ws")

@SOAPBinding(parameterStyle = ParameterStyle.BARE)

public interface NotificationConsumerInterface {





    /**

     * 

     * @param mtosiBody

     * @param mtosiHeader

     */

    @WebMethod(operationName = "Notify", action = "http://localhost:8080/mtosi/v1/NotificationConsumer")

    @Oneway

    public void notify(

        @WebParam(name = "MTOSI_Header", targetNamespace = "tmf854.v1", header = true, partName = "mtosiHeader")

        MTOSIHeaderT mtosiHeader,

        @WebParam(name = "Notify", targetNamespace = "tmf854.v1", partName = "mtosiBody")

        NotifyT mtosiBody);



}



package com.bt.server;

import ws.v1.tmf854.*;

import javax.jws.Oneway;

import javax.jws.WebMethod;

import javax.jws.WebService;

import javax.naming.InitialContext;

import javax.naming.NamingException;

import javax.persistence.EntityManager;

import javax.transaction.HeuristicMixedException;

import javax.transaction.HeuristicRollbackException;

import javax.transaction.NotSupportedException;

import javax.transaction.SystemException;

import javax.xml.bind.JAXBContext;

import javax.xml.bind.Unmarshaller;

import javax.xml.bind.util.JAXBSource;

import javax.xml.soap.MessageFactory;

import javax.xml.soap.SOAPMessage;

import javax.xml.transform.Source;

import javax.xml.transform.stream.StreamSource;

import javax.xml.ws.BindingType;

import javax.xml.ws.Provider;

import javax.xml.ws.Service;

import javax.xml.ws.ServiceMode;

import javax.xml.ws.WebServiceProvider;

import javax.xml.ws.soap.SOAPBinding;

import javax.jws.soap.SOAPBinding.ParameterStyle;

import javax.persistence.PersistenceContext;

import javax.annotation.Resource;

import javax.persistence.*;

import javax.transaction.UserTransaction;

import javax.naming.*;

import java.util.*;



import javax.jws.WebService;



@WebService(serviceName = "NotificationService", 

portName = "NotificationConsumerInterface", 

endpointInterface = "ws.v1.tmf854.NotificationConsumerInterface", 

targetNamespace = "tmf854.v1.ws", 

wsdlLocation = "WEB-INF/wsdl/AlarmService_1/NotificationService.wsdl")

@ServiceMode(value=Service.Mode.PAYLOAD)

public class AlarmService implements ws.v1.tmf854.NotificationConsumerInterface {



    @WebMethod(operationName = "Notify", action = "http://localhost:8080/mtosi/v1/NotificationConsumer")

    @Oneway

    public void notify(ws.v1.tmf854.MTOSIHeaderT mtosiHeader, ws.v1.tmf854.NotifyT mtosiBody) {

// the following  UnsupportedOperationException is a core java class       

//throw new UnsupportedOperationException("Not yet implemented");

        

        EventT event;

        AlarmT alarm;

        event = mtosiBody.getMessage();

        alarm = event.getAlarm();

        

    }

}



<!-- ===================== Notification Service Definition ====================== -->

    <wsdl:documentation>

    Definition of all the interfaces of the MTOSI Notification Service.

    Note that all soap:address are only to support examples in documentation.

    Refer to the TMF854 XML Solution Set and the MTOSI Notification Service SD.

    </wsdl:documentation>

       <wsdl:port name="NotificationConsumerInterface" binding="tmf854WS:NotificationConsumerSoapBinding">

      <soap:address location="http://BTG038385.rd-martlesham.apnet.bt.com:8080/mtosi/v1/NotificationService"/>

    </wsdl:port>

    <wsdl:port name="NotificationBrokerInterface" binding="tmf854WS:NotificationBrokerSoapBinding">

      <soap:address location="http://localhost:8085/mtosi/v1/NotificationBroker"/>

    </wsdl:port>

  </wsdl:service>

 </wsdl:definitions>





<?xml version="1.0" encoding="UTF-8"?>

<persistence version="1.0" xmlns="http://java.sun.com/xml/ns/persistence">

  <persistence-unit name="AlarmService" transaction-type="JTA">

    <provider>oracle.toplink.essentials.ejb.cmp3.EntityManagerFactoryProvider</provider>

