- 3 -

COM 4 – LS – E

	[image: image1.png]

	INTERNATIONAL TELECOMMUNICATION UNION
	Rapporteur Q9/4 – LS – E

	
	TELECOMMUNICATION
STANDARDIZATION SECTOR

STUDY PERIOD 2005-2008
	

	
	
	English only

Original: English

	Question(s):
	9/4
	

	LIAISON STATEMENT

	Source:
	ITU-T SG4, Rapporteur Question 9/4

	Title:
	Management Interface Specification Methodology

	LIAISON STATEMENT

	To:
	3GPP SA5

	Approval:
	Agreed to at the Q9/4 virtual meeting, 24 October 2005

	For:
	Information and Action

	Deadline:
	December 15, 2005

	Contact:
	Knut Johannessen, Q9/4 Rapporteur
Telenor

Norway
	Tel: +47 90 10 18 10

Fax: +47 940 53 977

Email:

knut-hakon.johannessen@telenor.com

Question 9/4 is progressing the work on the revised Management Interface Specification Methodology (revised Rec. M.3020) and would like to inform 3GPP on the status of this work and also request comments on some issues.

As noted in the Management Specification Harmonization Status Report (see separate liaison coming from SG 4 meeting), Question 9/4 is progressing the work of revising the Rec. M.3020 based on the following approach:

· Enhancements to the requirements phase, including adaptation of the 3GPP use case template (from 32.803)

· Enhancements to the analysis (protocol-neutral) phase, including adaptation of the 3GPP Information Service (from 32.151)

· Adoption of the 3GPP UML repertoire (from 32.152)
· Requirements and current methodologies from other SDOs will be considered as well.
Further, the revised M.3020 will incorporate previous agreements within SG4 that has been recorded in the M.3020 status document:

· Requirement format and categories

REQ-XX-Category-Number {Category, number} Details {Source Citation}

The Category is one of

· Conceptual (CON) – Identifies a concept, data type, relationship, format, or structure

· Functional (FUN) – Identifies a functional capability, dynamic situation, a sequence, timing parameters, or an interaction.

· Non-functional (NON) – Non-functional requirements, including abnormal conditions, error conditions and bounds of performance

· Administrative (ADM) – System administration and operational requirements not related to the use cases normal operations.

Within a requirements specification, it is suggested that requirements are written in the above sequence (either for the entire specification or for each chapter/section). The “XX” is used as a label of either the entire specification or a part of the specification.

· Identification of mandatory fields of use cases
The methodology will add guidelines on which fields of the use case template that is mandatory for all use cases. Currently, we have identified the following fields as mandatory: Goal, Actor and Roles, Begins when, Step, Ends when and Traceability.

The revised methodology will be applied to the development of the Common Management Services (overview given in the following table; please refer to the Harmonization Status Report for additional details). The current drafts are attached for information and comment.
	Areas
	Input documents

	
	Requirements
	Analysis

	Object Management
	32.661, 32.601, X.730
	32.662, 32.602, X.730, Q.827.1

	State Management
	32.671, X.731, Q.827.1
	32.672

	Alarm Management
	32.111-1, X.733, X.736, X.733.1, Q.821
	32.111-2, Q.827.1, X.733.1 (or X.733.neutral)

	Notification Management
	32.301, Q.821
	32.302, Q.827.1

	Log Management
	32.301, Q.821 (Log Control), X.735
	32.302

	Test Management
	X.745, X.737
	

	Performance Management
	32.411, X.738, X.739, Q.822

	32.412, Q.827.1

Please note that the current draft may not be fully aligned with the latest versions of 32.151 and 32.152.

Comments on the following issues are appreciated:

· The new requirements format and categories.

· If use cases should be considered as a default notation for specification of functional requirements.
· If use cases should be considered as a notation applicable to both the requirements phase and the analysis phase.
Other comments on the current drafts are also appreciated.

Attachment:

1. Draft revised M.3020

[image: image2.wmf]Draft revised

M.3020.doc

2. Common management services

[image: image3.wmf]T05-SG04-050920-T

D-WP3-0025!!MSW-E.doc

	Attention: Some or all of the material attached to this liaison statement may be subject to ITU copyright. In such a case this will be indicated in the individual document.

Such a copyright does not prevent the use of the material for its intended purpose, but it prevents the reproduction of all or part of it in a publication without the authorization of ITU.

ITU-T\COM-T\COM04\LS\E.DOC

_1192202698.doc
		Question(s):

		9/4

		Meeting, date:

		Virtual Meeting, 24 October 2005

		Study Group:

		4

		Working Party:

		3

		Intended type of document (R-C-D-TD):

		TD-3

		Source:

		Rapporteur Q9/4

		Title:

		Draft Revised M.3020 v02

		Contact:

		Knut Johannessen

Telenor

Norway

		Tel: +47 90 10 18 10

Fax: +47 940 53 977

Email:

knut-hakon.johannessen@telenor.com

		Contact:

		

		

		Please don’t change the structure of this table, just insert the necessary information.

		Draft revised ITU-T Recommendation M.3020

Management interface specification methodology

Summary

This ITU-T Recommendation describes the management interface specification methodology UTRAD (Unified TMN Requirements, Analysis and Design). It describes the process to derive interface specifications based on user requirements, analysis and design (RAD). Guidelines are given to describe RAD using Unified Modelling Language (UML) notation; however, other interface specification techniques are not precluded. The guidelines for using UML are described at a high level in this ITU-T Recommendation.

Keywords

<Optional>

Introduction

<Optional – This clause should appear only if it contains information different from Scope and Summary>

CONTENTS

41
Scope

52
References

53
Definitions

64
Abbreviations

75
Conventions

76
Requirements for methodology and notational support

87
Methodology

87.1
General considerations

87.2
Application and structure of the methodology

87.3
Detailed methodology

87.3.1
Requirements

117.3.2
Analysis

117.3.3
Design

128
Management interface specifications

129
Traceability in UTRAD Process

1210
Documentation structure

13A.1
GDMI Requirements Template

13A.1.1
Scope

13A.1.2
Requirements

15B.1
GDMI Analysis Template

15B.2
Use cases

15B.3
Interface Definition

15B.3.1
Class diagram representing interfaces

15B.3.2
Generic rules

16B.3.b
InterfaceName Interface

16B.3.b.a
Operation OperationName (supportQualifier)

18B.3.b.c
Notification NotificationName (supportQualifier)

19B.4
Information Object Classes

19B.4.1
Imported information entities and local labels

19B.4.2
Class diagram

19B.4.2.1
Classes and relationships

20B.4.2.2
Inheritance

20B.4.3
Information object class definitions

20B.4.3.a
InformationObjectClassName

23B.4.4
Information relationship definitions

23B.4.4.a
InformationRelationshipName (supportQualifier)

23B.4.6
Particular information configurations

25D.1 Introduction

25D.2
Basic model elements

27D.3
Stereotype

27D.3.1
<<Interface>>

28D.3.2
<<Type>>

29D.3.3
<<ProxyClass>>

29D.3.4
<<Archetype>>

30D.3.5
<<InformationObjectClass>>

30D.3.6
<<use>> and <<may use>>

31D.3.7
Relationship realize and <<may realize>>

31D.3.8
<<emits>>

32D.3.9
<<names>>

33D.3.10
<<opt>>

33D.3.11
<<Notification>>

34D.4
Visibility

34D.4.1
Samples

35D.5
Association classes

36D.6
Abstract Class

36D.6.1
Sample

1
Scope

This ITU-T Recommendation describes the management interface specification methodology UTRAD (Unified TMN Requirements, Analysis and Design). It describes the process to derive interface specifications based on user requirements, analysis and design (RAD). Guidelines are given to describe RAD using Unified Modelling Language (UML) notation; however, other interface specification techniques are not precluded. The guidelines for using UML are described at a high level in this ITU-T Recommendation. Further ITU-T Recommendations in this series will provide a more detailed definition of the specific use of UML notation within the TMN.

An interface specification addresses management service(s) defined in ITU-T Recommendation M.3200. Such a specification may support part of or one or more management services. The management services comprise of management functions. These functions may reference those defined in ITU-T Recommendation M.3400, specialize to suit a specific managed area or new functions may be identified as appropriate.

2
References

The following ITU-T Recommendations and other references contain provisions, which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is regularly published.

The reference to a document within this Recommendation does not give it, as a stand-alone document, the status of a Recommendation

[1] ITU-T Recommendation M.3010 (2000), Principles for a telecommunications management network.

[2] ITU-T Recommendation M.3060 (200x), “Principles for the Management of Next Generation Networks”.

[3] ITU-T Recommendation M.3200 (1997), TMN management services and telecommunications managed areas: Overview.

[4] ITU-T Recommendation M.3400 (2000), TMN management functions.

[5] ITU-T Recommendation M.3208.1 (1997), TMN management services for dedicated and reconfigurable circuits network: Leased circuit services.

[6] ITU-T Recommendation X.680 (1997) | ISO/IEC 8824-1:1998, Information technology – Abstract syntax Notation Om (ASN.1): Specification of basic notation.

[7] ITU-T Recommendation Z.100 (1999), Specification and Description Language.

[8] 3GPP TS 32.150 V6.3.0 (2005-06) “IRP Concept and definitions”

[9] 3GPP TS 32.151 V6.1.1 (2005-06) “IRP Information Service (IS) template”

[10] 3GPP TS 32.152 V6.3.0 (2005-06) “IRP IS Unified Modelling Language (UML) repertoire”

[11] 3GPP TS 32.803 V6.0.0 (2004-09) “Process Guide; Use Cases in Unified Modelling Language (UML)”

[12] OMG: "Unified Modelling Language Specification, Version 1.5".

3
Definitions

This Recommendation uses the following terms from Recommendation M.3010 [n]:

· User

· Management service.

· Management function set.

This Recommendation uses the following terms from OMG UML [n]:

· Activity Diagram.

· Actor.

· Class.

· Class Diagram.

· Collaboration Diagram.

· Sequence Diagram.

· State Diagram.

· Stereotype.

· Use Case.

This ITU-T Recommendation defines the following definitions terms:

· Agent: TBD

· Manager: TBD

· Management goals: High-level objectives of a user in performing management activities.

· Management roles: Management roles define the activities that are expected of the staff or system that perform telecommunications management. Management roles are defined independent of other components, i.e. telecommunications resources and management functions.

· Telecommunications resources: Telecommunications resources are physical or logical entities requiring management, using management services.

· Management scenario: A management scenario is an example of management interactions from a management service.

4
Abbreviations

This ITU-T Recommendation the uses the following abbreviations:

ASN.1
Abstract Syntax Notation One

CMIP
Common Management Information Protocol

CNM
Customer Network Management

CORBA
Common Object Request Broker Architecture

GDMI
Guidelines for the Definition of Management Interface

GDMO
Guidelines for the Definition of Managed Objects

GRM
General relationship Model

IDL
Interface Definition Language

LCS
Leased Circuit Service

NE
Network Element

OAM&P
Operations, Administration, Maintenance and Provisioning

OMG
Object Management Group

OO
Object Oriented

OS
Operations System

OSI
Open Systems Interconnection

SC
Service Customer

SDL
Specification and Description Language

SLA
Service level Agreement

SP
Service Provider

TMN
Telecommunications Management Network

UML
Unified Modelling Language

UTRAD
Unified TMN Requirements, Analysis and Design

XML
Extensible Markup Language

5
Conventions

Table 1 identifies the correspondence between TMN concepts and UML notation. This ITU‑T Recommendation specifies the high-level concepts and notations to be used in the different phases. Further recommendations in this series will describe the guidelines for using specific aspects of the notations, required extensions such as new stereotypes appropriate for use within TMN.

Stereotypes are used to extend UML notation. The approved stereotypes for use within the TMN environment are included in this ITU-T Recommendation (see Annex D).

Table 1/M.3020 – Requirements concepts

		TMN concept

		UML notation

		Comment

		user

		Actor

		A user is modelled as an actor.

		management role

		Actor

		An actor plays a role. It is normally advisable to only model a single role for each actor.

		management function

		use case

		A management function is modelled by one or more use cases.

		management function set

		use case

		A management function set is a composite use case with each management function (potentially) modelled as a separate use case.

		management service

		use case

		A management service is modelled as a high-level use case.

		management scenario

		sequence diagram

		Sequence diagrams are preferred over collaboration diagrams.

		telecommunication resource type

		Class

		The class diagrams depict the property details of the telecommunications resource type, at the level of detail appropriate to the phase of the methodology.

		management goals

		–

		Management goals are captured as textual descriptions as there is no applicable UML notation.

6
Requirements for methodology and notational support

In developing the methodology and choosing a notation, the following goals were used.

1)
The notation and methodology shall support the capture of all the relevant requirements of the problem space, namely telecommunications management.

2)
The notation shall facilitate unambiguous generation of the specification in the target NM paradigms specified in ITU-T Recommendation Q.812.

3)
Non-optional conformance points shall be specified in all three phases. If optional features are required to support the telecommunications problem space these will be specified. For the Requirements and Analysis phases, the allowable optional features will be specified in this series of ITU-T Recommendations. Allowable optional features for the design phase will be specified in the Q.81x-series Recommendations.

4)
It shall be possible to generate, from the protocol-neutral specification, interoperable language specific definitions (for example UML to IDL, UML to GDMO/ASN.1).

The current chosen notation, as noted later does not meet all the above requirements. However, it is expected that these requirements should be met as the notations are applied widely in the industry.

The optional features to be supported include features of the notation for the three phases as well as for target NM paradigm specific capabilities (e.g. selection of CORBA facilities and optional features within a given facility). These features are not included in the methodology but should be found in other ITU-T Recommendations.

7
Methodology

7.1
General considerations

The purpose of this methodology is to provide a description of the processes leading towards the definition of management interfaces.

7.2
Application and structure of the methodology

The Unified TMN Requirements, Analysis and Design (UTRAD) methodology specifies an iterative three-phase process with features that allow traceability across the three phases. The three phases apply industry-accepted techniques using object oriented analysis and design principles. The three phases are requirements, analysis and design. The techniques should allow the use or development of commercially available support tools. Different techniques may be used for the phases depending on the nature of the problem.

7.3
Detailed methodology

The requirements and analysis phases produce UML specifications. The Design phase uses Network Management Paradigm specific notation. The outputs of the 3 phases are:

· Requirements phase – Requirements.

· Analysis phase – Implementation independent specification.

· Design phase – Technology specific specification.

Initially, the design phase will be developed using a manual or customized approach. When interoperable protocol specific definition can be generated by tools, then UML notation can be applied to the design phase. However some protocol specific definitions, such as class hierarchy, can be depicted using UML notation.

The subclauses below describe the three phases.

7.3.1
Requirements

The requirements for the problem being solved fall into two classes. The first class of requirements is referenced here as business requirements. A subject matter expert on the topic shall be able to determine that the requirements adequately represent the needs of the management problem being solved. The second class is referred to as specification requirements. These requirements shall provide sufficient details so that the interface definition in the analysis and design phase can be developed. As final interface definitions must be traceable to the requirements, it may be necessary to have an iterative process among the three phases. Any ambiguity in the requirements will have to be resolved by this iterative process to assure that an implementable specification can be developed.

Different techniques may be used to specify the two classes of requirement. Irrespective of the technique, the readability of the requirements is critical. The requirements themselves are not required to be in a machine-readable notation as long as readability and traceability are possible. Enumerating requirements is one possible approach to delineate the different requirements for traceability.

The requirements phase include identifying aspects such as security policy, scope of the problem domain in terms of the applications, resources, and roles assumed by the resources. An example of the requirements is available in Appendix I. The requirements specify roles, responsibilities, and the relationships between the constituent entities for the problem space. Different techniques including textual representation may be used to specify the business level requirements. In order to facilitate traceability of these requirements to the design and implementation phases, enumerating requirements is recommended.

The problem must be bounded with a specific scope. One way to determine the scope is by using the management services identified in ITU-T Recommendation M.3200 and function sets identified in M.3400. Requirements are specified using the resources being managed and TMN management functions. Augmenting ITU-T Recommendation M.3400 may be required in order to meet the business requirements of the problem.

UML use cases and scenarios should be used to interact with subject matter experts in capturing the business level requirements. The requirements should also identify the failure conditions visible to the business process.

The requirements produced must be complete and detailed. The recursive nature of the UTRAD methodology is used to achieve this completeness. The completeness of the requirements (clear and well-documented) drives the analysis and design phases.

7.3.1.1 Requirement format and categories

It is useful to classify requirements in different categories. The following categories are considered relevant for UTRAD:

Conceptual (CON) – Identifies a concept, data type, relationship, format, or structure

Functional (FUN) – Identifies a functional capability, dynamic situation, a sequence, timing parameters, or an interaction.

Non-functional (NON) – Non-functional requirements, including abnormal conditions, error conditions and bounds of performance

Administrative (ADM) – System administration and operational requirements not related to the use cases normal operations.

Within a requirements specification, it is suggested that requirements are written in the above sequence (either for the entire specification or for each chapter/section).

Requirements should be written based on the following template

REQ-Label-Category-Number {Category, number} Details {Source Citation}

Where “Label” is an abbreviation for the Recommendation (or part thereof). The set of labels is not finite and not subject for standardization.

As an example, conceptual requirement number 23 in Recommendation tagged ‘SM’ would be specified as follows:

		REQ-SM-CON-23

		A Service Order consists of a name, address, phone number, service description and an optional FAX number for contacts {T1M1.5 Document 246 11/96}

7.3.1.2 Use cases

Table 1 provides a template with some notes to aid the documentation of use cases in more detail.

Table 1 – Use case template

		Use Case Stage

		Evolution / Specification

		<<Uses>>

Related use

		Goal (*)

		This is the objective/end result the use case strives to is to achieve and should be a concise statement of what the use case should achieve in a 'sunny day' scenario.

There may be a statement about priority relative to other use cases and required performance of the use case e.g.

· Real Time.

· Near real time.

· Not real time.

		

		Actor and Roles (*)

		The names of actors/roles involved in the use case including role characteristic for each actor.

		

		Assumptions

		A description of the environment providing a context for the use case.
Assumptions are mutually exclusive to pre conditions.

		

		Pre conditions

		A list of all system and environment conditions that must be true before the use case can be triggered.

Pre conditions are mutually exclusive to assumptions.

		

		Begins when (*)

		The name of the single event that triggers the start of the use case

		

		Step n (*)

		Steps may invoke other use cases

		Reference to a used use case.

		Step (n+1)

		Steps added as necessary and in a logical sequence.

		

		Ends when (*)

		The event(s) that signals that the use case has terminated.

		

		Exceptions

		A summary list of all exception conditions and faults detected by the use case during its operation

		

		Post Conditions

		A list of all system and environmental; conditions that must be true if the use case has terminated without internal error.

		

		Traceability (*)

		Requirements exposed by the use case

		

Note: Fields marked with “*” are mandatory for all use case specifications. Other fields are only mandatory when relevant for the specific use case.

A set of use case tables, using the documentation table, may be used to represent the significant capabilities studied at a level of abstraction appropriate to the problem being analysed.

The level of detail, and extent of coverage provided in the use cases is dependant upon the authoring team's familiarity with the subject matter and is therefore subjective.

Note: The lower levels of details are most likely an indication of analysis rather than requirements capture. Use cases are also useful in the analysis phase (see section XX).

It is permitted to develop successively more detailed analysis of each step of a higher abstraction level use case by referring to the more detailed use case in the table cell reserved for this purpose.
It is emphasized this does not have to be done, and is subjective depending upon the need of the author/group.

The following lists is provided to aid the initial identification of suitable use cases:

· Consider what the main purpose of the system is.

· What types of people /system need to interact with the system.

· Can these people/systems be grouped or abstracted to roles.

· Consider the start up, normal running, failure analysis and recovery aspects of the system.

· Consider what types of reports or data may be needed from the system.

· Consider if times of day / network loads may require special activities.

It is useful to document use cases in a common manner. The following structure is suggested:

UC-#
Use case title

<use case table>

<optional sequence diagram(s)>

<optional state chart(s)>

7.3.2
Analysis

In the analysis phase, the requirements are used to identify the interacting entities, their properties and the relationships among them. This allows the interfaces offered by the entities to be defined. In the UML notation, these entities become classes. The class descriptions along with the interfaces exposed should be traceable to the requirements. The relationship among the classes, defined in the analysis specification, and the classes in the design specification is not necessarily one to one.

This ITU-T Recommendation gives high-level guidance on the use of UML notation to support management interface specification; however SDL [7], an industry accepted technique might be used to augment the UML definitions.

The analysis phase should be independent of design constraints. For example the analysis may be documented using OO principles even though the design may use a non-object oriented technology. The information specified in the analysis phase includes class descriptions, data definitions, class relationships, interaction diagrams (sequence diagrams and/or collaboration diagrams), state transition diagrams and activity diagrams. The class definitions include specification of operations, signal (asynchronous stimulus such as receipt of operations, events and exceptions), attributes and behaviour captured as notes or textual description.

The generic definitions (operations and stereotypes) contained in Annex D are provided for use in the analysis phase. They define retrieving and setting multiple attributes and issuing notifications. These can be included in the class definitions and the interaction diagrams.

7.3.3
Design

In the design phase an implementable interoperable interface specification is produced. This will involve the selection of a target specification language. The design phase specifications are dependent on the specific management paradigm.

The selection of specific management paradigm is addressed in other ITU-T Recommendations.

In the context of the paradigm based on OSI Systems Management, the design specification is the information model specification using GDMO templates for managed object classes, attributes, behaviour, notifications, actions, naming instances of the class, and error/exception specifications. The syntax of the information is specified using ASN.1 notation.

In GDMO, the object class hierarchy specifies the properties of the object classes that are needed for management. Extensive use of inheritance (super and subclasses) is needed to benefit the most from the reuse of specifications. The object classes are specified using the templates from ITU-T Recommendation X.722, structure of management information – Guidelines for the definition of managed objects. The templates defining the information model should be registered (according to the rules of ITU-T Recommendation X.722) with a value for the ASN.1 object identifier. Annex B describes the procedure for assigning the registration values. For those object classes that are already specified in other ITU-T Recommendations and ISO standards, only a reference to the particular Recommendation and object class is needed. Naming is not a part, nor the purpose, of the object class hierarchy.

In the context of CORBA based TMN, the information model is defined using IDL.

As additional paradigms are added to the TMN, the notations/languages defined by these paradigms will be used.

In the design phase, it is recommended that the UML descriptions from the requirements and analysis phases be referenced to augment behavioral specification. For example, behaviour definition of GDMO can reference state charts, sequence diagrams and class definition in the analysis phase. If required additional UML diagrams describing interactions between entities, corresponding to specific protocol paradigms, may be included.

8
Management interface specifications

A management interface specification includes the Requirements, Analysis and Design specifications discussed in chapter 7. A structure for specifying these specifications is provided in Annex A-C and is called Guidelines for the Definition of Management Interface (GDMI).

These techniques and supporting notations are also applicable when designing a system to the management interface specifications, even though system design is not considered as part of TMN Recommendations. They assist in describing how the interface specifications are applied in managing the resources within a system such as an NE.

9
Traceability in UTRAD Process

In order to achieve traceability between requirements, analysis and design, it is necessary that appropriate identification and pointers are provided by each model element. For example the requirements can be identified by numbers or references to the functions in ITU-T Recommendation M.3400 list of functions. Numbering other requirements (new functions not in ITU-T Recommendation M.3400) or security policy and any performance requirements is also recommended because a design specification may meet these requirements differently based on the underlying protocols. Another approach used in the example in Appendix I (I.2.2.3) is to reference the use cases and the associated textual description. The analysis phase output specifies for the various use cases further detailed information requirements. The design phase should point to the various diagrams and text in the analysis phase output. The pointer may be in terms of a reference to the appropriate sections.

An iterative process may be required to trace up to the subject matter level requirements in the first phase from the design phase. This is required because the output of the phases is defined to different level of details.

NOTE – Not all requirements will be traceable in the design. For example requirements such as availability, redundancy, etc. may not be reflected in particular interface design even though they are to be supported in an implementation. There is no formal mechanism defined in this ITU-T Recommendation for traceability of requirements between the three phases. One approach is to reference clauses and subclauses in the output of the requirements and analysis phases during the design phase.

10
Documentation structure

Even though there are three phases, the documentation of the interface may combine their outputs into one or more documents. It is recommended that the requirements and analysis be combined and separate design documents are developed for each specific network management protocol paradigm.

Annex A

Guidelines for the Definition of Management Interface (GDMI) – Requirements

The following are guidelines for specification of requirements.

A.1
GDMI Requirements Template

A.1.1
Scope

Define major goals and objectives and the applicable management interfaces (and Reference Points) for this specification. Use ITU-T Recommendation M.3200 [2] categorization as a source for identifying the management service(s) supported by this interface.

This subclause should give a clear description of the TMN users benefit, i.e. the reason for performing this management service. Background and context should be added as necessary, but the explanatory and descriptive part should be separated. Supporting background information, where required, should be placed in an appendix.

A.1.2
Requirements

A.1.2.1
Business level requirements

List major requirements in text, and identify use cases with actor/role and resources. The use case should bring out high-level requirements and is distinguished from the specification requirements by not refining to lower levels. Policies related information (e.g. security, persistence) are candidates for inclusion at this level. Numbering the requirements is recommended for traceability.

Requirements specifications should follow the conventions and templates defined in Section 7.3.1.1.

A.1.2.1.1
Actor roles

A textual description of the actor is included here.

A.1.2.1.2
Telecommunications resources

Textual description of the relevant resources required to support the use cases are presented here.

A.1.2.1.3
High-level use case

A high-level use case diagram is presented. In order to understand the use case by subject matter experts, they should be augmented with textual description for each use case. The description should serve two purposes: to capture the domain experts' knowledge and to validate the models in analysis and design phases with respect to the requirements. An example of a high-level use case is given in Appendix I.

The high-level use cases may identify the various functions sets defined in ITU-T Recommendation M.3400 [3]. These use cases may be further refined as described in the specification requirement subclause below by using stereotypes such as "include" and "extend".

If appropriate, sequence and state chart diagrams may be used. However, at the high-level requirements these diagrams are not expected to be used. When the use cases at this level are further decomposed in the next level of requirements, these diagrams may be more suitable.

The traceability of the next level of requirements from this level may be identified by how each function set further refined with new use cases.

Use case specifications should follow the conventions and templates defined in Section 7.3.1.2.

A.1.2.2
Specification level requirements

The high-level use cases are further refined using management functions from ITU-T Recommendation M.3400. Since M.3400 is not exhaustive enough to address all management services for all managed areas, it is expected that new functions will be required. The new functions should be included in the requirements as described below.

Requirements specifications should follow the conventions and templates defined in Section 7.3.1.1.

A.1.2.2.1
Actor roles

A list of all actors and textual description of actors not already defined in high-level requirements is included here.

A.1.2.2.2
Telecommunications resources

A list of all passive resources and textual description of resources not already defined in high-level requirements are presented here.

A.1.2.2.3
TMN management functions

Management functions identify the interactions between the different actor roles. The requirements may include one or more of the following – use cases, sequence and state charts diagrams for various functions in the problem domain and textual descriptions.

A.1.2.2.4
Use cases

An example of the refinement of the high-level use case diagrams above is presented in Appendix I. The refinement is achieved by using "extend" and "include" stereotypes.

If appropriate sequence and state chart diagrams may be used.

Use case specifications should follow the conventions and templates defined in Section 7.3.1.2.

Annex B

Guidelines for the Definition of Management Interface (GDMI) – Analysis

The following are guidelines for specification of the results of the analysis phase.

B.1
GDMI Analysis Template

The GDMI analysis template is based on the 3GPP Information Service [n] and augmented to meet additional requirements on the methdology (e.g. traceability).

B.2
Use cases

Use case specifications should follow the conventions and templates defined in Section 7.3.1.2.

B.3
Interface Definition

B.3.1
Class diagram representing interfaces

Each interface is defined in the diagram. This shall be a UML compliant class diagram (see also Annex D).

Interfaces are defined using a stereotype <<Interface>>. Each interface contains a set of either operations or notifications which are mandatory or either a single operation or a single notification which is optional. The support of an interface by an information object class is represented by a relationship between the 2 entities with a cardinality (1..1) if all the operations or notifications contained in the interface are mandatory, and (0..1) if the operation or notification contained in the interface is optional. On the class diagram, each operation and notification in an interface shall be qualified as "public" by the addition of a symbol "+" before each operation and notification.

B.3.2
Generic rules

The following rules are relevant for all interface definitions and shall simply be copied as part of the template.

		Rule 1

		Each operation with at least one input parameter supports a pre-condition valid_input_parameter which indicates that all input parameters shall be valid with regards to their information type. Additionally, each such operation supports an exception operation_failed_invalid_input_parameter which is raised when pre-condition valid_input_parameter is false. The exception has the same entry and exit state.

		Rule 2

		Each operation with at least one optional input parameter supports a set of pre-conditions supported_optional_input_parameter_xxx where "xxx" is the name of the optional input parameter and the pre-condition indicates that the operation supports the named optional input parameter. Additionally, each such operation supports an exception operation_failed_unsupported_optional_input_parameter_xxx which is raised when

(a) the pre-condition supported_optional_input_parameter_xxx is false and

(b) the named optional input parameter is carrying information. The exception has the same entry and exit state.

		Rule 3

		Each operation shall support a generic exception operation_failed_internal_problem which is raised when an internal problem occurs and that the operation cannot be completed. The exception has the same entry and exit state.

B.3.b
InterfaceName Interface

InterfaceName is the name of the interface.

"b" represents a number, starting at 3 and increasing by 1 with each new definition of an interface.

Each interface is defined by its name and by a sequence of operations or notifications as defined here below.

Each operation is defined using the following structure.

B.3.b.a
Operation OperationName (supportQualifier)

OperationName is the name of the operation followed by a qualifier indicating whether the operation is Mandatory, Optional or Conditional (M, O, C). Conditions must be defined in the text below this table.

"a" represents a number, starting at 1 and increasing by 1 with each new definition of an operation.

		Operation name

		Qualifier

		Requirement IDs

		

		

		

B.3.b.a.1
Definition

The <definition> subclause is written in natural language.

B.3.b.a.1.1
Sequence diagrams

All relevant operation sequences will be described in diagrams here. These shall be UML compliant sequence diagrams.

B.3.b.a.2
Input parameters

List of input parameters of the operation. Each element is a tuple (ParameterName, supportQualifier, InformationType, Comment). Legal values for input parameters should be documented as pre-conditions.

This information is provided in a table. An example of such a table is given here below:

		Parameter Name

		Qualifier

		Information type

		Comment

		managerReference

		M

		ntfSubscriber.ntfManagerReference

		It specifies the reference of Manager to which notifications shall be sent.

B.3.b.a.3
Output parameters

List of output parameters of the operation. Each element is a tuple (ParameterName, supportQualifier, MatchingInformation
, Comment). Legal values for output parameters should be documented as post-conditions.

This information is provided in a table. An example of such a table is given here below:

		Parameter Name

		Qualifier

		Matching Information

		Comment

		versionNumberSet

		M

		notificationIRP.irpversion

		It indicates one or more SS version numbers supported by the notificationIRP.

This table should also include a special parameter return if the operation is intended to return information indirectly.

B.3.b.a.4
Pre-condition

This contents of this sub-clause can be replaced with the following table if the pre-conditions are defined in a use case(s) in the requirements specification:

		Use Case

		Reference ID

		

		

A pre-condition is a collection of assertions joined by AND, OR, and NOT logical operators. The pre-condition must be held to be true before the operation is invoked. Combinations of logical operations can be grouped using standard paranthese, e.g. (X OR Y) AND Z. An example is given here below:

notificationCategoriesNotAllSubscribed OR notificationCategoriesParameterAbsentAndNotAllSubscribed

Each assertion is defined by a pair (propertyName, propertyDefinition). All assertions constituting the pre-condition are provided in a table. An example of such a table is given here below:

		Assertion Name

		Definition

		notificationCategoriesNotAllSubscribed

		At least one notificationCategory identified in the notificationCategories input parameter is supported by IRPAgent and is not a member of the ntfNotificationCategorySet attribute of an ntfSubscription which is involved in a subscription relationship with the ntfSubscriber identified by the managerReference input parameter.

		notificationCategoriesParameterAbsentAndNotAllSubscribed

		The notificationCategories input parameter is absent and at least one notificationCategory supported by IRPAgent is not a member of the ntfNotificationCategorySet attribute of an ntfSsubscription which is involved in a subscription relationship with the ntfSubscriber identified by the managerReference input parameter.

B.3.b.a.5
Post-condition

This contents of this sub-clause can be replaced with the following table if the post-conditions are defined in a use case(s) in the requirements specification:

		Use Case

		Reference ID

		

		

A post-condition is a collection of assertions joined by AND, OR, and NOT logical operators. The post-condition must be held to be true after the completion of the operation. When nothing is said in a post-condition regarding an information entity, the assumption is that this information entity has not changed compared to what is stated in the
pre-condition. Combinations of logical operations can be grouped using standard paranthese, e.g. (X OR Y) AND Z. An example is given here below:

subscriptionDeleted OR allSubscriptionDeleted

Each assertion is defined by a pair (propertyName, propertyDefinition). All assertions constituting the post-condition are provided in a table. An example of such a table is given here below:

		Assertion Name

		Definition

		subscriptionDeleted

		The ntfSubscription identified by subscriptionId input parameter is no more involved in a subscription relationship with the ntfSubscriber identified by the managerReference input parameter and has been deleted. If this ntfSubscriber has no more ntfSubscription, it is deleted as well.

		AllSubscriptionDeleted

		In the case subscriptionId input parameter was absent, the ntfSubscriber identified by the managerReference input parameter is no more involved in any subscription relationship and is deleted, the corresponding ntfSubscription have been deleted as well.

B.3.b.a.6
Exceptions

List of exceptions that can be raised by the operation. Each element is a tuple (exceptionName, condition, ReturnedInformation, exitState).

B.3.b.a.6.c
exceptionName

ExceptionName is the name of an exception.

"c" represents a number, starting at 1 and increasing by 1 with each new definition of an exception.

This information is provided in a table. An example of such a table is given here below:

		Exception Name

		Definition

		Ope_failed_existing_subscription

		Condition: (notificationCategoriesNotAllSubscribed OR notificationCategoriesParameterAbsentAndNotAllSubscribed) not verified.

Returned information: output parameter status is set to OperationFailedExistingSubscription.

Exit state: Entry State.

Each notification is defined using the following structure.

B.3.b.c
Notification NotificationName (supportQualifier)

NotificationName is the name of the notification followed by a qualifier indicating whether the notification is Mandatory, Optional or Conditional (M, O, C). Conditions must be defined in the text below this table.

"c" represents a number, starting at a+1 and increasing by 1 with each new definition of a notification.

		Notification name

		Qualifier

		Requirement IDs

		

		

		

B.3.b.c.1
Definition

The <definition> subclause is written in natural language.

B.3.b.c.1.1
Sequence diagrams

All relevant operation sequences will be described in diagrams here. These shall be UML compliant sequence diagrams.

B.3.b.c.2
Input parameters

List of input parameters of the notification. Each element is a tuple (inputParameterName, supportQualifier and filteringQualifier, matchingInformation
, inputParameterComment).

The column "Qualifiers" contains the two qualifiers, supportQualifier and filteringQualifier, separated by a comma. The supportQualifier indicates whether the attribute is Mandatory, Optional or Conditional ("M","O", or "C", respectively). The filteringQualifier indicates whether the parameter of the notification can be filtered or not. Values are Yes (Y) or No (N). The matchingInformation refers to information in the state "toState".

This information is provided in a table. An example of such a table is given here below:

		Parameter Name

		Qualifiers

		Matching Information

		Comment

		managerReference

		M,Y

		ntfSubscriber.ntfManagerReference

		It specifies the reference of IRPManager to which notifications shall be sent.

B.3.b.c.3
Pre-condition

A pre-condition is a collection of assertions joined by AND, OR, and NOT logical operators. The pre-condition must be held to be true before the notification is invoked. Combinations of logical operations can be grouped using standard paranthese, e.g. (X OR Y) AND Z. An example is given here below:

alarmMatched AND alarmInformationNotCleared

Each assertion is defined by a pair (propertyName, propertyDefinition). All assertions constituting the state "from state" are provided in a table. An example of such a table is given here below:

		Assertion Name

		Definition

		alarmMatched

		The newly generated network alarm matches with one AlarmInformation (same values for eventType, probableCause, specificProblem attributes) in AlarmList.

		AlarmInformationNotCleared

		The perceivedSeverity attribute of the matched AlarmInformation is not cleared.

B.3.b.c.4
Post-condition

A post-condition is a collection of assertions joined by AND, OR, and NOT logical operators. The post-condition must be held to be true after the completion of the notification. When nothing is said in a post-condition regarding an information entity, the assumption is that this information entity has not changed compared to what is stated in the
pre-condition. Combinations of logical operations can be grouped using standard paranthese, e.g. (X OR Y) AND Z. An example is given here below:

resetAcknowledgementInformation AND perceivedSeverityUpdated

Each assertion is defined by a pair (propertyName, propertyDefinition). All assertions constituting the state "to state" are provided in a table. An example of such a table is given here below:

		Assertion Name

		Definition

		resetAcknowledgementInformation

		The matched AlarmInformation identified in inv_alarmMatched in pre-condition has been updated according to the following rule:

ackTime, ackUserId and ackSystemId are updated to contain no information; ackState is updated to "unacknowledged".

		PerceivedSeverityUpdated

		The perceivedSeverity attribute of matched AlarmInformation identified in inv_alarmMatched in pre-condition has been updated.

B.4
Information Object Classes

B.4.1
Imported information entities and local labels

This clause identifies a list of information entities (e.g. information object class, information relationship, information attribute) that have been defined in other specifications and that are imported in the present document. This includes information entities from other specifications imported for inheritance purpose. Each element of this list is a pair (label reference, local label). The label reference contains the name of the specification where it is defined, the type of the information entity and its name. The local label of imported information entities can then be used throughout the specification instead of the label reference.

This information is provided in a table. An example of such a table is given here below:

		Label reference

		Local label

		3GPP TS 32.622 [5], information object class, Top

		Top

Imported elements should be from protocol neutral definitions meeting the 32.15x series of specifications but may import elements from other specifications if necessary in the interest of migration of protocol specific specifications to meet the 32.15x series of specifications over time.

B.4.2
Class diagram

B.4.2.1
Classes and relationships

This first diagram represents all information object classes defined in this IS with all their relationships. This diagram shall contain relationship names, role name and role cardinality. This shall be a UML compliant class diagram (see also Annex D).

Characteristics (relationships) of imported information object classes need not to be repeated in the diagram. Information object classes should be defined using the stereotype <<InformationObjectClass>>.

B.4.2.2
Inheritance

This second diagram represents the inheritance hierarchy of all information object classes defined in this IS. This diagram does not need to contain the complete inheritance hierarchy but shall at least contain the parent information object classes of all information object classes defined in the present document. By default, an information object class inherits from the information object class "top". This shall be a UML compliant class diagram.

Characteristics (attributes, relationships) of imported information object classes need not to be repeated in the diagram. Information object classes should be defined using the stereotype <<InformationObjectClass>>.

NOTE:
some inheritance relationships presented in clause B.4.2.2 can be repeated in clause B.4.2.1 to enhance readability.

B.4.3
Information object class definitions

		Class name

		Qualifier

		Requirement IDs

		

		

		

Each information object class is defined using the following structure.

B.4.3.a
InformationObjectClassName

InformationObjectClassName is the name of the information object class.

"a" represents a number, starting at 1 and increasing by 1 with each new definition of an information object class.

B.4.3.a.1
Definition

The <definition> subclause is written in natural language. The <definition> subclause refers to the information object class itself. The characteristics related to the relationships that the object class can have with other object classes can't be found in the definition. The reader has to refer to relationships definition to find such kind of information. Information related to inheritance shall be precised here.

B.4.3.a.2
Attributes

The <attributes> subclause presents the list of attributes, which are the manageable properties of the object class. Each element is a tuple (attributeName, visibilityQualifier, supportQualifier, readQualifier, writeQualifier):

-
The visibilityQualifier indicates whether the attribute is public, private or Agent Internal ("+","—", and "%" respectively). The semantics of public and private are as per the UML specification. The semantic of Agent Internal is defined in Annex D).

-
The supportQualifier indicates whether the attribute is Mandatory, Optional, Conditional or not supported ("M","O","C", or "—", respectively). Conditions must be defined in the text below this table.

-
The accessQualifier indicates whether the attribute shall be readable, writeable, and write-on-createable by the Manager. The semantics of the accessQualifier is “R+” for must-be-readable, “R” for optional-readable, “R-“ for non-readable, “W+” for must-be-writeable, “W” for optional-writeable, “W-“ for non-writeable, “C+” for must-be-write-on-createable, “C” for optional-write-on-createable, and “C-“ for non-write-on-createable. Individual indicators are separated by commas.

There is a dependency relationship between the supportQualifier and visibilityQualifier, readQualifier, and writeQualifier. The supportQualifier indicates the requirements for the support of the attribute. For any given attribute, regardless of the value of the supportQualifier, at least one of the readQualifier or writeQualifier must be "M". The implication of the "O" supportQualifier is that the attribute is optional, however the read and write qualifiers indicate how the optional attribute shall be supported, should the optional attribute be supported. Regardless of the supportQualifier, if an attribute is supported then it shall be supported in accordance with the specified visibilityQualifier.

Private or Agent Internal attributes are per definition not readable by the Manager. Their readQualifier is hence always "—".

Private or Agent Internal attributes are per definition not writable by the Manager. Their writeQualifier is hence always "—".

The readQualifier and writeQualifier of a supported attribute, that is public, may not be both "—".

The use of "—" in supportQualifier is reserved for documenting support of attributes defined by an «Archetype» IOC. Attributes with a supportQualifier of "—" are not implemented by the IOC that is realizing a subset of the attributes defined by the «Archetype». The readQualifier and writeQualifier are of no relevance in this case. However, a not supported attribute is neither readable nor writable. For this reason the readQualifier and writeQualifier shall be "—" for unsupported attributes.

For any IOC that uses one or more attributes from an «Archetype», a separate table shall be used to indicate the supported attributes. This table is absent if no «Archetype» attributes are supported. For example, if a particular IOC has defined attributes (i.e. attributes not defined by an «Archetype») and encapsulates attributes from two «Archetype»s, then the totality of the attributes of said IOC will be contained in three separate tables. In this case the tables should be titled “Attributes” for non-archetype attributes and “Attributes from <<stereotypename>” for each stereotype.

This information is provided, whether from an <<Archetype>> or not, in a tableas follows:

		Attribute name

		Visibility

		Support Qualifier

		Access Qualifier

		Requirement IDs

		ntfSubscriptionId

		+

		M

		R, W+

		

Another example, where the support qualifier is "O" is given here below:

		Attribute name

		Visibility

		Support Qualifier

		Access Qualifier

		Requirement IDs

		ntfSubscriptionId

		+

		O

		R,W+

		

In this example, the ntfSubscriptionId is an optional attribute. If the implementation chose to support ntfSubscriptionId, then the said implementation is required to support read and may support write.

NOTE:
This subclause does not need to be present when there is no attribute to define.

This section should also include a more detailed description of the attributes using the following text and table:

A detailed description of attributes not defined in section Q follows.

		Attribute name

		Type

		Description

		

		

		

B.4.3.a.3
Attribute constraints

The <attribute constraints> subclause presents constraints between attributes that are always held to be true. Those properties are always held to be true during the lifetime of the attributes and in particular don't need to be repeated in pre or post conditions of operations or notifications The attribute constraints should define legal values for each attribute..

NOTE:
This subclause does not need to be present when there are no attribute constraints to define, for instance when available attributes are unconstrained beyond their type..

B.4.3.a.4
Relationships

The <relationship> subclause presents the list of relationships in which this class in involved. Each element is a relationshipName. The relationships will be listed in a table as follows:

		Relationship

		Requirement IDs

		

		

And each relationship name should be a link to the appropriate section of B.4.4.

B.4.3.a.5
State diagram

The <state diagram> subclause contains state diagrams. A state diagram of an information object class defines permitted states of this information object class and the transitions between those states. A state is expressed in terms of individual attribute values or a combination of attribute values or involvement in relationships of the information object class being defined. This shall be a UML compliant state diagram.

NOTE:
This subclause does not need to be present when there is no state diagram to define.

B.4.3.a.6
Notifications

The <notifications> subclause presents the list of notifications that can be emitted across the Itf-N, with "object class" and "object instance" parameters of the notification header of these notifications identifying an instance of the IOC defined by the encapsulating subclause (i.e. clause B.4.3.a). The presence of notifications in the present subclause (i.e. clause B.4.3.a.6) does not imply nor identify those notifications as being originated from an instance of the IOC defined by the encapsulating subclause (i.e. clause B.4.3.a).

All types of notifications should be listed here and this list should not be restricted to state and alarm events. If is integral for the full notification feature set of an information element to be defined with its protocol neutral definition. Although the solution sets may implement these notifications in different interface components it benefits understanding to have the complete behaviour of the entity defined here.

This information is provided in a table. An example of such a table is given below:

		Name

		Qualifier

		Requirement IDs

		Notes

		notifyAckStateChanged

		See Alarm IRP (3GPP TS 32.111-2 [6])

		

		

		notifyAttributeValueChange

		O

		

		

		notifyChangedAlarm

		See Alarm IRP (3GPP TS 32.111-2 [6])

		

		

		notifyClearedAlarm

		See Alarm IRP (3GPP TS 32.111-2 [6])

		

		

		notifyNewAlarm

		See Alarm IRP (3GPP TS 32.111-2 [6])

		

		

		notifyObjectCreation

		O

		

		

		notifyObjectDeletion

		O

		

		

		…

		…

		

		

NOTE:
This subclause does not need to be present when there is no notification to define.

B.4.3.a.7
Operations

The <operations> subclause presents the list of operations that can be invoked across the Itf-N. The presence of operations in the present subclause (i.e. clause B.4.3.a.7) does not imply nor identify those notifications as being originated from an instance of the IOC defined by the encapsulating subclause (i.e. clause B.4.3.a).

This information is provided in a table. An example of such a table is given below:

		Name

		Qualifier

		Requirement IDs

		Notes

		modifyAckState

		See Alarm IRP (3GPP TS 32.111-2 [6])

		

		

NOTE:
This subclause does not need to be present when there is no operation to define.

B.4.4
Information relationship definitions

This section first lists all the relationships supported by this fragment in the following table. Support qualifier is defined as for attributes in B.4.3.a.2.

		Relationship

		Support Qualifier

		Requirement IDs

		

		

		

Each information relationship is then defined using the following structure.

B.4.4.a
InformationRelationshipName (supportQualifier)

InformationRelationshipName is the name of the information relationship followed by a qualifier indicating whether the relationship is Mandatory, Optional or Conditional (M, O, C).

"a" represents a number, starting at 1 and increasing by 1 with each new definition of an information relationship.

B.4.4.a.1
Definition

The <definition> subclause is written in natural language.

B.4.4.a.2
Roles

The <roles> subclause identifies the roles played in the relationship by object classes. Each element is a pair (roleName, roleDefinition). Role definitions must be specified in a protocol neutral manner. Implementation considerations of the role such as the relationship of implementation attributes to a role reference should be omitted.

This information is provided in a table. An example of such a table is given here below:

		Name

		Definition

		IsSubscribedBy

		This role represents the one who has subscribed.

B.4.4.a.3
Constraints

The <constraints> subclause contains the list of properties specifying the semantic invariants that must be preserved on the relationship. Each element is a pair (propertyName, propertyDefinition). Those properties are always held to be true during the lifetime of the relationship and don't need to be repeated in pre or post conditions of operations or notifications.

This information is provided in a table. An example of such a table is given here below:

		Name

		Definition

		inv_notificationCategoriesAllDistinct

		The notification categories contained in the ntfNotificationCategorySet attribute of ntfSubscription playing the role hasSubscription are all distinct from each other.

B.4.6
Particular information configurations

Some configurations of information are special or complex enough to justify the usage of a state diagram to clarify them. A state diagram in this clause defines permitted states of the system and the transitions between those states. A state is expressed in terms of a combination of attribute values constraints or involvement in relationships of one or more information object classes.

Annex C

Guidelines for the Definition of Management Interface (GDMI) – Design

This Annex provides guidelines for specification of protocol specific designs.

TBD..

Annex D

Unified Modelling Language (UML) repertoire

The following are guidelines for specification of the results of the analysis phase as based on 3GPP Unified Modelling Language (UML) repertoire [10].

D.1 Introduction

UML provides a rich set of concepts, notations and model elements to model distributive systems. Usage of all UML notations and model elements is not necessary for the purpose of analysis specifications. This Annex documents the necessary and sufficient set of UML notations and model elements, including the ones built by the UML extension mechanism <<stereotype>>, for use by development of protocol-neutral specifications. Collectively, this set of notations and model elements is called the UML modelling repertoire.

Recommendations following the UTRAD methodology shall employ the UML notation and model elements of this repertoire and may also employ other UML notation and model elements considered necessary.

Agents can be characterized by several different but related models. The models can be exterior or interior to the Agent. Exterior models are use case models and interior models are object models.

Current version of this Annex focuses on the interior model aspects of Agents.

D.2
Basic model elements

UML defined a number of basic model elements. This subclause lists the selected subset for use in the repertoire. The semantics of the selected ones are defined in [12].

· attribute (subclause 3.25 of [12]).

This sample shows two attributes, listed as strings in the attribute compartment of the class AClass.

[image: image1.emf]AClass

attributeA

attributeB

<<InformationObjectClass>>

· aggregation (subclause 3.43.2.5 of [12]).

This sample shows a hollow diamond attached to the end of a path to indicate aggregation. The diamond is attached to the class that is the aggregate.

[image: image2.emf]MscFunction

<<InformationObjectClass>>

ManagedElement

<<InformationObjectClass>>

· operation (subclause 3.26 of [12]).

This sample shows two operations, shown as strings in the operation compartment of class AClass, that the instance of AClass may be requested to perform. The operation has a name, e.g. operationA and a list of arguments (not shown).

[image: image3.emf]AClass

operationA()

operationB()

<<InformationObjectClass>>

· association, association name (subclause 3.41 of [12]).

This sample shows a binary association between exactly two model elements. The association can include the possibility relating a model element to itself. This sample shows a bi-directional association in that one model element is aware of the other. Association can be unidirectional (shown with an open arrow at one association end) in that only the source model element is aware of the target model element and not vice-versa.

[image: image4.emf]BClass

<<InformationObjectClass>>

AClass

<<InformationObjectClass>>

· realization relationship (subclause 2.5.2.1 of [12]).

This sample shows the realization relationship between a AlarmIRPNotification_1 (the supplier) and a model element, IRPManager, that implements it.

[image: image5.emf]IRPManager

<<InformationObjectClass>>

AlarmIRPNotification_1

<<Interface>>

· generalization relationship (subclause 3.50 of [12]).

This sample shows a generalization relationship between a more general element (the IRPAgent) and a more specific element (the IRPAgent_vendor_A) that is fully consistent with the first element and that adds additional information.

[image: image6.emf]IRPAgent

<<InformationObjectClass>>

IRPAgent_vendor_A

<<InformationObjectClass>>

· dependency relationship (subclause 3.51 of [12]).

This sample shows that BClass instances have a semantic relationship with AClass instances. It indicates a situation in which a change to the target element will require a change to the source element in the dependency.

[image: image7.emf]AClass

<<InformationObjectClass>>

BClass

<<InformationObjectClass>>

· note (subclause 3.11 of [12]).

This sample shows a note, as a rectangle with a "bent corner" in the upper right corner. The note contains arbitrary text. It appears on a particular diagram and may be attached to zero or more modelling elements by dashed lines.

[image: image8.emf]SubNetwork

<<InformationObjectClass>>

This is a sample of

a note.

· Multiplicity, a.k.a. cardinality (subclause 3.44 of [12]).

This sample shows a multiplicity attached to the end of an association path. The meaning of this multiplicity is that one Network instance is associated with zero, one or more SubNetwork instances.

[image: image9.emf]Network

<<InformationObjectClass>>

SubNetwork

<<InformationObjectClass>>

0..*0..*

· rolename (subclause 3.43.2.6 of [12]).

This sample shows a Person (say instance John) is associated with a Company (say instance XYZ). We navigate the association by using the opposite association-end such as John.theCompany ="XYZ". Use noun for the rolename.

[image: image10.emf]Person

Company

+theCompany

D.3
Stereotype

This subclause defines all allowable stereotypes that are summarized in the following table. Except <<Interface>>, <<Type>> and <<use>> (which are defined in [12]), all other stereotypes are extensions specifically designed for use in Recommendations based on the UTRAD methodology.

Table: Stereotypes

		Stereotype

		Base Class

		Affected Metamodel Elements

		Interface

		Class

		

		Type

		Class

		

		ProxyClass

		Class

		

		Notification

		Class

		

		Archtetype

		Classifier (subclause 2.5.2.10 of [12])

		

		InformationObjectClass

		Classifier

		

		use

		Association

		

		may use

		Association

		

		may realize

		Association

		

		emits

		Association

		

		names

		Composition

		--

		opt (alternatively «optional»)

		ModelElement

		Attribute, Parameter, and Operation

		%

		3GPPVisibilityKind

		--

D.3.1
<<Interface>>

Subclause 2.5.2.25 of [12]:

"An interface is a named set of operations that characterize the behaviour of an element. In the metamodel, an Interface contains a set of Operations that together define a service offered by a Classifier realizing the Interface. A Classifier may offer several services, which means that it may realize several Interfaces, and several Classifiers may realize the same Interface.

…

Interfaces may not have Attributes, Associations, or Methods. An Interface may participate in an Association provided the Interface cannot see the Association; that is, a Classifier (other than an Interface) may have an Association to an Interface that is navigable from the Classifier but not from the Interface."

Subclause 2.5.4.6 of [12]: "The purpose of an interface is to collect a set of operations that constitute a coherent service offered by classifiers. Interfaces provided a way to partition and characterize groups of operations. An interface is only a collection of operations with a name. It cannot be directly instantiated. Insatiable classifiers, such as class or use case, may use interfaces for specifying different services offered by their instances. Several classifiers may realize the same interface. All of them must contain at least the operations matching those contained in the interface. The specification of an operation contains the signature of the operation (i.e. its name, the types of the parameters and the return type). An interface does not imply any internal structure of the realizing classifier. For example, it does not include which algorithm to use for realizing an operation. An operation may, however, include a specification of the effects [e.g. with pre and post-conditions] of its invocation."

D.3.1.1
Sample

This sample shows an AlarmIRPOperations_1 <<Interface>> that has two operations. The operation visibility is public (see definition of public visibility applicable to operation in subclause "visibility"). The input and output parameters of the operations are hidden (i.e. not shown). The AlarmIRP has a unidirectional mandatory realization relationship with the <<Interface>>.

[image: image11.emf]AlarmIRP

<<InformationObjectClass>>

AlarmIRPOperations_1

getAlarmList()

acknowledgeAlarms()

<<Interface>>

<<Interface>> Notation

D.3.2
<<Type>>

Subclause 3.28 of [12]: "[A Type is] a domain of objects together with the operations applicable to the objects, without defining the physical implementation of those objects. A Type may not contain any methods, maintain its own thread of control, or be nested. However, it may have Attributes and Associations. The Associations of a Type are defined solely for the purpose of specifying the behaviour of the Type's operations and do not represent the implementation of state data".

D.3.2.1
Sample

This sample shows the NotificationIRPNotification <<Type>> that specifies the five parameters (the notification header of Notification IRP). The AlarmIRPNotification_2 <<Interface>> depends (see the dependency relationship, a dashed open arrow line) on this <<Type>> for the construction of the notification emitted via the operation notifyChangedAlarm(). The visibility of attributes and operation in the example is public.

[image: image12.emf]AlarmIRPNotification_2

+ notifyChangedAlarm()

<<Interface>>

NotificationIRPNotification

+ objectClass

+ objectInstance

+ notificationId

+ eventTime

+ systemDN

+ notificationType

<<Type>>

<<Type>> Notation

D.3.3
<<ProxyClass>>

It is a form or template representing a number of <<InformationObjectClass>>. It encapsulates attributes, links, methods (or operations), and interactions that are present in the represented <<InformationObjectClass>>.

The semantics of a <<ProxyClass>> is that all behaviour of the <<ProxyClass>> are present in the represented <<InformationObjectClass>>. Since this class is simply a representation of other classes, this class cannot define its own behaviour other than those already defined by the represented <<InformationObjectClass>>.

A particular <<InformationObjectClass>> can be represented by zero, one or more <<ProxyClass>> or <<Archetype>>. For example, the ManagedElement <<InformationObjectClass>> can have MonitoredEntity <<ProxyClass>> and ManagedEntity <<ProxyClass>>.

The attributes of the <<ProxyClass>> are accessible by the source entity that has an association with the <<ProxyClass>>.

D.3.3.1
Sample

This shows a <<ProxyClass>> named MonitoredEntity. It represents all NRM <<InformationObjectClass>> (e.g. GgsnFunction <<InformationObjectClass>>) whose instances are being monitored for alarm conditions.

Note that <<MonitoredEntity>> does not define attributeA. The attributeA is already defined by all <<InformationObjectClass>> represented by the <<MonitoredEntity>>, i.e. ClassA and ClassB.

[image: image13.wmf]

MonitoredEntity

+ attributeA

<<ProxyClass>>

ClassB

+ attributeA

+ attributeB

+ attributeC

<<InformationObjectClass>>

ClassA

<<InformationObjectClass>>

+ attributeA

+ attributeB

+ attributeX

+ attributeY

<<ProxyClass>>

D.3.4
<<Archetype>>

It is a form or template representing a number of <<InformationObjectClass>>. It encapsulates attributes, links, operations, and interactions that are typical of the represented <<InformationObjectClass>>.

The semantics of an <<Archetype>> is that all attributes, links operations and interactions encapsulated by the <<Archetype>> may or may not be present in the represented <<InformationObjectClass>>. The <<Archetype>> represents a placeholder class that is most useful in technology neutral analysis models that will require further specification and/or mapping within a more complete construction model.

D.3.4.1
Sample

This shows a <<Archetype>> named StateManagement. It also shows a <<InformationObjectClass>> IRPAgent that depends on this StateManagement. Note that the StateManagement has defined a number of attributes, the classes that depend on this StateManagement may or may not use all of the StateManagement attributes. In other words, at least one of the attributes of StateManagement is present in the IRPAgent. The precise set of StateManagement attributes used by the IRPAgent is specified in the IRPAgent specification.

[image: image14.emf]IRPAgent

<<InformationObjectClass>>

StateManagement

+ administrativeState

+ otherStates

<<Archetype>>

<<Archetype>>> Notation

D.3.5
<<InformationObjectClass>>

It is the descriptor for a set of network resources and network management capabilities. Each <<InformationObjectClass>> represents a set of instances with similar structure, behaviour and relationships.

This <<InformationObjectClass>> and other information classes such as <<Interface>> are mapped into technology specific model elements such as GDMO Managed Object Class for CMIP technology. The mapping of the protocol-neutral modelling constructs to technology specific modelling constructs are captured in the corresponding protocol-specific specifications.

The name of a <<InformationObjectClass>> has scope within the Recommendation in which it is specified and the name must be unique among all <<InformationObjectClass>> names within that Recommendation. The Recommendation name is considered in the similar way as the UML Package-name.

The <<InformationObjectClass>> is identical to UML class except that it does not include/define methods or operations.

Subclause 3.22.1 of [12]: "A class represents a concept within the system being modelled. Classes have data structure and behaviour and relationships to other elements."

D.3.5.1
Sample

This sample shows an AlarmList <<InformationObjectClass>>.

[image: image15.emf]AlarmList

- attribute1

- otherAttributes

<<InformationObjectClass>>

<<InformationObjectClass>>> Notation

D.3.6
<<use>> and <<may use>>

The <<use>> and <<may use>> are unidirectional associations. The target must be an <<Interface>>. The <<use>> states that the source class must have the capability to use the target <<Interface>> in that it can invoke the operations defined by the <<Interface>>. Support of the capability by the source entity is mandatory. The <<may use>> states that the source class may have the capability to use the target <<Interface>> in that it may invoke the operations defined by the <<Interface>>. Support of the capability by the source entity is optional.

The operations defined by the <<Interface>> are visible across the interface/reference point.

D.3.6.1
Sample

This shows that the NotificationIRPAgent shall use the notifyNewAlarm and otherNotifications of AlarmIRPNotification_1 and may use the notifyChangedAlarm of AlarmIRPNotification_2.

[image: image16.emf]AlarmIRPNotification_1

+ notifyNewAlarm()

+ otherNotifications()

<<Interface>>

NotificationIRPAgent

<<InformationObjectClass>>

<<use>>

AlarmIRPNotification_2

+ notifyChangedAlarm()

<<Interface>>

<<may use>>

<<use>> and <<may use>> Notation

D.3.7
Relationship realize and <<may realize>>

The relationship realize and <<may realize>> are unidirectional association. The target must be an <<Interface>>. The relationship "realize" shows that the source entity must realize the operations defined by the target <<Interface>>. Realization of operations by the source entity is mandatory. The <<may realize>> shows the source entity may realize the operations defined by the target <<Interface>>. Realization of the <<Interface>> by the source entity is optional.

The operations defined by <<Interface>> are visible across the interface/reference point.

D.2.2.7.1
Sample

This shows that the AlarmList shall realize (or support, implement) the two operations of AlarmIRPOperations_1 and may realize the operation of AlarmIRPOperations_2.

[image: image17.emf]AlarmIRPOperations_2

+ getAlarmCount()

<<Interface>>

<<may realize>>

AlarmList

- attribute1

- otherAttributes

<<InformationObjectClass>>

AlarmIRPOperations_1

+ getAlarmList()

+ acknowledgeAlarms()

<<Interface>>

Relationship realize and <<may realize>> Notations

D.3.8
<<emits>>

This is a unidirectional association. The source sends information to target.

D.3.8.1
Sample

This shows the MonitoredEntity emits notifications that are received by the Notification Agent. The emission is not visible across the interface.

[image: image18.emf]MonitoredEntity

<<ProxyClass>>

NotificationIRPAgent

<<InformationObjectClass>>

<<emits>>

<<emits>> Notation

[image: image19.emf]MonitoredEntity

objectclass

objectInstance

<<ProxyClass>>

AlarmIRPNotification_1

+ notifyNewAlarm()

+ otherOperations()

<<Interface>>

NotificationIRPAgent

<<InformationObjectClass>>

<<emits>>

<<use>>

IRPManager

<<InformationObjectClass>>

<<use>>, <<emits>> and realize relationship Notation

D.3.9
<<names>>

It specifies a unidirectional composition. The target instance is uniquely identifiable, within the namespace of the source entity, among all other targeted instances of the same target classifier and among other targeted instances of other classifiers that have the same <<names>> composition with the source.

Composition used as the act of name containment provides a semantic of a whole-part relationship between the domain and the named elements that are contained, even if only by name. From the management perspective access to the part is through the whole. Multiplicity shall be indicated on both ends of the relationship.

A target can not have multiple <<names>> with multiple sources, i.e. a target can not participate in or belong to multiple namespaces.

By convention, the name of the attribute in the target model element to hold part of the unique identification shall be formed by the name of the target class concatenated with "Id". There are two presentation options for the unique identification attribute of the class being named.

1) The use of the role qualifier allow the unique identification attribute to be attached to the target end of the <<names>> association (see the following figure).

2) The unique identification attribute may be indicated as a normal attribute within the class attribute compartment.

D.3.9.1
Sample

This shows that all instances of ManagedFunction are uniquely identifiable within the ManagedElement namespace. Note the use of the label supports in specifications is optional.

[image: image20.wmf]

ManagedElement

ManagedFunction

managedFunctionId

0..*

1

supports

0..*

1

<<names>>

managedFunctionId

<<names>> Notation, Composition and explicit Qualifier

D.3.10
<<opt>>

The <<opt>> (alternatively <<optional>>) enables the indication of optionality of attributes, parameters and operations (respectively) within the UML diagrams. The semantics of optionality are clearly defined in Annex A.

In the absence of the stereotype, the attribute, parameter, or operation in question is mandatory.

[image: image21.wmf]

BulkCMActive

+ download()

<<opt>> + validate()

<<opt>> + preactivate()

+ activate()

+ fallback()

<< Interface>>

Example of the use of optionality indicator for operations

D.3.11
<<Notification>>

<<Notification>> is a named set of notifications. In the metamodel, a <<Notification>> contains a set of Notifications that together define a service offered by a Classifier realizing the <<Notification>>.

D.3.11.1
Sample

This sample shows a <<Notification>> named “PMIRPNotifications_1” that has one notification and a <<Notification>> named “PMIRPNotifications_2” that has three notifications.

[image: image22.wmf]

PMIRPNotifications_2

+ notifyThresholdMonitorStatusCh

anged()

+ notifyThresholdMonitorObjectCreation()

+ notifyThresholdMonitorObjectDeletion()

<<Notification>>

NotificationIRP

(from TS 32.302)

<<InformationObjectClass>>

PMIRPNotifications_1

+ notifyMeasurementJobStatusChanged()

<<Notification>>

<<agent

-

internal

-

usage>>

<<agent

-

internal

-

usage>>

PMIRP

<<InformationObjectClass>>

<<use>>

<<may use>>

D.4
Visibility

It specifies the accessibility of the operation and attribute. There are three types of visibility, i.e. private, public and Agent Internal.

Private Visibility (notation "-")

		Operation

		NA

		Attribute

		It indicates that the attribute is not accessible by other entities, e.g. the Manager, other entities not holding the subject attribute

Public Visibility (notation "+")(default)

		Operation

		It indicates that the operation is visible across the itf-N, e.g. the Manager can invoke the operation across the itf-N interface.

		Attribute

		it indicates that the attribute is accessible across the itf-N, i.e. the Manager can invoke an operation to read the attribute and to write to this attribute if the attribute is so qualified. The read or write operation must be directly invoked against the entity holding the subject attribute or against the Agent.

Agent Internal Visibility (notation "%")

		Operation

		It indicates that the operation is not visible across the itf-N, i.e. the Manager cannot invoke the operation. However, other entities can invoke the operation (see note).

		Attribute

		It indicates that the attribute is not directly accessible across the itf-N, i.e. the Manager cannot read/write this attribute. However, other entities can read/write this attribute.

D.4.1
Samples

This sample shows four attributes whose visibility are private, public (default notation), public and Agent Internal. It is recommended that within a Class symbol, the use of default notation or not for public visibility should be consistent, i.e. all "publicly visible" attributes shall be shown with the "+" sign or without the "+" sign (default notation).

[image: image23.wmf]�

ClassSample

�

- attributeA

�

attributeB

�

attributeC

�

<<%>> attributeD

�

<<InformationObjectClass>>

Visibility of attributes

This sample shows three operations. Two of these operations are accessible by the Manager via the itf-N. It is recommended that within a Class symbol, the use of default notation or not for public visibility should be consistent, i.e. all "publicly visible" operation shall be shown with the "+" sign or without the "+" sign (default notation).

[image: image24.wmf]�

InterfaceSample

�

+ operationA()

�

+ operationB()

�

<<%>> operationC()

�

<<Interface>>

Visibility of operations

This sample shows one notification whose visibility is public using the non-default public visibility notation. These notifications are accessible by the Manager via the itf-N.

[image: image25.emf]AlarmIRPNotification_2

+ notifyChangedAlarm()

<<Interface>>

Visibility of notification

D.5
Association classes

Subclause 3.46 [12] defines an association class as

"An association class is an association that also has class properties (or a class that has association properties). Even though it is drawn as an association and a class, it is really just a single model element.".

Association classes are appropriate for use when an «InformationObjectClass» needs to maintain associations to several other «InformationObjectClass»'s and there are relationships between the members of the associations within the scope of the "containing" «InformationObjectClass». For example, a namespace maintains a set of bindings, a binding ties a name to an object. A Binding «IOC» can be modeled as an Association Class that provides the binding semantics to the relationship between a name and some other «InformationObjectClass». This is depicted in the following figure (exemplary only, not taken from another Recommendation).

[image: image26.wmf]Namespace

<<InformationObjectClass>>

Binding

<<InformationObjectClass>>

0..*

0..*

Name

Object

<<InformationObjectClass>>

1

1

1

1

Example of an Association Class

D.6
Abstract Class

It specifies a <<InformationObjectClass>> as a base class to be inherited by subclasses. An abstract class can not be.

Abstract class notation is the use of italics in the class name of the corresponding <<InformationObjectClass>> in the diagram.

D.6.1
Sample

This shows that ManagedGenericIRP is an abstract <<InformationObjectClass>>.

[image: image27.emf]ManagedGenericIRP

(from 32.312)

<<InformationObjectClass>>

NotificationIRP

(from 32.302)

<<InformationObjectClass>>

Abstract Class Notation

Appendix I

Guidelines for Definition of Management Information: Requirements example

TBD.

Appendix II

Guidelines for Definition of Management Information: Analysis example

TBD.

�What is Matching Information?

�What is Matching Information?

�This definition is inconsistent with the UML specification and UML tools. What is actually intended by the 3GPP group with this qualifier. We recommend not using this qualifier in UML diagrams until this issue is resolved.

Recommendation ()
36

38 (1)

1 (1)

_1175609086.doc

ManagedElement

ManagedFunction

managedFunctionId

0..*

1

supports

0..*

1

<<names>>

managedFunctionId

_1175682054.doc

MonitoredEntity

+ attributeA

<<ProxyClass>>

ClassA

+ attributeY

+ attributeX

+ attributeB

+ attributeA

<<InformationObjectClass>>

ClassB

+ attributeA

+ attributeB

+ attributeC

<<InformationObjectClass>>

_1175688750.doc

NotificationIRP

(from TS 32.302)

<<InformationObjectClass>>

PMIRPNotifications_1

+ notifyMeasurementJobStatusChanged()

<<Notification>>

<<agent-internal-usage>>

PMIRPNotifications_2

+ notifyThresholdMonitorStatusChanged()

+ notifyThresholdMonitorObjectCreation()

+ notifyThresholdMonitorObjectDeletion()

<<Notification>>

<<agent-internal-usage>>

PMIRP

<<InformationObjectClass>>

<<use>>

<<may use>>

_1175511951.doc

BulkCMActive

+ download()

<<opt>> + validate()

<<opt>> + preactivate()

+ activate()

+ fallback()

<< Interface>>

_1192202992.doc
- 2 -

TD 25 (WP 3/4)

		INTERNATIONAL TELECOMMUNICATION UNION

		STUDY GROUP 4

		TELECOMMUNICATION
STANDARDIZATION SECTOR

STUDY PERIOD 2005-2008

		TD 25 (WP 3/4)

		

		English only

Original: English

		Question(s):

		9/4

		Geneva, 20-30 September 2005

		TEMPORARY DOCUMENT

		Source:

		Rapporteur Q9/4

		Title:

		Requirements and Analysis of Common Management Services

This document contains draft text of the requirements and analysis phases of the initial set of Common Management Services.

		Areas

		Input documents

		Requirements

		Analysis

		Comment

		Object Management

		32.661

32.662

32.601

32.602

X.730

Q.827.1

		

[image: image1.wmf]X.object.1.doc

		

		

		State Management

		32.671

32.672

X.731

Q.827.1

		

[image: image2.wmf]X.state.1.doc

		

[image: image3.wmf]X.state.2.doc

		See “Issues”

		Alarm Management

		32.111-1

32.111-2

X.733

X.736

X.733.1

Q.821

Q.827.1

		

[image: image4.wmf]X.alarm.1.doc

		

[image: image5.wmf]X.alarm.2.doc

		See “Issues”

		Notification Management

		32.301

32.302

Q.821

Q.827.1

X.735

X.754

		

[image: image6.wmf]X.notification.1.doc

		

[image: image7.wmf]X.notification.2.doc

		

		Log Management

		32.301

32.302

Q.821 (Log Control)

X.735

		

[image: image8.wmf]X.log.1.doc

		

[image: image9.wmf]X.log.2.doc

		

		Test Management

		X.745

X.737

		

		

		

[image: image10.wmf]X.test.1.doc

		Performance Management

		32.411

32.412

X.738

X.739

Q.822

Q.827.1

		

		

		

[image: image11.wmf]performance.doc

Issues

Alarm:

1. Alarm filtering supports only a limited set of attributes in 3GPP, this should be extended to support any Alarm attribute. This is within the domain of Notification IRP, not Alarm IRP, but should be captured in the Alarm IRP requirements (this document). Note that filtering is also defined for Active Alarm List. It would be better to define filtering in a global scope (IRP itself?) rather than mixing metaphors or having separate solutions between Notification and Query.

2. “buffer full” behaviour of X.735 should be defined within harmonized IRPs (Notification?)

3. Acknowledgement should include system, operator, time, state (not alarm state)

4. Alarm summarization function should be supported (notification and retrieval). 3GPP only defines getAlarmCounts in AlarmIRPOperation_2.

5. Q.827.1 content?

6. 3GPP lacks Alarm Indication Management functions

7. Scheduling and bulk operation functions are required in general management functions (Q.821)

8. Alarm Inhibition function required (Q.821) – should be in Notification IRP

9. X.733.1 defines the additional attribute StructuredProbableCause, this should be added to Alarm IRP

10. Expansion of ThresholdInfo as a class useful, not required

11. ackInfo and clearInfo expansion as a class useful, not required

12. Where is the notification? Where is the logging?

13. alarmId is the unique identifier of an alarm in an AlarmList (ITU-T defines this is probableCause + affected component + time)

14. alarms are in the active list until cleared AND acknowledged in 3GPP, in ITU-T they are removed when cleared

15. correlatedIdSet can be any kind of correlation in 3GPP but has specific (superceeded by) meaning in ITU-T

16. references in attribute definitions to X.7xx documents should be removed and imported (directly from X.733.1)

17. the bundling of acknowledgement and getAlarmList does not make sense (ack and unack should be bundled together)

18. 3GPP makes acknowledgement and getAlarmList mandatory, these would need to be optional for harmonization

19. is the filtering constraint in 6.3.2.3 consistent with ITU-T recommendation?

20. AlarmNotificationIRP does not define synchronization operations (beyond bulk retrieval) – do these need to be added?

State:

1. Needs to add, optional, lifecycle state to requirements and IS

2. Reference to X.731 and its state diagrams should be directly imported

		Contact:

		Knut Johannessen

Telenor

Norway

		Tel: +47 90 10 18 10

Fax: +47 940 53 977

Email:

knut-hakon.johannessen@telenor.com

		Contact:

		Martin Soukup

Nortel Networks

Canada

		Tel: +1 613 765 6435

Fax:

Email: msoukup@nortel.com

		Attention: This is not a publication made available to the public, but an internal ITU-T Document intended only for use by the Member States of ITU, by ITU-T Sector Members and Associates, and their respective staff and collaborators in their ITU related work. It shall not be made available to, and used by, any other persons or entities without the prior written consent of ITU-T.

_1189423142.doc

2

1
Scope

The present document specifies the overall requirements for Fault Management (FM) as it applies to the Network Elements (NE), Element Manger (EM) and Network Manager (NM).

A network is composed of a multitude of Network Elements (NE) of various types and, typically, different vendors, which inter-operate in a co-ordinated manner in order to satisfy the network users' communication requirements.
The occurrence of failures in a NE may cause a deterioration of this NE's function and/or service quality and will, in severe cases, lead to the complete unavailability of the respective NE. In order to minimize the effects of such failures on the Quality of Service (QOS) as perceived by the network users it is necessary to:

· detect failures in the network as soon as they occur and alert the operating personnel as fast as possible;

· isolate the failures (autonomously or through operator intervention), i.e. switch off faulty units and, if applicable, limit the effect of the failure as much as possible by reconfiguration of the faulty NE/adjacent NEs;

· if necessary, determine the cause of the failure using diagnosis and test routines; and,

· repair/eliminate failures in due time through the application of maintenance procedures.

This aspect of the management environment is termed "Fault Management" (FM). The purpose of FM is to detect failures as soon as they occur and to limit their effects on the network Quality of Service (QOS) as far as possible.
The latter is achieved by bringing additional/redundant equipment into operation, reconfiguring existing equipment/NEs, or by repairing/eliminating the cause of the failure. Degradation of service may be detected by monitoring of error rates. Threshold mechanisms on counters and gauges are a method of detecting such trends and providing a warning to managers when the rate becomes high.

Alarms are a specific type of notification concerning detected faults or abnormal conditions. Managed object definers are encouraged to include in alarms information that will help with understanding the cause of the potentially abnormal situation, and other information related to side effects. An example of such diagnostic information is the current and past values of the configuration management state of the object.

A single incident may cause the generation of several notifications; it is important to be able to specify in a notification some correlation with other notifications. However, the mechanism, if any, for determining the relationship between notifications resulting from a single incident is for further study.

Fault Management (FM) encompasses all of the above functionalities except commissioning/decommissioning of NEs and potential operator triggered reconfiguration.

The functional areas specified in the present document cover:

· notification of alarms (including alarm cease) and operational state changes;

· retrieval of current alarms from the NEs;

· alarm filtering;

· management of alarm severity levels;

· alarm and operational state data presentation and analysis at the Operations System (OS);

· retention of alarm and operational state data in the NEs and the OS; and

· the management of tests.

Any (re)configuration activity exerted from the EM as a consequence of faults will not be subject of the present document.

This document defines the requirements for Fault Management.

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies.

[1]
ITU-T Recommendation X.733: "Information technology - Open Systems Interconnection - Systems Management: Alarm reporting function".

[2]
ITU-T Recommendation X.754: "Information technology - Open Systems Interconnection - Systems Management: Advanced event reporting function".

[3]
ITU-T Recommendation X.notif.1: “Notification functions: Requirements”

[4]
ITU-T Recommendation X.notif.2: “Notification functions: Protocol Neutral Model”

[5]
ITU-T Recommendation X.log.1: “Notification Log functions: Requirements”

[6]
ITU-T Recommendation X.log.2: “Notification Log functions: Protocol Neutral Model”

Non-normative references:

[7]
3GPP TS 32.111-1: "Telecommunication management; Fault Management; Part 2: Alarm Integration Reference Point (IRP); Requirements".

[8]
3GPP TS 32.111-2: "Telecommunication management; Fault Management; Part 2: Alarm Integration Reference Point (IRP); Information Service (IS)".

3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the following terms and definitions apply:

active alarm: an alarm that has not been cleared and which is active until the fault that caused the alarm is corrected and a "clear alarm" is generated

ADAC Faults: faults that are "Automatically Detected and Automatically Cleared" by the system when they occur and when they are repaired

ADMC Faults: faults that are Automatically Detected by the system when they occur and Manually Cleared by the operator when they are repaired

alarm: abnormal network entity condition, which categorizes an event as a fault

alarm notification: notification used to inform the recipient about the occurrence of an alarm

clear alarm: notification used to inform the recipient about the cessation of an alarm and thus the underlying fault condition

event: this is a generic term for any type of occurrence within a network entity

NOTE:
A notification or event report may be used to inform one or more OS(s) about the occurrence of the event.

error: A deviation of a system from normal operation

fault: The physical or algorithmic cause of a malfunction. Faults manifest themselves as errors.

notification: information message originated within a network entity to inform one or more OS(s) about the occurrence of an event

3.2
Abbreviations

For the purposes of the present document, the following abbreviations apply:

ADAC
Automatically Detected and Automatically Cleared

ADMC
Automatically Detected and Manually Cleared

CM
Configuration Management

CMIP
Common Management Information Protocol

EM
Element Manger

FM
Fault Management

ISO
International Standards Organisation

MMI
Man-Machine Interface

MOC
Managed Object Class

MOI
Managed Object Instance

NE
Network Element

NM
Network Manager

OS
Operations System

QOS
Quality Of Service

TMN
Telecommunications Management Network

4
Requirements

Any evaluation of the NEs' and the overall network health status requires the detection of faults in the network and, consequently, the notification of alarms to the OS (EM and/or NM). Depending on the nature of the fault, it may be combined with a change of the operational state of the logical and/or physical resource(s) affected by the fault. Detection and notification of these state changes is as essential as it is for the alarms. A list of active alarms in the network and operational state information as well as alarm/state history data may be required by the system operator for further analysis. Additionally, test procedures may be used in order to obtain more detailed information if necessary, or to verify an alarm, a state or the proper operation of NEs and their logical and physical resources.

This service uses the following other services and thus implicitly imports all the requirements defined therein:

· Notification, defined in X.notif.1

· Notification Log, defined in X.log.1

4.1
Business level requirements

Faults that may occur in the network can be grouped into one of the following categories:

· Hardware failures, i.e. the malfunction of some physical resource within a NE.

· Software problems, e.g. software bugs, database inconsistencies.

· Functional faults, i.e. a failure of some functional resource in a NE and no hardware component can be found responsible for the problem.

· Loss of some or all of the NE's specified capability due to overload situations.

· Communication failures between two NEs, or between NE and OS, or between two OSs.

Fault detection

REQ-FM-FUN-01 When any of the above types of fault occurs within a network, the affected network entities shall be able to detect them immediately. The network entities accomplish this task using autonomous self-check circuits/procedures, including, in the case of NEs, the observation of measurements, counters and thresholds. The threshold measurements may be predefined by the manufacturer and executed autonomously in the NE, or they may be based on performance measurements administered by the EM, see X.performance.1. The fault detection mechanism as defined above shall cover both active and standby components of the network entities.

REQ-FM-FUN-02 The majority of the faults should have well-defined conditions for the declaration of their presence or absence, i.e. fault occurrence and fault clearing conditions. Any such incident shall be referred to in the present document as an ADAC fault. The network entities should be able to recognize when a previously detected ADAC fault is no longer present, i.e. the clearing of the fault, using similar techniques as they use to detect the occurrence of the fault.

REQ-FM-FUN-03 For some faults, no clearing condition exists. For the purpose of the present document, these faults shall be referred to as ADMC faults. An example of this is when the network entity has to restart a software process due to some inconsistencies, and normal operation can be resumed afterwards. In this case, although the inconsistencies are cleared, the cause of the problem is not yet corrected. Manual intervention by the system operator shall always be necessary to clear ADMC faults since these, by definition, cannot be cleared by the network entity itself.

REQ-FM-FUN-04 For faults which do not result in standing conditions there is no need for any short-term action, neither from the system operator nor from the network entity itself, since the fault condition lasted for a short period of time only and then disappeared. An example of this is when a NE detects the crossing of some observed threshold, and in the next sampling interval, the observed value stays within its limits.

REQ-FM-FUN-05 When an alarm is generated a corresponding active alarm is added to the active alarm list by the Agent if an active alarm list is supported.

Clearing of alarms

The alarms originated in consequence of faults need to be cleared. To clear an alarm it is generally necessary to repair the corresponding fault. The procedures to repair faults are implementation dependent and therefore they are out of the scope of the present document, however, in general:

· the equipment faults are repaired by replacing the faulty units with working ones;

· the software faults are repaired by means of partial or global system initializations, by means of software patches or by means of updated software loads;

· the communication faults are repaired by replacing the faulty transmission equipment or, in case of excessive noise, by removing the cause of the noise;

· the QOS faults are repaired either by removing the causes that degraded the QOS or by improving the capability of the system to react against the causes that could result in a degradation of the QOS;

· Solving the environmental problem repairs the environment faults (high temperature, high humidity, etc.).

It is also possible that an ADAC fault is spontaneously repaired, without the intervention of the operator (e.g. a threshold crossed fault). In this case the NE behaves as for the ADAC faults repaired by the operator.

In principle, the NE uses the same mechanisms to detect that a fault has been repaired, as for the detection of the occurrence of the fault. However, for ADMC faults, manual intervention by the operator is always necessary to clear the fault. Practically, various methods exist for the system to detect that a fault has been repaired and clear alarms and the faults that triggered them. For example:

· The system operator implicitly requests the NE to clear a fault, e.g. by initializing a new device that replaces a faulty one. Once the new device has been successfully put into service, the NE shall clear the fault(s). Consequently, the NE shall clear all related alarms.

· The system operator explicitly requests the clearing of one or more alarms. Once the alarm(s) has/have been cleared, the fault management system (within EMS and/or NE) should reissue those alarms (as new alarms) in case the fault situation still persists.

· The NE detects the exchange of a faulty device by a new one and initializes it autonomously. Once the new device has been successfully put into service, the NE shall clear the fault(s). Consequently, the NE shall clear all related alarms.

· The NE detects that a previously reported threshold crossed alarm is no longer valid. It shall then clear the corresponding active alarm and the associated fault, without requiring any operator intervention. The details for the administration of thresholds and the exact condition for the NE to clear a threshold crossed alarm are implementation specific and depend on the definition of the threshold measurement, see also clause 4.1.1.

· ADMC faults/alarms can, by definition, not be cleared by the NE autonomously. Therefore, in any case, system operator functions shall be available to request the clearing of ADAC alarms/faults in the NE. Once an ADMC alarm/fault has been cleared, the NE shall clear the associated ADAC fault/alarm.

Details of these mechanisms are system/implementation specific.

REQ-FM-FUN-06 Each time an alarm is cleared the Agent shall generate an appropriate clear alarm event. A clear alarm is defined as an alarm. The relationship between the clear alarm and the active alarm is established:

· by re-using a set of parameters that uniquely identify the alarm; or

· by including a reference to the active alarm(s) in the clear alarm.

REQ-FM-FUN-07 When a clear alarm is generated the corresponding active alarm is removed from the active alarm list by the Agent if an active alarm list is supported.

REQ-FM-FUN-08 A clear alarm is identified as such through the use of perceived severity equal to CLEARED.

Alarm forwarding and filtering

REQ-FM-FUN-09 For each detected fault, appropriate alarms (notifications of the fault) shall be generated by the faulty network entity, regardless of whether it is an ADAC or an ADMC fault.