    <jta-data-source>jdbc/Alarm</jta-data-source>

    <properties>

      <property name="toplink.ddl-generation" value="drop-and-create-tables"/>

    </properties>

  </persistence-unit>

</persistence>



//imports omitted to save space

import javax.jws.WebService;



@WebService(serviceName = "NotificationService", 

portName = "NotificationConsumerInterface", 

endpointInterface = "ws.v1.tmf854.NotificationConsumerInterface", 

targetNamespace = "tmf854.v1.ws", 

wsdlLocation = "WEB-INF/wsdl/AlarmService_1/NotificationService.wsdl")

@ServiceMode(value=Service.Mode.PAYLOAD)

@PersistenceContext(name="jdbc/Alarm",unitName="AlarmService")

public class AlarmService implements ws.v1.tmf854.NotificationConsumerInterface {

    @Resource private UserTransaction utx;

    private EntityManager em;

    private Context initCtx;

    private Context envCtx;

   

    

    @WebMethod(operationName = "Notify", action = "http://localhost:8080/mtosi/v1/NotificationConsumer")

    @Oneway

    public void notify(ws.v1.tmf854.MTOSIHeaderT mtosiHeader, ws.v1.tmf854.NotifyT mtosiBody) {

// the following  UnsupportedOperationException is a core java class       

//throw new UnsupportedOperationException("Not yet implemented");

        

        EventT event;

        AlarmT alarm;

        AlarmWrap alarmw = new AlarmWrap();

        

        event = mtosiBody.getMessage();

        alarm = event.getAlarm();

        alarmw.setAlarm(alarm);

        try {

            initCtx = new InitialContext();

            envCtx = (Context) initCtx.lookup("java:comp/env");

            em = (EntityManager)envCtx.lookup("jdbc/Alarm");

        } catch (NamingException ex) {

            System.out.println("NamingException");

            ex.printStackTrace();

        }

        

        try {

            utx.begin();

            em.persist(alarmw);

            

            try {

                utx.commit();

            } catch (IllegalStateException ex) {

                System.out.println("IllegalStateException");

                ex.printStackTrace();

            } catch (SecurityException ex) {

                System.out.println("SecurityException");

                ex.printStackTrace();

            } catch (SystemException ex) {

                System.out.println("SystemException");

                ex.printStackTrace();

            } catch (javax.transaction.RollbackException ex) {

                System.out.println("javax.transaction.RollbackException");

                ex.printStackTrace();

            } catch (HeuristicRollbackException ex) {

                System.out.println("HeuristicRollbackException");

                ex.printStackTrace();

            } catch (HeuristicMixedException ex) {

                System.out.println("HeuristicMixedException");

                ex.printStackTrace();

            }

        } catch (SystemException ex) {

            System.out.println("SystemException");

            ex.printStackTrace();

        } catch (NotSupportedException ex) {

            System.out.println("NotSupportedException");

            ex.printStackTrace();

        }

    }

}



           if (type == "Alarm"){

            AlarmT alarm = objfac.createAlarmT();

            EventInformationT eventInfo = objfac.createEventInformationT();

            eventInfo.setEdgePointRelated(false);

            eventInfo.setNeTime(format.format(now));

            eventInfo.setOsTime(format.format(now));

            int r = generator.nextInt();

            String notificationID = "" + r;

            eventInfo.setNotificationId(notificationID);

            ObjectTypeT ot = null;

            NamingAttributesT namingAT = objfac.createNamingAttributesT();

            namingAT.setMdNm("CuMSAN");

            namingAT.setMeNm("Felixstowe/01");

            namingAT.setEqNm("Some equipment");

            namingAT.setPtpNm("some ptp");

            namingAT.setCtpNm("some ctp");

            eventInfo.setObjectName(namingAT);

            eventInfo.setObjectType(ot.OT_CONNECTION_TERMINATION_POINT);

            NamingAttributesT X733_BackUpObject = objfac.createNamingAttributesT();

            X733_BackUpObject.setMdNm("CuMSAN");

            X733_BackUpObject.setMeNm("Felixstowe/2");

            X733_BackUpObject.setEqNm("B-Equipment");

            X733_BackUpObject.setPtpNm("B-PTP");