For each fault, the fault detection process shall supply the following information:

· the device/resource/file/functionality/smallest replaceable unit as follows:

· for hardware faults, the smallest replaceable unit that is faulty;

· for software faults, the affected software component, e.g. corrupted file(s) or databases or software code;

· for functional faults, the affected functionality;

· for faults caused by overload, information on the reason for the overload;

· for all the above faults, wherever applicable, an indication of the physical and logical resources that are affected by the fault if applicable, a description of the loss of capability of the affected resource.

· the type of the fault (communication, environmental, equipment, processing error, QOS, security types);

· the severity of the fault (indeterminate, warning, minor, major, critical);

· the probable cause or the structured probable cause of the fault;

· the time at which the fault was detected;

· the nature of the fault, e.g. ADAC or ADMC;

·
any other information that helps understanding the cause and the location of the abnormal situation (system/implementation specific).

REQ-FM-FUN-010 An fault conditions is uniquely identified by the combination of the managed object instance experiencing the fault and either: the structured probable cause or the probable cause and the specific problem.

REQ-FM-FUN-011 An alarm is uniquely identified by the unique fault condition parameters and the time of fault detection.

REQ-FM-FUN-012 In order to ease the fault localization and repair, the faulty network entity should generate for each single fault, one single alarm, also in the case where a single fault causes a degradation of the operational capabilities of more than one physical or logical resource within the network entity. An example of this is a hardware fault, which affects not only a physical resource but also degrades the logical resource(s) that this hardware supports. In this case the network entity should generate one single alarm for the faulty resource (i.e. the resource which needs to be repaired) and a number of events related to state management for all the physical/logical resources affected by the fault, including the faulty one itself. In case a network entity is not able to recognize that a single fault manifests itself in different ways, the single fault is detected as multiple faults and originates multiple alarms. In this case however, when the fault is repaired the network entity should be able to detect the repair of all the multiple faults and clear the related multiple alarms. When a fault occurs on the connection media between two NEs or between a NE and an OS, and affects the communication capability between such NE/OS, each affected NE/OS shall detect the fault and generate its own associated communication alarm toward the managing OS. In this case it is the responsibility of the OS to correlate alarms received from different NEs/OSs and localize the fault in the best possible way.

REQ-FM-FUN-013 The following criteria shall minimally be supported for alarm notification filtering:

· the NE that generated the alarm, i.e. all alarm messages for that NE shall be suppressed;

· the device/resource/function to which the alarm relates;

· the severity of the alarm;

· the time at which the alarm was detected, i.e. the alarm time; and,

· any combination of the above criteria.

Storage and retrieval of alarms in/from the Agent

REQ-FM-FUN-014 Each Agent may store and retain a list of all active alarms, i.e. all alarms that have not yet been cleared.

REQ-FM-FUN-015 Each Agent may store and retain alarm history information, i.e. all notifications related to the occurrence and clearing of alarms. This will be implemented using Notification Logs as defined in X.log.1 and X.log.2.

REQ-FM-FUN-016 Active alarm information may be retrieved by a Manager if this is supported by the Agent. It shall be possible to apply filters when active alarm information is retrieved by the Manager.

Fault Recovery

After a fault has been detected and the replaceable faulty units/components have been identified, some management functions are necessary in order to perform system recovery and/or restoration, either automatically by the NE and/or the EM, or manually by the operator.

The fault recovery functions are used in various phases of the Fault Management (FM):

1)
Once a fault has been detected, the NE may be able to evaluate the effect of the fault on the telecommunication services and autonomously take recovery actions in order to minimize service degradation or disruption.

2)
Once the faulty unit(s) has (have) been replaced or repaired, it shall be possible from the EM to put the previously faulty unit(s) back into service so that normal operation is restored. This transition should be done in such a way that the currently provided telecommunication services are not, or only minimally, disturbed.

3)
At any time the NE may be able to perform recovery actions if requested by the operator. The operator may have several reasons to require such actions; e.g. he has deduced a faulty condition by analysing and correlating alarm reports, or he wants to verify that the NE is capable of performing the recovery actions (proactive maintenance).

The recovery actions that the NE performs (autonomously or on demand) in case of faults depend on the nature and severity of the faults, on the hardware and software capabilities of the NE and on the current configuration of the NE.

Faults are distinguished in two categories: software faults and hardware faults. In the case of software faults, depending on the severity of the fault, the recovery actions may be system initializations (at different levels), activation of a backup software load, activation of a fallback software load, download of a software unit etc. In the case of hardware faults, the recovery actions depend on the existence and type of redundant (i.e. back-up) resources. Redundancy of some resources may be provided in the NE in order to achieve fault tolerance and to improve system availability. Data and configuration errors are treated similarly to software errors.

If the faulty resource has no redundancy, the recovery actions should be:

a)
Isolate and remove from service the faulty resource so that it cannot disturb other working resources;

b)
Remove from service the physical and functional resources (if any) which are dependent on the faulty one. This prevents the propagation of the fault effects to other fault-free resources;

c)
State management related activities for the faulty resource and other affected/dependent resources, cf. clause 4.2;

d)
Generate and forward appropriate notifications to inform the OS about all the changes performed.

If the faulty resource has redundancy, the NE should perform action a), c) and d) above and, in addition, the recovery sequence that is specific to that type of redundancy. Several types of redundancy exist (e.g. hot standby, cold standby, duplex, symmetric/asymmetric, N plus one or N plus K redundancy, etc.), and for each one, there is a specific sequence of actions to be performed in case of failure. The present document specifies the Fault Management aspects of the redundancies, but it does not define the specific recovery sequences of the redundancy types.

In the case of a failure of a resource providing service, the recovery sequence should start immediately upon detection of the failure. Before or during the changeover, a temporary and limited loss of service shall be acceptable. In the case of a management initiated recovery command, the NE should perform the changeover without degradation of the telecommunication services.

The detailed definition of the management of the redundancies is out of the scope of the present document.

Configuration of Alarms

REQ-FM-FUN-017 The Manager shall be able to configure any threshold that determines the declaration or clearing of a fault. If a series of thresholds are defined to generate alarms of various severities, then for each alarm severity the threshold values shall be configurable individually.

REQ-FM-FUN-018 It shall be possible for the Manager to modify the severity of alarms defined in the system, e.g. from major to critical.

REQ-FM-FUN-019 The Agent shall confirm any alarm configuration commands and shall notify the results to the requesting Manager.

Alarm acknowledgement

The acknowledgement of an alarm is a maintenance function that aids the operator in his day-to-day management activity of his network. An alarm is acknowledged by the operator to indicate he has started the activity to resolve this specific problem. In general a human operator performs the acknowledgement, however a management system (NM or EM) may automatically acknowledge an alarm as well.

The alarm acknowledgement function requires that:

a) All involved OSs have the same information about the alarms to be managed (including the current responsibility for alarm handling).

b) All involved OSs have the capability to send and to receive acknowledgement messages associated to previous alarm reports.

REQ-FM-FUN-020 An Agent may support alarm acknowledgement and unacknowledgement. Acknowledgement data shall include the current alarm state (active | cleared), the time of alarm acknowledgement and, optionally, the management system (EM | NM) and the operator in charge of acknowledgement (the parameter operator name or, in case of auto-acknowledgement, a generic system name).

REQ-FM-FUN-021 An alarm acknowledgement means that an acknowledgement performed by the Agent is notified to the Manager and vice versa, thus the acknowledgement-related status of this alarm is the same across the whole management hierarchy.

REQ-FM-FUN-022 The Agent may provide the ability to add a comment to an alarm. An Agent may also have the capability to record more than one comment for each alarm. To make the same alarm look the same to all Managers subscribing to the alarm, it will be possible to distribute the recorded comments.

REQ-FM-FUN-023 Acknowledgement state shall be a filterable criteria for alarms if acknowldgement is supported by the Agent.

REQ-FM-FUN-024 Acknowledgement notifications shall be filtered with the same criteria applied to alarms.

Alarming alarm notification failure

REQ-FM-FUN-025 The Manager shall detect communication failures that prevent the reception of alarms and raise an appropriate alarm to the operator.

REQ-FM-FUN-026 When a state change is originated by a failure, the alarm notification and the related state change notifications may be correlated to each other through the inclusion of pre-alarm state and post-alarm state in the alarm notification.

Editor’s note: add alarm summarization, alarm inhibition

Editor’s note: indicate imported support from Notification (e.g. subscription query, filter assignment, (imported requirements))

1.1.1 Actor Roles

There are two actors mentioned in the high-level Use Case diagrams provided in 5.2.1.3. These actors include the following: Managing System and Managed System. Figure 5-2 provides a brief definition of the roles that these actors play.

			Actor

			Roles

			Managing System

			A system which is responsible for tracing and possibly analyzing or correcting failures in the Managed System. This does not imply that Managed Systems should not correct failures whenever possible and report them only in the case where external intervention is required.

			Managed System

			A system which performs a network function in the Data Communications Network.

1.1.2 Telecommunications Resources

Both the suppliers' EMSs and the managed network equipments are viewed as relevant telecommunications resources in this Recommendation.

1.1.3 High Level Use Case Diagrams

The first overview use-case diagram in Figure X shows the overall interaction of the Alarm interface.

Figure TBD

This clause contains high-level Use Case diagrams that summarise the functionality and interfaces of the Alarm Reporting Function. Use Case descriptions are provided for every Use Case pictured in these high-level diagrams. Note that the Manual Alarm Clear and Alarm Acknowledge Use Cases, which involve modification of alarm state data on the Managed System by the Managing System on behalf of an Operator are outside of the scope of this standard.

The first overview Use Case diagram shows the interactions involved in reporting a detected failure.

[image: image1]

Figure 5‑3/X.733.1 Report Alarm

The second overview Use Case diagram shows the interactions involved in reporting the clearing of a standing failure. Alarms which do not represent a standing condition will not have respective clear notifications.

[image: image2]

Figure 5‑4/X. 733.1Clear Alarm

The final overview Use Case diagram shows the interactions involved in synchronizing the complete list of standing alarm conditions between the Managed System and the Managing System.

[image: image3]

Figure 5‑5/X.733.1 Synchronize Alarms

1.2 Specification Level Requirements

Editor’s Note: Use cases require review.

Use Case: ADAC fault notification

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			Upon detection of a failure condition, the Managed System sends an Alarm Report notification, through interface Q, of the relevant type to the Managing System.

			

			Actor and Roles

			The Managing System is a consumer of notifications from the Managed System.

			

			Assumptions

			There is an open communication channel between the Managing System and the Managed System.

			

			Pre conditions

			A fault condition is detected.

			

			Begins when

			

			

			Step 1

			Upon detection of a failure condition which fits within the description of the event types described in 5.2.1 an appropriate Alarm Report or Security Alarm Report is created. An Alarm Report, as opposed to an Alarm Clear, must never have a Severity of “Cleared”. Each detected condition in a unique Managed System identifies an alarm point. In the case of Alarm Records, each alarm point is uniquely identified by the Managed Object Instance and either: the Structured Probable Cause, if present; otherwise the Probable Cause and, optionally, the Specific Problems. This uniqueness must be guaranteed for the lifetime of the Managed System process. In the case of Security Alarm Records, each alarm point is uniquely identified by the Managed Object Instance and either: the Structured Probable Cause, if present; otherwise the Security Alarm Cause.

If the Managing System keeps a cache of the current alarm state and receives an Alarm Report which matches an existing record in its cache, the original time of the cached alarm record must not be overwritten, since the ability to ascertain the original failure condition in a changing situation and all changes since it are critical to problem diagnosis. If possible, it is considered advantageous to keep both records for historical analysis. Refer to the Clear Alarm Use Case for more details on the categorization and correlation of related alarms.

The use of Correlated Notifications in an Alarm Report which does not have a Severity of “Cleared” implies a simultaneous expression of both the Alarm Report Use Case and the Alarm Clear Use Case. In such a case the Alarm Report Use Case is expressed as defined here, following which the Alarm Clear Use Case will be expressed as described in 5.1.2.2

			

			Ends when

			

			

			Exceptions

			Communication or process failure could result in a failure to deliver the Alarm Report to the Managing System. The Alarm Synchronization Use Case covers this situation.

			

			Post Conditions

			The Managing System is informed of the fault condition in the Managed System.

			

			Traceability

			REQ-FM-FUN-01, REQ-FM-FUN-02, REQ-FM-FUN-05, REQ-FM-FUN-09, REQ-FM-FUN-10, REQ-FM-FUN-11, REQ-FM-FUN-12, REQ-FM-FUN-13, REQ-FM-FUN-14, REQ-FM-FUN-15, REQ-FM-FUN-23

			

Use Case: Notification of fault which results in a state change

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			Upon detection of a failure condition, the Managed System sends an Alarm Report notification, through interface Q, of the relevant type to the Managing System.

			

			Actor and Roles

			The Managing System is a consumer of notifications from the Managed System.

			

			Assumptions

			There is an open communication channel between the Managing System and the Managed System.

			

			Pre conditions

			A fault condition is detected.

			

			Begins when

			

			

			Step 1

			Upon detection of a failure condition which fits within the description of the event types described in 5.2.1 an appropriate Alarm Report or Security Alarm Report is created. An Alarm Report, as opposed to an Alarm Clear, must never have a Severity of “Cleared”. Each detected condition in a unique Managed System identifies an alarm point. In the case of Alarm Records, each alarm point is uniquely identified by the Managed Object Instance and either: the Structured Probable Cause, if present; otherwise the Probable Cause and, optionally, the Specific Problems. This uniqueness must be guaranteed for the lifetime of the Managed System process. In the case of Security Alarm Records, each alarm point is uniquely identified by the Managed Object Instance and either: the Structured Probable Cause, if present; otherwise the Security Alarm Cause.

If the Managing System keeps a cache of the current alarm state and receives an Alarm Report which matches an existing record in its cache, the original time of the cached alarm record must not be overwritten, since the ability to ascertain the original failure condition in a changing situation and all changes since it are critical to problem diagnosis. If possible, it is considered advantageous to keep both records for historical analysis. Refer to the Clear Alarm Use Case for more details on the categorization and correlation of related alarms.

The use of Correlated Notifications in an Alarm Report which does not have a Severity of “Cleared” implies a simultaneous expression of both the Alarm Report Use Case and the Alarm Clear Use Case. In such a case the Alarm Report Use Case is expressed as defined here, following which the Alarm Clear Use Case will be expressed as described in 5.1.2.2

			

			Ends when

			

			

			Exceptions

			Communication or process failure could result in a failure to deliver the Alarm Report to the Managing System. The Alarm Synchronization Use Case covers this situation.

			

			Post Conditions

			The Managing System is informed of the fault condition in the Managed System.

			

			Traceability

			REQ-FM-FUN-01, REQ-FM-FUN-02, REQ-FM-FUN-05, REQ-FM-FUN-09, REQ-FM-FUN-10, REQ-FM-FUN-11, REQ-FM-FUN-12, REQ-FM-FUN-13, REQ-FM-FUN-14, REQ-FM-FUN-15, REQ-FM-FUN-23, REQ-FM-FUN-26

			

Use Case: ADMC fault notification

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			Upon detection of a failure condition, the Managed System sends an Alarm Report notification, through interface Q, of the relevant type to the Managing System.

			

			Actor and Roles

			The Managing System is a consumer of notifications from the Managed System.

			

			Assumptions

			There is an open communication channel between the Managing System and the Managed System.

			

			Pre conditions

			A fault condition is detected.

			

			Begins when

			

			

			Step 1

			Upon detection of a failure condition which fits within the description of the event types described in 5.2.1 an appropriate Alarm Report or Security Alarm Report is created. An Alarm Report, as opposed to an Alarm Clear, must never have a Severity of “Cleared”. Each detected condition in a unique Managed System identifies an alarm point. In the case of Alarm Records, each alarm point is uniquely identified by the Managed Object Instance and either: the Structured Probable Cause, if present; otherwise the Probable Cause and, optionally, the Specific Problems. This uniqueness must be guaranteed for the lifetime of the Managed System process. In the case of Security Alarm Records, each alarm point is uniquely identified by the Managed Object Instance and either: the Structured Probable Cause, if present; otherwise the Security Alarm Cause.

If the Managing System keeps a cache of the current alarm state and receives an Alarm Report which matches an existing record in its cache, the original time of the cached alarm record must not be overwritten, since the ability to ascertain the original failure condition in a changing situation and all changes since it are critical to problem diagnosis. If possible, it is considered advantageous to keep both records for historical analysis. Refer to the Clear Alarm Use Case for more details on the categorization and correlation of related alarms.

The use of Correlated Notifications in an Alarm Report which does not have a Severity of “Cleared” implies a simultaneous expression of both the Alarm Report Use Case and the Alarm Clear Use Case. In such a case the Alarm Report Use Case is expressed as defined here, following which the Alarm Clear Use Case will be expressed as described in 5.1.2.2

			

			Ends when

			

			

			Exceptions

			Communication or process failure could result in a failure to deliver the Alarm Report to the Managing System. The Alarm Synchronization Use Case covers this situation.

			

			Post Conditions

			The Managing System is informed of the fault condition in the Managed System.

			

			Traceability

			REQ-FM-FUN-01, REQ-FM-FUN-02, REQ-FM-FUN-05, REQ-FM-FUN-09, REQ-FM-FUN-10, REQ-FM-FUN-11, REQ-FM-FUN-12, REQ-FM-FUN-13, REQ-FM-FUN-14, REQ-FM-FUN-15, REQ-FM-FUN-23

			

Use Case: Fault cleared

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			Upon detection of the cessation or correction of a failure condition, the Managed System sends an Alarm Report notification, through interface Q, of the relevant type to the Managing System.

			

			Actor and Roles

			The Managing System is a consumer of notifications from the Managed System.

			

			Assumptions

			There is an open communication channel between the Managing System and the Managed System.

			

			Pre conditions

			A fault condition ceases, is corrected, or a specified period of time has elapsed since a non-standing error condition occurred.

			

			Begins when

			

			

			Step 1

			Upon detection of the cessation or correction of a standing failure condition or the elapsing of a specified period of time since an instantaneous error condition occurred which fits within the description of the event types described in 5.2.1 an appropriate Alarm Report or Security Alarm Report is created. An Alarm Clear may have a Severity of “Cleared”, one or more attribute pairs in the Correlated Notifications field, or both. Each detected condition in a unique Managed System identifies an alarm point. In the case of Alarm Records, each alarm point is uniquely identified by the Managed Object Instance and either: the Structured Probable Cause, if present; otherwise the Probable Cause and, optionally, the Specific Problems. This uniqueness must be guaranteed for the lifetime of the Managed System process. In the case of Security Alarm Records, each alarm point is uniquely identified by the Managed Object Instance and either: the Structured Probable Cause, if present; otherwise the Security Alarm Cause.

When the Alarm Clear has a Severity of “Cleared” and the uniqueness attributes defined above exactly match an existing alarm point, only the Alarm Record representing that alarm point is cleared. When the Alarm Clear contains Correlated Notifications, those Alarm Records represented by each pair of Managed Object Instance and Notification Identifier in the Correlated Notifications field representing an alarm point is cleared. When the Alarm Clear has a Severity of “Cleared” and is not a Security Alarm Record but contains no Specific Problems field or Structured Probable Cause field, all Alarm Records representing alarm points with the same Probable Cause and Managed Object Instance are cleared. When the Alarm Clear has a Severity of “Cleared” but contains no Probable Cause or Structured Probable Cause, Security Alarm Cause, or Specific Problem, all Alarm Records representing alarm points with the same Managed Object Instance are cleared. More succinctly, Alarm Clears with a Severity of “Cleared” will clear all Alarm Records which match the set of attributes used to define uniqueness which are included in the Alarm Clear notification.

If the Managing System keeps a cache of the current alarm state and receives an Alarm Clear which does not match an existing record in its cache, the alarm should be ignored. If the Managing System provides an interface for fault information to other systems such events should not be forwarded.

No statement is made about the possibility of another Managed System clearing alarms on behalf of a first Managed system.

			

			Ends when

			

			

			Exceptions

			Communication or process failure could result in a failure to deliver the Alarm Report to the Managing System. The Alarm Synchronization Use Case covers this situation.

			

			Post Conditions

			The Managing System is informed of the cessation or expiry of the fault condition in the Managed System.

			

			Traceability

			REQ-FM-FUN-06, REQ-FM-FUN-07, REQ-FM-FUN-08, REQ-FM-FUN-10, REQ-FM-FUN-11, REQ-FM-FUN-13, REQ-FM-FUN-14, REQ-FM-FUN-15, REQ-FM-FUN-23

			

Use Case: Get alarm list

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			TBD

			

			Actor and Roles

			TBD

			

			Assumptions

			TBD

			

			Pre conditions

			TBD

			

			Begins when

			TBD

			

			Step 1

			TBD

			

			Ends when

			TBD

			

			Exceptions

			TBD

			

			Post Conditions

			TBD

			

			Traceability

			REQ-FM-FUN-14, REQ-FM-FUN-16

			

Use Case: Get alarm history

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			TBD

			

			Actor and Roles

			TBD

			

			Assumptions

			TBD

			

			Pre conditions

			TBD

			

			Begins when

			TBD

			

			Step 1

			TBD

			

			Ends when

			TBD

			

			Exceptions

			TBD

			

			Post Conditions

			TBD

			

			Traceability

			REQ-FM-FUN-15

			

Use Case: Create threshold or severity mapping

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			NMS can request EMS to create an ASAP through the management interface.

			

			Actor and Roles

			NMS.

			

			Assumptions

			The communication between NMS and EMS is available.

			

			Pre conditions

			NMS needs to assign the alarm severities for a set of problems, so that when EMS report alarms, these pre-assigned severities can be referenced in the corresponding alarm notifications.

			

			Begins when

			

			

			Step 1

			ASAP is a managed entity used to set the severity of alarms sent by EMS. Through ASAP configuration, NMS can flexibly change alarm severity according to the actual conditions.

NOTE – When ASAP is successfully created, it will not take effect immediately until it is associated with a specified managed object (see "Set ASAP Association" in 6.2.4.2.4). In this use case, NMS sends EMS a request to create an ASAP instance. The request parameter is a list of the problems and their corresponding severity, and a list of the managed entities to be associated with it (can be empty). If the creation operation succeeds, EMS will return the identifier of the ASAP instance as well as success information, and may send an object creation notification to NMS. If the operation fails, EMS will send back error information to NMS.

			

			Ends when

			

			

			Exceptions

			Invalid parameter; Unknown managed entity; EMS processing error; Communication error.

			

			Post Conditions

			An ASAP is successfully created by EMS according to the request. EMS returns the identifier of the ASAP instance and an object creation notification may be sent to NMS. The newly created ASAP will be associated with the managed entities if specified in the request.

			

			Traceability

			REQ-FM-FUN-17, REQ-FM-FUN-19

			

Use Case: Delete threshold or severity mapping

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			NMS can request EMS to delete an ASAP through the management interface.

			

			Actor and Roles

			NMS.

			

			Assumptions

			The communication between NMS and EMS is available.

			

			Pre conditions

			The specified ASAP exists in EMS, and it is not associated with any managed entities.

			

			Begins when

			

			

			Step 1

			In this use case, NMS sends a request to EMS to delete an ASAP. The request parameter is the identifier of the ASAP instance. The ASAP to be deleted should not be associated with any managed object; otherwise it cannot be deleted. If the deletion operation succeeds, EMS returns a success indication, and may send an object deletion notification to NMS. If the operation fails, EMS will send back error information to NMS.

			

			Ends when

			

			

			Exceptions

			Unknown ASAP; ASAP association not removed; EMS processing error; Communication error.

			

			Post Conditions

			The ASAP is successfully deleted by EMS according to the request. EMS may send an object deletion notification to NMS.

			

			Traceability

			REQ-FM-FUN-17, REQ-FM-FUN-19

			

Use Case: Modify threshold or severity mapping

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			NMS can request EMS to modify, add or delete table entries (problem and the corresponding alarm severity) of an ASAP.

			

			Actor and Roles

			NMS.

			

			Assumptions

			The communication between NMS and EMS is available.

			

			Pre conditions

			NMS needs to change the table entries of the alarm severity assignment of an ASAP.

			

			Begins when

			

			

			Step 1

			In this use case, NMS sends a request to EMS to modify an ASAP. The request parameter is the new list of the problems and their corresponding severity to be modified.

If the modification operation succeeds, EMS will send success information. If the operation fails, EMS will send back error information to NMS.

			

			Ends when

			

			

			Exceptions

			Invalid parameter; EMS processing error; Communication error.

			

			Post Conditions

			An ASAP is successfully modified by EMS according to the request. EMS may send an attribute value change notification to NMS.

			

			Traceability

			REQ-FM-FUN-17, REQ-FM-FUN-19

			

Use Case: Assign threshold or severity mapping

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			NMS can request EMS to set or change the association between an ASAP instance and one or more specified managed entities.

			

			Actor and Roles

			NMS.

			

			Assumptions

			The communication between NMS and EMS is available.

			

			Pre conditions

			The specified ASAP exists in EMS. NMS needs to set or change the association between an ASAP and one or more managed entities.

			

			Begins when

			

			

			Step 1

			When an ASAP is created successfully, it will not take effect immediately until associated with managed entities. When a managed entity is about to report an alarm, it will first check the associated ASAP whether the corresponding alarm severity is specified. If already specified, the corresponding severity is assigned to the alarm and then it is reported to NMS. Otherwise, the original severity is applied. In this use case, NMS sends a request to EMS to set or change the ASAP association. The request parameter is the ID or a list of IDs of the managed entities to be associated with the ASAP. If the operation succeeds, EMS will return success information, and the ASAP starts to take effect on the specified managed entity(s). If the operation fails, EMS will return error information.

			

			Ends when

			

			

			Exceptions

			Unknown managed entity; Association already exists; EMS processing error; Communication error.

			

			Post Conditions

			The association between the ASAP and the specified managed entity(s) is successfully assigned by EMS. The ASAP then takes effect on the associated managed entity(s).

			

			Traceability

			REQ-FM-FUN-17, REQ-FM-FUN-19

			

Use Case: Unassign threshold or severity mapping

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			NMS can remove the association between an ASAP and some of its associated managed entity(s).

			

			Actor and Roles

			NMS.

			

			Assumptions

			The communication between NMS and EMS is available.

			

			Pre conditions

			The specified ASAP exists in EMS. The association between the ASAP and the specified managed entity(s) has been assigned. NMS does not want the specified managed entity(s) to refer to this ASAP.

			

			Begins when

			

			

			Step 1

			When an ASAP is associated with a managed object, it starts to take effect. When the association between an ASAP and a managed element is no longer needed, it can be removed. If NMS wants to associate a managed object with another ASAP, the association with the previous ASAP must be removed first. In this use case, NMS sends a remove ASAP association request to EMS. The request parameter is: the ID or list of IDs of the managed entity(s) associated with the ASAP. If the operation succeeds, EMS will return success information, and the ASAP associated with specified managed object(s) will not take effect any longer. If the operation fails, EMS will return error information to NMS.

			

			Ends when

			

			

			Exceptions

			Unknown managed entity; Association not exist; EMS processing error; Communication error.

			

			Post Conditions

			According to the NMS request, the association between the ASAP and the specified managed object(s) is removed by EMS. EMS may send the related attribute value change notifications to NMS.

			

			Traceability

			REQ-FM-FUN-17, REQ-FM-FUN-19

			

Use Case: Query threshold and severity mappings

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			NMS can query the information of an ASAP through the management interface.

			

			Actor and Roles

			NMS.

			

			Assumptions

			The communication between NMS and EMS is available.

			

			Pre conditions

			NMS needs to query the attribute information of an ASAP in EMS. The specified ASAP exists in EMS.

			

			Begins when

			

			

			Step 1

			In this use case, NMS sends a request to EMS to query the attribute information of an ASAP, which includes the ID of the ASAP, the list of the problem and the corresponding severity, and the list of managed entities that have been associated with this ASAP. If the operation succeeds, EMS will return the corresponding attribute values of the ASAP. If the operation fails, EMS will return error information.

			

			Ends when

			

			

			Exceptions

			EMS processing error; Communication error.

			

			Post Conditions

			The corresponding ASAP information is returned by EMS.

			

			Traceability

			REQ-FM-FUN-17, REQ-FM-FUN-19

			

Use Case: Acknowledge alarm

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			TBD

			

			Actor and Roles

			TBD

			

			Assumptions

			TBD

			

			Pre conditions

			TBD

			

			Begins when

			TBD

			

			Ends when

			TBD

			

			Exceptions

			TBD

			

			Post Conditions

			TBD

			

			Tracability

			REQ-FM-FUN-20, REQ-FM-FUN-23, REQ-FM-FUN-24

			

Use Case: Unacknowledge alarm

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			TBD

			

			Actor and Roles

			TBD

			

			Assumptions

			TBD

			

			Pre conditions

			TBD

			

			Begins when

			TBD

			

			Ends when

			TBD

			

			Exceptions

			TBD

			

			Post Conditions

			TBD

			

			Tracability

			REQ-FM-FUN-20, REQ-FM-FUN-23, REQ-FM-FUN-24

			

Use Case: Comment alarm

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			TBD

			

			Actor and Roles

			TBD

			

			Assumptions

			TBD

			

			Pre conditions

			TBD

			

			Begins when

			TBD

			

			Ends when

			TBD

			

			Exceptions

			TBD

			

			Post Conditions

			TBD

			

			Tracability

			REQ-FM-FUN-22

			

Use Case: Alarm communication failure

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			TBD

			

			Actor and Roles

			TBD

			

			Assumptions

			TBD

			

			Pre conditions

			TBD

			

			Begins when

			TBD

			

			Ends when

			TBD

			

			Exceptions

			TBD

			

			Post Conditions

			TBD

			

			Tracability

			REQ-FM-FUN-22

			

Should include synchronization as well as alarming by the Manager to alert the operator that alarm information is not current.

Annex A (informative):
Change history

			Date

			Subject/Comment

			Sep 24, 2005

			Initial draft

			

			

			

			

�Optional, and is it actually included in 3GPP now?

[image: image4.wmf]Managing

System

Managed

System

Synchronize Alarms

communicates

instantiates

[image: image5.wmf]Managed

System

Managing

System

Clear Alarm

<<Notify Dispatch>>

communicates

instantiates

[image: image6.wmf]Managed

System

Managing

System

Report Alarm

<<Notify Dispatch>>

communicates

instantiates

_1189423226.doc

11

1 Scope

The purpose of this Recommendation is to define an interface through which a Manager can subscribe to an Agent for receiving notifications. The present document is the Requirements section of this interface Recommendation. It defines, for the purpose of subscribing to an Agent for receiving notifications, the basic requirements that shall be fulfilled by a notification interface.

How the Manager discovers the Agent's address or reference (so that Manager can invoke an operation) is outside the scope of the present document.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies.

[1]
ITU-T Recommendation X.734: "Information technology - Open Systems Interconnection - Systems Management: Event report management function".

[2]
ITU-T Recommendation X.754: "Information technology - Open Systems Interconnection - Systems Management: Enhanced event control function".

Non-normative references:

[3]
32.301: Configuration Management (CM); Notification Integration Reference Point (IRP): Requirements

[4]
32.302: Configuration Management (CM); Notification Integration Reference Point (IRP): Information Service (IS)

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the following terms and definitions apply:

Agent: TBD

Manager: TBD

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

CM
Configuration Management

CMIP
Common Management Information Protocol

CORBA
Common Object Request Broker Architecture

EM
Element Manager

FM
Fault Management

ITU-T
International Telecommunication Union - Telecommunication

NE
Network Element

NR
Network Resource

OMG
Object Management Group

OS
Operations System

TMN
Telecommunications Management Network

4 Requirements

4.1 Business Level Requirements

The following requirements apply to the notification management interface.

REQ-NO-FUN-01 The Agent shall provide a mechanism to send notifications to Managers.

REQ-NO-FUN-02 The Agent shall provide Managers with the capability to subscribe and unsubscribe to the notification mechanism.

REQ-NO-FUN-03 A Manager shall be able to specify the types of notifications a Agent should emit to that Manager during subscription.

REQ-NO-FUN-04 A Manager shall be able to specify filtering criteria that shall be applied by the notification mechanism.

REQ-NO-FUN-05 A Manager shall be able to subscribe to an existing subscription such that multiple Managers will be notified when an event meets the subscription criteria.

REQ-NO-FUN-06 A Manager will be able to suspend and resume the notifications pertaining to a subscription. Events may be lost when notifications are suspended.

REQ-NO-FUN-07 A Manager will be able to suspend and resume notifications from all subscriptions for a given Agent. Events may be lost when notifications are suspended.

REQ-NO-FUN-08 The Notification mechanism will allow the definition of notification types in other Recommendations.

REQ-NO-FUN-09 It is required that all notifications emitted by the notification interface support the same header that contains enough information to identify the type of notification, the source of the notification and the time the notification originated.

REQ-NO-FUN-010 The Agent may provide to Managers capabilities to control its subscriptions. A Manager is then able to check whether its subscription is still active or not, to know the details of a particular subscription and to know the list of all subscriptions it has opened.

REQ-NO-FUN-011 Any Manager may be able to set and change filter criteria applicable during the life-cycle of one if its subscriptions in order to change the pre-defined criteria which determine what notifications are sent.

REQ-NO-FUN-012 The Agent may provide Managers with a capability to discover the notification types supported by the Agent. Those notification types shall be identified with their object type and version.

REQ-NO-FUN-013 If forwarding is not possible at the time a notification is requested, e.g. due to communication breakdown, then the notifications shall be sent as soon as the communication capability has been restored. The storage space is limited. The storage capacity is Operator and implementation dependent. If the number of delayed notifications exceeds the storage space then notifications may be lost and a synchronization procedure may be required. Such a synchronization procedure is outside the scope of this Recommendation.

These requirements are documented in the subsequent use cases.

4.1.1 Actor Roles

Manager

The NMS acts as the Manager.

Agent

The EMS acts as the Agent.

4.1.2 Telecommunications Resources

Both the suppliers' EMSs and the managed network equipments are viewed as relevant telecommunications resources in this Recommendation.

4.1.3 High Level Use Case Diagrams

The first overview use-case diagram in Figure X shows the overall interaction of the Notification interface.

Figure TBD

4.2 Specification Level Requirements

Use Case: Report notification

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			EMS can report notifications on any event to NMS.

			

			Actor and Roles

			· NMS as Manager

· EMS as Agent

			

			Assumptions

			Communication between EMS and NMS is available.

			

			Pre conditions

			The Manager has subscribed for notifications of this type and the subscription is not suspended.

			Subscribe notification

			Begins when

			An event which meets existing subscription criteria occurs on the Agent.

			

			Ends when

			A notification of the event is delivered to all subscribed Managers for subscriptions whose filters match the event.

			

			Exceptions

			Communication error.

			

			Post Conditions

			EMS will trigger notifications to the appropriate notification dispatcher(s), and those passing the corresponding filtering criteria will be forwarded to NMS.

			

			Traceability

			REQ-NO-FUN-01

			

Use Case: Subscribe notification

Figure TBD

Editors Note: Use cases require review.

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			NMS can send a request to EMS to create a notification dispatcher.

			

			Actor and Roles

			· NMS as Manager

· EMS as Agent

			

			Assumptions

			The communication between NMS and EMS is available. EMS supports the function of creating a notification dispatcher.

			

			Pre conditions

			NMS needs to receive notifications from EMS.

			

			Begins when

			

			

			Step 1

			NMS can create a notification dispatcher through the management interface. In the case that EMS can initialize a notification dispatcher instance(s) by itself, it is not required to provide this function in the interface. (For example, the CORBA-based interface does not require the notification dispatcher creation function. As for the CMIP-based interface, this function is provided to create an EFD instance.) In this use case, NMS requests EMS to create a notification dispatcher. The parameters in the request include the destination(s), the initial administrative state and filtering criteria of the dispatcher.

If the dispatcher has been created successfully, EMS will then return the identifier of the notification dispatcher and may send a corresponding object creation notification to NMS. The subsequent notifications will be forwarded according to the attribute values of the dispatcher. If the creation fails, EMS will return error information. The possible errors are listed under "Exceptions".

			

			Ends when

			

			

			Exceptions

			Invalid parameter; EMS processing error; Communication error.

			

			Post Conditions

			The notification dispatcher is created by EMS at the request of NMS. EMS may send the corresponding object creation notification to NMS, and the newly created dispatcher acts on new notifications.

			

			Traceability

			REQ-NO-FUN-02, REQ-NO-FUN-03, REQ-NO-FUN-04, REQ-NO-FUN-05

			

Use Case: Unsubscribe notification

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			NMS can delete a notification dispatcher through the management interface.

			

			Actor and Roles

			· NMS as Manager

· EMS as Agent

			

			Assumptions

			The communication between NMS and EMS is available. EMS supports the function of deleting a notification dispatcher.

			

			Pre conditions

			NMS no longer needs to receive notifications from the specified notification dispatcher in EMS. The specified notification dispatcher is suspended.

			

			Begins when

			

			

			Step 1

			NMS can delete a notification dispatcher through the management interface. In the case that EMS can initialize a notification dispatcher instance(s) by itself, it is not required to provide this function in the interface (as in CORBA-based interfaces). In this use case, NMS requests EMS to delete a notification dispatcher. The parameter in the request is the ID of the notification dispatcher. If the dispatcher has been deleted successfully, EMS may then send a corresponding object deleted notification to NMS. If the deletion fails, EMS will return error information.

			

			Ends when

			

			

			Exceptions

			Unknown dispatcher; Dispatcher not suspended; EMS processing error; Communication error.

			

			Post Conditions

			The notification dispatcher is deleted by EMS on the request of NMS. EMS may send the corresponding object deletion notification to NMS. No more notifications will be forwarded to NMS by this deleted notification dispatcher.

			

			Traceability

			REQ-NO-FUN-02

			

Use Case: Suspend notification

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			NMS can suspend a notification dispatcher through the management interface. Thereafter, the dispatcher will not forward any notifications.

			

			Actor and Roles

			· NMS as Manager

· EMS as Agent

			

			Assumptions

			The communication between NMS and EMS is available. EMS supports the function of suspending a notification dispatcher.

			

			Pre conditions

			The specified notification dispatcher exists in EMS and it is not suspended. NMS temporarily does not want to receive notifications from the dispatcher in EMS, or NMS needs to change the attribute values of the dispatcher.

			

			Begins when

			

			

			Step 1

			In this use case, NMS sends a request to EMS to suspend a notification dispatcher, that is, to set the administrative state of the dispatcher from "unlocked" to "locked". If the operation succeeds, the dispatcher will not forward any notifications until it is resumed. If the operation fails, EMS will return error information.

			

			Ends when

			

			

			Exceptions

			Dispatcher already suspended; EMS processing error; Communication error.

			

			Post Conditions

			The notification dispatcher is suspended by EMS on the request of NMS. EMS may send the corresponding state change notification to NMS, and the dispatcher does not forward notifications any more until it is resumed.

			

			Traceability

			REQ-NO-FUN-06, REC-NO-FUN-07

			

Use Case: Resume notification

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			NMS can resume a suspended notification dispatcher through the management interface, so that the dispatcher can forward notifications again.

			

			Actor and Roles

			· NMS as Manager

· EMS as Agent

			

			Assumptions

			The communication between NMS and EMS is available. EMS supports the function of resuming a notification dispatcher.

			

			Pre conditions

			The specified notification dispatcher exists in EMS and it is suspended. NMS wants to receive notifications again from the specified dispatcher in EMS.

			

			Begins when

			

			

			Step 1

			In this use case, NMS sends a request to EMS to resume a suspended notification dispatcher, that is, to set the administrative state of the dispatcher object from "locked" to "unlocked". If the operation succeeds, the dispatcher will begin to forward notifications again. If the operation fails, EMS will return error information.

			

			Ends when

			

			

			Exceptions

			Dispatcher not suspended; EMS processing error; Communication error.

			

			Post Conditions

			notification dispatcher is resumed by EMS on the request of NMS. EMS may send the corresponding state change notification to NMS, and the dispatcher acts on notifications again.

			

			Traceability

			REQ-NO-FUN-06, REC-NO-FUN-07

			

Use Case: Modify notification subscription

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			NMS can modify the attribute values of a notification dispatcher through the management interface.

			

			Actor and Roles

			· NMS as Manager

· EMS as Agent

			

			Assumptions

			The communication between NMS and EMS is available. EMS supports the function of modifying a notification dispatcher.

			

			Pre conditions

			NMS needs to change the filtering criteria of a notification dispatcher in EMS, or change the destination(s) of notifications to be forwarded by the dispatcher. The specified notification dispatcher exists in EMS and it is suspended.

			

			Begins when

			

			

			Step 1

			In this use case, NMS sends a request to EMS to modify a notification dispatcher. The filtering criteria and the destination(s) can be modified. If the modification succeeds, the dispatcher will forward notifications according to the new attribute values. If the modification fails, EMS will return error information.

			

			Ends when

			

			

			Exceptions

			Invalid parameter; Dispatcher not suspended; EMS processing error; Communication error.

			

			Post Conditions

			The notification dispatcher is modified by EMS on the request of NMS. EMS may send the corresponding attribute value change notification to NMS. The newly modified dispatcher then forwards notifications with the new filtering criteria to the new destination(s).

			

			Traceability

			REQ-NO-FUN-11

			

Use Case: Query notification subscription

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			NMS can query the attribute values of a notification dispatcher in EMS.

			

			Actor and Roles

			· NMS as Manager

· EMS as Agent

			

			Assumptions

			The communication between NMS and EMS is available. EMS supports the function of querying a notification dispatcher.

			

			Pre conditions

			NMS needs to query the attribute information of a notification dispatcher in EMS. The specified notification dispatcher exists in EMS.

			

			Begins when

			

			

			Step 1

			NMS can query the attribute values of a notification dispatcher such as administrative state, filtering criteria, destinations and so on. In this use case, NMS sends a request to query a notification dispatcher. The parameters in the request include the names of the attributes to be queried. If the function succeeds, EMS will return the specified attribute values. Otherwise, EMS will return error information.

			

			Ends when

			

			

			Exceptions

			Invalid parameter; EMS processing error; Communication error.

			

			Post Conditions

			EMS returns the attribute values requested by NMS.

			

			Traceability

			REQ-NO-FUN-10

			

Use Case: Notification extension

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			New notification types can be defined and are immediately supported by the notification interface.

			

			Actor and Roles

			· NMS as Manager

· EMS as Agent

			

			Assumptions

			TBD

			

			Pre conditions

			TBD

			

			Begins when

			

			

			Step 1

			TBD

			

			Ends when

			

			

			Exceptions

			TBD

			

			Post Conditions

			TBD

			

			Traceability

			REQ-NO-FUN-08, REQ-NO-FUN-09

			

Use Case: Notification communication failure

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			TBD

			

			Actor and Roles

			· NMS as Manager

· EMS as Agent

			

			Assumptions

			TBD

			

			Pre conditions

			TBD

			

			Begins when

			

			

			Step 1

			TBD

			

			Ends when

			

			

			Exceptions

			TBD

			

			Post Conditions

			TBD

			

			Traceability

			REQ-NO-FUN-08, REQ-NO-FUN-09

			

Annex A (informative):
Change history

			Date

			Summary

			Sep 23, 2005

			Initial draft

			

			

			

			

			

			

			

			

			

			

_1189423258.doc

2

1 Scope

The present document specifies overall requirements for Notification Log Management.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies.