            X733_BackUpObject.setCtpNm("B-CTP");    

            ProbableCauseT probableCause = objfac.createProbableCauseT();

            probableCause.setType("AIS");  

            ServiceAffectingT serviceAffecting = null;

            AcknowledgeIndicationT acknowledgeIndication = null;   

            AliasNameListT anlist = objfac.createAliasNameListT();

            AliasNameListT.Alias alias = new AliasNameListT.Alias();

            alias.setAliasName("nativeName");

            alias.setAliasValue("nativeValue");

            anlist.setAlias(alias);        

            NamingAttributesListT affectedTPList = objfac.createNamingAttributesListT();

            affectedTPList.getName().add(X733_BackUpObject);

            SpecificProblemListT X733_SpecificProblems = objfac.createSpecificProblemListT();

            X733_SpecificProblems.getSpecificProblem().add("Specific problem 1");

            X733_SpecificProblems.getSpecificProblem().add("Specific problem 2");

            X733_SpecificProblems.getSpecificProblem().add("Specific problem 3");

            CorrelatedNotificationListT X733_CorrelatedNotifications = objfac.createCorrelatedNotificationListT();

            CorrelatedNotificationsT CorrelatedNotifications = objfac.createCorrelatedNotificationsT();

            CorrelatedNotifications.setName(X733_BackUpObject);    

            X733_CorrelatedNotifications.getCorrelatedNotifications().add(CorrelatedNotifications);    

            NotifIDListT notifID = objfac.createNotifIDListT();

            notifID.getNotificationId().add("Notification ID 1");

            CorrelatedNotifications.setNotifIDs(notifID);

            CorrelatedNotifications.getName().setMdNm("CuMSAN");

            CorrelatedNotifications.getName().setMeNm("Felixstowe");

            CorrelatedNotifications.getName().setEqNm("Equipment");

            CorrelatedNotifications.getName().setPtpNm("ptp");

            CorrelatedNotifications.getName().setCtpNm("ctp 1");

            AnyListT any = objfac.createAnyListT();

            any.getAny().add(X733_SpecificProblems);

            ProposedRepairActionListT propRepActL = objfac.createProposedRepairActionListT();

            propRepActL.getProposedRepairAction().add("Replace card");

            AlarmExtT vendorExtensions =  objfac.createAlarmExtT();

            vendorExtensions.getAny().add("No extensions");

            alarm.setIsClearable(true);

            alarm.setRcaiIndicator(true);

            alarm.setAdditionalText("Additional Text");

            alarm.setLayerRate("LR_Line_OC768_STS768_and_MS_STM256");

            alarm.setNativeProbableCause("nativeProbableCause");

            alarm.setPerceivedSeverity("PS_CRITICAL");

            alarm.setX733BackedUpStatus("X733_BackedUpStatus");

            alarm.setX733EventType("X733_eventType");

            alarm.setX733TrendIndication("X733_TrendIndication");

            alarm.setEventInfo(eventInfo);

            alarm.setServiceAffecting(serviceAffecting.SA_NON_SERVICE_AFFECTING);

            alarm.setProbableCause(probableCause);

            alarm.setAcknowledgeIndication(acknowledgeIndication.AI_EVENT_ACKNOWLEDGED);

            alarm.setX733BackUpObject(X733_BackUpObject);

            alarm.setX733MonitoredAttributes(any);

            alarm.setAliasNameList(anlist);

            alarm.setAffectedTPList(affectedTPList);

            alarm.setX733SpecificProblems(X733_SpecificProblems);

            alarm.setX733CorrelatedNotifications(X733_CorrelatedNotifications);

            alarm.setX733ProposedRepairActions(propRepActL);

            //alarm.setVendorExtensions(vendorExtensions);

            event.setAlarm(alarm);

          }

         notify.setMessage(event);

         notify.setTopic("HTTP");

         return notify;

    

        }

            event. 

    

    

}

}





    public BuildSOAPMessage() {

    }

    

    //added msgname to use the mtosi header, now uses generic Object to support notifyT and getActiveAlarms

     public  SOAPMessage makeSOAPMessage(Object object,String msgname)

    {   

         MTOSIHeaderT header = new MTOSIHeaderT();

         // Enums

         MsgTypeT msgType = null;

         CommunicationPatternT compattern = null;    

         CommunicationStyleT   comstyle = null;

	try {     

            

                Date now = new Date();

                String dateString = now.toString();

                // (The format is "yyyyMMddhhmmss.s[Z|{+|-}HHMm]").