[1]
ITU-T Recommendation X.735: "Information technology - Open Systems Interconnection - Systems Management: Log control function".

[2]
ITU-T Recommendation X.notif.1: “Notification functions: Requirements”

[3]
ITU-T Recommendation X.notif.2: “Notification functions: Protocol Neutral Model”

Non-normative references:

[4]
3GPP TS 32.302: "Telecommunication management; Configuration Management (CM); Notification Integration Reference Point (IRP): Information Service (IS)".

[5]
3GPP TS 32.662: "Telecommunication management; Configuration Management (CM); Kernel CM Information Service (IS)".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the following terms and definitions apply:

Notification: defined in X.notif.1.

Notification Log: a managed resource in which notifications are stored. Notifications logs contain Notification Log Records. A Notification Log may represent a physical or a logical/virtual storage, which is used is not apparent to a Manager.

Notification Log Record: records track information about when a particular notification was entered into the Notification Log and the details of the notification. Each Notification Log Record is associated with one notification.

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

CMIP
Common Management Information Protocol

EM
Element Manager

LM
Log Management

NE
Network Element

NM
Network Manager

OS
Operations System

4 Requirements

A general-purpose Notification Logging mechanism is required to hold notifications related to different functional areas in the network.

This service uses the following other services and thus implicitly imports all the requirements defined therein:

· Notification, defined in X.notif.1

4.1 Business Level Requirements

General Requirements

REQ-LM-FUN-01 Any Notification Log must be capable of storing all data releted any type of notification (i.e. any class which extends Notification as defined in X.notif.2).

REQ-LM-FUN-02
The Notification Log control service will allow selection of Notification Log records that are to be logged by a management system (NMs or EMs) in a new Notification Log or a particular existing Notification Log.

REQ-LM-FUN-03 It will be possible to start and stop logging to a specific Notification Log or all Notification Logs.

REQ-LM-FUN-04 The ability for a client system to modify the criteria used in logging notification records.

REQ-LM-FUN-05 Specification of a mechanism to enable Notification Logging to be suspended and subsequently to be resumed.

REQ-LM-FUN-06 The ability for a client system to retrieve and delete Notification Log records.

REQ-LM-FUN-07 The ability for a client system to create and delete those Notification Logs.

REQ-LM-FUN-08 The ability to log partial notifications.

REQ-LM-FUN-09 The Manager may request a list of all log activities currently managed by the Agent. The Agent returns a list of Notification Log identifiers to the Manager. The Manager may than use these identifiers to query a log or parts of it.

REQ-LM-FUN-010 The Agent will assign a unique identifier to each Notification Log whether created autonomously by the Agent or on the request of a Manager.

REQ-LM-FUN-011 All Notifications available at the Agent for potential transmission shall be logged if requested by a start log request, irrespective of the Notification subscriptions and filter settings. For instance, a notification filter may be in place which does not forward alarm notifications but if a Notification Log is started which asks alarm events to be logged those notifications will appear in the Notification Log even though they are not notified to the Manager.

REQ-LM-FUN-012 The Notification Log Record will contain a notification as specified by X.notif.2.

REQ-LM-FUN-013 The Notification Log Record is time-stamped, allowing the operator to determine the time at which the Notification Log Record was added to the Notification Log.

REQ-LM-FUN-014 The Agent should avoid logging of notifications resulting from asynchronous alarm synchronization.

Detection of the Notification Log state

REQ-LM-FUN-015 The ability for a client system to determine whether the logging characteristics were modified or whether notifications log records has been lost.

REQ-LM-FUN-016 The Notification Log management system must notify all interested OS about its current state. An event-based approach is used to update OSs on the current state of the Notification Log. To facilitate the notification of attribute or state changes, a Notification Log has the capability to generate such events according to the Object Management functions defined in X.object.2.

REQ-LM-FUN-017 The Notification Log management system may also emit Notification Log creation and log deletion notifications to signal the creation or deletion of a particular log according to the Object Management functions defined in X.object.2.

REQ-LM-FUN-018 To notify OSs about the loss or imminent loss of Notification Log records, the system is able to emit capacity threshold alarms as defined in X.alarm.2 that alert the subscribed OSs that a capacity threshold has been crossed in a particular Notification Log. This threshold value may indicate that the Notification Log is full and incoming notifications shall be dealt with in a predetermined manner set by an operator.

REQ-LM-FUN-019 The system may emit other events to notify an OS of the completion of an I/O intensive operation, such as deletion of Notification Log records.

Notification Log / Notification Log Record Retrieval

REQ-LM-FUN-020 An OS may retrieve Notification Log records by querying a particular Notification Log with a filter

The ability of an OS to export some subset of Notification Logs maintained by itself to W3C XML log format is for further study.

Notification Log Full Action

REQ-LM-FUN-021 The OS must be able to set the behaviour of a Notification Log that becomes full. Two actions are recommended, halt and wrap:

· A Notification Log that halts when full implies the agent should notify the OS by way of generating a capacity threshold alarm. New notifications, which should be logged according to the Notification Log's filter criteria, are discarded. This behaviour implies that the old Notification Log records are more important than new ones.

· An OS can set the behaviour of the Notification Log to wrap when full. In this case the Notification Log behaves like a circular buffer, replacing the oldest Notification Log records with new ones. This behaviour implies that new Notification Log records are more important than old Notification Log records.

4.1.1 Actor Roles

Manager

The NMS acts as the Manager.

Agent

The EMS acts as the Agent.

4.1.2 Telecommunications Resources

Both the suppliers' EMSs and the managed network equipments are viewed as relevant telecommunications resources in this Recommendation.

4.1.3 High Level Use Case Diagrams

The first overview use-case diagram in Figure X shows the overall interaction of the Notification Log Management function.

Figure TBD

[image: image1.wmf]Q.827.1_F6-4

Create log

Delete log

Suspend log

Resume log

Query log

Modify log

Delete log records

Log management FS

NMS

Query log records

Log object management FS

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

Log record management FS

<<include>>

<<include>>

<<include>>

<<include>>

4.2 Specification Level Requirements

Editors Note: Use cases require review.

Use Case: Notification log may contain any notification type

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			TBD

			

			Actor and Roles

			TBD

			

			Assumptions

			TBD

			

			Pre conditions

			TBD

			

			Begins when

			TBD

			

			Step 1

			TBD

			

			Ends when

			TBD

			

			Exceptions

			TBD

			

			Post Conditions

			TBD

			

			Traceability

			REQ-LM-FUN-01, REQ-LM-FUN-12, REQ-LM-FUN-13, REQ-LM-FUN-14

			

Use Case: Selection of notifications to be logged

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			TBD

			

			Actor and Roles

			TBD

			

			Assumptions

			TBD

			

			Pre conditions

			TBD

			

			Begins when

			TBD

			

			Step 1

			TBD

			

			Ends when

			TBD

			

			Exceptions

			TBD

			

			Post Conditions

			TBD

			

			Traceability

			REQ-LM-FUN-02, REQ-LM-FUN-11

			

Use Case: Modify selection of notifications to be logged

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			NMS can modify the attribute values of a log through the management interface.

			

			Actor and Roles

			The communication between NMS and EMS is available. EMS supports the function of modifying a log.

			

			Assumptions

			NMS.

			

			Pre conditions

			The specified log exists in EMS and it is suspended. NMS needs to change the attribute values of a log in EMS, such as the filtering criteria of events logging, the log full action, the capacity alarm threshold, and so on.

			

			Begins when

			

			

			Step 1

			In this use case, NMS sends a request to EMS to modify the attribute values of a log. The input parameters are the attribute names to be modified and the corresponding new values. The attributes that can be modified include: max log size, log full action, capacity alarm threshold, and filtering criteria. If the modification succeeds, the log will use new criteria to record events and act according to these new attribute values. If the modification fails, EMS will return error information.

			

			Ends when

			

			

			Exceptions

			Invalid parameter; Log not suspended; EMS processing error; Communication error.

			

			Post Conditions

			The log is modified by EMS on the request of NMS. EMS may send the corresponding attribute value change notification to NMS. The newly modified log then begins to record events with the new criteria and behaves according to the new attribute values.

			

			Traceability

			REQ-LM-FUN-04

			

Use Case: Suspend logging

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			NMS can suspend a log through the management interface. Thereafter, the log will not record any events until it is resumed.

			

			Actor and Roles

			The communication between NMS and EMS is available. EMS supports the function of suspending a log.

			

			Assumptions

			NMS.

			

			Pre conditions

			NMS temporarily needs to suspend a log in EMS. The specified log exists in EMS and it is not suspended. NMS temporarily does not want the log to record event information in EMS, or NMS needs to change the attribute values of the log object. The specified log exists in EMS.

			

			Begins when

			

			

			Step 1

			In this use case, NMS sends a request to EMS to suspend a log, that is, to set the administrative state of the Log object from "unlocked" to "locked". If the operation succeeds, the log object will not record any events until it is resumed. If the operation fails, EMS will return error information.

			

			Ends when

			

			

			Exceptions

			Log already suspended; EMS processing error; Communication error.

			

			Post Conditions

			The log is suspended by EMS on the request of NMS. EMS may send the corresponding state change notification to NMS, and the log does not record any events until it is resumed.

			

			Traceability

			REQ-LM-FUN-05

			

Use Case: Resume logging

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			NMS can resume a suspended log through the management interface, so that the log can record events again.

			

			Actor and Roles

			The communication between NMS and EMS is available. EMS supports the function of resuming a log.

			

			Assumptions

			NMS.

			

			Pre conditions

			The specified log exists in EMS and it is suspended. NMS wants the log to record events again in EMS.

			

			Begins when

			

			

			Step 1

			In this use case, NMS sends a request to EMS to resume a suspended log, that is, to set the administrative state of the log object from "locked" to "unlocked". If the operation succeeds, the log object will begin to record events again. If the operation fails, EMS will return error information.

			

			Ends when

			

			

			Exceptions

			Log not suspended; EMS processing error; Communication error.

			

			Post Conditions

			The log is resumed by EMS on the request of NMS. EMS may send the corresponding state change notification to NMS. The log continues to record events according to its filtering criteria.

			

			Traceability

			REQ-LM-FUN-05

			

Use Case: Create log

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			NMS can create a log through the management interface.

			

			Actor and Roles

			The communication between NMS and EMS is available. EMS supports the function of creating a log.

			

			Assumptions

			NMS.

			

			Pre conditions

			NMS needs EMS to log event information so that the information may be queried in the future for some specific situations such as data loss.

			

			Begins when

			

			

			Step 1

			NMS can create a log through the management interface. In the case that EMS can initialize a log instance(s) by itself, it is not required to provide this function in the interface. In this use case, NMS requests EMS to create a log. The parameters in the request include the initial administrative state, max log size, log full action, capacity alarm threshold, and filtering criteria of the log object.

If the log has been created successfully, EMS will then return the identifier of the log and send an object creation notification to NMS. Whether events will be recorded as log records depends on the filtering criteria defined in the log. If the creation fails, EMS will return error information.

			

			Ends when

			

			

			Exceptions

			Invalid parameter; EMS processing error; Communication error.

			

			Post Conditions

			The log is created by EMS on the request of NMS. EMS returns the identifier of the log and may send the corresponding object creation notification to NMS. The events will be recorded according to the filtering criteria in the newly created log.

			

			Traceability

			REQ-LM-FUN-03, REQ-LM-FUN-06, REQ-LM-FUN-07, REQ-LM-FUN-10

			

Use Case: Delete log

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			NMS can delete a log through the management interface.

			

			Actor and Roles

			The communication between NMS and EMS is available. EMS supports the function of deleting a log.

			

			Assumptions

			NMS.

			

			Pre conditions

			The specified log exists in EMS and it is suspended. NMS does not need the log in EMS to record any event information.

			

			Begins when

			

			

			Step 1

			NMS can delete a log through the management interface. In the case that EMS system can initialize a log instance(s), it is not required to provide this function in the interface. In this use case, NMS requests EMS to delete a log. The parameter in the request is the ID of the log object. If the log has been deleted successfully, EMS may then send the corresponding object deletion notification to NMS. If the deletion fails, EMS will return error information.

			

			Ends when

			

			

			Exceptions

			Unknown log, Log not suspended; EMS processing error; Communication error.

			

			Post Conditions

			The log and the associated log records are deleted by EMS on the request of NMS. EMS may send the corresponding object deletion notification to NMS.

			

			Traceability

			REQ-LM-FUN-06, REQ-LM-FUN-07

			

Use Case: Log partial notification

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			TBD

			

			Actor and Roles

			TBD

			

			Assumptions

			TBD

			

			Pre conditions

			TBD

			

			Begins when

			TBD

			

			Step 1

			TBD

			

			Ends when

			TBD

			

			Exceptions

			TBD

			

			Post Conditions

			TBD

			

			Traceability

			REQ-LM-FUN-08

			

Use Case: Query list of logs

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			NMS can query the attribute values of a log in EMS.

			

			Actor and Roles

			NMS.

			

			Assumptions

			The communication between NMS and EMS is available. EMS supports the function of querying a log.

			

			Pre conditions

			NMS needs to retrieve the attribute information of a log in EMS. The specified log exists in EMS.

			

			Begins when

			

			

			Step 1

			NMS can query the attribute values of a log, including administrative state, operational state, max log size, current log size, log full action, number of records, alarm status, capacity alarm threshold, filtering criteria, and so on. In this use case, NMS sends a request to query a log. The parameters in the request are the attribute names to be queried. If the operation succeeds, EMS will return the corresponding attribute values. Otherwise, EMS will return error information.

			

			Ends when

			

			

			Exceptions

			Invalid parameter; EMS processing error; Communication error.

			

			Post Conditions

			EMS returns the attribute values of the log requested by NMS.

			

			Traceability

			REQ-LM-FUN-09

			

Use Case: Notify state of logging

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			TBD

			

			Actor and Roles

			TBD

			

			Assumptions

			TBD

			

			Pre conditions

			TBD

			

			Begins when

			TBD

			

			Step 1

			TBD

			

			Ends when

			TBD

			

			Exceptions

			TBD

			

			Post Conditions

			TBD

			

			Traceability

			REQ-LM-FUN-15, REQ-LM-FUN-16, REQ-LM-FUN-17, REQ-LM-FUN-18, REQ-LM-FUN-19

			

Use Case: Retrieve log records

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			NMS can query the log records contained in a log according to some criteria.

			

			Actor and Roles

			The communication between NMS and EMS is available. EMS supports the function of querying log records.

			

			Assumptions

			NMS.

			

			Pre conditions

			In the case that the notification information between NMS and EMS is not synchronized due to broken communication, abnormal data lost or other reasons, NMS needs to query log records in EMS to synchronize the notification information between two systems. The specified log exists in EMS.

			

			Begins when

			

			

			Step 1

			In this use case, NMS sends a "query log record" request to EMS. The parameters in the request are the filtering criteria and the time boundary. If the query succeeds, EMS will return the log records that satisfy the criteria and the time boundary. Otherwise, if the query fails, EMS will return error information.

			

			Ends when

			

			

			Exceptions

			Invalid parameter; No such log records; EMS processing error; Communication error.

			

			Post Conditions

			The corresponding log records are returned by EMS.

			

			Traceability

			REQ-LM-FUN-20

			

Use Case: Log full action

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			TBD

			

			Actor and Roles

			TBD

			

			Assumptions

			TBD

			

			Pre conditions

			TBD

			

			Begins when

			TBD

			

			Step 1

			TBD

			

			Ends when

			TBD

			

			Exceptions

			TBD

			

			Post Conditions

			TBD

			

			Traceability

			REQ-LM-FUN-21

			

Use Case: Delete log record

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			NMS can delete log records contained in a log according to certain criteria.

			

			Actor and Roles

			The communication between NMS and EMS is available. EMS supports the function of deleting log records.

			

			Assumptions

			NMS.

			

			Pre conditions

			In the case where the information in some log records is of no use to NMS (too old or having been transferred to NMS), NMS can delete some or all log records in EMS. The specified log exists in EMS.

			

			Begins when

			

			

			Step 1

			In this use case, NMS sends a deletion request to EMS. The parameters in the request are the filtering criteria and the time boundary. If the deletion succeeds, the corresponding records that satisfy the criteria and the time boundary will be deleted. Otherwise, if the deletion fails, EMS will return error information.

			

			Ends when

			

			

			Exceptions

			Invalid parameter; No such log records; EMS processing error; Communication error.

			

			Post Conditions

			The log records that satisfy the filtering criteria and the time boundary are deleted.

			

			Traceability

			REQ-LM-FUN-06

			

Annex A (informative):
Change history

			Date

			Subject/Comment

			Sep 24, 2005

			Initial draft

			

			

			

			

�Non-functional

_1168687949.unknown

_1189424153.doc

4.3
Test management

This management function provides capabilities that can be used in different phases of the Fault Management (FM). For example:

-
when a fault has been detected and if the information provided through the alarm report is not sufficient to localize the faulty resource, tests can be executed to better localize the fault;

-
during normal operation of the NE, tests can be executed for the purpose of detecting faults;

-
once a faulty resource has been repaired or replaced, before it is restored to service, tests can be executed on that resource to be sure that it is fault free.

However, regardless of the context where the testing is used, its target is always the same: verify if a system's physical or functional resource performs properly and, in case it happens to be faulty, provide all the information to help the operator to localize and correct the faults.

Testing is an activity that involves the operator, the managing system (the OS XE "OMC") and the managed system (the NE). Generally the operator requests the execution of tests from the OS and the managed NE autonomously executes the tests without any further support from the operator.

In some cases, the operator may request that only a test bed is set up (e.g. establish special internal connections, provide access test points, etc.). The operator can then perform the real tests, which may require some manual support to handle external test equipment. Since the "local maintenance" and the "inter NE testing" are out of the scope of the present document, this aspect of the testing is not treated any further.

The requirements for the test management service are based on ITU‑T Recommendation X.745 [12], where the testing description and definitions are specified.

_1189425408.doc

6.2.3
Performance management function set

6.2.3.1
Overview

The performance management function set contains: Performance measurement management function set, Performance threshold management function set, and Query history performance data function, as depicted in Figure 6-6.

Performance measurement is the activity whereby the EMS periodically collects the performance data from physical equipments as well as logical entities and reports them to the NMS. Performance measurement management function set is provided to the NMS to manage the parameters related to performance measurement, through which performance data can be reported by the EMS according to the requests of the NMS.

Performance measurement management FS contains the following functions: Create measurement job, Delete measurement job, Stop measurement job, Suspend measurement job, Resume measurement job, Query measurement jobs, and Performance data report. Figure 6-7 shows the details.

(NOTE – The modify measurement job function can actually be achieved by deleting the existing measurement job and create a new measurement job.)

Performance measurement management function set in this Recommendation relates to the functions involving PM data collection and reporting specified in 5.3.4 "Performance administration function set" and 5.2.9 "Performance monitoring data accumulation function set" of ITU-T Rec. M.3400 [5].

NMS can set up performance threshold monitors, through which a corresponding QoS alarm may be emitted whenever a performance threshold is crossed. Performance threshold management FS contains the following functions: Create threshold monitor, Delete threshold monitor, Modify threshold monitor, Query threshold monitor, Suspend threshold monitor, Resume threshold monitor and QoS alarm report. Figure 6-8 shows the details.

Performance threshold management function set in this Recommendation relates to the functions involving threshold management specified in 5.3.4 "Performance administration function set" and 5.4.9 "NE(s) performance characterization function set" of ITU-T Rec. M.3400.

Measurement data are network technology dependent and are thus outside the scope of this Recommendation.

6.2.3.2
Performance measurement management function set

6.2.3.2.1
Create measurement job

Summary: NMS can request EMS to create a performance measurement job through the management interface.

Assumptions: The communication between NMS and EMS is available.

Actors: NMS.

Preconditions: NMS needs to collect the performance measurement data on some managed entities in order to monitor the network performance, or the performance measurement data can be used for optimizing the network resource in the future.

Description: NMS sends a request to EMS to start a performance measurement job. The parameters may contain: the ID or criteria for the managed entities in which performance data will be collected, the start time of the collection task (optional), the stop time of the collection task (optional), the collection interval of the job, the report interval of the job, the schedule of the job (optional), and the performance parameters to be collected (optional). If the measurement job is started successfully, the job ID will be returned to NMS, and EMS will start the performance collection on the specified network resources according to the parameters of the request. Performance data files are stored in files, and on each reporting interval, the file information will be reported to NMS. Otherwise, it will return error information to NMS.

Exceptions: Invalid parameter; EMS processing error; Communication error.

Post-conditions: A measurement job is started on the request, and it starts to collect and report the corresponding performance data according to their intervals respectively. EMS may send an object creation notification to NMS.

6.2.3.2.2
Delete measurement job

Summary: NMS can request EMS to delete a performance measurement job through the management interface. When a measurement job is deleted, the associated measurement data files are not required to be maintained in EMS.

Assumptions: The communication between NMS and EMS is available.

Actors: NMS.

Preconditions: NMS does not need the measurement job to collect performance data from the specified managed entities. The history performance data files related to the job in EMS will no longer be used. The specified measurement job exists in EMS and it is stopped or suspended.

Description: NMS sends a request to EMS to delete a performance measurement job. The request parameter is the identifier of the measurement job. If the operation succeeds, the specified measurement job will stop working and the related collecting resources, including the data files, will be released, and EMS will return success information. Otherwise, it will return error information to NMS.

Exceptions: Unknown measurement job; Measurement job not suspended or stopped; EMS processing error; Communication error.

Post-conditions: The specified measurement job is deleted on the request. EMS may send an object deletion notification to NMS.

6.2.3.2.3
Suspend measurement job

Summary: NMS can request EMS to suspend a performance measurement job through the management interface.

Assumptions: The communication between NMS and EMS is available.

Actors: NMS.

Preconditions: The specified measurement job exists in EMS and it is not suspended. NMS temporarily does not want the measurement job to collect or report performance data.

Description: NMS can request EMS to suspend a performance measurement job through the management interface. If the operation succeeds, the measurement job will no longer collect and report the corresponding performance data until resumed.

Exceptions: Measurement job already suspended; EMS processing error; Communication error.

Post-conditions: The measurement job is suspended on request, and no performance measurement data associated with this job is collected or reported. EMS may send a state change notification to NMS.

6.2.3.2.4
Resume measurement job

Summary: NMS can request EMS to resume a suspended performance measurement job through the management interface.

Assumptions: The communication between NMS and EMS is available.

Actors: NMS.

Preconditions: The specified measurement job exists in EMS and it is suspended. NMS wants the measurement job to collect and report performance data again.

Description: NMS can resume a suspended performance measurement job through the management interface. If the resuming operation succeeds, EMS will return success information and continue to collect and report performance data specified for this job. If the operation fails, it will return error information to NMS.

Exceptions: Measurement job not suspended; EMS processing error; Communication error.

Post-conditions: A measurement job is resumed on request, and it continues to collect and report performance measurement data. EMS may send a state change notification to NMS.

6.2.3.2.5
Query measurement job

Summary: NMS can request EMS to query the parameter values of a performance measurement job through the management interface.

Assumptions: The communication between NMS and EMS is available.

Actors: NMS.

Preconditions: NMS needs to query the attribute information of a performance measurement job in EMS. The specified measurement job exists in EMS.

Description: NMS sends a request to EMS to query the parameters of a performance measurement job, which include: the job ID(s), the identifier(s) for the managed objects in which performance data are collected, the start time and stop time of the measurement job, the collection interval of the job, the report interval of the job, the schedule for the job, the administrative state, and the performance parameters to be collected. If the operation succeeds, EMS will return the attribute information of the performance measurement job. If the operation fails, it will return error information to NMS.

Exceptions: EMS processing error; Communication error.

Post-conditions: The corresponding attribute information is returned by EMS as requested.

6.2.3.2.6
Stop measurement job

Summary: NMS can request EMS to permanently stop a performance measurement job through the management interface. When a measurement job is stopped, it does not collect performance data any more, but it still holds the performance data files.

Assumptions: The communication between NMS and EMS is available.

Actors: NMS.

Preconditions: NMS does not need the measurement job to collect performance data from the specified managed entities. The history performance data files related to the job in EMS may still be used. The specified measurement job exists in EMS.

Description: NMS sends a request to EMS to stop a performance measurement job. If the operation succeeds, the specified measurement job will stop working and EMS will return success information. Otherwise, it will return error information to NMS.

Exceptions: EMS processing error; Communication error.

Post-conditions: The measurement job is stopped on request but the measurement data files are still maintained by this measurement job, which can be retrieved by NMS. EMS may send a state change notification to NMS.

6.2.3.2.7
Performance data report

Summary: Performance data are stored in files. At each report interval, the corresponding performance data file(s) will be prepared by EMS and a "Bulk Data Transfer Ready" notification will be sent to NMS, and then the prepared files will be transferred from EMS to NMS using FTP service. Performance data report function uses "Bulk data transfer function set". See 6.2.1.4.4 for details.

6.2.3.3
Performance threshold management function set

6.2.3.3.1
Create threshold monitor

Summary: NMS can request EMS to create a performance threshold monitor through the management interface.

Assumption: The communication between NMS and EMS is available.

Actors: NMS.

Preconditions: NMS needs to monitor some performance measurement parameters collected from managed entities in order to know whether or not there are any performance degradation or service-related performance problems in time. The measurement job(s) containing the measurement parameters to be monitored have been started.

Description: NMS sends a request to EMS to create a performance threshold monitor. The input parameters in the request contain the ID or criteria for the managed entities to be monitored, the monitoring granularity period, and a set of sequence of the name of the measurement parameter, corresponding threshold value, the notifyOnOff switch of alarm notifications, and the related alarm severity (optional). The output parameter is the threshold monitor ID. If the creation succeeds, EMS will return success information. If the operation fails, it will return error information to NMS.

Exceptions: Invalid parameter; EMS processing error; Communication error.

Post-conditions: A performance threshold monitor is created by EMS, and an object creation notification may be reported to NMS. EMS starts to monitor the performance parameters according to the specified threshold values. When a threshold value is crossed, a QoS alarm will be raised.

6.2.3.3.2
Delete threshold monitor

Summary: NMS can request EMS to delete a performance threshold monitor through the management interface.

Assumptions: The communication between NMS and EMS is available.

Actors: NMS.

Preconditions: NMS does not need to monitor the specified performance measurement parameters in EMS. The specified threshold monitor exists in EMS and it is suspended.

Description: NMS sends a request to EMS to delete a performance threshold monitor. The parameter is the identifier of the performance threshold monitor. According to the request, EMS will delete the specified performance threshold monitor. If the deletion succeeds, EMS will return success information and no longer monitor the corresponding performance parameters. If the operation fails, it will return error information to NMS.

Exceptions: Unknown Threshold Monitor; Threshold Monitor Not Suspended; EMS Processing Error; Communication Error.

Post-conditions: The specified performance threshold monitor is deleted by EMS, and an object deletion notification may be reported to NMS. EMS will no longer monitor the corresponding performance parameters. If the operation fails, it will return error information to NMS.

6.2.3.3.3
Suspend threshold monitor

Summary: NMS can suspend a performance threshold monitor through the management interface.

Assumptions: The communication between NMS and EMS is available.

Actors: NMS.

Preconditions: The specified threshold monitor exists in EMS and it is not suspended. NMS temporarily does not want the threshold monitor to raise any QoS alarms for the performance parameters, or NMS needs to change some attribute values of the monitor.

Description: In this use case, NMS sends a request to suspend a performance threshold monitor. If the suspension succeeds, EMS will return success information and the performance threshold monitor will not act on the corresponding performance parameters and no QoS alarms on the performance parameters will be raised. If the operation fails, it will return error information to NMS.

Exception: Threshold monitor already suspended, EMS processing error, Communication error.

Post-conditions: The performance threshold monitor is suspended according to the request, and it does not monitor the corresponding performance parameters until resumed. A state change notification may be sent to NMS.

6.2.3.3.4
Resume threshold monitor

Summary: NMS can resume a suspended performance threshold monitor through the management interface.

Assumptions: The communication between NMS and EMS is available.

Actors: NMS.

Preconditions: The specified measurement job exists in EMS and it is suspended. NMS wants the threshold monitor to act on the performance parameters again.

Description: In this use case, NMS sends a request to resume a suspended performance threshold monitor. If the resumption succeeds, EMS will return success information and the performance threshold monitor will continue to act on the corresponding performance parameters. If the operation fails, it will return error information to NMS.

Exception: Threshold monitor not suspended, EMS processing error, Communication error.

Post-conditions: The performance threshold monitor is resumed on request and it monitors the performance parameter again. A state change notification may be sent to NMS.

6.2.3.3.5
Modify threshold monitor

Summary: NMS can request EMS to modify the attribute values of a performance threshold monitor through the management interface.

Assumptions: The communication between NMS and EMS is available.

Actors: NMS.

Preconditions: The specified threshold monitor exists in EMS and it is suspended. NMS needs to change the attribute values of a threshold monitor in EMS, such as the threshold value and the QoS alarm severities.

Description: NMS sends a request to EMS to modify the attribute values of a performance threshold monitor. Attributes such as the ID or criteria for the managed objects to be monitored, the monitoring granularity period, and the sequence of the name of the measurement parameters, corresponding threshold value, the notifyOnOff switch of alarm notification and the related alarm severity can be modified. According to the request, EMS will modify the performance threshold monitor. If the modification succeeds, EMS will return success information. If the modification fails, it will return error information to NMS.

Exception: Threshold monitor not suspended, Invalid parameter, EMS processing error, Communication error.

Post-conditions: The performance threshold is modified on request. An attribute value change notification may be sent to NMS.

6.2.3.3.6
Query threshold monitor

Summary: NMS can query the information of the performance threshold monitor through the management interface.

Assumptions: The communication between NMS and EMS is available.

Actors: NMS.

Preconditions: NMS needs to query the attribute information of a performance threshold monitor from EMS. The specified threshold monitor exists in EMS.

Description: NMS sends a request to EMS to query the attribute information of the threshold monitor in EMS. The information includes: the identifier of the performance threshold monitor, the ID or criteria for the managed objects to be monitored, the monitoring granularity period, and the sequence of the name of the measurement parameter, corresponding threshold value, the notifyOnOff switch of alarm notification and the related alarm severity. If the operation succeeds, EMS will return the requested information. If the operation fails, EMS will send error information to NMS.

Exceptions: EMS processing error; Communication error.

Post-conditions: The requested information of the performance threshold monitor is returned by EMS according to the request.

_1189423277.doc

3

1
Scope

The present document specifies the Information Service for the Notification Log Integration Reference Point (NL IRP) as it applies to Itf-N.

This IRP IS defines the semantics of operations (and their parameters) visible across the Itf-N in a protocol and technology neutral way. It does not define the syntax or encoding of the operations and their parameters.

2
References

The following documents contain provisions, which through reference in this text constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TS 32.101: "Telecommunication management; Principles and high level requirements".

[2]
3GPP TS 32.102: "Telecommunication management; Architecture".

[3]
3GPP TS 32.302: "Telecommunication management; Configuration Management (CM); Notification Integration Reference Point (IRP) : Information Service (IS)".

[4]
3GPP TS 32.622: "Telecommunication management; Configuration Management (CM); Generic network resources Integration Reference Point (IRP): Network Resource Model (NRM)".

[5]
3GPP TS 32.111-2: "Telecommunication management; Fault Management; Alarm Integration Reference Point (IRP): Information Service (IS)".

[6]
3GPP TS 32.312: "Telecommunication management; Generic Integration Reference Point (IRP) management: Information Service (IS)".

[7]
3GPP TS 32.331: "Telecommunication management; Notification Log Integration Reference Point (IRP): Requirements".

[8]
3GPP TS 32.342 "Telecommunication management; File Transfer (FT) Integration Reference Point (IRP): Information Service (IS)".

[9]
3GPP TS 32.150: "Telecommunication management; Integration Reference Point (IRP) Concept and definitions".

3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TS 32.101 [1], 3GPP TS 32.102 [2], 3GPP TS 32.111-2 [5] and 3GPP TS 32.331 [7] apply.

notification category: it refers to the set of notifications of one 3GPP IRP Information Service specification
A Notification Category is identified by the name of the IRP specification and the IRP specification version number.

3.2
Abbreviations

For the purposes of the present document, the following abbreviations apply:

DN
Distinguished Name

EM
Element Manager

FT
File Transfer

IOC
Information Object Class

IRP
Integration Reference Point

M
Mandatory

NE
Network Element

NL
Notification Log

NM
Network Manager

O
Optional

TS
Technical Specification

UML
Unified Modelling Language

4 Analysis

This clause provides the detailed analysis of the management interface. In the following subclauses, the related managed entities and their relationships are fully analysed, and the diagrams in these subclauses illustrate the static or dynamic relationships of the managed entities.

4.1 Conventions

In this clause, when specifying managed entities and their management operations, the following abbreviations are applied to indicate the qualifier of attributes, notifications or operation parameters:

–
M: Mandatory;

–
O: Optional;

–
C: Conditional;

–
R: Readable;

–
W: Writable;

–
S: Set by Create.

6
Interface definition

6.1
Class diagram

[image: image1.emf]NLIRPOperations_1

+ subscribeLog()

+ unsubscribeLog()

<<optional>> + exportLogRecords()

<<optional>> + getLogRecords()

<<Interface>>

FileTransferIRP

(from TS32.342)

NLIRPNotifications_1

+ notifyLogSubscribed()

+ notifyLogUnsubscribed()

<<Notification>>

NLIRPOperations_2

+ getLogSubscriptionIds()

+ getLogSubscriptionStatus()

<<Interface>>

NLIRPNotifications_2

+ notifyOccupancyLevelCrossed()

<<optional>> + notifiyLoggingResumed()

<<Notification>>

NLIRP

+ maxLogs

<<InformationObjectClass>>

<<use>>

<<may realize>>

<<agent-internal-usage>>

<<may use>>

NotificationIRP

(from TS32.302)

<<InformationObjectClass>>

<<agent-internal-usage>>

<<agent-internal-usage>>

NLIRPOperations_1 shall support either

operation exportLogRecords or operation

getLogRecords as mandatory.

Figure 6.1 Class diagram

Note: NLIRPOperations_1 shall support either operation exportLogRecords or operation getLogRecords as mandatory.

 6.2
Generic rules

Rule 1:
Each operation with at least one input parameter supports a pre-condition valid_input_parameter which indicates that all input parameters shall be valid with regards to their information type. Additionally, each such operation supports an exception operation_failed_invalid_input_parameter which is raised when pre-condition valid_input_parameter is false. The exception has the same entry and exit state.

Rule 2:
Each operation with at least one optional input parameter supports a set of pre-conditions supported_optional_input_parameter_xxx where "xxx" is the name of the optional input parameter and the pre-condition indicates that the operation supports the named optional input parameter. Additionally, each such operation supports an exception operation_failed_unsupported_optional_input_parameter_xxx which is raised when (a) the pre-condition supported_optional_input_parameter_xxx is false and (b) the named optional input parameter is carrying information. The exception has the same entry and exit state.

Rule 3:
Each operation shall support a generic exception operation_failed_internal_problem which is raised when an internal problem occurs and that the operation cannot be completed. The exception has the same entry and exit state.

6.3
NLIRPOperations_1 Interface (M)

6.3.1
Operation subscribeLog (M)

6.3.1.1
Definition

Using this operation, an IRPManager is initiating the logging of notifications. Resulting from this operation an IRPAgent shall start logging of notifications and, if necessary, also create an associated log.

6.3.1.2
Input parameters

			Parameter Name

			Qualifier

			Information type

			Comment

			logSubscriptionId

			M

			Log.logSubscriptionId

			See subclause 5.5.1

If empty, then IRPAgent shall create a new log and return the logSubscriptionId as output parameter. However not all IRPAgents will provide this capability, i.e. IRPManager must provide an existing logSubscriptionId.

			loggingEndTime

			O

			Log.loggingEndTime

			See subclause 5.5.1

			notificationCategories

			O

			Log. notificationCategories

			See subclause 5.5.1; if notificationCategories is absent than all notifications are logged

			filter

			O

			Log.ntfFilter

Filter constraint grammar is SS dependent

			See subclause 5.5.1; if this parameter is absent, then no filter constraint shall be applied.

6.3.1.3
Output parameters

			Parameter Name

			Qualifier

			Matching Information

			Comment

			logSubscriptionId

			M

			Log.logSubscriptionId

			See subclause 5.5.1

This parameter contains either

· the logSubscriptionId of the log created resulting from this operation or

· the value of the input parameter logSubscriptionId.

			logManagerToken

			O

			Log.logManagerToken

			See subclause 5.5.1

See also comment 6.3.2.2.

Note: Security Management IRP may provide capabilities that make this parameter redundant.

			loggingEndTime

			O

			Log.loggingEndTime

			See subclause 5.5.1

If supported by the Log IOC (5.3.2) and not already provided by the IRP Manager then the output of this operation must support this parameter.

			status

			M

			ENUM (OperationSucceeded, OperationFailed)

			If loggingEndTime is valid and notificationCategoriesis valid or absent, status = OperationSucceeded.

If operation_failed is true, status = OperationFailed.

If loggingEndTime excessive, status = OperationFailed.

6.3.1.4
Pre-condition

logsNotMaxed

			Assertion Name

			Definition

			logsNotMaxed

			The number of logs is less than the maximum number of logs allowed.

6.3.1.5
Post-condition

logStarted

			Assertion Name

			Definition

			logStarted

			A log is started with the specified characteristics (lifetime and notificationCategories).

6.3.1.6
Exceptions

			Exception Name

			Definition

			logSubscriptionId_required

			Condition: Pre-condition is true AND post-condition is false.

Returned Information: The output parameter status.

Exit state: Entry state.

			maxLogs_reached

			Condition: Pre-condition is true AND post-condition is false.

Returned Information: The output parameter status.

Exit state: Entry state.

			operation_failed

			Condition: Pre-condition is true AND post-condition is false.

Returned Information: The output parameter status.

Exit state: Entry state.

6.3.2
Operation unsubscribeLog (M)

6.3.2.1
Definition

Using this operation, the IRPManager that started a specific log is able to stop this log via unsubscribing. Note stopping a log implies that the log becomes invisible across Itf-N, independent from the loggingEndTime; therefore the IRPManager should retrieve log information of interest before using this unsubscribeLog operation, e.g. through the exportLogRecords operation.

The disposition of a log that has been stopped, that is, whether the log remains visible across the Itf-N, is left as vendor specific functionality. The time of the deletion of logs is vendor specific.

In consideration of a multi-manager environment, the log can only be stopped by the creating IRPManager if this IRPManager provided a related token while initiating subscribeLog.

6.3.2.2
Input parameters

			Parameter Name

			Qualifier

			Information type

			Comment

			logSubscriptionId

			M

			Log.logSubscriptionId

			See subclause 5.5.1

			logManagerToken

			O

			Log.logManagerToken

			See subclause 5.5.1

If subscribeLog returned a logManagerToken for a log with logSubscriptionId=”X”, then logManagerToken must be provided as input parameter of this operation to successfully stop log with logSubscriptionId=”X”.

If subscribeLogdid not return a logManagerToken for a log with logSubscriptionId=”X”, then logManagerToken must contain NULL value to successfully stop log with logSubscriptionId=”X”.

6.3.2.3
Output parameters

			Parameter Name

			Qualifier

			Matching Information

			Comment

			status

			M

			ENUM (OperationSucceeded, OperationFailed)

			If logSubscriptionId is valid and logManagerToken (if supported) is matching, status = OperationSucceeded.

If operation_failed is true, status = OperationFailed.

6.3.2.4
Pre-condition

There are no pre-conditions, other than those established by the generic rules (see subclause 6.2).

6.3.2.5
Post-condition

logStopped

			Assertion Name

			Definition

			logStopped

			The specified log is stopped.

6.3.2.6
Exceptions

			Exception Name

			Definition

			operation_failed

			Condition: Pre-condition is true AND post-condition is false.

Returned Information: The output parameter status.

Exit state: Entry state.

6.3.3
Operation exportLogRecords (O)

Support for this operations is mandatory if getLogRecords is not supported.

6.3.3.1
Definition

Using this operation, an IRPManager can initiate export of all or part of a log into a file. This file than is being transferred to the IRPManager using the File Transfer IRP (note also that the FT IRP is providing the file location to the IRP Manger).

6.3.3.2
Input parameters

			Parameter Name

			Qualifier

			Information type

			Comment

			logSubscriptionId

			M

			Log.logSubscriptionId

			See subclause 5.5.1

			notificationCategories

			O

			Log.notificationCategories

			See subclause 5.5.1

			filter

			O

			Log.filterLog.filter

			See subclause 5.5.1

6.3.3.3
Output parameters

			Parameter Name

			Qualifier

			Matching Information

			Comment

			status

			M

			ENUM (OperationSucceeded, NoMatchingLogRecordFound, OperationFailed)

			If input parameters are valid and operation was successful, status = OperationSucceeded.

If input parameters are valid and operation was successful but no matching log records are found, status = NoMatchingLogRecordFound.

If operation_failed is true, status = OperationFailed.

6.3.3.4
Pre-condition

There are no pre-conditions, other than those established by the generic rules (see subclause 6.2).

6.3.3.5
Post-condition

logRecordsExported

			Assertion Name

			Definition

			logRecordsExported

			The specified log records have been exported as requested. In case the log is empty or in case that all the log records do not satisfy the criteria of input parameters notificationCategories and filter, this post-condition is true.

6.3.3.6
Exceptions

			Exception Name

			Definition

			exportFailed

			The IRPAgent was unable to export the specified records.

			operation_failed

			Condition: Pre-condition is true AND post-condition is false.

Returned Information: The output parameter status.

Exit state: Entry state.

6.3.4
Operation getLogRecords (O)

Support for this operations is mandatory if exportLogRecords is not supported.

6.3.4.1
Definition

Using this operation, an IRPManager can retrieve one or more log records from a certain log.

Note that this operation might be preferred for retrieval of small amounts of log records, while operation exportLogRecords might be preferred for retrieval of medium to large amounts of log records, as providing a more efficient bulk transfer mechanism.

6.3.4.2
Input parameters

			Parameter Name

			Qualifier

			Information type

			Comment

			logSubscriptionId

			M

			Log.logSubscriptionId

			See subclause 5.5.1

			notificationCategories

			O

			Log.notificationCategories

			See subclause 5.5.1

			filter

			O

			Log.filter

			See subclause 5.5.1

6.3.4.3
Output parameters

			Parameter Name

			Qualifier

			Matching Information

			Comment

			getLogRecordsResult

			M

			List of logRecord's

			List of logRecords; each entry of the list holds all supported attributes of IOC LogRecord (see 5.3.3.2).

			Status

			M

			ENUM (OperationSucceeded, OperationFailed)

			If logSubscriptionId is valid and (logRecordIdList is empty or logRecordIdList contains valid Id's), status = OperationSucceeded.

If operation_failed is true, status = OperationFailed.

6.3.4.4
Pre-condition

There are no pre-conditions, other than those established by the generic rules (see subclause 6.2).

6.3.4.5
Post-condition

logRecordsRetrieved

			Assertion Name

			Definition

			logRecordsRetrieved

			The specified log records have been retrieved as requested. If the log is empty or all the log records do not satisfy the criteria of input parameters notificationCategories and filter, this post-condition is true.

6.3.4.6
Exceptions

			Exception Name

			Definition

			operation_failed

			Condition: Pre-condition is true AND post-condition is false.

Returned Information: The output parameter status.

Exit state: Entry state.

6.4
NLIRPOperations_2 Interface (O)

6.4.1
Operation getLogSubscriptionIds (M)

6.4.1.1
Definition

Using this operation, an IRPManager can query the NL IRP for all available log subscriptions.

6.4.1.2
Input parameters

			Parameter Name

			Qualifier

			Information type

			Comment

			--

			--

			--

			--

6.4.1.3
Output parameters

			Parameter Name

			Qualifier

			Matching Information

			Comment

			logSubscriptionIds

			M

			List of logSubscriptionId's

			See subclause 5.5.1 & 6.4.1.2

Note: empty list is a valid value

			status

			M

			ENUM (OperationSucceeded, OperationFailed)

			If operation is successful, status = OperationSucceeded.

If operation_failed is true, status = OperationFailed.

6.4.1.4
Pre-condition

There are no pre-conditions, other than those established by the generic rules (see subclause 6.2).

6.4.1.5
Post-condition

There are no post-conditions. Querying of log subscription Id’s does not result in any changes within the IRP Agent.

6.4.1.6
Exceptions

			Exception Name

			Definition

			operation_failed

			Condition: Pre-condition is true AND post-condition is false.

Returned Information: The output parameter status.

Exit state: Entry state.

6.4.2
Operation getLogSubscriptionStatus (M)

6.4.2.1
Definition

Using this operation, an IRPManager can query the NL IRP for available log status information of an individual log.

6.4.2.2
Input parameters

			Parameter Name

			Qualifier

			Information type

			Comment

			logSubscriptionId

			M

			Log.logSubscriptionId

			See subclause 5.5.1

6.4.2.3
Output parameters

			Parameter Name

			Qualifier

			Matching Information

			Comment

			logAttributeList

			M

			Attribute list of related Log IOC

			List of all supported attributes of IOC Log (see subclause 5.3.2.2).

			status

			M

			ENUM (OperationSucceeded, OperationFailed)

			If logSubscriptionId is valid status = OperationSucceeded.

If operation_failed is true, status = OperationFailed.

6.4.2.4
Pre-condition

There are no pre-conditions, other than those established by the generic rules (see subclause 6.2).

6.4.2.5
Post-condition

There are no post-conditions. Querying of log attributes does not result in any changes within the IRPAgent.

6.4.2.6
Exceptions

			Exception Name

			Definition

			operation_failed

			Condition: Pre-condition is true AND post-condition is false.

Returned Information: The output parameter status.

Exit state: Entry state.

6.5
NLIRPNotifications_1 Interface (O)

6.5.1
Notification notifyLogSubscribed (M)

6.5.1.1
Definition

Using this notification, an IRPAgent informs all subscribed IRPManagers that a log subscription has been successfully initiated.

6.5.1.2
Input Parameters

			Parameter Name

			Qualifier

			Matching Information

			Comment

			objectClass

			M

			--

			This parameter and objectInstance together carry the semantics of the DN of Log. Notification header - see 3GPP TS 32.302 [3]

			objectInstance

			M

			--

			This parameter and objectClass together carry the semantics of the DN of Log. Notification header - see 3GPP TS 32.302 [3]

			notificationId

			M

			--

			Notification header - see 3GPP TS 32.302 [3]

			eventTime

			M

			--

			Notification header - see 3GPP TS 32.302 [3]

			notificationType

			M

			"notifyLogSubscribed"

			Notification header - see 3GPP TS 32.302 [3]

			systemDN

			C

			IRPAgent.systemDN.

			It carries the DN of the IRPAgent that emits this notification. Notification header - see 3GPP TS 32.302 [3]

			logSubscriptionId

			M,N

			Log.logSubscriptionId

			See subclause 5.5.1

			loggingEndTime

			O,N

			Log. loggingEndTime

			See subclause 5.5.1

			notificationCategories

			O,N

			Log.notificationCategories

			See subclause 5.5.1; if absent than all notifications are being logged

			filter

			O,N

			Log.filter

			See subclause 5.5.1

6.5.1.3
Triggering Event

6.5.1.3.1
From-state

subscribeLog

			Assertion Name

			Definition

			subscribeLog

			An IRPManager requests that a new log be started.

6.5.1.3.2
To-state

logStarted

			Assertion Name

			Definition

			logStarted

			The NL IRP has started the requested logging activity.

6.5.2
Notification notifyLogUnsubscribed (M)

6.5.2.1
Definition

Using this notification, an IRPAgent informs all subscribed IRPManager that a log subscription has stopped.

6.5.2.2
Input Parameters

			Parameter Name

			Qualifier

			Matching Information

			Comment

			objectClass

			M

			--

			This parameter and objectInstance together carry the semantics of the DN of Log. Notification header - see 3GPP TS 32.302 [3]

			objectInstance

			M

			--

			This parameter and objectClass together carry the semantics of the DN of Log. Notification header - see 3GPP TS 32.302 [3]

			notificationId

			M

			--

			Notification header - see 3GPP TS 32.302 [3]

			eventTime

			M

			--

			Notification header - see 3GPP TS 32.302 [3]

			notificationType

			M

			"notifyLogUnsubscribed"

			Notification header - see 3GPP TS 32.302 [3]

			systemDN

			C

			IRPAgent.systemDN.

			It carries the DN of the IRPAgent that emits this notification. Notification header - see 3GPP TS 32.302 [3]

			logSubscriptionId

			M,N

			Log.logSubscriptionId

			See subclause 5.5.1

6.5.2.3
Triggering Event

6.5.2.3.1
From-state

unsubscribeLog OR loggingEndTimeReached

			Assertion Name

			Definition

			unsubscribeLog

			The IRPManager that started the log requests that the log be unsubscribed.

			loggingEndTimeReached

			The logging end timespecified for the log in subscribeLog has been reached.

6.5.2.3.2
To-state

logStopped

			Assertion Name

			Definition

			logStopped

			The logging activity has stopped.

6.6
NLIRPNotifications_2 Interface (O)

6.6.1
Notification notifyOccupancyLevelCrossed (M)

6.6.1.1
Definition

Using this notification, an IRPAgent informs all subscribed IRPManagers about the occupancy level of a certain log according with levels defined in 5.5.1 (in addition also the log full action type of this NLIRP instance is being provided for context purposes).

6.6.1.2
Input Parameters

			Parameter Name

			Qualifier

			Matching Information

			Comment

			objectClass

			M

			--

			This parameter and objectInstance together carry the semantics of the DN of Log. Notification header - see 3GPP TS 32.302 [3]

			objectInstance

			M

			--

			This parameter and objectClass together carry the semantics of the DN of Log. Notification header - see 3GPP TS 32.302 [3]

			notificationId

			M

			--

			Notification header - see 3GPP TS 32.302 [3]

			eventTime

			M

			--

			Notification header - see 3GPP TS 32.302 [3]

			notificationType

			M

			"notifyOccupancyLevelCrossed"

			Notification header - see 3GPP TS 32.302 [3]

			systemDN

			C

			IRPAgent.systemDN.

			It carries the DN of the IRPAgent that emits this notification. Notification header - see 3GPP TS 32.302 [3]

			logSubscriptionId

			M,Y

			Log.logSubscriptionId

			See subclause 5.5.1

			currentOccupancyLevel

			M,N

			mod((Log.currentSize/ Log.maxSize)*100)

			See subclause 5.5.1

			logFullAction

			O,N

			Log.logFullAction

			See subclause 5.5.1

6.6.1.3
Triggering Event

6.6.1.3.1
From-state

logFull OR occupanceLevelCrossed

			Assertion Name

			Definition

			logFull

			The log is full, that is, the number of log records contained within the log has exceeded the maximum number of log records that was established at log startup (log capacity has reached 100 %).

			occupancyLevelCrossed

			The number of log records within the log has crossed one of the threshold boundaries (see 5.5.1 log.occupancyLevel).

6.6.1.3.2
To-state

logWrapping OR (logHalted OR logging)

			Assertion Name

			Definition

			logWrapping

			Applicable for case Log.logFullAction=’wrap’: The number of log records within the log has exceeded the maximum number of allowed log records (100 % capacity has been crossed). The logging of new records will cause the oldest records within the log to be deleted and replaced (first in, first out). The deletion of records may occur in a block, such that the log transitions back to the “started” state prior to any new records being written.

			logHalted

			Applicable for case Log.logFullAction=’halt’: The number of log records within the log has exceeded the maximum number of allowed log records (100 % capacity has been crossed). The logging of new records will be discontinued until the deletion of records has occurred (deletion of records is outside the scope of this IRP).

			logging

			Applicable for case Log.logFullAction=’halt’: The number of log records within the log is below the maximum number of allowed records. The generation of the notification is done to inform the subscribed IRPManagers that the log is filling up.

6.6.2
Notification notifyLoggingResumed (O)

6.6.2.1
Definition

Using this notification, an IRPAgent informs all subscribed IRPManagers that the amount of data within a given log has been reduced, allowing logging to resume continue (according to the information provided when the log was created). Note that this notification only applies to Log.logFullAction == ‘halt’.

6.6.2.2
Input Parameters

			Parameter Name

			Qualifier

			Matching Information

			Comment

			objectClass

			M

			--

			This parameter and objectInstance together carry the semantics of the DN of Log. Notification header - see 3GPP TS 32.302 [3]

			objectInstance

			M

			--

			This parameter and objectClass together carry the semantics of the DN of Log. Notification header - see 3GPP TS 32.302 [3]

			notificationId

			M

			--

			Notification header - see 3GPP TS 32.302 [3]

			eventTime

			M

			--

			Notification header - see 3GPP TS 32.302 [3]

			notificationType

			M

			"notifyLoggingResumed"

			Notification header - see 3GPP TS 32.302 [3]

			systemDN

			C

			IRPAgent.systemDN.

			It carries the DN of the IRPAgent that emits this notification. Notification header - see 3GPP TS 32.302 [3]

			logSubscriptionId

			M,Y

			Log.logSubscriptionId

			See subclause 5.5.1

6.6.2.3
Triggering Event

6.6.2.3.1
From-state

logFull

			Assertion Name

			Definition

			logHalted

			The log is full, that is, the number of log records contained within the log has exceeded the maximum number of log records that was established at log startup (log capacity has reached 100 % and Log.logFullAction=’halt’).

			occupancyLevelCrossed

			The number of log records within the log has crossed one of the threshold boundaries (see 5.5.1 log.occupancyLevel).

6.6.2.3.2
To-state

			Assertion Name

			Definition

			logging

			The number of log records within the log is below the maximum number of allowed records. The generation of the notification is done to inform the subscribed IRPManagers that the log is filling up.

5
Information Object Classes

5.1
Information entities imported and local labels

			Label reference

			Local label

			3GPP TS 32.622 [4], information object class, Top

			Top

			3GPP TS 32.312 [6], information object class, ManagedGenericIRP

			ManagedGenericIRP

			3GPP TS 32.342 [8], information object class, FileTransferIRP

			FileTransferIRP

			3GPP TS 32.302 [3], information object class, NotificationIRP

			NotificationIRP

			3GPP TS 32.302 [3], information object class, NotificationIRPNotification

			NotificationIRPNotification

5.2
Class diagram

5.2.1
Attributes and relationships

This subclause introduces the set of Information Object Classes (IOCs) that encapsulate information within the IRPAgent. The intent is to identify the information required for NL IRP operations and notification. This subclause provides the overview of all support object classes in UML. Subsequent subclauses provide more detailed specification of various aspects of these support object classes.

[image: image2.emf]NotificationIRPNotification

+ notificationId

+ eventTime

+ systemDN

+ notificationType

(from TS32.302)

LogRecord

+ logRecordId

+ logRecordContent

<<InformationObjectClass>>

11

+notification

1

+logRecord

1

relation-logRecord-notification

Log

+ logSubscriptionId

+ loggingEndTime

+ maxSize

+ currentSize

+ creationTime

+ logState

+ logRecordCount

+ notificationCategories

+ filter

+ logFullAction

+ occupancyLevels

% logManagerToken

<<InformationObjectClass>>

0..*

1

+logRecord0..*

+log

1

relation-log-logRecord

NLIRP

+ maxLogs

<<InformationObjectClass>>

0..*0..*

<<names>>

Figure 5.1: Information Object Class UML Diagram

5.2.2
Inheritance

[image: image3.emf]ManagedGenericIRP

(from TS32.312)

Top

+ objectClass

+ objectInstance

(from TS32.622)

<<InformationObjectClass>>

NLIRP

+ maxLogs

<<InformationObjectClass>>

LogRecord

+ logRecordId

+ logRecordContent

<<InformationObjectClass>>

Log

+ logSubscriptionId

+ loggingEndTime

+ maxSize

+ currentSize

+ creationTime

+ logState

+ logRecordCount

+ notificationCategories

+ filter

+ logFullAction

+ occupancyLevels

% logManagerToken

<<InformationObjectClass>>

Figure 5.2: Information Object Class Inheritance UML Diagram

5.3
Information Object Class definitions

5.3.1
NLIRP

5.3.1.1
Definition

LogIRP is the representation of the notification log management capabilities specified by the present document. This IOC inherits from ManagedGenericIRP IOC specified in 3GPP TS 32.312 [6].

5.3.1.2
Attributes

			Attribute name

			Visibility

			Support Qualifier

			Read
Qualifier

			Write
Qualifier

			maxLogs

			+

			O

			M

			-

5.3.2
Log

5.3.2.1
Definition

The Log IOC is the representation of a Notification Log.

5.3.2.2
Attributes

			Attribute name

			Visibility

			Support Qualifier

			Read Qualifier

			Write
Qualifier

			logSubscriptionId

			+

			M

			M

			-

			loggingEndTime

			+

			O

			M

			-

			logManagerToken

			%

			O

			-

			-

			maxSize

			+

			O

			M

			-

			currentSize

			+

			O

			M

			-

			creationTime

			+

			O

			M

			-

			logState

			+

			M

			M

			-

			logRecordCount

			+

			O

			M

			-

			notificationCategories

			+

			O

			M

			-

			filter

			+

			O

			M

			-

			logFullAction

			+

			M

			M

			-

			occupancyLevels

			+

			M

			M

			-

5.3.2.3
State diagram

[image: image4.emf]logging

startLog

stopped

logHalted

logNotFull / notifyLoggingResumed()

stopLog || logLifeTimeExpired

logWrapping

stopLog || logLifeTimeExpired

logFull[logFullAction==halt]

stopLog || logLifeTimeExpired

occupancyLevelChanged

logFull[logFullAction==wrap]

Figure 5.3: State Diagram for Notification Log

The disposition of a log that has been stopped, that is, whether the log remains visible across the Itf-N, is left as vendor specific functionality. The time of the deletion of logs is vendor specific.

5.3.3
LogRecord

5.3.3.1
Definition

The LogRecord IOC is the representation of an individual Notification Log Record.

5.3.3.2
Attributes

			Attribute name

			Visibility

			Support Qualifier

			Read Qualifier

			Write
Qualifier

			logRecordId

			+

			M

			M

			-

			LogRecordContent

			+

			O

			M

			-

5.4
Information relationship definitions

5.4.1
Relation-nLIRP-log (M)

5.4.1.1
Definition

This represents the relationship between NLIRP and the Log.

5.4.1.2
Role

			Name

			Definition

			nLIRP

			It represents the NLIRP.

			log

			It represents the Log.

5.4.1.3
Constraint

			Name

			Definition

			uniqueLogSubscriptionId

			The log subscription id must be unique amongst all logs managed by a given NL IRP instance.

			uniqueLogManagerToken

			The log manager token must be unique amongst all managers and logs utilizing logging services from a given NL IRP instance.

5.4.2
Relation-log-logRecord (M)

5.4.2.1
Definition

This represents the relationship between Log and the LogRecord.

5.4.2.2
Role

			Name

			Definition

			log

			It represents the Log.

			logRecord

			It represents the LogRecord.

5.4.2.3
Constraint

			Name

			Definition

			uniqueLogRecordId

			The log record id must be unique amongst all logs records within a given log.

5.4.3
Relation-logRecord-notificationIRPNotification (M)

5.4.3.1
Definition

This represents the relationship between LogRecord and the notification header
 represented by NotificationIRPNotification.

5.4.3.2
Role

			Name

			Definition

			logRecord

			It represents the LogRecord.

			notification

			It represents the NotificationIRPNotification.

5.4.3.3
Constraint

			Name

			Definition

			logRecordIdRelatesNotificationId

			Within a given log, there is a one-to-one relationship between Notification Id and Log Id (as each notification can only be recorded once).

5.5
Information attribute definition

5.5.1
Definition and legal values

			Attribute Name

			Definition

			Legal Values

			creationTime

			The time when the log is created.

			YYYYMMDDhhmmss

			currentSize

			This attribute provides the number of bytes currently utilized by a given log. When taken in conjunction with maxSize, the amount of space remaining in the log can be determined.

			Either:

· zero

· a positive whole number,

			filter

			It specifies a filter constraint that IRPAgent shall use to filter notification of the category specified in notificationCategories parameter.

Support of time based filter is mandatory. Support of other filter constraints is optional.

			Filter constraint grammar is SS dependent

			logFullAction

			Indicate the action that will be taken by this instance of NLIRP when the

Log.maxSize has been reached.

			An ENUM that can have one of the following values:

•
wrap: The oldest LogRecord(s) in the Log, based on the log time, will be deleted to free resources for the logging of new LogRecord(s).

•
halt: No more LogRecord(s) will be logged and all incoming events are discarded. LogRecord/s already in the Log will be retained.

			loggingEndTime

			Defines the date and time when the log stops logging.

			If log is created by IRPManager:

· value provided by the IRP Manager - the IRP Agent may reject the value provided by the IRP Manager in case this value is excessive

· in case no value is provided by the IRP Manager then this value is set by the IRP Agent.

If log is created by IRPAgent:

· value indicates date and time or

· value is expressed as “indefinite”.

			logManagerToken

			This attribute contains the token of a manager utilizing logging services from a given NL IRP instance, assigned by the IRPAgent.

			The value of this attribute must be unique amongst all managers and logs utilizing logging services from the given NL IRP instance.

			logRecordContent

			The notification information of a log record, excluding the notification header information.

			The content format varies depending on the type of the notification.

			logRecordCount

			The number of log records currently logged within a given log.

			positive whole number, including zero

			logRecordId

			This attribute contains the id of a log record within a given log, assigned by the IRPAgent.

			The value of this attribute must be unique amongst all log record contained by a given log.

			logState

			Provides an indication of the current state of a specific log

			An ENUM that can have one of the following values:

· logging

· logFull

· stopped

			logSubscriptionId

			This attribute contains the id of a log subscription within a given NL IRP instance, assigned by the IRPAgent.

			The value of this attribute must be unique amongst all log subscriptions managed by a given NL IRP instance.

			maxLogs

			Defines the maximum number of logs that can be supported by a given Notification Log IRP, assigned by the IRPAgent.

			Non-zero, positive whole number

			maxSize

			This attribute defines the maximum number of bytes that may be utilized by a given log, assigned by the IRPAgent.

			Either:

· Non-zero, positive whole number

· Zero indicates no limit on the number of records is set by the IRPAgent (log full handling will provide limitation information)

			notificationCategories

			Specifies the notification categories that can be recorded within a given log - SET OF (name of IRP, version of IRP)

			It identifies one or more Notification Category (see also Definition in subclause 3.1)

			occupancyLevels

			Case Log.logFullAction == ‘halt’ and Log.maxSize is non-zero:

· this attribute contains a list of 3 values fixed (determined by the IRPAgent and never changed) of percentage, of Log.maxLog

· the NLIRP will generate notifyOccupancyLevel to alert IRPManagers about the Log capacity currently used.

Case Log.logFullAction == ‘wrap’:

· this attribute contains 1 value fixed (determined by the IRPAgent and never changed) of percentage of Log.maxLog

· the NLIRP will generate notifyOccupancyLevel to alert IRPManagers that the specified percentage of the capacity has been written to the wrapping Log.

			Case of ‘halt’: a set of 3 values.

Case of ‘wrap’: 1 value.

5.5.2
Constraints

			Name

			Definition

			inv_ lastModifiedTime

			Time indicated shall be greater than or equal to creationTime.

			inv_ logRecordCount

			Number indicated shall be less than or equal to maxSize

Annex A (informative):
Change history

			Change history

			Date

			TSG #

			TSG Doc.

			CR

			Rev

			Subject/Comment

			Old

			New

			Mar 2004

			S_23

			SP-040123

			--

			--

			Submitted to SA#23 for Information

			1.0.0

			

			Dec 2004

			S_26

			SP-040798

			--

			--

			Submitted to SA#26 for Approval

			2.0.0

			6.0.0

			Jun 2005

			S_28

			SP-050290

			0001

			--

			Correct mapping info of currentOccupancyLevel and some editorial errors

			6.0.0

			6.1.0

			Jun 2005

			S_28

			SP-050329

			0002

			--

			Apply Generic System Context – Align with TS 32.150

			6.0.0

			6.1.0

			

			

			

			

			

			

			

			

			

			

			

			

			

			

			

			

[image: image5.png]

�X.735?

�The Operations_1 is not a meaningful or readable naming convention

�Where are suspend/resume/create/modify/delete? How is the logFullAction set?

�Should be a notification not an interface

�Where is suspended?

�What about Alarm IRP?

�logRecordContent doesn’t make sense if the NotifcationIRP is associated through relationship (double association)

�logWrapping should return to logging

�not just the header, any class derived from NotificationIRPNotification can be stored here

�and >0

_1189423227.doc

47

1
Scope

The present document defines the Alarm Integration Reference Point (IRP) Information Service (IS), which addresses the alarm surveillance
aspects of Fault Management (FM), applied to the N Interface.

The purpose of the AlarmIRP is to define an interface through which a "system" (typically a Network Element Manager or a Network Element) can communicate alarm information for its managed objects to one or several Manager Systems (typically Network Management Systems).

The Alarm IRP IS defines the semantics of alarms and the interactions visible across the reference point in a protocol neutral way. It defines the semantics of the operations and notifications visible in the IRP. It does not define the syntax or encoding of the operations, notifications and their parameters.

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TS 32.150: "Telecommunication management; Integration Reference Point (IRP) Concept and definitions"

[2]
ITU-T Recommendation X.733 (02/92): "Information technology - Open Systems Interconnection - Systems Management: Alarm reporting function".

[3]
ITU-T Recommendation X.721: "Information Technology - Open Systems Interconnection -Structure of management information: Definition of management information".

[4]
3GPP TS 32.401 "Telecommunication management; Performance Management (PM); Concept and requirements".

[5]
3GPP TS 32.302: "Telecommunication management; Configuration Management (CM); Notification Integration Reference Point (IRP): Information Service (IS)".

[6]
3GPP TS 32.101: "Telecommunication management; Principles and high level requirements".

[7]
3GPP TS 32.102: "Telecommunication management; Architecture".

[8]
Void.

[9]
3GPP TS 32.111-1: "Telecommunication management; Fault Management; Part 1: 3G fault management requirements".

[10]
3GPP TS 32.622: "Telecommunication management; Configuration Management (CM); Generic network resources Integration Reference Point (IRP): Network Resource Model (NRM)".

[11]
ITU-T Recommendation M.3100 (07/95): "Generic network information model".

[12]
Void.

[13]
Void.

[14]
3GPP TS 32.312: "Telecommunication management; Generic Integration Reference Point (IRP) management; Information Service (IS)".

[15]
ITU-T Recommendation X.736: "Information technology - Open Systems Interconnection - Systems Management: Security alarm reporting function".

3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in TS 32.111-1 [9] and the following apply:

Event: occurrence that is of significance to network operators, the NEs under surveillance and Network Management applications. Events do not have state.

IRPAgent: See 3GPP TS 32.102 [7].

IRPManager: See 3GPP TS 32.102 [7].

IRP document version number string (IRPVersion): which identifies a particular IRP solution set specification

NOTE:
It is derived using the following rule. Take the 3GPP document version number on the front page of the solution set specification, such as "3GPP TS 32.106-3 V3.2.0 (2000-12)". Discard the leading "3GPP TS". Discard all characters after and including the last period. Eliminate leading and trailing spaces. Reduce multiple consecutive spaces with one space. Express the resultant in a string. Capitalized the string. For example, if the 3GPP document version number is "3GPP TS 32.106-3 V3.2.0 (2000-12)", then the IRP document version number shall be "32.106 V3.2".

Matching-Criteria-Attributes: which identifies a set of ITU-T Recommendation X.733 [2] defined attributes

NOTE:
Notifications carrying identical values for these attributes are considered to be carrying alarm information related to (a) the same network resource and (b) the same alarmed condition. The matching-criteria-attributes are: objectInstance, eventType, probableCause and specificProblem, if present.

Notification: which refers to the transport of events from IRPAgent to IRPManager

NOTE:
In this IRP, notifications are used to carry alarm information from IRPAgent to IRPManager.

3.2
Abbreviations

For the purposes of the present document, the following abbreviations apply:

AIS
Alarm Indication Signal

BSS
Base Station System

CM
Configuration Management

CMIP
Common Management Information Protocol

DN
Distinguished Name

EBER
Excessive Bit Error Rate

EM
Element Manager

FERF
Far End Receiver Failure

FM
Fault Management

IOC
Information Object Class

IRP
Integration Reference Point

IS
Information Service

LOF
Loss Of Frame

LOP
Loss Of Pointer

LOS
Loss Of Signal

MO
Managed Object

MOI
Managed Object Instance

NE
Network Element

NM
Network Manager

OS
Operations System

QoS
Quality of Service

RDN
Relative Distinguished Name

SS
Solution Set

TM
Telecommunication Management

UML
Unified Modelling Language

4
Basic aspects

4.1
Void

4.2
System Context

The general definition of the System Context for the present IRP is found in 3GPP TS 32.150 [1] subclause 4.7.

In addition, the set of related IRP(s) relevant to the present IRP is shown in the two diagrams below.

[image: image1.wmf]

NEs

EM

IRPAgent

IRPManager

NM

Itf

-

N

Notification IRP

Alarm IRP

Figure 1: System Context A

[image: image2.wmf]

Itf

-

N

NE

IRPAgent

IRPManager

NM

Notification IRP

Alarm IRP

Figure 2: System Context B

5
Information Object Classes

5.1
Information entities imported and local label

			Label reference

			Local label

			32.302 [5], information object class, NotificationIRP

			NotificationIRP

			32.302 [5], interface, notificationIRPNotification

			NotificationIRPNotification

			32.622 [10], information object class, IRPAgent

			IRPAgent

			32.312 [14], information object class, ManagedGenericIRP

			ManagedGenericIRP

5.2
Class diagram

This clause introduces the set of Information Object Classes (IOCs) that encapsulate information within the IRPAgent. The intent is to identify the information required for the AlarmIRP Agent implementation of its operations and notification emission. This clause provides the overview of all support object classes in UML. Subsequent clauses provide more detailed specification of various aspects of these support object classes.

5.2.1
Attributes and relationships

[image: image3.wmf]

AlarmIRP

<<InformationObjectClass>>

MonitoredEntity

<<InformationObjectClass>>

AlarmList

<<InformationObjectClass>>

1

1..n

#identif

yAlarmList

1

#identifyAlarmIRP

1..n

relation

-

AlarmIRP

-

AlarmList

CorrelatedInformation

source

notificationIdSet

<<InformationObjectClass>>

Comment

commentTime

commentText

commentUserId

commentSystemId

<<InformationObjectClass>>

Al

armInformation

alarmId

notificationId

alarmRaisedTime

alarmClearedTime

alarmChangedTime

eventType

probableCause

perceiveSeverity

specificProblem

backedUpStatus

trendIndication

thresholdInfo

stateChangedDefinition

m

onitoredAttributes

proposedRepairActions

additionalText

additionalInformation

ackTime

ackUserId

ackSystemId

ackState

clearUserId

clearSystemId

vendorSpecific

AlarmType

<<InformationObjectClass>>

0..n

1

#identifyAlarmInform

ation

0..n

#identifyAlarmObject

1

relation

-

AlarmedObject

-

Al

armInformation

0..1

#identifyBackUpObject

0..1

#theBackUpObject

relation

-

BackUpObject

-

AlarmInfor

mation

0..n

#identifyAlarmInformation

0..n

#theAlarmInformation

relation

-

AlarmList

-

AlarmInformation

0..n

#identifyCorrelatedInformation

0..n

#theAlarmInformation

relation

-

AlarmList

-

CorrelatedInformation

0..n

#identifyComments

0..n

#theAlarmInformation

relation

-

AlarmList

-

Comment

Figure :

5.2.2
Inheritance

[image: image4.emf]ManagedGenericIRP

iRPVersions

operationNameProfiles

operationParameterProfiles

notificationNameProfiles

notificationParameterProfiles

<<InformationObjectClass>>

Imported classes

NotificationIRPNotification

<<Interface>>

AlarmIRP

<<InformationObjectClass>>

AlarmIRPNotifications_1

<<Interface>>

AlarmIRPNotification_2

<<Interface>>

AlarmIRPNotification_3

<<Interface>>

AlarmIRPNotification_4

<<Interface>>

Figure :

5.3
Information Object Class Definitions

5.3.1
AlarmInformation

5.3.1.1
Definition

AlarmInformation contains information about alarm condition of an alarmed MonitoredEntity.

One IRPAgent is related to at most one AlarmList. The IRPAgent or its related AlarmIRP or the related AlarmList assigns an identifier, called alarmId, to each AlarmInformation in the AlarmList. An alarmId unambiguously identifies one AlarmInformation in the AlarmList.

5.3.1.2
Attribute

			Attribute name

			Support Qualifier

			alarmId

			M

			notificationId (note 1)

			M

			alarmRaisedTime

			M

			alarmClearedTime

			M

			alarmChangedTime

			O

			eventType

			M

			vendorSpecificAlarmType

			O

			probableCause

			M

			perceivedSeverity

			M

			specificProblem

			O

			backedUpStatus

			O

			trendIndication

			O

			thresholdInfo

			O

			stateChangedDefinition

			O

			monitoredAttributes

			O

			proposedRepairActions

			O

			additionalText

			O

			additionalInformation

			O

			ackTime

			M

			ackUserId

			M

			ackSystemId

			O

			ackState

			M

			clearUserId

			M (see note 2)

			clearSystemId

			O (see note 2)

			serviceUser

			O (see note 3)

			serviceProvider

			O (see note 3)

			securityAlarmDetector

			O (see note 3)

			NOTE 1:
This attribute may be "retired/removed" in Release 5 when Log IRP is introduced. Its removal implies that information carried in this attribute is no longer made accessible to IRPManager via the getAlarmList().

NOTE 2:
These attributes and qualifiers are applicable only if the IRPAgent supports clearAlarms() (they are absent if clearAlarms() is not supported).

NOTE 3:
These attributes must be supported if the IRPAgent emits notifyNewAlarm that carries security alarm information.

5.3.1.3
State diagram

Alarms have states. The alarm state information is captured in AlarmInformation in AlarmList.

The solid circle icon represents the Start State. The double circle icon represents the End State. In this state, the alarm is Cleared and acknowledged. The AlarmInformation shall not be accessible via the IRP and is removed from the AlarmList.

Note the state diagram uses " X / Y ^ Z " to label the arc that indicates state transition. The meanings of X, Y and Z are:

-
X identifies the triggering event

-
Y identifies the action of IRPAgent because of the triggering event

-
Z is the notification to be emitted by IRPAgent because of the triggering event

Note that acknowledgeAlarm^notifyAckStateChanged and the unacknowledgeAlarm^notifyAckStateChange refer to cases when the request of the IRPManager is successful for the AlarmInformation concerned. They do not refer to the cases when the request is a failure since in the failure cases, no state transition would occur.

Note that, to reduce cluttering to the diagram, the setComment^notifyComment is not included in the figure. One transition should be applied from unack&unclear to itself. Similarly, another transition should be applied from ack&unclear to itself. Another one is from unack&clear to itself.

Note that "PS" used in the state diagram stands for "perceived severity".

[image: image5.emf]

unack&unclear

ack&unclear

unack&clear

This is the terminal state (acknowledged and cleared)

This AlarmInformation no longer exists in the AlarmList.

The MO alarm's matching

-

criteria

-

attributes are not identical to the

matching

-

criteria

-

attributes of any AlarmInformation in AlarmList. See appendix for

the definition of matching

-

criteria

-

attributes.

MO emits alarm / IRPAgent creates a

new AlarmInformation. ^notifyNewAlarm

acknowledgeAlarm

^notifyAckStateChanged

MO PS level changes to

cleared

^notifyClearedAlarm

unacknowledgeAlarm

^notifyAckStateChange

MO PS changes to

cleared

^notifyClearedAlarm

MO PS changes & new level is

not cleared & IRPAgent supports

notifyChangedAlarm

^notifyChangedAlarm

MO PS changes & new level is not

cleared & IRPAgent does not

support notifyChangedAlarm

^notifyClearedAlarm,

notifyNewAlarm

acknowledgeAlarm

^notifyAckStateChanged

MO emits alarm & IRPAgent

supports notifyChangedAlarm

^notifyChangedAlarm

MO emits alarm & IRPAgent

does not support

notifyChangedAlarm

^notifyClearedAlarm,

notifyNewAlarm

Figure:

5.3.2
AlarmList

5.3.2.1
Definition

IRPAgent maintains an AlarmList. It contains all currently active alarms (i.e. AlarmInformation whose perceivedSeverity is not Cleared) and alarms that are Cleared but not yet acknowledged.

5.3.2.2
Attribute

There is no additional attribute defined for this IOC besides those inherited.

5.3.3
AlarmIRP

5.3.3.1
Definition

AlarmIRP is the representation of the alarm management capabilities specified by the present document. This IOC inherits from ManagedGenericIRP IOC specified in 3GPP TS 32.312 [14].

5.3.4
Comment

5.3.4.1
Definition

Comment contains commentary and associated information such as the time when the commentary is made.

5.3.4.2
Attribute

			Attribute Name

			Support Qualifier

			commentTime

			M

			commentText

			M

			commentUserId

			M

			commentSystemId

			O

5.3.5
CorrelatedNotification

5.3.5.1
Definition

It identifies one MonitoredEntity. For that MonitoredEntity identified, a set of notification identifiers is also identified. One or more CorrelatedNotification instances can be related to an AlarmInformation. In this case, the information of the AlarmInformation is said to be correlated to information carried in the notifications identified by the CorrelatedNotification instances. See further definition of correlated notification in ITU-T Recommendation X.733 [2], clause 8.1.2.9.

The meaning of correlation is dependent on the type of notification itself. See the comment column of the correlatedNotification input parameter for each type of notification, such as notifyNewAlarm.

Notification carries AlarmInformation. The AlarmInformation instances referred to by the correlatedNotification may or may not exist in the AlarmList. For example, the AlarmInformation carried by the identified notification may have been acknowledged and Cleared and therefore, no longer exist in the AlarmList.

5.3.5.2
Attribute

			Attribute Name

			Support Qualifier

			source

			M

			notificationIdSet

			M

5.3.6
MonitoredEntity

5.3.6.1
Definition

It encapsulates a subset of information of an IOC that can emit alarms. The types of IOCs that can emit alarms are:

a) All NRM IRP IOCs whose notification tables include alarm notifications.

b) VSE subclass of 3GPP defined IOCs and VSE defined IOCs in case alarm is caused by these IOCs.

NOTE:
The use of VsDataContainer for emitting alarm is for further study.

The objectClass and objectInstance of the notification carrying alarms shall identify the suitable and precise object to help IRPManager get as detailed as possible alarm source information and locate alarms accurately.

It can also encapsulate a subset of information of an IOC that serves as the back up object.

5.3.6.2
Attribute

There is no attribute for this IOC.

5.4
Information relationships definition

5.4.1
relation-AlarmIRP-AlarmList (M)

5.4.1.1
Definition

This represents the relationship between AlarmIRP and AlarmList.

5.4.1.2
Role

			Name

			Definition

			identifyAlarmIRP

			It represents the capability to obtain the identities of one or more AlarmIRP.

			identifyAlarmList

			It represents the capability to obtain the identify of one AlarmList.

5.4.1.3
Constraint

There is no constraint for this relationship.

5.4.2
relation-AlarmList-AlarmInformation (M)

5.4.2.1
Definition

This represents the relationship between AlarmList and AlarmInformation.

5.4.2.2
Role

			Name

			Definition

			theAlarmInformation

			It represents the AlarmInformation.

			identifyAlarmInformation

			It represents a capability to obtain the information contained in AlarmInformation.

5.4.2.3
Constraint

			Name

			Definition

			inv_ hasAlarmInformation1

			No AlarmInformation playing the role of theAlarmInformation shall have its perceivedSeverity = "cleared" and its ackState = "acknowledged".

			inv_ hasAlarmInformation2

			The alarmId of all AlarmInformation instances playing the role of theAlarmInformation are distinct.

5.4.3
relation-AlarmInformation-Comment (M)

5.4.3.1
Definition

This represents the relationship between AlarmInformation and Comment.

5.4.3.2
Role

			Name

			Definition

			theAlarmInformation

			It represents the AlarmInformation.

			identifyComment

			It represents a capability to obtain the information contained in Comment.

5.4.3.3
Constraint

There is no constraint.

5.4.4
relation-AlarmInformation-CorrelatedNotification (M)

5.4.4.1
Definition

This represents the relationship between AlarmInformation and CorrelatedNotification.

5.4.4.2
Role

			Name

			Definition

			theAlarmInformation

			It represents the AlarmInformation.

			identifyCorrelatedNotification

			It represents a capability to obtain the information contained in CorrelatedNotification.

5.4.4.3
Constraint

There is no constraint.

5.4.5
relation-AlarmedObject-AlarmInformation (M)

5.4.5.1
Definition

This represents the relationship between MonitoredEntity and AlarmInformation.

5.4.5.2
Role

			Name

			Definition

			identifyAlarmedObject

			It represents the capability to obtain the identification, in terms of objectClass and objectInstance, of alarmed network resource.

			identifyAlarmInformation

			It represents the capability to obtain the identities of AlarmInformation.

5.4.5.3
Constraint

			Name

			Definition

			inv_relation-AI-ME

			All AlarmInformation involved in this relationship with the same MonitoredEntity shall have at least one different value in the following attributes: eventType, probableCause and specificProblem.

5.4.6
relation-backUpObject-AlarmInformation (O)

5.4.6.1
Definition

The relationship represents the relationship between AlarmInformation and the backUpObject.

5.4.6.2
Role

			Name

			Definition

			identifyBackUpObject

			It represents a capability to obtain the identification, in terms of objectClass and objectInstance, of the backUpObject.

5.4.6.3
Constraint

			Name

			Definition

			inv_identifyBackUpObject

			This relationship is present if and only if the AlarmInformation.backedUpStatus attribute is present and is indicating true.

5.5
Information attribute definition

5.5.1
Definition and legal values

			Name

			Definition

			Legal Values

			alarmId

			It identifies one AlarmInformation in the AlarmList.

			

			notificationId

			It identifies the notification that carries the AlarmInformation.

			

			alarmRaisedTime

			It indicates the date and time when the alarm is first raised by the alarmed resource.

			All values indicating valid time.

			alarmChangedTime

			It indicates the last date and time when the AlarmInformation is changed by the alarmed resource. Changes to AlarmInformation caused by invocations of the IRPManager would not change this date and time.

			All values indicating valid time.

			alarmClearedTime

			It indicates the date and time when the alarm is Cleared.

			All values indicating valid time.

			eventType

			It indicates the type of event. See Annex A for information on event type.

			See Annex A.

			vendorSpecificAlarmType

			It indicates the vendor specific alarm that identifies the NE alarm type or NE related alarm type.

It is a vendor specific expression of eventType.

			Vendor defined

			probableCause

			It qualifies alarm and provides further information than eventType. See Annex B for a complete listing.

			See Annex B.

			perceivedSeverity

			It indicates the relative level of urgency for operator attention.

			Critical, Major, Minor, Warning, Indeterminate, Cleared: see ITU-T Recommendation X.733 [2]. This IRP does not recommend the use of indeterminate.

			specificProblem

			It provides further qualification on the alarm than probableCause. This attribute value shall be single-value and of simple type such as integer or string. See definition in ITU-T Recommendation X.733 [2] clause 8.1.2.2.

			Provided by vendor.

			backedUpStatus

			It indicates if an object (the MonitoredEntity) has a back up. See definition in ITU-T Recommendation X.733 [2] clause 8.1.2.4.

			All values that carry the semantics of backedUpStatus defined by ITU-T X.733 [2] clause 8.1.2.4.

			trendIndication

			It indicates if some observed condition is getting better, worse, or not changing.

			"Less severe", "no change", "more severe": see definition in ITU-T Recommendation X.733 [2] clause 8.1.2.6.

			thresholdInfo

			It indicates the crossed threshold information such as:

· The identifier of the monitored attribute whose value has crossed a threshold,

· The threshold settings,

· The observed value that have crossed a threshold, etc.

See definition in ITU-T Recommendation X.733 [2] clause 8.1.2.7. See also for information in TS 32.401 [4] subclause 5.6.

			

			stateChangeDefinition

			It indicates MO attribute value changes. See definition in ITU-T Recommendation X.733 [2] clause 8.1.2.10.

			

			monitoredAttributes

			It indicates MO attributes whose value changes are being monitored. See definition in ITU-T Recommendation X.733 [2] clause 8.1.2.11.

			

			proposedRepairActions

			It indicates proposed repair actions. See definition in ITU-T Recommendation X.733 [2] clause 8.1.2.12.

			

			additionalText

			It carries semantics that is outside the scope of this IRP specification. It may provide the identity of the NE (e.g. RNC, Node-B) from which the alarm has been originated. It corresponds to the "user label" attribute of the object class representing the NE in the Generic Network Resource Model [10].

It can contain further information on the alarm.

			N/A

			additionalInformation

			It contains information on the alarm and its semantics is outside the scope of this IRP.

			N/A

			ackTime

			It identifies the time when the alarm has been acknowledged or unacknowledged the last time.

			All values that indicate valid time that are later than that carried in alarmRaisedTime.

			ackUserId

			It identifies the last user who has changed the Acknowledgement State.

			It can be used to identify the human operator such as "John Smith" or it can identify a group, such as "Team Six", or it can contain no information such as "".

			ackSystemId

			It identifies the system (EM or NM) from which the alarm has been acknowledged or unacknowledged the last time.

			It can be used to identify the system, such as "system 6" or it can contain no information such as "".

			ackState

			It identifies the Acknowledgement State of the alarm.

			Acknowledged: the alarm has been acknowledged.