                SimpleDateFormat format = new SimpleDateFormat("yyyyMMddHHmmss.sZ");

                JAXBContext jc1 = JAXBContext.newInstance( "com.bt.server" );       

                Unmarshaller unmarshaller = jc1.createUnmarshaller();

              

                Marshaller marshaller = jc1.createMarshaller();      

               

                // Note JAXB_FORMATTED_OUTPUT doesn't affect SAX & DOM docs

                marshaller.setProperty( Marshaller.JAXB_FORMATTED_OUTPUT, Boolean.TRUE );      

                /* tell JAXB to marshal directly into a SOAPBody for efficiency */

                MessageFactory factory = MessageFactory.newInstance();          

                SOAPMessage message = factory.createMessage();         

                

                marshaller.marshal( object, message.getSOAPBody() );

                marshaller.marshal( object, System.out );

                header.setTmf854Version("1.0");

                header.setDomain("CuMSAN");

                header.setActivityName("notification");

                header.setMsgName(msgname);

                header.setMsgType(msgType.NOTIFICATION);

                header.setPayloadVersion("1.0");

                header.setSenderURI("http://senderEndpoint");

                header.setDestinationURI("http://replytoEndpoint");    

                header.setCommunicationPattern(compattern.valueOf("NOTIFICATION"));

                header.setCommunicationStyle(comstyle.MSG);

                header.setCorrelationId("0001");

                header.setTimestamp(format.format(now));

                header.setExtAuthor("Steve");

                header.setExtVersion("1.0");

                

                marshaller.marshal( header, message.getSOAPHeader());

                               

            message.saveChanges();              

                return message;

	}

	catch (Exception e) 

       	 {

                		System.out.println("Bummer");

                		e.printStackTrace();

                		

	}

    }



package MtosiDemo;



import com.bt.server.*;



import com.bt.server.NotificationService;

import javax.xml.namespace.QName;

import javax.xml.soap.SOAPMessage;

import javax.xml.ws.Dispatch;

import javax.xml.ws.WebEndpoint;

import javax.xml.ws.WebServiceRef;





/**

 *

 * @author 802998277

 

name=<wsdl:portType name="NotificationConsumerInterface">

targetNamespace=tmf854WS="tmf854.v1.ws"

wsdlLocation=Not currently used by JAX-WS 2.0

serviceName=<wsdl:service name="NotificationService">

endpointInterface=The qualified name of the service endpoint interface

portName=<wsdl:port name="NotificationConsumerInterface" binding="tmf854WS:NotificationConsumerSoapBinding">

see https://jax-ws.dev.java.net/jax-ws-ea3/docs/annotations.html

*/



    public class CallNotificationService {

    @WebServiceRef(

      wsdlLocation="http://localhost:8080/mtosi/v1/NotificationService?wsdl"

    )

  

    private final String NAMESPACEURI = "tmf854.v1.ws";

    private static final String SERVICE_NAME = "NotificationService";

    private static final String PORT_NAME = "NotificationConsumerInterface";

    private static final String OPERATION_NAME = "Notify";

    private QName SERVICE_QNAME = new QName(NAMESPACEURI, SERVICE_NAME);

    private QName PORT_QNAME = new QName(NAMESPACEURI, PORT_NAME);

     

    

    static NotificationService nService = new NotificationService();

    

  

   Dispatch<SOAPMessage> dispatchMsg = null;



   @WebEndpoint(name = "NotificationConsumerInterface")

    public  void invokeOneWay(SOAPMessage reqMsg) {      

        try 

        {                

            dispatchMsg = nService.createDispatch(PORT_QNAME, SOAPMessage.class, javax.xml.ws.Service.Mode.MESSAGE);       

            dispatchMsg.invokeOneWay(reqMsg);

       } 

       catch (Exception e) 

       {

           System.out.println("Exception Thrown in invokeOneWay");

           e.printStackTrace();

       }     

    } 

}