Unacknowledged: the alarm has been unacknowledged or the alarm has never been acknowledged.

			commentTime

			It carries the time when the comment has been added to the alarm.

			

			commentText

			It carries the textual comment.

			

			commentUserId

			It carries the identification of the user who made the comment.

			

			commentSystemId

			It carries the identification of the system (EM or NM) from which the comment is made. That system supports the user that made the comment.

			

			source

			It identifies one MonitoredEntity.

			All values that carry the semantics of DN.

			notificationIdSet

			It carries one or more notification identifiers.

			

			clearUserId

			It carries the identity of the user who invokes the clearAlarms operation.

			It can be used to identify the human operator such as "John Smith" or it can identify a group, such as "Team Six", or it can contain no information such as "".

			clearSystemId

			It carries the identity of the system in which the IRPManager runs. That IRPManager supports the user who invokes the clearAlarms().

			It can be used to identify the system, such as "system 6" or it can contain no information such as "".

			serviceUser

			It identifies the service-user whose request for service provided by the serviceProvider led to the generation of the security alarm.

			This attribute may carry no information if the server user is not identifiable.

			serviceProvider

			It identifies the service-provider whose service is requested by the serviceUser and the service request provokes the generation of the security alarm.

			

			securityAlarmDetector

			It carries the identity of the detector of the security alarm.

			This attribute may carry no information if the security alarm detector is not identifiable.

5.5.2
Constraints

			Name

			Definition

			inv_alarmChangedTime

			Time indicated shall be later than that carried in alarmRaisedTime.

			inv_alarmClearedTime

			Time indicated shall be later than that carried in alarmRaisedTime.

			inv_ackTime

			Time indicated shall be later than that carried in alarmRaisedTime.

			inv_notificationId

			NotificationIds shall be chosen to be unique across all notifications of a particular Managed Object (representing the NE) throughout the time that alarm correlation is significant. The algorithm by which alarm correlation is accomplished is outside the scope of this IRP.

6
Interface Definition

6.1
Class diagram

[image: image6.emf]AlarmIRP

<<InformationObjectClass>>

AlarmIRPOperations_1

+ getAlarmList()

+ acknowledgeAlarms()

<<Interface>>

AlarmIRPOperation_2

+ getAlarmCount()

<<Interface>>

AlarmIRPOperatio_3

+ unacknowledgeAlarms()

<<Interface>>

AlarmIRPOperation_4

+ setComment()

<<Interface>>

AlarmIRPNotifications_1

+ notifyNewAlarm()

+ notifyAckStateChanged()

+ notifyClearedAlarm()

+ notifyAlarmListRebuilt()

<<Interface>>

AlarmIRPNotification_2

+ notifyChangedAlarm()

<<Interface>>

AlarmIRPNotification_3

+ notifyComments()

<<Interface>>

AlarmIRPNotification_4

+ notifyPotentialFaultyAlarmList()

<<Interface>>

AlarmList

<<InformationObjectClass>>

11

0..10..1

0..10..1

0..10..1

11

0..10..1

0..10..1

0..10..1

AlarmIRPOperation_5

+ clearAlarms()

<<Interface>>

0..10..1

Figure :

6.2
Generic rules

Rule 1: each operation with at least one input parameter supports a pre-condition valid_input_parameter which indicates that all input parameters shall be valid with regards to their information type. Additionally, each such operation supports an exception operation_failed_invalid_input_parameter which is raised when pre-condition valid_input_parameter is false. The exception has the same entry and exit state.

Rule 2: Each operation with at least one optional input parameter supports a set of pre-conditions supported_optional_input_parameter_xxx where "xxx" is the name of the optional input parameter and the pre-condition indicates that the operation supports the named optional input parameter. Additionally, each such operation supports an exception operation_failed_unsupported_optional_input_parameter_xxx which is raised when (a) the pre-condition supported_optional_input_parameter_xxx is false and (b) the named optional input parameter is carrying information. The exception has the same entry and exit state.

Rule 3: each operation shall support a generic exception operation_failed_internal_problem that is raised when an internal problem occurs and that the operation cannot be completed. The exception has the same entry and exit state.

6.3

Interface AlarmIRPOperations_1 (O)

6.3.1
acknowledgeAlarms (M)

6.3.1.1
Definition

The IRPManager invokes this operation to acknowledge one or more alarms.

6.3.1.2
Input Parameters

			Name

			Qualifier

			Information Type

			Comment

			alarmInformationAndSeverityReferenceList

			M

			List of AlarmInformation.alarmId and AlarmInformation.perceivedSeverity

			It carries one or more identifiers identifying AlarmInformation instances in AlarmList, including optionally the perceivedSeverity of the AlarmInformation instance that is going to be acknowledged.

alarm InformationAndSeverity ReferenceList

 { alarmId - Mandatory;

 perceivedSeverity - Optional

 }

			ackUserId

			M

			AlarmInformation.ackUserId

			It identities the user acknowledging the alarm.

			ackSystemId

			O

			AlarmInformation.ackSystemId

			It identifies the processing system on which the subject IRPManager runs. It may be absent implying that IRPManager does not wish this information be kept in AlarmInformation in AlarmList.

6.3.1.3
Output Parameters

			Name

			Qualifier

			Matching Information

			Comment

			badAlarm Information ReferenceList

			M

			List of pair of AlarmInformation.alarmId, ENUM (UnknownAlarmId, AcknowledgmentFailed, WrongPerceivedSeverity) and additional failure reason.

			If allAlarmsAcknowledged is true, it contains no information.

If someAlarmAcknowledged is true, then it contains identifications of AlarmInformation that are (a) present in input parameter AlarmInformationReferenceList but are absent in the AlarmList = UnknownAlarmId; or

(b) present in input parameter AlarmInformationReferenceList and are present in the AlarmList but the Acknowledgement Information (see note below table) has not changed, in contrast to IRPManager's request = AcknowledgmentFailed; or

(c) present in input parameter AlarmInformationReferenceList and are present in the AlarmList but the perceivedSeverity to be acknowledged has changed and/or is different within the Alarm List = WrongPerceivedSeverity (applicable only if perceivedSeverity was provided).

			status

			M

			ENUM (OperationSucceeded, OperationFailed, OperationPartiallySucceeded)

			If someAlarmAcknowledged is true, status = OperationPartiallySuceeded.

If allAlarmsAcknowledged is true, status = OperationSucceeded.

If operation_failed is true, status = OperationFailed.

NOTE:
Acknowledgement Information is defined as the information contained in AlarmInformation.ackTime, AlarmInformation.ackUserId, AlarmInformaton.ackSystemId, AlarmInformation.ackState.

6.3.1.4
Pre-condition

atLeastOneValidId.

			Assertion Name

			Definition

			atLeastOneValidId

			The AlarmInformationReferenceList contains at least one identifier that identifies one AlarmInformation in AlarmList and that this identified AlarmInformation shall have its ackState indicating "unacknowledged" and, if provided, an equal perceivedSeverity.

6.3.1.5
Post-condition

someAlarmAcknowledged OR allAlarmsAcknowledged.

			Assertion Name

			Definition

			someAlarmAcknowledged

			At least one but not all AlarmInformation identified in input parameter AlarmInformationReferenceList has been acknowledged. Acknowledgement of an AlarmInformation means that the ackState attribute has been set to "acknowledged", that ackUserId, ackSystemId attributes of this AlarmInformation have been set to the values provided as input parameter and that the time of acknowledgeAlarms operation has been registered in ackTime attribute.

			allAlarmsAcknowledged

			All AlarmInformation identified in input parameter have been acknowledged. Acknowledgement of an AlarmInformation means that the ackState attribute has been set to "acknowledged", that ackUserId, ackSystemId attributes of this AlarmInformation have been set to the values provided as input parameter and that the time of acknowledgeAlarms operation has been registered in ackTime attribute.

6.3.1.6
Exceptions

			Name

			Definition

			operation_failed

			Condition: Pre-condition is false or post-condition is false.

Returned Information: The output parameter status.

Exit state: Entry state.

6.3.2
getAlarmList (M)

6.3.2.1
Definition

The IRPManager invokes this operation in order to request the IRPAgent to provide either the complete list of AlarmInformation instances in the AlarmList, including the IOC instances associated with the AlarmInformation instances (full alarm alignment), or only a part of this list (partial alarm alignment).

The parameters baseObjectClass and baseObjectInstance are used to identify the part of the alarm list to be returned. If they are absent, then the complete alarm list shall be provided (full alarm alignment). If they identify a certain MO

, then only the AlarmInformation instances (and associated IOC instances) related to this MO and its subordinate MOs shall be provided (partial alarm alignment).

There are two modes of operation. One mode is synchronous. In this mode, the list of AlarmInformation instances in AlarmList is returned synchronously
with the operation. The other mode is asynchronous. In this mode, the list of AlarmInformation instances is returned via notifications
. In asynchronous mode of operation, the only information returned synchronously is the status of the operation. A method allowing to abort an ongoing alarm alignment process shall be available in the asynchronous mode. The mode of operation to be used is determined by means outside the scope of specification. To use asynchronous mode, the IRPManager must have established a
subscription with the IRPAgent notificationIRP via the subscribe operation specified in 3GPP TS 32.302 [5].

6.3.2.2
Input Parameters

			Name

			Qualifier

			Information Type

			Comment

			alarmAckState

			O

			ENUM (all alarms, all active alarms, all active and acknowledged alarms, all active and unacknowledged, all Cleared and unacknowledged alarms, all unacknowledged)

			It carries a constraint. The IRPAgent shall apply it on AlarmInformation instances in AlarmList when constructing its output parameter AlarmInformationList.

			baseObjectClass

			O, see note 1

			This parameter is either absent or carries the object class of a certain MO.

			If this parameter is absent, then all AlarmInformation instances in the AlarmList shall be returned.

If the parameter carries the object class of a certain MO, then all AlarmInformation instances (and associated IOC instances) of the MO identified by the parameter baseObjectInstance and its subordinate MOs shall be returned. The AlarmInformation instances not related to the subject MO and its subordinate MOs shall not be returned (see note 2).

			baseObjectInstance

			O, see note 1

			This parameter is either absent or carries the DN of a certain MO.

			If the objectClass parameter is absent, then this parameter shall be absent.

If the baseObjectClass parameter carries the object class of a certain MO, then this parameter shall carry the DN of the related MO instance. The AlarmList has to be returned only for alarms concerning that MO and its subordinate MOs (see note 2).

			filter

			O

			N/A

			It carries a filter constraint. The IRPAgent shall apply it on AlarmInformation instances in AlarmList when constructing its output parameter AlarmInformationList.

			NOTE 1:
If the notification notifyAlarmListRebuilt
supports indicating that only a part of the alarm list has been rebuilt then the operation getAlarmList shall support partial alarm alignment.

NOTE 2:
The legal values of the parameters baseObjectClass and baseObjectInstance are restricted to those carried by the parameters baseObjectClass and baseObjectInstance in the recent notifyAlarmListRebuilt notifications. The timeline for “recent” is vendor-specific.

6.3.2.3
Output Parameters

			Name

			Qualifier

			Matching Information

			Comment

			AlarmInformationList

			M

			List of AlarmInformation.

			It carries the requested AlarmInformation instances including the associated IOC instances in AlarmList.

Case when synchronous mode of operation is used:

(a) The IRPAgent shall apply the constraints expressed in alarmAckState and filter to AlarmInformation instances when constructing this output parameter.

Case when asynchronous mode of operation is used (i.e. this output parameter is conveyed via notifications):

(a) If the filter parameter is present, the IRPAgent shall apply the constraint when constructing this output parameter. Furthermore, if the alarmAckState constraint is present, the IRPAgent shall apply that constraint as well. The filter constraint, if any, that is currently active in the notification channel is not used for the construction of this output parameter.

(b) If the filter parameter is absent, the IRPAgent shall apply the filter constraint currently active in the notification channel when constructing this output parameter. If the alarmAckState constraint is present, the IRPAgent shall apply that constraint as well.

			status

			M

			ENUM (OperationSucceeded, OperationFailed)

			If allAlarmInformationReturned is true, status = OperationSucceeded.

If operation_failed is true, status = OperationFailed.

6.3.2.4
Pre-condition

baseObjectExists

			Assertion Name

			Definition

			baseObjectExists

			If the parameters baseObjectClass and baseObjectInstance are provided the object identified by them has to exist.

If they are not provided this pre-condition is not applicable.

6.3.2.5
Post-condition

allAlarmInformationReturned.

			Assertion Name

			Definition

			allAlarmInformationReturned

			All AlarmInformation that satisfy the constraints expressed in input parameters filter and alarmAckState and are present in the AlarmList at the moment of this operation invocation are returned. All AlarmInformation in AlarmList remains unchanged as the result of this operation.

6.3.2.6
Exceptions

			Assertion Name

			Definition

			operation_failed

			Condition: At least one input parameter is invalid or the pre-condition is false or the post-condition is not true.

Returned Information: The output parameter status.

Exit state: Entry state.

6.4
Interface AlarmIRPOperation_2 (O)

6.4.1
getAlarmCount (O)

6.4.1.1
Definition

An IRPManager wishes to know the amount of AlarmInformation kept in the AlarmList. The IRPManager requests the counts via this operation. Possible usage is for IRPManager to find out the number of AlarmInformation in AlarmList before invoking getAlarmList operation.

6.4.1.2
Input Parameters

			Name

			Qualifier

			Information Type

			Comment

			filter

			O

			N/A

			It carries a filter constraint. The operation shall apply it when counting the AlarmInformation instances in AlarmList.

Case when
 synchronous mode of operation is used for getAlarmList:

(a) If this parameter is present, the operation shall count the AlarmInformation instances which satisfy both (a) this filter constraint and (b) the condition set by input parameter alarmAckState.

(b) If this parameter is absent, the operation shall count all AlarmInformation instances that satisfy the condition set by input parameter alarmAckState.

Case when asynchronous mode of operation is used for getAlarmList:

(a) If this parameter is present, the operation shall count all AlarmInformation instances that satisfy this filter constraint and the condition set by input parameter alarmAckState.

(b) If this parameter is absent, the operation shall count AlarmInformation instances that satisfy (a) the filter constraint currently active in the notification channel established between the IRPManager and the IRPAgent that is equipped with NotificationIRP capabilities and (b) the condition set by input parameter alarmAckState.

			alarmAckStat
e

			O

			ENUM (all alarms, all active alarms, all active and acknowledged alarms, all active and unacknowledged, all cleared and unacknowledged alarms, all unacknowledged)

			It carries a constraint. The operation shall apply it on AlarmInformation instances in AlarmList when counting.

6.4.1.3
Output Parameters

			Name

			Qualifier

			Matching Information

			Comment

			criticalCount, majorCount, minorCount, warningCount, indeterminateCount, clearedCount

			M

			N/A

			They carry the number of AlarmInformation in AlarmList that has the following properties.

Case when synchronous mode of operation is used:

(a) The operation shall apply the constraints expressed in alarmAckState and filter to AlarmInformation instances when counting.

Case when asynchronous mode of operation is used (i.e. this output parameter is conveyed via notifications):

(a) If the filter parameter is present, the operation shall apply the constraint when counting. Furthermore, if the alarmAckState constraint is present, the operation shall apply that constraint as well. The filter constraint, if any, that is currently active in the notification channel is not used for the counting.

(b) If the filter parameter is absent, the operation shall apply the filter constraint currently active in the notification channel when counting. If the alarmAckState constraint is present, the operation shall apply that constraint as well.

			status

			M

			ENUM (OperationSucceeded, OperationFailed)

			If allAlarmInformationCounted is true, status = OperationSucceeded.

If operation_failed is true, status = OperationFailed.

6.4.1.4
Pre-condition

There are no pre-conditions.

6.4.1.5
Post-condition

allAlarmInformationCounted.

			Assertion Name

			Definition

			allAlarmInformationCounted

			All AlarmInformation that satisfy the constraints expressed in input parameters filter and alarmAckState and are present in the AlarmList at the moment of this operation invocation are counted and the result returned.

All AlarmInformation in AlarmList remains unchanged as the result of this operation.

6.4.1.6
Exceptions

			Name

			Definition

			operation_failed

			Condition: the pre-condition is false or the post-condition is true.

Returned Information: The output parameter status.

Exit state: Entry state.

6.5
Interface AlarmIRPOperation_3 (O)

6.5.1
unacknowledgeAlarms (M)

6.5.1.1
Definition

IRPManager invokes this operation to remove acknowledgement information kept in one or more AlarmInformation instances.

6.5.1.2
Input Parameters

			Name

			Qualifier

			Information Type

			Comment

			alarm InformationReferenceList

			M

			List of AlarmInformation.alarmId

			It carries one or more identifiers identifying AlarmInformation in AlarmList.

			ackUserId

			M

			AlarmInformation.ackUserId

			It identities the user that invokes this operation.

			ackSystemId

			O

			AlarmInformation.ackSystemId

			It identifies the processing system on which the subject IRPManager runs.

6.5.1.3
Output Parameters

			Name

			Qualifier

			Matching Information

			Comment

			badAlarmInformationReferenceList

			M

			List of pair of AlarmInformation.alarmId and the failure reason.

			If allAlarmsUnacknowledged is true, it contains no information.

If someAlarmUnacknowledged is true, then it contains identifications of AlarmInformation that are

(a) present in input parameter AlarmInformationReferenceList but are absent in the AlarmList; or

(b) present in input parameter AlarmInformationReferenceList and are present in the AlarmList but the Acknowledgement Information (see note below table) has not changed, in contrast to IRPManager's request.

			status

			M

			ENUM (OperationSucceeded, OperationFailed, OperationPartiallySucceeded)

			If someAlarmUnacknowledged is true, status = OperationPartiallySuceeded.

If allAlarmsUnacknowledged is true, status = OperationSucceeded.

If operation_failed is true, status = OperationFailed.

NOTE:
Acknowledgement Information is defined as the information contained in AlarmInformation.ackTime, AlarmInformation.ackUserId, AlarmInformaton.ackSystemId and AlarmInformation.ackState.

6.5.1.4
Pre-condition

atLeastOneValidId AND validUserId&SystemId.

			Assertion Name

			Definition

			atLeastOneValidId

			The AlarmInformationReferenceList contains at least one identifier that identifies one AlarmInformation in AlarmList and that this identified AlarmInformation shall have its ackState indicating "acknowledged".

			validUserId&SystemId

			The values of ackUserId and ackSystemId attributes of the AlarmInformation must be the same as the ones provided as input parameters. The AlarmInformation is identified by the input parameter AlarmInformationReferenceList.

6.5.1.5
Post-condition

someAlarmUnacknowledged OR allAlarmsUnacknowledged.

			Assertion Name

			Definition

			someAlarmUnacknowledged

			At least one but not all AlarmInformation identified in input parameter alarmListReferenceList has been unacknowledged. This means that the ackState attribute has been set to "unacknowledged", that ackTime, ackUserId, ackSystemId attributes of this AlarmInformation have been set to containing no information.

			allAlarmsUnacknowledged

			All AlarmInformation identified in input parameter have been unacknowledged. This means that the ackState attribute has been set to "unacknowledged", that ackTime, ackUserId, ackSystemId attributes of this AlarmInformation have been set to contain no information.

6.5.1.6
Exceptions

			Name

			Definition

			operation_failed

			Condition: Pre-condition is false or post-condition is false.

Returned Information: The output parameter status.

Exit state: Entry state.

6.6
Interface AlarmIRPOperation_4 (O)

6.6.1
setComment (M)

6.6.1.1
Definition

The IRPManager invokes this operation to record a comment in one or more AlarmInformation instances in AlarmList.

6.6.1.2
Input Parameters

			Name

			Qualifier

			Information Type

			Comment

			AlarmInformation ReferenceList

			M

			List of AlarmInformation.alarmId

			It carries one or more identifiers identifying AlarmInformation instances in the AlarmList.

			commentUserId

			M

			The Comment.commentUserId where Comment is involved in relation-AlarmInformation-Comment with an AlarmInformation.

			

			commentSystemId

			O

			The Comment.commentSystemId where Comment is involved in relation-AlarmInformation-Comment with an AlarmInformation.

			

			commentText

			M

			The comment.commentText where Comment is involved in relation-AlarmInformation-Comment with an AlarmInformation.

			

6.6.1.3
Output Parameter

			Name

			Qualifier

			Matching Information

			Comment

			badAlarm Information ReferenceList

			M

			List of pair of AlarmInformation.alarmId and the failure reason.

			If allUpdated is true, it contains no information.

If someUpdated is true, then it contains identifications of AlarmInformation that are not present in AlarmList or that they are present, but AlarmInformation.comments has not changed, in contrast to IRPManager's request.

			Status

			M

			ENUM(
Operation succeeded,
Operation failed,
Operation partially failed)

			If allUpdated is true, then status = OperationSsucceeded.

If someUpdated is true, then status = OperationPartiallyFailed.

If exception operationFailed is raised, then status = OperationFailed.

6.6.1.4
Pre-condition

atLeastOneValidId.

			Assertion Name

			Properties

			atLeastOneValidId

			The AlarmInformationReferenceList contains at least one identifier that identifies one AlarmInformation in AlarmList.

6.6.1.5
Post-condition

allUpdated OR someUpdated.

			Assertion Name

			Properties

			allUpdated

			The AlarmInformation.comment of all alarms identified by the input parameter AlarmInformationReferenceList has been updated.

The input parameter commentText, commentUserId and commentSystemId are added to the AlarmInformation.comment. The time of the operation invocation is captured in the AlarmInformation.comment as well.

To make it possible to add the new comment, the IRPAgent may remove one or more old comment previously held by AlarmInformation.comments.

			someUpdated

			The AlarmInformation.comment attribute of at least one but not all alarms identified by the input parameter AlarmInformationReferenceList has been updated.

The input parameter commentText, commentUserId and commentSystemId are added to the AlarmInformation.comment. The time of the operation invocation is captured in the AlarmInformation.comment as well.

To add a new Comment, it may be necessary to remove one or more old Comment instances being held. The commentTime of the removed Comment instances shall be older than that of the remaining Comment instances.

6.6.1.6
Exceptions

			Name

			Properties

			operation_failed

			Condition: the pre-condition is false or the post-condition is false.

Returned Information: The output parameter status.

Exit state: Entry state.

6.7
Interface AlarmIRPOperation_5 (O)

6.7.1
clearAlarms (M)

6.7.1.1
Definition

The IRPManager invokes this operation to clear one or more AlarmInformation instances in AlarmList. For example, this operation can be used to support the manual clearing of the ADMC (automatic detection and manual clearing, see also 3GPP TS 32.111-1 [9]) alarms.

6.7.1.2
Input Parameter

			Name

			Qualifier

			Information Type

			Comment

			alarmInformation ReferenceList

			M

			List of AlarmInformation.alarmId

			It carries one or more identifiers identifying AlarmInformation instances in the AlarmList.

			clearUserId

			M

			N/A

			It identities the user clearing the alarm.

			clearSystemId

			O

			N/A

			It identifies the processing system on which the subject IRPManager runs. It may be absent implying that IRPManager does not wish this information be known to the IRPAgent.

6.7.1.3
Output Parameter

			Name

			Qualifier

			Matching Information

			Comment

			badAlarmInformation ReferenceList

			M

			List of pair of AlarmInformation.alarmId and the failure reason.

			If allCleared is true, it contains no information.

If someCleared is true, then it contains identifications of AlarmInformation that are not present in AlarmList or that are present in AlarmList but remain unchanged, in contrast to IRPManager's request.

			status

			M

			ENUM(
Operation succeeded,
Operation failed,
Operation partially failed)

			If allCleared is true, then status = OperationSucceeded.

If someCleared is true, then status = OperationPartiallyFailed.

If exception operationFailed is raised, then status = OperationFailed.

6.7.1.4
Pre-condition

atLeastOneValidId.

			Assertion Name

			Properties

			atLeastOneValidId

			The input parameter alarmInformationReferenceList contains at least one identifier that identifies one AlarmInformation in AlarmList.

6.7.1.5
Post-condition

allCleared OR someCleared.

			Assertion Name

			Properties

			allCleared

			The AlarmInformation.perceivedSeverity of all instances identified by the input parameter alarmInformationReferenceList are set to 'cleared'. The AlarmInformation.clearUserId and AlarmInformation.clearSystemId of all instances identified are set with values carried by input parameters clearUserId and clearSystemId respectively.

			someCleared

			It has the same properties as allCleared except that it is applicable to one or more but not all instances identified by the input parameter alarmInformationReferenceList.

6.7.1.6
Exceptions

			Name

			Properties

			operation_failed

			Condition: the pre-condition is false or the post-condition is false.

Returned Information: The output parameter status.

Exit state: Entry state.

6.8
Interface AlarmIRPNotifications_1 (M)

The present document does not specify methods for IRPManager to detect alarm loss. The use of alarmId to detect alarm loss is an arrangement made between IRPAgent and IRPManager. This arrangement is outside the scope of the present document. For example, IRPAgent may use integer sequence (e.g. 1, 2, 3, 4, 5, …) as alarmId instances for its alarms. Based on this knowledge, IRPManager can detect alarm loss. This kind of arrangement may not be possible for all SS.

The present document does not specify how IRPAgent can determine if IRPManager has received alarms correctly. Not all SSs provide such capability.

The present document does not specify methods for IRPManager and IRPAgent to recover alarm loss. The only mechanism recommended to deal with alarm loss is the use of getAlarmList operation. The present document does not specify conditions under which IRPManager should invoke this operation.

6.8.1
notifyNewAlarm (M)

6.8.1.1
Definition

A new AlarmInformation has been added in the AlarmList. The subscribed IRPManager instances are notified of this fact if the added AlarmInformation satisfies the current filter constraint of their subscription.

There are two tables for Input Parameters. If alarmType parameter indicates "Communications Alarm", "Processing Error Alarm", "Environmental Alarm". "Quality Of Service Alarm" or "Equipment Alarm", the first table (see clause 6.8.1.2) shall be applicable for this notifyNewAlarm. If alarmType parameter indicates "Integrity Violation", "Operational Violation", "Physical Violation", "Security Violation" or "Time Domain Violation", the second table (see clause 6.8.1.2a) shall be applicable.

6.8.1.2
Input Parameters

			Parameter Name

			Qualifier

			Matching Information

			Comment

			objectClass

			M,F

			MonitoredEntity.objectClass where the MonitoredEntity is identified by the relation-AlarmedObject-AlarmInformation of the new AlarmInformation.

			

			objectInstance

			M,F

			MonitoredEntity.objectInstance where the MonitoredEntity is identified by the relation-AlarmedObject-AlarmInformation of the new AlarmInformation.

			

			notificationId

			M

			This carries the semantics of notification identifier.

			

			eventTime

			M,F

			AlarmInformation.alarmRaisedTime

			

			systemDN

			C,F

			IRPAgent.systemDN where the IRPAgent is related to the AlarmIRP that is related to this AlarmList.

			It carries the DN of the IRPAgent.

			notificationType

			M,F

			"notifyNewAlarm".

			

			probableCause

			M,F

			AlarmInformation.probableCause

			

			perceivedSeverity

			M,F

			AlarmInformation.perceivedSeverity

			

			alarmType

			M, F

			AlarmInformation.eventType

			The notification structure defined by this table is applicable if this parameter indicates "Communications Alarm", "Processing Error Alarm", "Environmental Alarm". "Quality Of Service Alarm" or "Equipment Alarm".

			vendorSpecificAlarmType

			O, F

			AlarmInfomation.vendorSpecificAlarmType

			

			specificProblem

			O

			AlarmInformation.specificProblem

			

			correlatedNotifications

			O

			The set of CorrelatedNotification related to this AlarmInformation.

			

			backedUpStatus

			O

			AlarmInformation.backedUpStatus

			

			backUpObject

			O

			MonitoredEntity.objectInstance where the MonitoredEntity is identified by relation-BackUpObject-AlarmInformation of the new AlarmInformation.

			It carries the DN of the back up object.

			trendIndication

			O

			AlarmInformation.trendIndication

			

			thresholdInfo

			O

			AlarmInformation.thresholdInfo

			

			stateChangeDefinition

			O

			AlarmInformation.stateChange

			

			monitoredAttributes

			O

			AlarmInformation.monitoredAttributes

			

			proposedRepairActions

			O

			AlarmInformaton.proposedRepairActions

			

			additionalText

			O

			AlarmInformation.additionalText

			

			additionalInformation

			O

			AlarmInformation.additionalInformation

			

			alarmId

			M

			AlarmInformation.alarmId

			

6.8.1.2a
Input Parameters for notification related to security alarm

			Parameter Name

			Qualifier

			Matching Information

			Comment

			objectClass

			M,F

			MonitoredEntity.objectClass where the MonitoredEntity is identified by the relation-AlarmedObject-AlarmInformation of the new AlarmInformation.

			

			objectInstance

			M,F

			MonitoredEntity.objectInstance where the MonitoredEntity is identified by the relation-AlarmedObject-AlarmInformation of the new AlarmInformation.

			

			notificationId

			M

			This carries the semantics of notification identifier.

			

			eventTime

			M,F

			AlarmInformation.alarmRaisedTime

			

			SystemDN

			C,F

			IRPAgent.systemDN where the IRPAgent is related to the AlarmIRP that is related to this AlarmList.

			It carries the DN of the IRPAgent.

			notificationType

			M,F

			"notifyNewAlarm".

			

			probableCause

			M,F

			AlarmInformation.probableCause

			

			perceivedSeverity

			M,F

			AlarmInformation.perceivedSeverity

			

			alarmType

			M, F

			AlarmInformation.eventType

			The notification structure of this table is applicable if this parameter indicates "Integrity Violation", "Operational Violation", "Physical Violation", "Security Violation", "Time Domain Violation".

			vendorSpecificlAlarmType

			O, F

			Alarminformation.vendorSpecificAlarmType

			

			correlatedNotifications

			O

			The set of CorrelatedNotification related to this AlarmInformation.

			

			additionalText

			O

			AlarmInformation.additionalText

			

			additionalInformation

			O

			AlarmInformation.additionalInformation

			

			serviceUser

			M

			AlarmInformation.serviceUser

			This may contain no information if the identify of the service-user (requesting the service) is not known.

			serviceProvider

			M

			AlarmInformation.serviceProvider

			This shall always identify the service-provider receiving a service request, from serviceUser, that provokes the security alarm.

			securityAlarmDetector

			M

			AlarmInformation.securityAlarmDetector

			This may contain no information if the detector of the security alarm is the serviceProvider.

			alarmId

			M

			AlarmInformation.alarmId

			

6.8.1.3
Triggering Event

6.8.1.3.1
From-state

noMatchedAlarm.

			Assertion Name

			Definition

			noMatchedAlarm

			AlarmList does not contain an AlarmInformation that has the following properties:

Its matching-criteria-attributes
values are identical to that of the newly generated network alarm and it is involved in relation-AlarmObject-AlarmInformation with the same MonitoredEntity as the one identified by the newly generated network alarm.

6.8.1.3.2
To-state

newAlarmInAlarmList.

			Assertion Name

			Definition

			newAlarmInAlarmList

			AlarmList contains an AlarmInformation holding information conveyed by the newly generated network alarm. This AlarmInformation is involved in relation-AlarmObject-AlarmInformation with the same MonitoredEntity as the one identified by the newly generated network alarm.

The following attributes of the AlarmInformation shall be populated with information in the newly generated alarm.

alarmId, notificationId, alarmRaisedTime, eventType, probableCause, perceivedSeverity.

The following attributes of the same AlarmInformation shall be populated with information in the newly generated alarm if the information is present (in the newly generated alarm) and if the attribute is supported:

specificProblem, backedUpStatus, trendIndication, thresholdInfo, stateChangedDefinition, monitoredAttributes, proposedRepairActions, additionalText, additionalInformation.

6.8.2
notifyAckStateChanged (O)

6.8.2.1
Definition

The subscribed IRPManager instances are notified regarding changes in alarm Acknowledgement State. The AlarmInformation carried in the notification shall satisfy the current filter constraint of the subscription.

The notification shall contain all parameters that are filterable and are present in the original (related) notifyNewAlarm notification.

The IRPManager and the IRPAgent can acknowledge and unacknowledge alarms as defined by 3GPP TS 32.111-1 [9].

6.8.2.2
Input Parameters

			Parameter Name

			Qualifier

			Matching Information

			Comment

			objectClass

			M,F

			MonitoredEntity.objectClass where the MonitoredEntity is identified by the relation-AlarmedObject-AlarmInformation of the AlarmInformation.

			

			objectInstance

			M,F

			MonitoredEntity.objectInstance where the MonitoredEntity is identified by the relation-AlarmedObject-AlarmInformation of the AlarmInformation.

			

			notificationId

			M

			This carries the semantics of notification identifier.

			

			eventTime

			M,F

			AlarmInformation.ackTime

			

			systemDN

			C,F

			IRPAgent.systemDN

			

			notificationType

			M,F

			"notifyAckStateChanged"

			

			probableCause

			M,F

			AlarmInformation.probableCause

			

			perceived Severity

			M,F

			AlarmInformation.perceivedSeverity

			

			alarmType

			M,F

			AlarmInformation.eventType

			

			alarmId

			M

			AlarmInformation.alarmId

			

			ackState

			M

			AlarmInformation.ackState

			

			ackUserId

			M

			AlarmInformation.ackUserId

			If this AlarmInformation has been acknowledged by a human operator, than this parameter contains the operator identifier. If it has been acknowledged by a System (EM or NM), than this parameter contains the identifier of the System.

			ackSystemId

			O

			AlarmInformation.ackSystemId

			This parameter always contains the identifier of the System (EM or NM) where the acknowledgement request was originated.

6.8.2.3
Triggering Event

6.8.2.3.1
From-state

alarmInformationExists.

			Assertion Name

			Definition

			alarmInformationExists

			The AlarmInformation exists in AlarmList.

6.8.2.3.2
To-state

alarmAckStateHasChanged.

			Assertion Name

			Definition

			alarmAckStateHasChanged

			The AlarmInformation.ackState of the AlarmInformation identified by from-state assertion alarmInformationExists have been updated. Specifically, the following attributes of the subject AlarmInformation are updated.

notificationId, ackTime, ackUserId, ackState, ackSystemId.

6.8.3
notifyClearedAlarm (M)

6.8.3.1
Definition

IRPAgent notifies the subscribed IRPManager of alarm clearing if the subject AlarmInformation satisfies the optional filter constraint expressed in the subscribe operation.

The notification shall contain all parameters that are filterable and are present in the original (related) notifyNewAlarm notification.

6.8.3.2
Input Parameters

			Parameter Name

			Qualifier

			Matching Information

			Comment

			objectClass

			M,F

			MonitoredEntity.objectClass where the MonitoredEntity is identified by the relation-AlarmedObject-AlarmInformation of the new AlarmInformation.

			

			objectInstance

			M,F

			MonitoredEntity.objectInstance where the MonitoredEntity is identified by the relation-AlarmedObject-AlarmInformation of the new AlarmInformation.

			

			notificationId

			M

			This carries the semantics of notification identifier.

			

			eventTime

			M,F

			AlarmInformation.alarmClearedTime

			

			systemDN

			C,F

			IRPAgent.systemDN where the IRPAgent is related to the AlarmIRP that is related to this AlarmList.

			

			notificationType

			M,F

			"notifyClearedAlarm"

			

			probableCause

			M,F

			AlarmInformation.probableCause

			

			perceivedSeverity

			M,F

			AlarmInformation.perceivedSeverity

			Its value shall indicate Cleared.

			alarmType

			M,F

			AlarmInformation.eventType

			

			correlated Notifications

			O

			The set of CorrelatedNotification related to this AlarmInformation.

			It contains references to other AlarmInformation instances whose perceivedSeverity levels are Cleared as well. In this way, perceivedSeverity level of multiple AlarmInformation instances can be Cleared by one notification.

			clearUserId

			O

			AlarmInformation.clearUserId

			It is present if the AlarmInformation is cleared by the IRPManager using clearAlarms.

			clearSystemId

			O

			AlarmInformation.clearSystemId

			It is present if clearUserId is present and if AlarmInformation.clearSystemId contains information.

			alarmId

			M

			AlarmInformation.alarmId

			

6.8.3.3
Triggering Event

6.8.3.3.1
From-state

alarmMatchedAndCleared OR clearedByIRPManager.

			Assertion Name

			Definition

			alarmMatchedAndCleared

			The matching-criteria-attributes of the newly generated network alarm have values that are identical (matched) with ones in one AlarmInformation in AlarmList and the perceivedSeverity of the matched AlarmInformation is not Cleared

AND

The perceivedSeverity of the newly generated network alarm is cleared.

			clearedByIRPManager

			Reception of a valid clearAlarms operation that identifies the subject AlarmInformation instances. This triggering event shall occur regardless of the perceivedSeverity state of the identified AlarmInformation instances.

6.8.3.3.2
To-state

AlarmInformationCleared_1 OR AlarmInformationCleared_2.

			Assertion Name

			Definition

			AlarmInformationCleared_1

			Case if From-state is alarmMatchedAndCleared:

The following attributes of the subject AlarmInformation are updated:

notificationId, perceivedSeverity (updated to Cleared), alarmClearedTime.

			AlarmInformationCleared_2

			Case if From-state is clearedByIRPManager:

The following attributes of the subject AlarmInformation are updated:

notificationId, perceivedSeverity (updated to Cleared), alarmClearedTime, alarmClearedUserId, alarmClearedSystemId.

6.8.4
notifyAlarmListRebuilt (O)

6.8.4.1
Definition

The IRPAgent or its related AlarmIRP maintains an AlarmList. They can lose confidence in the integrity of its AlarmList. Under this condition, IRPAgent or its related AlarmIRP or the related AlarmList shall invoke notifyAlarmListRebuilt notification after the AlarmList has been rebuilt.

The IRPAgent can also invoke notifyAlarmListRebuilt notification indicating that part of the AlarmList has been rebuilt. In this case, the notification carries the managed object (MO) instance indicating that the AlarmList only have been rebuilt for alarms concerning this MO and its subordinate MOs. Furthermore, this notification indicates that there is no rebuilt going on for superior MOs of this MO.

6.8.4.2
Input Parameters

			Parameter Name

			Qualifier

			Matching Information

			Comment

			objectClass

			M,F

			It carries the IRPAgent.objectClass or alternatively, the object class of another MO.

			If it carries the IRPAgent.objectClass, then all AlarmInformation instances in the AlarmList may have been rebuilt.

If it carries the object class of another MO, then all AlarmInformation instances of the MO identified by the parameter objectInstance and its subordinate MOs may have been rebuilt. The AlarmInformation instances not related to the subject MO and its subordinate MOs are not subject to rebuilt.

			objectInstance

			M,F

			It carries the IRPAgent.iRPAgentId or alternatively, the id of another MO.

			If objectClass carries the IRPAgent.objectClass, then this parameter carries the RDN of the IRPAgent whose AlarmList has been rebuilt.

If objectClass carries the object class of another MO, then this parameter carries the RDN of the MO instance indicating that the AlarmList only have been rebuilt for alarms concerning that MO and its subordinate MOs.

			notificationId

			M

			This carries the semantics of notification identifier.

			

			eventTime

			M,F

			It carries the time when the IRPAgent has rebuilt the AlarmList successfully.

			

			systemDN

			C,F

			IRPAgent.systemDN where the IRPAgent is related to the AlarmIRP that is related to this AlarmList.

			

			notificationType

			M,F

			"notifyAlarmListRebuilt".

			

			reason

			M

			"Agent-NE communication error", "Agent restarts", "indeterminate". Other values can be added.

			It carries the reason why the IRPAgent has rebuilt the AlarmList. This may carry different reasons than that carried by the immediate previous notifyPotentialFaultyAlarmList.

			alarmListAlignmentRequirement

			O (note)

			ENUM (alignmentRequired, alignmentNotRequired)

			It carries an enumeration of "alignmentRequired" and "alignmentNotRequired".

IRPAgent uses alignmentRequired to indicate that IRPAgent current AL is not identical to the one that could have been built using (a) IRPAgent AL information at the time it emits the immediate previous notifyPotentialFaultyAlarmList() and (b) the notifications (carrying alarm information) emitted after the previously identified notification and before the subject notification.

Otherwise, the IRPAgent uses alignmentNotRequired.

When this parameter is absent, it implies alignmentRequired.

NOTE:
If IRPAgent supports notifyPotentialFaultyAlarmList() notification, it shall support this parameter. If IRPAgent does not support notifyPotentialFaultyAlarmList() notification, it shall not support this parameter.

6.8.4.3
Triggering Event

6.8.4.3.1
From-state

alarmListRebuilt_0 OR alarmListRebuilt_1.

			Assertion Name

			Definition

			alarmListRebuilt_0

			IRPAgent has cold-started, initialized, re-initialized or rebooted and it has initiated procedure to rebuild its AlarmList.

			alarmListRebuilt_1

			IRPAgent loses confidence in part or whole of its AlarmList. IRPAgent has initiated procedure to repair its AlarmList.

6.8.4.3.2
To-state

alarmListRebuilt_2.

			Assertion Name

			Definition

			alarmListRebuilt_2

			IRPAgent rebuilt the whole or part of AlarmList.

6.9
Interface AlarmIRPNotification_2 (O)

6.9.1
notifyChangedAlarm (M)

6.9.1.1
Definition

The subscribed IRPManager instances are notified regarding changes in AlarmInformation in AlarmList. This notification is only triggered by a change in perceivedSeverity attribute value (except to the value "Cleared"). The AlarmInformation carried in the notification shall satisfy the current filter constraint of the subscription.

The notification shall contain all parameters that are filterable and are present in the original (related) notifyNewAlarm notification.

6.9.1.2
Input Parameters

			Parameter Name

			Qualifier

			Matching Information

			Comment

			objectClass

			M,F

			MonitoredEntity.objectClass where the MonitoredEntity is identified by the relation-AlarmedObject-AlarmInformation of the new AlarmInformation.

			

			objectInstance

			M,F

			MonitoredEntity.objectInstance where the MonitoredEntity is identified by the relation-AlarmedObject-AlarmInformation of the new AlarmInformation.

			

			notificationId

			M

			This carries the semantics of notification identifier.

			

			eventTime

			M,F

			AlarmInformation.alarmChangedTime

			

			systemDN

			C,F

			IRPAgent.systemDN where the IRPAgent is related to the AlarmIRP that is related to this AlarmList.

			

			notificationType

			M,F

			"notifyChangedAlarm"

			

			probableCause

			M,F

			AlarmInformation.probableCause

			

			perceivedSeverity

			M,F

			AlarmInformation.perceivedSeverity

			

			alarmType

			M,F

			AlarmInformation.eventType

			

			alarmId

			M

			AlarmInformation.alarmId

			

6.9.1.3
Triggering Event

6.9.1.3.1
From-state

alarmMatched AND alarmNotCleared AND alarmChanged.

			Assertion Name

			Definition

			alarmMatched

			The matching-criteria-attributes of the newly generated network alarm has values that are identical (matches) with ones in one AlarmInformation in AlarmList.

			alarmNotCleared

			The perceivedSeverity of the newly generated network alarm is not Cleared.

			alarmChanged

			The perceivedSeverity of the newly generated network alarm and of the matched AlarmInformation are different.

6.9.1.3.2
To-state

informationUpdate.

			Assertion Name

			Definition

			informationUpdate

			· The AlarmInformation identified in alarmMatched in from-state has been updated according to the following rules: perceivedSeverity is updated;

· notificationId is updated;

· alarmChangedTime is updated;

· ackTime, ackUserId and ackSystemId are updated to contain no information;

· ackState is updated to "unacknowledged";

6.10
Interface AlarmIRPNotification_3

6.10.1
notifyComments (O)

6.10.1.1
Definition

The subscribed IRPManager instances are notified regarding to the addition of a Comment instance to an AlarmInformation instance in the AlarmList. The AlarmInformation carried in the notification shall satisfy the current filter constraint of the subscription.

The notification shall contain all parameters that are filterable and are present in the original (related) notifyNewAlarm notification.

The IRPManager and the IRPAgent can add comments to instances of AlarmInformation as described in 3GPP TS 32.111-1 [9].

IRPAgent shall support this notification if it supports the operation setComment.

6.10.1.2 Input Parameters

			Parameter Name

			Qualifier

			Matching Information

			Comment

			objectClass

			M,F

			MonitoredEntity.objectClass where the MonitoredEntity is identified by the relation-AlarmedObject-AlarmInformation of the AlarmInformation.

			

			objectInstance

			M,F

			MonitoredEntity.objectInstance where the MonitoredEntity is identified by the relation-AlarmedObject-AlarmInformation of the AlarmInformation.

			

			notificationId

			M

			This carries the semantics of notification identifier.

			

			eventTime

			M,F

			Comment.commentTime of the last Comment added

			

			systemDN

			C,F

			IRPAgent.systemDN

			

			notificationType

			M,F

			"notifyComments"

			

			alarmType

			M,F

			AlarmInformation.eventType

			

			probableCause

			M,F

			AlarmInformation.probableCause

			

			perceived Severity

			M,F

			AlarmInformation.perceivedSeverity

			

			comments

			M

			The set of Comment instances involved in a relationship with this AlarmInformation.

			

			alarmId

			M

			AlarmInformation.alarmId

			

6.10.1.3
Triggering Events

6.10.1.3.1
From-state

alarmInformationExists.

			Assertion Name

			Definition

			alarmInformationExists

			The AlarmInformation is in AlarmList.

6.10.1.3.2
To-state

commentInserted.

			Assertion Name

			Definition

			commentInserted

			One Comment has been created and it is involved in a relationship with the AlarmInformation identified by from-state assertion alarmInformationExists. The following attributes of the newly created Comment instance shall be populated:

commentTime, commentText, commentUserId and commentSystemId.

6.11
Interface AlarmIRPNotification_4

6.11.1
notifyPotentialFaultyAlarmList (O)

6.11.1.1
Definition

The IRPAgent or its related AlarmIRP maintains an AlarmList. They can lose confidence in the integrity of its AlarmList. Under this condition, IRPAgent or its related AlarmIRP or the related AlarmList shall invoke notifyPotentialFaultyAlarmList. They then can begin to rebuild the faulty AlarmList, if found necessary. After the successful rebuilt or the discovery that rebuilt is not necessary, they shall invoke notifyAlarmListRebuilt notification.

This notification can identify a set of AlarmInformation that is potentially faulty or unreliable. This identification is done in the following way. If the MOI of an AlarmInformation is the same or is a subordinate to the MOI carried in the notification, then the AlarmInformation may be faulty or unreliable.

This notification can identify all the AlarmInformation instances of the AlarmList that are potentially faulty or unreliable. In this case, the notification shall carry a MOI identifying the IRPAgent.

The IRPManager behavior, on reception of this notifyPotentialFaultyAlarmList notification, is not specified. The IRPManager behavior is considered not essential for the specification of the interface itself. However, the following are recommended actions the IRPManager should take, in case it receives this notification.

1)
The IRPManager should not perform any task requiring the integrity of the AlarmInformation identified as faulty or unreliable by the subject notification.

2)
The IRPManager should not invoke operations that require integrity of the AlarmList such as getAlarmList., acknolwedgeAlarms operations.

6.11.1.2
Input Parameters

			Parameter Name

			Qualifier

			Matching Information

			Comment

			objectClass

			M,F

			It carries the class of the IRPAgent or alternatively, the class of another MO.

			If it carries the IRPAgent.objectClass, then all AlarmInformation instances in the AlarmList may not be reliable.

If it carries the object class of another MO, then all AlarmInformation instances of the MO identified by the parameter objectInstance and its subordinate MOs may not be reliable. The AlarmInformation instances not related to the subject MO and its subordinate MOs are reliable.

			objectInstance

			M,F

			It carries the DN of the IRPAgent or alternatively, the DN of another MO.

			If objectClass carries the IRPAgent.objectClass, then this parameter carries the DN of the IRPAgent.

If objectClass carries the object class of another MO, then this parameter carries the DN of the MO instance.

			notificationId

			M

			This carries the semantics of notification identifier.

			

			eventTime

			M,F

			It carries the time when the IRPAgent has lost confidence of its AlarmList content.

			

			systemDN

			C,F

			IRPAgent.systemDN where the IRPAgent is related to the AlarmIRP that is related to this AlarmList.

			

			notificationType

			M,F

			"notifyPotentialFaultyAlarmList".

			

			reason

			M

			"Agent-NE communication error", "Agent restarts", "indeterminate". Other values can be added.

			It carries the reason why the IRPAgent has to rebuild its AlarmList.

6.11.1.3
Triggering Event

6.11.1.3.1
From-state

faultyAlarmListDetected.

			Assertion Name

			Definition

			faultyAlarmListDetected

			IRPAgent detects faults in part or whole of its AlarmList.

6.11.1.3.2
To-state

faultyAlarmList

			Assertion Name

			Definition

			faultyAlarmList

			IRPAgent initiates the AlarmList rebuild process.

Annex A (normative):
Event Types

This annex lists and explains event types used by the present document.

Event type is defined in 3GPP TS 32.302 [5]. The table below lists some of the event types referred to in the present document.

Notification IRP: Information Service in 3GPP TS 32.302 [5] defines a parameter called notificationType that shall be present in all notification. The present document defines a parameter called alarmType that shall be present in all notifications carrying alarm information. Examples of the notificationType are "notification of new alarm", "notification of AlarmList rebuilt", "notification of alarm cleared", etc. Examples of the alarmType are the event types defined in table below.

The present document also defines an attribute of AlarmInformation called eventType. The mapping of this eventType (internal attribute and not visible to IRPManager) to notificationType or alarmType (both visible to IRPManager) is defined in relevant sections of the present document. The choice of using "eventType" is to keep the list of attributes of AlarmList unchanged (compared to Release 99). One can replace this eventType with two attributes, called notificationType and alarmType so that mapping of these two attributes to the externally visible parameters of the same name will be straight-forward.

It is noted that the AlarmInformation.eventType can capture more information than the ITU-T defined event types ITU-T Recommendation X.733 [2]. One example is "notification of alarm list rebuilt".

It is noted that the mapping of the IS notificationType and alarmType to CMIP's event type or CORBA event_name or other fields are specified in the respective SS documents.

Table A.1: Event Types

			Event Types

			Explanation

			Communications Alarm

			An alarm of this type is associated with the procedure and/or process required conveying information from one point to another (ITU-T Recommendation X.733 [2]).

			Processing Error Alarm

			An alarm of this type is associated with a software or processing fault (ITU‑T Recommendation X.733 [2]).

			Environmental Alarm

			An alarm of this type is associated with a condition related to an enclosure in which the equipment resides (ITU-T Recommendation X.733 [2]).

			Quality of Service Alarm

			An alarm of this type is associated with degradation in the quality of a service (ITU‑T Recommendation X.733 [2]).

			Equipment Alarm

			An alarm of this type is associated with an equipment fault (ITU-T Recommendation X.733 [2]).

			Integrity Violation

			An indication that information may have been illegally modified, inserted or deleted.

			Operational Violation

			An indication that the provision of the requested service was not possible due to the unavailability, malfunction or incorrect invocation of the service.

			Physical Violation

			An indication that a physical resource has been violated in a way that suggests a security attack.

			Security Service or Mechanism Violation

			An indication that a security attack has been detected by a security service or mechanism.

			Time Domain Violation

			An indication that an event has occurred at an unexpected or prohibited time.

Annex B (normative):
Probable Causes

This annex lists probable causes and their corresponding event types.

Sources of these probable causes are ITU-T Recommendation M.3100 [11], ITU-T Recommendation X.721 [3], ITU‑T Recommendation X.733 [2], and ITU-T Recommendation X.736 [15]. In addition, probable causes for 2G and 3G wireless systems are listed.

Table B.1: Probable Causes from ITU-T Recommendation M.3100 [11]

			M.3100 Probable cause

			Event type

			Indeterminate

			Unknown

			Alarm Indication Signal (AIS)

			Communications

			Broadcast Channel Failure

			Communications

			Call Setup Failure

			Communications

			Communications Receive Failure

			Communications

			Communications Transmit Failure

			Communications

			Connection Establishment Error

			Communications

			Degraded Signal

			Communications

			Demodulation Failure

			Communications

			Far End Receiver Failure (FERF)

			Communications

			Framing Error

			Communications

			Invalid Message Received

			Communications

			Local Node Transmission Error

			Communications

			Loss Of Frame (LOF)

			Communications

			Loss Of Pointer (LOP)

			Communications

			Loss Of Signal (LOS)

			Communications

			Modulation Failure

			Communications

			Payload Type Mismatch

			Communications

			Transmission Error

			Communications

			Remote Alarm Interface

			Communications

			Remote Node Transmission Error

			Communications

			Routing Failure

			Communications

			Excessive Bit Error Rate (EBER)

			Communications

			Path Trace Mismatch

			Communications

			Unavailable

			Communications

			Signal Label Mismatch

			Communications

			Loss Of Multi Frame

			Communications

			Antenna Failure

			Equipment

			Back Plane Failure

			Equipment

			Battery Charging Failure

			Equipment

			Data Set Problem

			Equipment

			Disk Failure

			Equipment

			Equipment Identifier Duplication

			Equipment

			External IF Device Problem

			Equipment

			Frequency Hopping Failure

			Equipment

			IO Device Error

			Equipment

			Line Card Problem

			Equipment

			Loss Of Redundancy

			Equipment

			Loss Of Synchronization

			Equipment

			Multiplexer Problem

			Equipment

			NE Identifier Duplication

			Equipment

			Power Problem

			Equipment

			Power Supply Failure

			Equipment

			Processor Problem

			Equipment

			Protection Path Failure

			Equipment

			Protecting Resource Failure

			Equipment

			Protection Mechanism Failure

			Equipment

			Real Time Clock Failure

			Equipment

			Receiver Failure

			Equipment

			Replaceable Unit Missing

			Equipment

			Replaceable Unit Type Mismatch

			Equipment

			Signal Quality Evaluation Failure

			Equipment

			Synchronization Source Mismatch

			Equipment

			Terminal Problem

			Equipment

			Timing Problem

			Equipment

			Transceiver Failure

			Equipment

			Transmitter Failure

			Equipment

			Trunk Card Problem

			Equipment

			Replaceable Unit Problem

			Equipment

			Air Compressor Failure

			Environmental

			Air Conditioning Failure

			Environmental

			Air Dryer Failure

			Environmental

			Battery Discharging

			Environmental

			Battery Failure

			Environmental

			Commercial Power Failure

			Environmental

			Cooling Fan Failure

			Environmental

			Cooling System Failure

			Environmental

			Engine Failure

			Environmental

			Fire Detector Failure

			Environmental

			Fuse Failure

			Environmental

			Generator Failure

			Environmental

			Low Battery Threshold

			Environmental

			Pump Failure

			Environmental

			Rectifier Failure

			Environmental

			Rectifier High Voltage

			Environmental

			Rectifier Low F Voltage

			Environmental

			Ventilation System Failure

			Environmental

			Enclosure Door Open

			Environmental

			Explosive Gas

			Environmental

			External Equipment Failure

			Environmental

			External Point Failure

			Environmental

			Fire

			Environmental

			Flood

			Environmental

			High Humidity

			Environmental

			High Temperature

			Environmental

			High Wind

			Environmental

			Ice Build Up

			Environmental

			Intrusion Detection

			Environmental

			Low Fuel

			Environmental

			Low Humidity

			Environmental

			Low Cable Pressure

			Environmental

			Low Temperature

			Environmental

			Low Water

			Environmental

			Smoke

			Environmental

			Toxic Gas

			Environmental

			Application Subsystem Failure

			Processing Error

			Configuration Or Customisation Error

			Processing Error

			Database Inconsistency

			Processing Error

			File Error

			Processing Error

			Storage Capacity Problem

			Processing Error

			Memory Mismatch

			Processing Error

			Corrupt Data

			Processing Error

			Loss of Real Time

			Processing Error

			Out Of CPU Cycles

			Processing Error

			Out Of Memory

			Processing Error

			Reinitialized

			Processing Error

			Software Environment Problem

			Processing Error

			Software Error

			Processing Error

			Software Download Failure

			Processing Error

			Timeout Expired

			Processing Error

			Underlaying Resources Unavailable

			Processing Error

			Version Mismatch

			Processing Error

			Bandwidth Reduced

			Quality of service

			Congestion

			Quality of service

			Excessive Error Rate

			Quality of service

			Excessive Response Time

			Quality of service

			Excessive Retransmission Rate

			Quality of service

			Reduced Logging Capability

			Quality of service

			System Resources Overload

			Quality of service

Table B.2: Probable Causes from ITU-T Recommendation X.721 [3] / ITU-T Recommendation X.733 [2] / ITU-T Recommendation X.736 [15]

			X.721/X.733/X.736 Probable Cause

			Event type

			Adapter Error

			Equipment

			Application Subsystem Failure

			Processing error

			Authentication Failure

			Security Service or Mechanism Violation

			Bandwidth Reduction

			Quality of service

			Breach of Confidentiality

			Security Service or Mechanism Violation

			Cable Tamper

			Physical Violation

			Call Establishment Error

			Communications

			Communication Protocol Error

			Communications

			Communication Subsystem Failure

			Communications

			Configuration or Customizing Error

			Processing error

			Congestion

			Quality of service

			Corrupt Data

			Processing error

			CPU Cycles Limit Exceeded

			Processing error

			Data Set or Modem Error

			Equipment

			Degraded Signal

			Communications

			Delayed Information

			Time Domain Violation

			Denial of Service

			Operational Violation

			DTE-DCE Interface Error

			Communications

			Duplicate Information

			Integrity Violation

			Enclosure Door Open

			Environmental

			Equipment Malfunction

			Equipment

			Excessive Vibration

			Environmental

			File Error

			Processing error

			Fire Detected

			Environmental

			Flood Detected

			Environmental

			Framing Error

			Communications

			Heating or Ventilation or Cooling System Problem

			Environmental

			Humidity Unacceptable

			Environmental

			Information Missing

			Integrity Violation

			Information Modification detected

			Integrity Violation

			Information out of Sequence

			Integrity Violation

			Input/Output Device Error

			Equipment

			Input Device Error

			Equipment

			Intrusion Detection

			Physical Violation

			Key Expired

			Time Domain Violation

			LAN Error

			Communications

			Leak Detection

			Environmental

			Local Node Transmission Error

			Communications

			Loss of Frame

			Communications

			Loss of Signal

			Communications

			Material Supply Exhausted

			Environmental

			Multiplexer Problem

			Equipment

			Non-Repudiation Failure

			Security Service or Mechanism Violation

			Out of Hours Activity

			Time Domain Violation

			Out of Memory

			Processing error

			Out of Service

			Operational Violation

			Output Device Error

			Equipment

			Performance Degraded

			Quality of service

			Power Problem

			Equipment

			Pressure Unacceptable

			Environmental

			Procedural Error

			Operational Violation

			Processor Problem

			Equipment

			Pump Failure

			Environmental

			Queue Size Exceeded

			Quality of service

			Receive Failure

			Equipment

			Receiver Failure

			Equipment

			Remote Node Transmission Error

			Communications

			Resource at or Nearing Capacity

			Quality of service

			Response Time Excessive

			Quality of service

			Re-transmission Rate Excessive

			Quality of service

			Software Error

			Processing error

			Software Program Abnormally Terminated

			Processing error

			Software Program Error

			Processing error

			Storage Capacity Problem

			Processing error

			Temperature Unacceptable

			Environmental

			Threshold Crossed

			Quality of service

			Timing Problem

			Equipment

			Toxic Leak Detected

			Environmental

			Transmit Failure

			Equipment

			Transmitter Failure

			Equipment

			Unauthorised Access Attempt

			Security Service or Mechanism Violation

			Underlying Resource Unavailable

			Processing error

			Unexpected Information

			Integrity Violation

			Unspecified Reason

			Operational Violation

			Unspecified Reason

			Physical Violation

			Unspecified Reason

			Security Service or Mechanism Violation

			Version Mismatch

			Processing error

Table B.3: Probable Causes for 2G & 3G Wireless Systems

			2G & 3G Wireless Systems

			Event Type

			A-bis to BTS interface failure

			Equipment

			A-bis to TRX interface failure

			Equipment

			Antenna problem

			Equipment

			Battery breakdown

			Equipment

			Battery charging fault

			Equipment

			Clock synchronization problem

			Equipment

			Combiner problem

			Equipment

			Disk problem

			Equipment

			Equipment failure

			Equipment

			Excessive receiver temperature

			Equipment

			Excessive transmitter output power

			Equipment

			Excessive transmitter temperature

			Equipment

			Frequency hopping degraded

			Equipment

			Frequency hopping failure

			Equipment

			Frequency redefinition failed

			Equipment

			Line interface failure

			Equipment

			Link failure

			Equipment

			Loss of synchronization

			Equipment

			Lost redundancy

			Equipment

			Mains breakdown with battery back-up

			Equipment

			Mains breakdown without battery back-up

			Equipment

			Power supply failure

			Equipment

			Receiver antenna fault

			Equipment

			Receiver Failure

			Equipment

			Receiver multicoupler failure

			Equipment

			Reduced transmitter output power

			Equipment

			Signal quality evaluation fault

			Equipment

			Timeslot hardware failure

			Equipment

			Transceiver problem

			Equipment

			Transcoder problem

			Equipment

			Transcoder or rate adapter problem

			Equipment

			Transmitter antenna failure

			Equipment

			Transmitter antenna not adjusted

			Equipment

			Transmitter failure

			Equipment

			Transmitter low voltage or current

			Equipment

			Transmitter off frequency

			Equipment

			Database inconsistency

			Processing error

			File system call unsuccessful

			Processing error

			Input parameter out of range

			Processing error

			Invalid parameter

			Processing error

			Invalid pointer

			Processing error

			Message not expected

			Processing error

			Message not initialized

			Processing error

			Message out of sequence

			Processing error

			System call unsuccessful

			Processing error

			Timeout expired

			Processing error

			Variable out of range

			Processing error

			Watch dog timer expired

			Processing error

			Cooling system failure

			Environmental

			External equipment failure

			Environmental

			External power supply failure

			Environmental

			External transmission device failure

			Environmental

			Fan failure

			Environmental

			High humidity

			Environmental

			High temperature

			Environmental

			Intrusion detected

			Environmental

			Low humidity

			Environmental

			Low temperature

			Environmental

			Smoke detected

			Environmental

			Excessive Error Rate

			Quality of service

			Reduced alarm reporting

			Quality of service

			Reduced event reporting

			Quality of service

			Reduced logging capability

			Quality of service

			System resources overload

			Quality of service

			Broadcast channel failure

			Communications

			Connection establishment error

			Communications

			Invalid message received

			Communications

			Invalid MSU received

			Communications

			LAPD link protocol failure

			Communications

			Local alarm indication

			Communications

			Remote alarm indication

			Communications

			Routing failure

			Communications

			SS7 protocol failure

			Communications

			Transmission error

			Communications

Table B.4 identifies probable causes that are defined by more than one standard. This is for information only.

Table B.4: Duplicated Probable Causes

			Duplicated Probable Cause

			2G & 3G

			X.721 X.733

			X.736

			M.3100

			Event Type

			Broadcast Channel Failure

			X

			

			

			X

			Communications

			Call Establishment Failure (X.721/X.733)
Call Setup Failure (M.3100)

			

			X

			

			X

			Communications

			Connection Establishment Error

			X

			

			

			X

			Communications

			Degraded Signal

			

			X

			

			X

			Communications

			Framing Error

			

			X

			

			X

			Communications

			Invalid Message Received

			X

			

			

			X

			Communications

			Local Node Transmission Error

			

			X

			

			X

			Communications

			Loss of Frame

			

			X

			

			X

			Communications

			Loss of Signal

			

			X

			

			X

			Communications

			Remote Node Transmission Error

			

			X

			

			X

			Communications

			Routing Failure

			X

			

			

			X

			Communications

			Antenna Failure (M.3100)

Antenna Problem (2G & 3G)

			X

			

			

			X

			Equipment

			Battery Charging Failure (M.3100)

Battery Charging Fault (2G & 3G)

			X

			

			

			X

			Equipment

			Disk Failure (M.3100)

Disk Problem (2G & 3G)

			X

			

			

			X

			Equipment

			Equipment Failure (2G & 3G)
Equipment Malfunction (X.721/X.733)

			X

			X

			

			

			Equipment

			Frequency Hopping Failure

			X

			

			

			X

			Equipment

			IO Device Error (M.3100)

Input/Output Device Error (X.721/X.733)

			

			X

			

			X

			Equipment

			Loss Of Redundancy (M.3100)

Lost Redundancy (2G & 3G)

			X

			

			

			X

			Equipment

			Loss Of Synchronization

			X

			

			

			X

			Equipment

			Multiplexer Problem

			

			X

			

			X

			Equipment

			Power Problem

			

			X

			

			X

			Equipment

			Power Supply Failure

			X

			

			

			X

			Equipment

			Processor Problem

			

			X

			

			X

			Equipment

			Receiver Failure

			X

			X

			

			X

			Equipment

			Signal Quality Evaluation Failure (M.3100)

Signal Quality Evaluation Fault (2G & 3G)

			X

			

			

			X

			Equipment

			Timing Problem

			

			X

			

			X

			Equipment

			Transceiver Failure (M.3100)

Transceiver Problem (2G & 3G)

			X

			

			

			X

			Equipment

			Transmitter Failure

			X

			X

			

			X

			Equipment

			Cooling System Failure

			X

			

			

			X

			Environmental

			External Equipment Failure

			X

			

			

			X

			Environmental

			Enclosure Door Open

			

			X

			

			X

			Environmental

			Fan Failure (2G & 3G)
Cooling Fan Failure (M.3100)

			X

			

			

			X

			Environmental

			Fire Detected (X.721/X.733)
Fire (M.3100)

			

			X

			

			X

			Environmental

			Flood Detected (X.721/X.733)
Flood (M.3100)

			

			X

			

			X

			Environmental

			High Humidity

			X

			

			

			X

			Environmental

			High Temperature

			X

			

			

			X

			Environmental

			Intrusion Detected (2G & 3G)
Intrusion Detection (X.736/M.3100)

			X

			

			X

			X

			Environmental (2G & 3G);

Physical Violation (X.736/M.3100)

			Low Humidity

			X

			

			

			X

			Environmental

			Low Temperature

			X

			

			

			X

			Environmental

			Pump Failure

			

			X

			

			X

			Environmental

			Smoke Detected (2G & 3G)
Smoke (M.3100)

			X

			

			

			X

			Environmental

			Application Subsystem Failure

			

			X

			

			X

			Processing Error

			Bandwidth Reduced

Bandwidth Reduction (X.721/X.733)

			

			X

			

			X

			Quality of Service

			Configuration or Customization Error (M.3100)

Configuration or Customizing Error (X.721/X.733)

			

			X

			

			X

			Processing Error

			Database Inconsistency

			X

			

			

			X

			Processing Error

			File Error

			

			X

			

			X

			Processing Error

			Storage Capacity Problem

			

			X

			

			X

			Processing Error

			Excessive Bit Error Rate (M.3100)

Excessive Error Rate (2G & 3G)

Excessive Error Rate

			X

			

			

			X

			Communications (M.3100)

Quality of Service (GSM 12.11/M.3100)

			Corrupt Data

			

			X

			

			X

			Processing Error

			Out Of Memory

			

			X

			

			X

			Processing Error

			Software Error

			

			X

			

			X

			Processing Error

			Timeout Expired

			X

			

			

			X

			Processing Error

			Underlaying Resource Unavailable (M.3100)

Underlying Resource Unavailable (X.721/X.733)

			

			X

			

			X

			Processing Error

			Version Mismatch

			

			X

			

			X

			Processing Error

			Congestion

			

			X

			

			X

			Quality of Service

			Reduced Logging Capability

			X

			

			

			X

			Quality of Service

			System Resources Overload

			X

			

			

			X

			Quality of Service

			Excessive Response Time (M.3100)

Response Time Excessive (X.721/X.733)

			

			X

			

			X

			Quality of Service

			Excessive Retransmission Rate (M.3100)

Re-Transmission Rate Excessive (X.721/X,733)

			

			X

			

			X

			Quality of Service

Annex C (informative):
Examples of using notifyChangedAlarm

This annex describes a number of valid and invalid interactions governing the case when IRPAgent is reporting a specific fault of a particular network resource whose alarm severity level changes from, e.g. "Critical" to "Minor" and then to "Cleared".

In the following examples:

ni
is notificationId,

moc
is managedObjectClass,

moi
is managedObjectInstance,

et
is eventType,

pc
is probableCause,

sp
is specificProblem,

ps
is perceivedSeverity and

ai
is alarmId.

EXAMPLE 1:
Valid sequence 1 to support the hypothetical case:

(1) NotifyNewAlarm

(ni=1, ai=X, moc=A, moi=B, et=C, pc=D, sp=E, ps=Critical)

(2) NotifyChangedAlarm

(ni=2, ai=X, moc=A, moi=B, et=C, pc=D, sp=E, ps=Minor)

(3) NotifyClearedAlarm

(ni=3, ai=X, moc=A, moi=B, et=C, pc=D, sp=E, ps=Cleared)

EXAMPLE 2:
Valid sequence 2 to support the hypothetical case (assuming that the alarm with "ai=X" is acknowledged after either (1) or (2), but before (3)):

(1) NotifyNewAlarm

(ni=1, ai=X, moc=A, moi=B, et=C, pc=D, sp=E, ps=Critical)

NotifyClearedAlarm

(ni=2, ai=X, moc=A, moi=B, et=C, pc=D, sp=E, ps=Cleared)

(2) NotifyNewAlarm

(ni=3, ai=Y, moc=A, moi=B, et=C, pc=D, sp=E, ps=Minor)

NotifyClearedAlarm

(ni=4, ai=Y, moc=A, moi=B, et=C, pc=D, sp=E, ps=Cleared)

EXAMPLE 3:
Invalid sequence 1 to support the hypothetical case:

(1) NotifyNewAlarm

(ni=1, ai=X, moc=A, moi=B, et=C, pc=D, sp=E, ps=Critical)

(2) NotifyChangedAlarm

(ni=2, ai=Y, moc=A, moi=B, et=C, pc=D, sp=E, ps=Minor)

(3) NotifyClearedAlarm

(ni=3, ai=Y, moc=A, moi=B, et=C, pc=D, sp=E, ps=Cleared)

Interaction (2) is illegal since it uses a different ai for the same alarm. It should use ai=X as in interaction (1).

EXAMPLE 4:
Invalid sequence 2 to support the hypothetical case:

(1) NotifyNewAlarm

(ni=1, ai=X, moc=A, moi=B, et=C, pc=D, sp=E, ps=Critical)

(2) NotifyNewAlarm

(ni=2, ai=X, moc=A, moi=B, et=C, pc=D, sp=E, ps=Minor)

Interaction (2) is illegal since it invokes notifyNewAlarm using same ai value. It should use notifyChangedAlarm with the same ai value.

Annex D (informative):
Change history

			Date

			Subject/Comment

			Sep 28, 2005

			Initial draft

			

			

			

			

			

			

�This document covers more than just surveillance

�And Log IRP?

�Figure title missing

�The names of the IRPs have zero meaning – this is not acceptable.

�This diagram does not match the actual IRPs defined in clause 6 of this document.

�Missing caption

�The lack of separation of definition of Info for Notification and for Log is troublesome, changeTime shouldn’t be in the Alarm IRP (Log IRP), notificationId should be in the Notification IRP

�perceivedSeverity is called perceiveSeverity in the UML diagram

�discussed BackedUpObject but the attribute is missing

�clear user/system ID should be Conditional according to note

�security attributes missing from UML (and should be Conditional, not Optional)

�Which specific attributes are used for state capture should be specified here.

�Syntax not supported in diagram

�missing caption

�Isn’t the list of alarms an attribute? Or is this actually an IRP rather than an IOC?

�Note that MonitoredEntity is the entity experiencing the fault condition, the source of the alarm notification is indicated through the “source” attribute in the NotificationHeader

�One of these should be the AlarmList

�This is inconsistent with uniqueness in the alarm list

�As stated before, the object is not listed anywhere in the attribute list

�There are a minimum of two Roles in every relationship

�What is the behaviour if a component is backed up but the backup has failed and service has switched over (now the backup status is false but the backupobject is still relevant)?

�What is its meaning in notifications?

�Inherited in notifications

�Inherited in notifications, unless we add alarmType, which isn’t a bad idea

�Don’t understand the usage of this, but since it is optional, we may tag it as 3GPP specific and not care?

�Inherited from Notification

�How is this different from the “source”? Fine to support as optional attribute for backwards compatibility.

�Later or equal?

�Does this really mean alarmId or is this for the context of correlatedIdSet? If so it should be made clear.

�Isn’t the model that the IRP has an alarm list and provides both notification and management IRPs?

�Missing caption

�Optionality of IRPs is not indicated

�Here uniqueness is identified through alarmId + severity, further inconsistency

�What is “additional failure reason” and how is it in the pair? Does this refer to the “status” output parameter?

�First introduction of this term? Should this be MonitoredEntity?

�Presumably only the baseObjectClass may be provided to retrieve alarms related to all MonitoredeEtities of a specific IOC type

�This should make use of a Bulk Operations IRP

�This should make use of the Notification IRP

�With the required filter

�Where is this notification defined?

�Not required – empty response is OK

�Should be bundled with getAlarmList

�Where/how is it indicated which mode to use? This should be synchronous only

�In general, why isn’t this just part of the filter criteria, along with Object Type and Instance?

�Not consistent with acknowledgement

�What is a “failure reason”?

�Woah! This MUST be relaxed

�Set or add?

�This is better left to the discussion of event loss and placed in the Notification IRP

�According to Notification IRP, Alarm IRP Notification should inherit from Notification IRPNotification rather than defining methods

Thus, these sections should define AlarmNotification, AlarmChangeNotification, etc.

These sections have been left without detailed analysis since they need to be rewritten to be consistent with 3GPP methodology and IRP documents

�Where are these defined?

�This should include ack

�Is this a notification or an operation?

�Include in previous

_1153674202.doc

Notification IRP

Alarm IRP

NM

IRPManager

IRPAgent

NE

Itf-N

_1161124571.doc

Notification IRP

Alarm IRP

Itf-N

NM

IRPManager

IRPAgent

EM

NEs

_1171045524.doc

AlarmIRP

<<InformationObjectClass>>

MonitoredEntity

<<InformationObjectClass>>

AlarmList

<<InformationObjectClass>>

1

1..n

#identifyAlarmList

1

#identifyAlarmIRP

1..n

relation-AlarmIRP-AlarmList

CorrelatedInformation

source

notificationIdSet

<<InformationObjectClass>>

Comment

commentTime

commentText

commentUserId

commentSystemId

<<InformationObjectClass>>

AlarmInformation

alarmId

notificationId

alarmRaisedTime

alarmClearedTime

alarmChangedTime

eventType

probableCause

perceiveSeverity

specificProblem

backedUpStatus

trendIndication

thresholdInfo

stateChangedDefinition

monitoredAttributes

proposedRepairActions

additionalText

additionalInformation

ackTime

ackUserId

ackSystemId

ackState

clearUserId

clearSystemId

vendorSpecificAlarmType

<<InformationObjectClass>>

0..n

1

#identifyAlarmInformation

0..n

#identifyAlarmObject

1

relation-AlarmedObject-Al

armInformation

0..1

#identifyBackUpObject

0..1

#theBackUpObject

relation-BackUpObject-AlarmInfor

mation

0..n

#identifyAlarmInformation

0..n

#theAlarmInformation

relation-AlarmList-AlarmInformation

0..n

#identifyCorrelatedInformation

0..n

#theAlarmInformation

relation-AlarmList-CorrelatedInformation

0..n

#identifyComments

0..n

#theAlarmInformation

relation-AlarmList-Comment

_1096377043.doc

unack&unclear

ack&unclear

unack&clear

This is the terminal state (acknowledged and cleared)

This AlarmInformation no longer exists in the AlarmList.

The MO alarm's matching

-

criteria

-

attributes are not identical to the

matching

-

criteria

-

attributes of any AlarmInformation in AlarmList. See appendix for

the definition of matching

-

criteria

-

attributes.

MO emits alarm / IRPAgent creates a

new AlarmInformation. ^notifyNewAlarm

acknowledgeAlarm

^notifyAckStateChanged

MO PS level changes to

cleared

^notifyClearedAlarm

unacknowledgeAlarm

^notifyAckStateChange

MO PS changes to

cleared

^notifyClearedAlarm

MO PS changes & new level is

not cleared & IRPAgent supports

notifyChangedAlarm

^notifyChangedAlarm

MO PS changes & new level is not

cleared & IRPAgent does not

support notifyChangedAlarm

^notifyClearedAlarm,

notifyNewAlarm

acknowledgeAlarm

^notifyAckStateChanged

MO emits alarm & IRPAgent

supports notifyChangedAlarm

^notifyChangedAlarm

MO emits alarm & IRPAgent

does not support

notifyChangedAlarm

^notifyClearedAlarm,

notifyNewAlarm

_1189423225.doc

4

1 Scope

Agents generate notifications of events about occurrences within the network. Different kinds of events carry different kinds of information. An Agent emits notifications. A Manager receives notifications. This Recommendation defines an interface through which a Manager can subscribe to an Agent for receiving notifications and the information model used to define specific notification types in other Recommendations.

The central design ideas are:

· Separation of notification Consumers (Managers) from Producers (Agents);

· Notifications are sent to Managers without the need for Managers to periodically check for new notifications.

This Recommendation provides the protocol neutral model definition for Notification. It defines, for the purpose of subscribing to an Agent for receiving notifications, the information observable and controlled by management system's client and it also specifies the semantics of the interactions used to carry this information. It also defines the information common to all notifications.

An Agent may emit one or multiple types of notifications, defined as extensions of the Notification IOC defined herein. This Recommendation defines a mechanism that a Manager can use to determine the types of notifications supported by an Agent. It also defines a mechanism (subscribe and unsubscribe operations) that a Manager can use to specify the type of notifications an Agent should emit to a Manager during subscription. It also defines a mechanism (getSubscriptionIds operation) that a Manager can use to check which types of notifications it has subscribed to. A Manager can set and change filter criteria applicable during the life-cycle of a subscription and subscribe to filters already configured by another Manager. A Manager can also exercise flow-control on an Agent's emission of notifications (suspendSubscription, resumeSubscription, suspend, and resume operations).

A Manager can create several subscriptions. This will result in multiple subscriptions. As far as the Agent is concerned, notifications are sent to multiple "places" with different filtering criteria.

This Recommendation specifies the information that is carried in all notifications. Further information is defined by specializations of the Notification IOC.

How a Manager discovers the Agent's address or reference (so that the Manager can invoke an operation) is outside the scope of the present Recommendation.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies.

[1]
ITU-T Recommendation X.notif.1: “Notification functions: Requirements”

Non-normative references:

[2]
3GPP TS 32.301: "Telecommunication management; Configuration Management (CM); Notification Integration Reference Point (IRP): Requirements".

[3]
3GPP TS 32.602: "Telecommunication management; Configuration Management (CM); Basic CM Integration Reference Point (IRP): Information Service (IS)".

3 Definitions and abbreviations

3.1 Definitions

Agent: TBD

Manager: TBD

event: it is an occurrence that is of significance to network operators, the NEs under surveillance and network management applications. Events can indicate many types of network management information, such as network alarms, network configuration change information and network performance data.

notification: it refers to the transport of information regarding events from event producer to consumer (receiver)
In this Recommendation, notification is used to carry information about network events from an Agent to a Manager(s). A producer (Agent) sends notifications to consumers (Managers) as soon as new events occur. Consumers do not need to check ("pull") for events.

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

CM
Configuration Management

CORBA
Common Object Request Broker Architecture

DN
Distinguished Name

EM
Element Manager

IOC
Information Object Class

NE
Network Element

NM
Network Manager

NR
Network Resource

UML
Unified Modelling Language (OMG)

4 Analysis

This clause provides the detailed analysis of the management interface. In the following subclauses, the related managed entities and their relationships are fully analysed, and the diagrams in these subclauses illustrate the static or dynamic relationships of the managed entities.

4.1 Conventions

In this clause, when specifying managed entities and their management operations, the following abbreviations are applied to indicate the qualifier of attributes, notifications or operation parameters:

–
M: Mandatory;

–
O: Optional;

–
C: Conditional;

–
R: Readable;

–
W: Writable;

–
S: Set by Create.

5 Interface Definition

5.1 Class diagram representing interfaces

[image: image1]

5.2 Generic rules

Rule 1:
Each operation with at least one input parameter supports a pre-condition valid_input_parameter which indicates that all input parameters shall be valid with regards to their information type. Additionally, each such operation supports an exception operation_failed_invalid_input_parameter which is raised when pre-condition valid_input_parameter is false. The exception has the same entry and exit state.

Rule 2:
Each operation with at least one optional input parameter supports a set of pre-conditions supported_optional_input_parameter_xxx where "xxx" is the name of the optional input parameter and the pre-condition indicates that the operation supports the named optional input parameter. Additionally, each such operation supports an exception operation_failed_unsupported_optional_input_parameter_xxx which is raised when (a) the pre-condition supported_optional_input_parameter_xxx is false and (b) the named optional input parameter is carrying information. The exception has the same entry and exit state.

Rule 3:
Each operation shall support a generic exception operation_failed_internal_problem which is raised when an internal problem occurs and that the operation cannot be completed. The exception has the same entry and exit state.

5.3 Notification Management Interface (M)

TBD: Description

TBD: Sequence diagram

5.3.1
Operation subscribe (M)

5.3.1.1
Definition

Manager invokes this operation to establish subscription to receive network events via notifications, under the filter constraint specified in this operation.

6.3.1.2
Input parameters

			Parameter Name

			Qualifier

			Information Type

			Comment

			subscriptionID

			M

			Subscription.subscriptionID

			It specifies the reference of an existing subscription to which this Manager would like to be added. Subscriptions are created using the Object Management function createObject.

			managerReference

			M

			Subscription.managerReference

			It specifies the reference of a Manager to which notifications shall be sent.

			timeTick

			O

			 Subscription.timeTick

			It specifies the number of minutes which may pass without the Manager calling getSubscriptionStatus before the Agent will consider the communication channel lost and remove references to that Manager. Subscriptions will be destroyed when their manager reference count reaches zero. A special infinite value is assumed when the parameter is absent or present but equal to zero.

			filter

			O

			Subscription.ntfFilter

Filter constraint grammar is SS dependent

			It specifies a filter constraint that IRPAgent shall use to filter notification of the category specified in notificationCategories parameter.

If this parameter is absent, then no filter constraint shall be applied.

6.3.1.3
Output parameters

			Parameter Name

			Qualifier

			Matching Information

			Comment

			subscriptionId

			M

			NtfSubscription.ntfSubscriptionId

			It holds an unambiguous
identity of this subscription.

			status

			M

			ENUM (OperationSucceeded, OperationFailedExistingSubscription, OperationFailed)

			If subscriptionCreated is true, status = OperationSuceeded.

If operation_failed_existing_subscription is true, status = OperationFailedExistingSubscription

If operation_failed is true, status = OperationFailed.

6.3.1.4
Pre-condition

notificationCategoriesNotAllSubscribed OR notificationCategoriesParameterAbsentAndNotAllSubscribed.

			Assertion Name

			Definition

			notificationCategoriesNotAllSubscribed

			At least one notificationCategory identified in the notificationCategories input parameter is supported by IRPAgent and is not a member of the ntfNotificationCategorySet attribute of an NtfSubscription which is involved in a subscription relationship with the NtfSubscriber identified by the managerReference input parameter.

			notificationCategoriesParameterAbsentAndNotAllSubscribed

			The notificationCategories input parameter is absent and at least one notificationCategory supported by IRPAgent is not a member of the ntfNotificationCategorySet attribute of an ntfSsubscription which is involved in a subscription relationship with the NtfSubscriber identified by the managerReference input parameter.

6.3.1.5
Post-condition

subscriberPossiblyCreated AND subscriptionCreated.

			Assertion Name

			Definition

			subscriberPossiblyCreated

			An NtfSubscriber with a ntfManagerReference attribute equal to the value of the managerReference input parameter is involved in a subscriptionRegistration relationship with NotificationIRP.

			subscriptionCreated

			An NtfSubscription has been created according to the following rules:

· subscriptionState attribute value has been set to "notSuspended";

· ntfTimeTick attribute value has been set to the value of the timeTick input parameter if this value was higher or equal to 15, or set to 15 if this parameter value was between 1 and 15, or set to a special infinite value if the parameter value was lower or equal to 0 or if parameter was absent;

·
ntfTimeTickTimer has been reset with the value of timeTick attribute;

· ntfFilter attribute value has been set to the value of the filter input parameter if present;

· NtfSubscription is involved in a subscription relationship with the NtfSubscriber identified by the managerReference input parameter;

· attribute ntfNotificationCategorySet of NtfSubscription contains EITHER the notification categories identified by the notificationCategories input parameter that were not already contained in the ntfNotificationCategorySet attribute of other NtfSubscription of the same NtfSubscriber identified by the managerReference input parameter OR if notificationCategories input parameter is absent, all notification categories supported by IRPAgent that were not already contained in the ntfNotificationCategorySet attribute of other subscriptions of the same NtfSubscriber identified by the managerReference input parameter.

6.3.1.6
Exceptions

			Name

			Definition

			operation_failed_existing_subscription

			Condition: (notificationCategoriesNotAllSubscribed OR notificationCategoriesParameterAbsentAndNotAllSubscribed) not true

Returned Information: The output parameter status

Exit state: Entry State

			Operation_failed

			Condition: Post-condition is false

Returned Information: The output parameter status

Exit state: Entry State

6.3.2
Operation unsubscribe (M)

6.3.2.1
Definition

The IRPManager invokes this operation to cancel subscriptions. The IRPManager can cancel one subscription made with a managerReference by providing the corresponding subscriptionId or all subscriptions made with the same managerReference by leaving the subscriptionId parameter absent.

6.3.2.2
Input parameters

			Parameter Name

			Qualifier

			Information Type

			Comment

			managerReference

			M

			NtfSubscriber.ntfManagerReference

			It specifies the reference of an IRPManager.

			subscriptionId

			O

			NtfSubscription.ntfSubscriptionId

			It holds a subscriptionId carried as the output parameter in the subscribe operation.

6.3.2.3
Output parameters

			Parameter Name

			Qualifier

			Matching Information

			Comment

			status

			M

			ENUM (OperationSucceeded, OperationFailed)

			If (subscriptionDeleted OR allSubscriptionDeleted) is true, status = OperationSucceeded.

If operation_failed is true, status = OperationFailed.

6.3.2.4
Pre-condition

validSubscriptionId&ManagerReference OR SubscriptionIdAbsent&ValidManagerReference

			Assertion Name

			Definition

			validSubscriptionId&ManagerReference

			The NtfSubscription identified by subscriptionId input parameter is involved in a subscription relationship with the NtfSubscriber identified by the managerReference input parameter.

			SubscriptionIdAbsent&ValidManagerReference

			The subscriptionId input parameter is absent and the NtfSubscriber identified by the managerReference input parameter exists.

6.3.2.5
Post-condition

subscriptionDeleted OR allSubscriptionDeleted.

			Assertion Name

			Definition

			subscriptionDeleted

			The NtfSubscription identified by subscriptionId input parameter is no more involved in a subscription relationship with the NtfSubscriber identified by the managerReference input parameter and has been deleted. If this NtfSubscriber has no more NtfSubscription, it is deleted as well.

			allSubscriptionDeleted

			“n the case subscriptionId input parameter was absent, the NtfSubscriber identified by the managerReference input parameter is no more involved in any subscription relationship and is deleted, the corresponding NtfSubscription have been deleted as well.

6.3.2.6
Exceptions

			Name

			Definition

			Operation_failed

			Condition: Pre-condition is false or post-condition is false

Returned Information: The output parameter status

Exit state: Entry State

6.4
subscriberManagement Interface (O)

6.4.1
Operation getSubscriptionIds (M)

6.4.1.1
Definition

IRPManager invokes this operation to get the values of all still valid (not unsubscribed or removed by IRPAgent) subscriptionIds assigned by NotificationIRP as result of previously subscribe operations performed by this IRPManager.

6.4.1.2
Input parameters

			Parameter Name

			Qualifier

			Information Type

			Comment

			managerReference

			M

			NtfSubscriber.ntfManagerReference

			It specifies the reference of IRPManager that requests the set of identifiers of active subscriptions related to this IRPManager.

6.4.1.3
Output parameters

			Parameter Name

			Qualifier

			Matching Information

			Comment

			subscriptionIdSet

			M

			SET OF NtfSubscription.ntfSubscriptionId where NtfSubscription is involved in a subscription relationship with the NtfSubscriber identified by the managerReference input parameter

			It holds a set of the subscriptionId, each assigned as output parameter in previous subscribe operations invoked by the current IRPManager. This value should contain no information if the IRPManager did not yet subscribed to that System or System lost all subscription related information.

			status

			M

			ENUM (Operation succeeded, Operation failed)

			If validSubscriptionIdSet is true, status = OperationSuceeded.

If operation_failed is true, status = OperationFailed.

6.4.1.4
Pre-condition

validManagerReference.

			Assertion Name

			Definition

			validManagerReference

			The NtfSubscriber identified by the managerReference input parameter exists.

6.4.1.5
Post-condition

None specific

6.4.1.6
Exceptions

			Name

			Definition

			Operation_failed

			Condition: Pre-condition is false

Returned Information: The output parameter status

Exit state: Entry State

6.5
subscriptionStatusOperations Interface (O)

6.5.1
Operation getSubscriptionStatus (M)

6.5.1.1
Definition

IRPManager invokes this operation to query the subscription status of a particular subscription. IRPManager can use getSubscriptionStatus operation to know about the filter constraint in effect, the state of subscription (i.e. if subscription is suspended/inactive or resumed/active), the timeTick value that may be set at subscribe invocation time and the notificationCategory currently in used in the subscription.

6.5.1.2
Input parameters

			Parameter Name

			Qualifier

			Information Type

			Comment

			subscriptionId

			M

			NtfSubscription.ntfSubscriptionId

			It holds the subscriptionId carried as the output parameter in the subscribe operation

6.5.1.3
Output parameters

			Parameter Name

			Qualifier

			Matching Information

			Comment

			notification CategorySet

			C

			NtfSubscription.ntfNotificationCategorySet

			It identifies the notification Category(ies) supported in this subscription.

			filterInEffect

			O

			NtfSubscription.ntfFilter

			It contains the filter constraint currently set.

			SubscriptionState

			O

			NtfSubscription.ntfSubscriptionState

			

			timeTick

			O

			NtfSubscription.ntfTimeTick

			It carries the same value as the one in subscribe operation

			status

			M

			ENUM (Operation succeeded, Operation failed)

			If (timeTickReset) is true, status = OperationSucceeded.

If operation_failed is true, status = OperationFailed.

6.5.1.4
Pre-condition

validSubscriptionId.

			Assertion Name

			Definition

			validSubscriptionId

			"the NtfSubscription identified by subscriptionId input parameter is involved in a subscription relationship"

6.5.1.5
Post-condition

timeTickReset

			Assertion Name

			Definition

			timeTickReset

			The ntfTimeTickTimer attribute of NtfSubscription identified as input parameter has been reset with the value of ntfTimeTick attribute of the same NtfSubscription.

6.5.1.6
Exceptions

			Name

			Definition

			Operation_failed

			Condition: Pre-condition is false or post-condition is false

Returned Information: The output parameter status

Exit state: Entry State

6.6
subscriptionFilterOperations Interface (O)

6.6.1
Operation changeSubscriptionFilter (M)

6.6.1.1
Definition

IRPManager invokes this operation to replace the present filter constraint with a new one.

6.6.1.2
Input parameters

			Parameter Name

			Qualifier

			Information Type

			Comment

			subscriptionId

			M

			NtfSubscription.ntfSubscriptionId

			It carries the subscriptionId carried as the output parameter in the subscribe operation.

			filter

			M

			NtfSubscription.ntfFilter

			It specifies a filter constraint

6.6.1.3
Output parameters

			Parameter Name

			Qualifier

			Matching Information

			Comment

			status

			M

			ENUM (Operation succeeded, Operation failed)

			If filterUpdated is true, status = OperationSuceeded.

If operation_failed is true, status = OperationFailed.

6.6.1.4
Pre-condition

validNtfSubscriptionId.

			Assertion Name

			Definition

			validNtfSubscriptionId

			The NtfSubscription identified by subscriptionId input parameter is involved in a subscription relationship.

6.6.1.5
Post-condition

filterUpdated.

			Assertion Name

			Definition

			filterUpdated

			The ntfFilter attribute value of the NtfSubscription identified by subscriptionId input parameter has been set to the value of the filter input parameter.

6.6.1.6
Exceptions

			Name

			Definition

			Operation_failed

			Condition: Pre-condition is false or post-condition is false

Returned Information: The output parameter status

Exit state: Entry State

6.7
subscriptionSuspendOperations Interface (O)

6.7.1
Operation suspendSubscription (M)

6.7.1.1
Definition

IRPManager invokes this operation to request IRPAgent to stop emission of notifications. IRPAgent may lose notification(s) if subscription is suspended.

6.7.1.2
Input parameters

			Parameter Name

			Qualifier

			Information Type

			Comment

			subscriptionId

			M

			NtfSubscription.ntfSubscriptionId

			It carries the subscriptionId carried as the output parameter in the subscribe operation.

6.7.1.3
Output parameters

			Parameter Name

			Qualifier

			Matching Information

			Comment

			status

			M

			ENUM (Operation succeeded, Operation failed)

			If subscriptionStateSuspended is true, status = OperationSuceeded.

If operation_failed is true, status = OperationFailed.

6.7.1.4
Pre-condition

validSubscriptionId.

			Assertion Name

			Definition

			validSubscriptionId

			The NtfSubscription identified by subscriptionId input parameter is involved in a subscription relationship.

6.7.1.5
Post-condition

subscriptionStateSuspended.

			Assertion Name

			Definition

			subscriptionStateSuspended

			Tne ntfSubscriptionState attribute value of the NtfSubscription identified by subscriptionId input parameter has been set to or kept as "suspended".

6.7.1.6
Exceptions

			Name

			Definition

			Operation_failed

			Condition: Pre-condition is false or post-condition is false

Returned Information: The output parameter status

Exit state: Entry State

6.7.2
Operation resumeSubscription (M)

6.7.2.1
Definition

IRPManager invokes this operation to request IRPAgent to resume emission of notifications.

6.7.2.2
Input parameters

			Parameter Name

			Qualifier

			Information Type

			Comment

			subscriptionId

			M

			NtfSubscription.ntfSubscriptionId

			It carries the subscriptionId carried as the output parameter in the subscribe operation.

6.7.2.3
Output parameters

			Parameter Name

			Qualifier

			Matching Information

			Comment

			status

			M

			ENUM (Operation succeeded, Operation failed)

			If subscriptionStateNotSuspended is true, status = OperationSuceeded.

If operation_failed is true, status = OperationFailed.

6.7.2.4
Pre-condition

validSubscriptionId.

			Assertion Name

			Definition

			validSubscriptionId

			The NtfSubscription identified by subscriptionId input parameter is involved in a subscription relationship.

6.7.2.5
Post-condition

subscriptionStateNotSuspended.

			Assertion Name

			Definition

			subscriptionStateNotSuspended

			The ntfSubscriptionState attribute value of the NtfSubscription identified by subscriptionId input parameter has been set to or kept as "notSuspended".

6.7.2.6
Exceptions

			Name

			Definition

			Operation_failed

			Condition: Pre-condition is false or post-condition is false

Returned Information: The output parameter status

Exit state: Entry State

6.8
IRPManagementOperations Interface (O)

6.8.1
Operation getNotificationCategories (M)

6.8.1.1
Definition

IRPManager invokes this operation to query the categories of notification supported by IRPAgent. IRPAgent returns the list of categories of notification supported. Each category of notification defines the name and the version of the IRP specification. The list of category of notification returned shall only contain the name and version of the IRP specifications that actually have notifications defined.

IRPManager does not need to be in subscription to invoke this operation.

6.8.1.2
Input parameters

None.

6.8.1.3
Output parameters

			Parameter Name

			Qualifier

			Matching Information

			Comment

			NotificationCategoryList

			M

			SET OF (name and version of IRP specification) where each IRP is contained by IRPAgent and the attribute notificationNameProfile of the ManagedGenericIRP is not empty.

			

			status

			M

			ENUM (Operation succeeded, Operation failed)

			OperationFailed only if operation_failed_internal_problem

6.8.1.4
Pre-condition

None specific.

6.8.1.5
Post-condition

None specific.

6.8.1.6
Exceptions

None specific.

6.9
NotificationIRPNotification Interface

IRPAgent notifies the subscribed IRPManager that an event has occurred and that the event has satisfied the filter constraints used for this subscription. One event example is the notification defined in Alarm IRP: IS (3GPP TS 32.111‑2 [1]).

It should be possible to pack multiple notifications together for sending to NM. This provides more efficient use of data communication resources. In order to pack multiple notifications, an EM/NE configurable parameter defines the maximum number of notifications to be packed together. Additionally an EM/NE configurable parameter defines the maximum time delay before the notifications have to be sent.

Under normal operations, an IRPAgent shall send, to each IRPManager, notifications in the same order they were generated, i.e. in the First-In, First-Out order. There shall not be any priority given to types of notifications.

This interface doesn't define any specific notification but instead defines information that is commonly found in notifications defined by other IRPs. This information is called notificationHeader. Notification interfaces defined in other IRPs, such as Alarm IRP: IS (3GPP TS 32.111‑2 [1]), shall inherit from this interface and define their notifications by:

· Identifying and qualifying the Notification Header attributes for their use;

· Specify additional attributes specific to their use.

Despite the fact that the semantic of notifications is defined by other IRP ISs, it is notification IRP and not those IRP that is responsible for the emission of those notifications.

The Notification Header is defined here below.

			Attribute Name

			Qualifier

			Comment

			objectClass

			M, Y

			It specifies the class name of the IOC. A network event has occurred in an instance of this class.

			objectInstance

			M, Y

			It specifies the instance of the above IOC in which the network event occurred by carrying the Distinguished Name (DN) of this object instance. This object may or may not be identical to the object instance actually emitting the notification.

			notificationId

			O,N

			This is an identifier for the notification, which may be used to correlate notifications. The identifier of the notification shall be chosen to be unique across all notifications of a particular managed object throughout the time that correlation is significant, it uniquely identifies the notification from other notifications generated by the subject Information Object.

If IRPManager receives notifications from one IRPAgent, IRPManager shall use the identifier of the notification and the objectInstance to uniquely identify all received notifications.

If IRPManager receives notifications from multiple IRPAgents and notifications of each Information Object are reported at most through one IRPAgent, IRPManager shall use the identifier of the notification and objectInstance to uniquely identify all received notifications.

If IRPManager receives notifications from multiple IRPAgents and notifications of one or more Information Objects are reported through two or more IRPAgents, IRPManager shall use the identifier of the notification together with objectInstance and the identity of IRPAgent (systemDN), to uniquely identify all received notifications. If the information systemDN is absent, IRPManager needs other means, which are outside the scope of this IRP, to determine the identity of IRPAgent.

How identifiers of notifications are re-used to correlate notifications is outside of the scope of this recommendation.

			eventTime

			M, Y

			It indicates the event occurrence time. The semantics of Generalised Time specified by ITU-T shall be used here.

			systemDN

			C, Y

			It carries the Distinguished Name (DN) of IRPAgent that detects the network event and generates the notification. See "Name Convention for Managed Objects" [3] for name convention regarding DN.

			notificationType

			M, Y

			The type of notification which is reported by the notification

5
Information Object Classes

5.1
Information entities imported and local labels

			Label reference

			Local label

			3GPP TS 32.622 [9], information object class, Top

			Top

			3GPP TS 32.312 [10], information object class, managedGenericIRP

			managedGenericIRP

			3GPP TS 32.622 [9], information object class, IRPAgent

			IRPAgent

5.2
Class Diagram

5.2.1
Attributes and relationships

This subclause depicts the set of IOCs that encapsulate information within the notification IRP. The intent is to identify the information required for the notification IRP implementation of its operations and notification emission. This subclause provides the overview of all information object classes in UML. Subsequent subclauses provide more detailed specification of various aspects of these information object classes.

[image: image2.wmf]NotificationIRP

<<InformationObjectClass>>

NtfSubscriber

+ ntfManagerReference

<<InformationObjectClass>>

0..*

1

NtfSubscription

+ ntfSubscriptionId

+ ntfSubscriptionState

+ ntfTimeTick

+ ntfTimeTickTimer

+ ntfNotificationCategorySet

+ ntfFilter

<<InformationObjectClass>>

1..*

1

1

0..*

+theNotificationIRP

+theNtfSubscriber

1

+theNtfSubscriber

1..*

+theNtfSubscription

relation-ntfIRP-ntfSubscriber

relation-ntfSubscriber-ntfSubscription

5.2.2
Inheritance

This subclause depicts the inheritance relationships that exists between information object classes.

[image: image3.wmf]NotificationIRP

<<InformationObjectClass>>

ManagedGenericIRP

(from TS 32.312)

<<InformationObjectClass>>

5.3
Information object classes definition

5.3.1
NtfSubscriber

5.3.1.1
Definition

This information object represents a Subscriber from a notification IRP perspective : a subscriber is fully identified by a manager reference. An IRPManager using multiple managerReference attributes to subscribe will result in multiple NtfSubscriber instances. It inherits from IOC Top.

5.3.1.2
Attributes

			Attribute name

			Visibility

			Support Qualifier

			Read Qualifier

			Write Qualifier

			ntfManagerReference

			%

			M

			-

			-

5.3.2
NtfSubscription

5.3.2.1
Definition

This information object represents a subscription that have been requested by an IRPManager and created. It inherits from IOC Top.

5.3.2.2
Attributes

			Attribute name

			Visibility

			Support Qualifier

			Read Qualifier

			Write Qualifier

			ntfSubscriptionId

			+

			M

			M

			-

			subscriptionState

			+

			M

			M

			-

			ntfTimeTick

			+

			M

			M

			-

			ntfTimeTickTimer

			%

			M

			-

			-

			ntfNotificationCategorySet

			+

			M

			M

			-

			ntfFilter

			+

			M

			M

			-

5.3.2.3
State diagram

The diagram below depicts states that can be supported by a NtfSubscription. The current state is indicated by the subscriptionState attribute.

[image: image4.emf]notSuspended

suspended

notSuspended

suspended

resumeSubscription

suspendSubscription

resumeSubscription

suspendSubscription

subscribe /

ntfTimeTickTimer

initialised

getSubscriptionStatus /

ntfTimeTickTimer

re-initialised

ntfTimeTickTimer=0

/ ntfSubscription

(and possibly

ntfSubscriber) is

deleted.

unSubscribe /

ntfSubscription (and

possibly ntfSubscriber) is

deleted

ntfTimeTickTimer=0 /

ntfSubscription is not

deleted

NotificationIRP can lose the list of managerReference that identifies current IRPManagers under subscription. Under this condition, IRPAgent is incapable of sending events to the affected subscriber(s).

This Notification IRP recommends that IRPManager should invoke the getSubscriptionStatus operation periodically to confirm that IRPAgent still has the IRPManager's reference in its list. In case getSubscriptionStatus returns the exception operation_failed, IRPManager should assume that IRPAgent has lost the IRPManager's reference.

This IRP does not recommend the frequency IRPManager should use to invoke getSubscriptionStatus operation.

5.3.3
NotificationIRP

5.3.3.1
Definition

This information object represents a notification IRP. It inherits from IOC managedGenericIRP.

5.4
Information relationships definition

5.4.1
relation-ntfSubscriber-ntfSubscription (M)

5.4.1.1
Definition

This relationship defines the relationship between a NtfSubscriber and its current subscriptions.

5.4.1.2
Roles

			Name

			Definition

			theNtfSubscriber

			This role represents the one who has subscribed. It can be played by instances of IOC NtfSubscriber

			theNtfSubscription

			This role represents the subscriptions which were made and not unsubscribed. It can be played by instances of IOC NtfSubscription

5.4.1.3
Constraints

			Name

			Definition

			inv_notificationCategoriesAllDistinct

			The notification categories contained in the ntfNotificationCategorySet attribute of NtfSubscription playing the role theNtfSubscription are all distinct from each other.

5.4.2
relation-ntfIRP-ntfSubscriber (M)

5.4.2.1
Definition

This relationship defines the relationship between the NotificationIRP and the current subscribers of notifications.

5.4.2.2
Roles

			Name

			Definition

			theNtfSubscriber

			This role represents the entities to which IRPAgent will notify events. It is played by instances of IOC NtfSubscriber

			theNotificationIRP

			This role represents the NotificationIRP to which an IRPManager has subscribed. It is played by instances of IOC NotificationIRP

5.4.2.3
Constraints

			Name

			Definition

			inv_uniqueManagerReference

			All NtfSubscriber involved in the subscriptionRegistration relationship with NotificationIRP are distinguished from each other by their ntfManagerReference Attribute.

5.5
Information attributes definition

This subclause defines the semantics of the Attributes used in Information Object Classes.

5.5.1
Definitions and legal values

			Attribute Name

			Definition

			Legal Values

			ntfSubscriptionId

			It identifies uniquely a subscription

			N/A

			ntfSusbcriptionState

			It indicates the activation state of a subscription

			"suspended": the subscription is suspended

"notSuspended": the subscription is active

			ntfTimeTick

			this Attribute represents the initial value of ntfTimeTickTimer. It is in unit of whole minute. This value defines a time window within which IRPManager intends to invoke getSubscriptionStatus (or subscribe) operation to confirm its subscription. A special value indicates infinity which is such that timer will never expire and IRPAgent needs other means to decide when to delete resources allocated to the IRPManager

			Integer greater or equal to 15, OR special infinite value

			ntfTimeTickTimer

			this Attribute represents the current value of a timer

			integer greater or equal to zero

			ntfNotificationCategorySet

			this Attribute represents a set of notification categories (see also Definition of notification category in subclause 3.1)

			

			ntfFilter

			this Attribute represents the filter of a subscription. The filter can be applied to parameters of notification header (see NotificationIRPNotification interface) and to parameters of notifications defined as filterable in other IRP ISs.

IRPAgent shall notify IRPManagers if the event satisfies the filter constraint.

			

			ntfManagerReference

			this Attribute contains the reference of a manager. It uniquely identifies a subscriber

			

5.5.2
Constraints

-
"ntfTimeTickTimer is lower or equal to ntfTimeTick".

Annex A (informative):
Change history

			Change history

			Date

			TSG #

			TSG Doc.

			CR

			Rev

			Subject/Comment

			Old

			New

			Jun 2001

			S_12

			SP-010283

			--

			--

			Approved at TSG SA #12 and placed under Change Control

			2.0.0

			4.0.0

			Dec 2001

			S_14

			SP-010642

			001

			--

			Remove ambiguity of the return information for getNotificationCategories() operation

			4.0.0

			4.1.0

			Dec 2001

			S_14

			SP-010653

			002

			--

			Change from Mandatory to Conditional the qualifier of the output parameter ‘NotificationCategorySet' of the operation ‘getSubscriptionStatus'

			4.1.0

			5.0.0

			Mar 2002

			--

			--

			--

			--

			Cosmetics (changed styles on cover)

			5.0.0

			5.0.1

			Dec 2002

			--

			--

			--

			--

			Cosmetics

			5.0.1

			5.0.2

			Jun 2003

			S_20

			SP-030278

			004

			--

			Correction of the description of the objectClass and objectInstance parameter of the notification header

			5.0.2

			5.1.0

			Mar 2004

			S_23

			SP-040118

			005

			--

			Update Ntf IRP IS using new Template and UML Repertoire

			5.1.0

			6.0.0

			Dec 2004

			S_26

			SP-040793

			007

			--

			Add missing rules on how to construct the string NotificationCategory

			6.0.0

			6.1.0

			Mar 2005

			S_27

			SP-050035

			008

			--

			Apply Generic System Context

			6.1.0

			6.2.0

			Jun 2005

			--

			--

			--

			--

			Introduction update : added 32.305 new TS-family member

			6.2.0

			6.2.1

			

			

			

			

			

			

			

			

			

			

			

			

			

			

			

			

			

			

			

			

			

			

			

			

			

			

			

			

			

			

			

			

<<emits>>

+ objectClass

+ objectInstance

+ notificationId

+ eventTime

+ systemDN

+ notificationType

<<interface>>

Notification

<<may realize>>

+ getNotificationTypes()

<<interface>>

Notification Capabilities

<<may realize>>

+ getSubscriptionStatus()

+ getSubscriptionIds()

+ suspendSubscription()

+ resumeSubscription()

+ changeSubscriptionFilter()

<<interface>>

Subscription Management

<<realize>>

+ subscribe()

+ unsubscribe()

+ suspend()

+ resume()

+ getSubscriptions()

<<interface>>

Notification Management

<<interface>>

Notification Interface

�Within the scope of the managerReference?

�Why this restriction?

�Why this restriction?

�Is there a restriction that any notifications are supported at all?

�Earlier the document claims it doesn’t define the value for timeTick (in discussing getSubscriptionStatus)

�Again, why the restriction on categories?

�Again, why the restriction on categories?

�To be accurate the subscription should bind the IRP with the Subscriber

�This constraint makes no sense without the context of a use case or operation

_1189423088.doc

2

1 Scope

The present document defines the requirements for State Management.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies.

[1]
ITU-T Recommendation X.731: "Information technology, Open Systems Interconnection, Systems Management: State management function".

Non-normative references:

[2]
3GPP TS 32.671: "Telecommunication management; Configuration Management (CM); State Management Integration Reference Point (IRP): Requirements".

[3]
3GPP TS 32.672: "Telecommunication management; Configuration Management (CM); State Management Integration Reference Point (IRP): Information Service (IS)".

3 Definitions and abbreviations

3.1 Definitions

Not applicable.

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

CM
Configuration Management

ITU‑T
International Telecommunication Union, Telecommunication Standardisation Sector

NE
Network Element

NR
Network Resource

OS
Operations System

QoS
Quality of Service

4 Requirements

The management state of a managed object represents the instantaneous condition of availability and operability of the associated resource from the point of view of management. Different classes of managed object have a variety of state attributes that express and control aspects of the operation of their associated resource that are peculiar to each class. However, the management state is expected to be common to a large number of resources and for this reason is to be standardized; it expresses key aspects of their usability at any given time. Its purpose is to control the general availability of a resource and to make visible information about that general availability.

This service uses the following other services and thus implicitly imports all the requirements defined therein:

· Notification, defined in X.notif.1

4.1 Business level requirements

REQ-SM-NON-01
State Management is defined to specify and to standardise the generic attributes for modelling and managing resources. There are a variety of managed objects and the related network resources. It is the task of designers of specific managed object classes to model the state conditions of the associated network resources using the generic attributes provided in State Management. Different managed objects and the network resources they model may require different subsets of the attributes defined in State Management.

REQ-SM-FUN-01 State Management shall specify the following state attributes: operability, usage and administration.

· Operability: whether or not the resource is physically installed and working, if applicable.

· Usage: whether or not the resource is actively in use at a specific instant, and if so, whether or not it has spare capacity for additional users at that instant. A resource is said to be "in use" when it has received one or more requests for service that it has not yet completed or otherwise discharged, or when some part of its capacity has been allocated, and not yet reclaimed, as a result of a previous service request.

· Administration: permission to use or prohibition against using the resource imposed through the management services.

The semantics and the value ranges of these state attributes shall be based on ITU-T Recommendation X.731 [8] while extensions and omissions may be made.

The Administrative state is used by the Operator to make a resource available for service, or to remove a resource from service. For example:

· for fault correction the Administrative state can be used to isolate a faulty resource;

· in case of redundancy the Administrative state can be used to lock the active resource and let the standby resource to become active (preventive maintenance);

· for Test management the Administrative state can be used to put a resource out of service to run an intrusive test on it.

The Operational state gives the information about the real capability of a resource to provide or not provide service.

· The operational state is "enabled" when the resource is able to provide service, "disabled" when the resource cannot provide service.

· A resource can lose the capability to provide service because of a fault or because another resource on which it depends is out of service (e.g. disabled or locked).

· In case a resource does not lose completely its capability to provide service, the Operational state shall be "enabled" and the Availability status shall be "degraded".

REQ-SM-FUN-02 State Management shall specify status attributes, modelling more detailed information about other aspects of the state of the corresponding network resources that may affect their operability and usage. The status attributes also contain more detailed information about the administrative constraints on its operation that are controlled by a Manager. The semantics and the value ranges of these status attributes shall be based on ITU‑T Recommendation X.731 [8] while extensions and omissions may be made.

REQ-SM-FUN-03 Changes of the state and status attributes of a resource shall be notified to the relative Manager(s).

Propagation of state change

Within a managed element, when for any reason a resource changes its state, the change shall be propagated, in a consistent way, to all the other resources that are functionally dependent on the first one. Therefore:

· In case of a fault occurring on a resource makes that resource completely out of service, if the current operational state is "enabled", it shall be changed to "disabled" and a state change notification shall be generated. Then, all the dependant resources (following the fault dependency diagram specific to that managed element) shall be checked and, in case they are "enabled" they shall be changed to "disabled". In this process, also the secondary status shall be changed consistently, in a way that it shall be possible to distinguish whether an object is disabled because it is faulty or because of it is functionally dependent on another object which is disabled.

· In case a faulty resource is repaired, the Operational state of that resource is changed from "disabled" to "enabled" and all the dependent resources are turned back to "enabled" (this is the simple case). In more complex cases, some of the objects may be disabled for different causes (different faults or faults plus locks on different superior resources), in this cases the repaired resource can be turned "enabled" only when all the causes are cleared (i.e. faults are repaired and superior resources are unlocked). Also in this process the secondary status shall be changed consistently. This is true because a resource can not have been in a disabled state when a fault occurred.

· In case the operator locks a resource, the process of the state change propagation is similar to the first case (resource failure) except for the locked resource which does not change its operational state but only the administrative state from "unlocked" to "locked". The dependent resources are processed as in the first case.

· In case the operator unlocks a resource, the process of the state change propagation is similar to the second case (fault reparation) except for the first resource (the unlocked one) which does not change its operational state but only the administrative state from "locked" to "unlocked". The dependent resources are processed as in the first case.

4.1.1 Actor Roles

Manager

The NMS acts as the Manager.

Agent

The EMS acts as the Agent.

4.1.2 Telecommunications Resources

Both the suppliers' EMSs and the managed network equipments are viewed as relevant telecommunications resources in this Recommendation.

4.1.3 High Level Use Case Diagrams

The first overview use-case diagram in Figure X shows the overall interaction of the Notification Log Management function.

Figure TBD

4.2 Specification Level Requirements

Editors Note: Use cases require review.

Use Case: State attributes can be used as required in object definition

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			TBD

			

			Actor and Roles

			TBD

			

			Assumptions

			TBD

			

			Pre conditions

			TBD

			

			Begins when

			TBD

			

			Step 1

			TBD

			

			Ends when

			TBD

			

			Exceptions

			TBD

			

			Post Conditions

			TBD

			

			Traceability

			REQ-SM-NON-01

			

Use Case: State change notification

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			TBD

			

			Actor and Roles

			TBD

			

			Assumptions

			TBD

			

			Pre conditions

			TBD

			

			Begins when

			TBD

			

			Step 1

			TBD

			

			Ends when

			TBD

			

			Exceptions

			TBD

			

			Post Conditions

			TBD

			

			Traceability

			REQ-SM-FUN-03

			

Annex A (informative):
Change history

			Date

			Subject/Comment

			Sep 23, 2005

			Initial draft

			

			

			

			

			

			

�define locally

_1189423111.doc

5

1
Scope

The present document defines the Information Service (IS) part of the State Management IRP. It specifies the semantics of the network resource state and status information visible across the Itf-N. It also specifies the interaction required for the management of the state and status information.

The state and status attributes specified in this document shall be used, where applicable, as attributes in Information Object Class (IOC) definitions of other 3GPP IRPs. When used by the IOC definition, the semantics of the state and status attributes can be qualified and enhanced if deemed necessary.

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TS 32.101: "Telecommunication management; Principles and high level requirements".

[2]
3GPP TS 32.102: "Telecommunication management; Architecture".

[3]
3GPP TS 32.300: "Telecommunication management; Configuration Management (CM); Name convention for Managed Objects".

[4]
3GPP TS 32.302: "Telecommunication management; Configuration Management (CM); Notification Integration Reference Point (IRP): Information Service (IS)".

[5]
3GPP TS 32.312: "Telecommunication management; Generic Integration Reference Point (IRP) management; Information Service (IS)".

[6]
3GPP TS 32.600: "Telecommunication management; Configuration Management (CM); Concept and high-level requirements".

[7]
ITU-T Recommendation X.731: "Information technology - Open Systems Interconnection - Systems Management: State management function".

[8]
ITU-T Recommendation X.733: "Information technology - Open Systems Interconnection - Systems Management: Alarm reporting function".

3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TS 32.101 [1], 3GPP TS 32.102 [2] and 3GPP TS 32.600 [6] apply.

3.2
Abbreviations

For the purposes of the present document, the following abbreviations apply:

CM
Configuration Management

EM
Element Manager

IOC
Information Object Class

IRP
Integration Reference Point

IS
Information Service (see 3GPP TS 32.101 [1])

M
Mandatory

NE
Network Element

NM
Network Manager

NR
Network Resource

O
Optional

OMG
Object Management Group

OS
Operations System

QoS
Quality of Service

UML
Unified Modelling Language (OMG)

4
Void

5
Information Object Classes (IOCs)

5.1
Information entities imported and local labels

			Label reference

			Local label

			

			

There are no information entities imported.

5.2
Class diagram

5.2.1
Attributes and relationships

This subclause depicts the set of information object classes (IOCs) that encapsulate information within the Generic State Management IRP. The intent is to identify the information required for the State Management IRP implementation of its operations and notification emission. This subclause provides the overview of all information object classes in UML. Subsequent subclauses provide more detailed specification of various aspects of these information object classes.

[image: image1.wmf]

StateManagementEntity

<<Archetype>>

operationalState

usageState

administrativeState

alarmStatus

proceduralStatus

availabilityStatus

controlStatus

standbyStatus

unknownStatus

5.2.2
Inheritance

There are no inheritance relationships.

5.3
Information object classes definition

5.3.1
StateManagementEntity

5.3.1.1
Definition

StateManagementEntity is a Archetype, that may represent any IOC defined in the Network Resource Models, e.g. Generic Network Resource Model, Core Network Resource Model, UTRAN Network Resource Model or GERAN Network Resource Model.

The attributes defined for this Archetype can be imported and used in any IOC of the Network Resource Models, where such attributes are needed. These attributes shall be used in the same way as defined in the ITU‑T Recommendation X.731 [7] and ITU‑T Recommendation X.733 [8], unless otherwise stated. That document gives also examples of state diagrams, defining possible state transitions when one or more of the state attributes defined here are used in a class.

5.3.1.2
Attributes

The following attributes are defined for this information object class.

			Attribute name

			Support Qualifier

			operationalState

			N/A

			usageState

			N/A

			administrativeState

			N/A

			alarmStatus

			N/A

			proceduralStatus

			N/A

			availabilityStatus

			N/A

			controlStatus

			N/A

			standbyStatus

			N/A

			unknownStatus

			N/A

5.4
Information attributes definition

5.4.1
Definition and legal values

The following table gives the definition and legal values for each attribute.

			Attribute Name

			Definition

			Legal Values

			operationalState

			It indicates the operational state of the object instance. "It describes whether or not the resource is physically installed and working." [7] This attribute is READ-ONLY.

			"Enabled", "Disabled"

The meaning of these values is as defined in ITU‑T Recommendation X.731 [7].

			usageState

			It indicates the usage state of the object instance. "It describes whether or not the resource is actively in use at a specific instant, and if so, whether or not it has spare capacity for additional users at that instant." [7] This attribute is READ-ONLY.

			"Idle", "Active", "Busy"

The meaning of these values is as defined in ITU‑T Recommendation X.731 [7].

			administrativeState

			It indicates the administrative state of the object instance. "It describes the permission to use or prohibition against using the resource, imposed through the management services." [7]

			"Locked", "Shutting down", "Unlocked"

The meaning of these values is as defined in ITU‑T Recommendation X.731 [7].

			alarmStatus

			It indicates the alarm status of the object instance. This is mapped to the perceived severity of the most severe active alarm associated to the object instance.

			"Cleared", "Indeterminate", "Warning", "Minor", "Major", "Critical", The meaning of these values is as defined for the attribute perceived severity in ITU‑T Recommendation X.733 [8].

			proceduralStatus

			It indicates the procedural status of the object instance.

			A set consisting of zero or more of the following values:

"Initialisation required", "Not initialised", "Initialising", "Reporting", "Terminating". The meaning of these values is as defined in ITU‑T Recommendation X.731 [7].

			availabilityStatus

			It indicates the availability status of the object instance.

			A set consisting of zero or more of the following values:

"In test", "Failed", "Power off", "Off line", "Off duty", "Dependency", "Degraded", "Not installed", "Log full"

The meaning of these values is as defined in ITU‑T Recommendation X.731 [7].

			controlStatus

			It indicates the control status of the object instance.

			A set consisting of zero or more of the following values:

"Subject to test", "Part of services locked", "Reserved for test", "Suspended" .

The meaning of these values is as defined in ITU‑T Recommendation X.731 [7].

			standbyStatus

			It indicates the standby status of the object instance.

			"Hot standby", "Cold standby", "Providing service", .

The meaning of these values is as defined in ITU‑T Recommendation X.731 [7].

			UnknownStatus

			It indicates whether the state of the resource represented by the managed object is unknown.

			"True" (state is unknown, the values of the state attributes may not reflect the actual state of the resource);

"False" (state is known, the values of the state attributes reflect the actual state of the resource).

Annex A (informative):
Change history

			Date

			Subject/Comment

			Sep 28, 2005

			Initial draft

			

			

			

			

			

			

_1083496479.doc

operationalState

usageState

administrativeState

alarmStatus

proceduralStatus

availabilityStatus

controlStatus

standbyStatus

unknownStatus

<<Archetype>>

StateManagementEntity

_1189423064.doc

3

1 Scope

The present document defines the requirements for basic object management including notification of object management related events.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies.

[1]

ITU-T Recommendation X.730: "Information technology - Open Systems Interconnection - Systems Management: Object management function".

Non-normative references:

[2]
32.601: "Configuration Management (CM); Basic CM Integration Reference Point (IRP); Requirements".

[3]
32.602: "Configuration Management (CM); Basic CM Integration Reference Point (IRP): Information Service (SS)".

[4]
32.661: "Configuration Management (CM); Kernel CM Integration Reference Point (IRP); Requirements".

[5]
32.662: "Configuration Management (CM); Kernel CM Integration Reference Point (IRP): Information Service (IS)".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the following terms and definitions apply.

Data: is any information or set of information required to give software or equipment or combinations thereof a specific state of functionality.

Element Manager (EM): provides a package of end-user functions for management of a set of closely related types of Network Elements (NEs). These functions can be divided into two main categories:

· Element Management Functions for management of NEs on an individual basis. These are basically the same functions as supported by the corresponding local terminals.

· Sub-Network Management Functions that are related to a network model for a set of NEs constituting a clearly defined sub-network, which may include relations between the NEs. This model enables additional functions on the sub-network level (typically in the areas of network topology presentation, alarm correlation, service impact analysis and circuit provisioning).

Managed Object (MO): an abstract entity, which may be accessed through an open interface between two or more systems, and representing a Network Resource (NR) for the purpose of management. The Managed Object (MO) is an instance of a Managed Object Class (MOC) as defined in a Management Information Model (MIM). The MIM does not define how the MO or NR is implemented; only what can be seen in the interface.

Managed Object Class (MOC): a description of all the common characteristics for a number of MOs, such as their attributes, operations, notifications and behaviour.

Managed Object Instance (MOI): an instance of a MOC, which is the same as a MO as described above.

Network Element (NE): is a discrete telecommunications entity, which can be, managed over a specific interface e.g. the RNC.

Network Manager (NM): provides a package of end-user functions with the responsibility for the management of a network, mainly as supported by the EM(s) but it may also involve direct access to the NEs. All communication with the network is based on open and well-standardised interfaces supporting management of multi-vendor and multi-technology NEs.

Network Resource (NR): is a component of a NE, which can be identified as a discrete separate entity and is in an object oriented environment for the purpose of management represented by an abstract entity called Managed Object (MO).

Object Management Group (OMG): see http://www.omg.org.

Operations System (OS): indicates a generic management system, independent of its location level within the management hierarchy.

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

CM
Configuration Management

CMIP
Common Management Information Protocol

CORBA
Common Object Request Broker Architecture

EM
Element Manager

FM
Fault Management

ITU-T
International Telecommunication Union, Telecommunication Standardisation Sector

MOC
Managed Object Class

MOI
Managed Object Instance

NE
Network Element

NM
Network Manager

OMG
Object Management Group

OS
Operations System

PM
Performance Management

TMN
Telecommunications Management Network

UML
Unified Modelling Language (OMG)

4 Requirements

This requirements specification defines requirements for object management functions.

This service uses the following other services and thus implicitly imports all the requirements defined therein:

· Notification, defined in X.notif.1

· State, defined in X.state.1

4.1 Business Level Requirements

REQ-OM-FUN-01 The object management functions shall be able to operate on any managed object and the definitions of new object types may specify which object management functions are applicable.

REQ-OM-FUN-02 The object management capabilities shall be independent of any specific definitions of managed objects, attributes etc.

Passive CM Requirements

REQ-OM-FUN-03 The Agent will provide an operation to retrieve the value of attributes from one or more managed object instances.

REQ-OM-FUN-04 An operation to retrieve the containment relationships between the managed object instances of a containment tree of managed objects shall be provided.

REQ-OM-FUN-05 An operation to retrieve the interface versions that are supported by the Agent may be provided.

REQ-OM-FUN-06 An operation to cancel a previously initiated operation if it has not completed may be provided. This operation shall, as a minimum, be able to cancel the operation that retrieves attributes. It may be specified to cancel any operation.

Active CM Requirements

Active CM requirements are specified as additions to Passive CM requirements and not intended to be implemented without implementation of Passive CM.

REQ-OM-FUN-07 An operation to create an instance of a managed object shall be provided.

REQ-OM-FUN-08 An operation to delete one or more instances of managed objects shall be provided.

REQ-OM-FUN-09 An operation to modify one or more attributes of one or more instances of managed objects shall be provided.

REQ-OM-FUN-010 A Manager may subscribe to notifications about a set of object management operations: object creation, object deletion, object modification and when part or the whole configuration information should be synchronized.

4.1.1 Actor Roles

Manager

The NMS acts as the Manager.

Agent

The EMS acts as the Agent.

4.1.2 Telecommunications Resources

Both the suppliers' EMSs and the managed network equipments are viewed as relevant telecommunications resources in this Recommendation.

4.1.3 High Level Use Case Diagrams

The first overview use-case diagram in Figure X shows the overall interaction of the Object Management function.

Figure TBD

Editors Note: Use cases require definition.

4.2 Specification Level Requirements

Use Case: New managed object definition

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			TBD

			

			Actor and Roles

			TBD

			

			Assumptions

			TBD

			

			Pre conditions

			TBD

			

			Begins when

			TBD

			

			Step 1

			TBD

			

			Ends when

			TBD

			

			Exceptions

			TBD

			

			Post Conditions

			TBD

			

			Traceability

			REQ-OM-FUN-01, REQ-OM-FUN-02

			

Use Case: Retrieve managed object information

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			TBD

			

			Actor and Roles

			TBD

			

			Assumptions

			TBD

			

			Pre conditions

			TBD

			

			Begins when

			TBD

			

			Step 1

			TBD

			

			Ends when

			TBD

			

			Exceptions

			TBD

			

			Post Conditions

			TBD

			

			Traceability

			REQ-OM-FUN-03, REQ-OM-FUN-04, REQ-OM-FUN-05

			

Use Case: Cancel pending operation

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			TBD

			

			Actor and Roles

			TBD

			

			Assumptions

			TBD

			

			Pre conditions

			TBD

			

			Begins when

			TBD

			

			Step 1

			TBD

			

			Ends when

			TBD

			

			Exceptions

			TBD

			

			Post Conditions

			TBD

			

			Traceability

			REQ-OM-FUN-06

			

Use Case: Create managed object

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			TBD

			

			Actor and Roles

			TBD

			

			Assumptions

			TBD

			

			Pre conditions

			TBD

			

			Begins when

			TBD

			

			Step 1

			TBD

			

			Ends when

			TBD

			

			Exceptions

			TBD

			

			Post Conditions

			TBD

			

			Traceability

			REQ-OM-FUN-07

			

Use Case: Delete managed object

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			TBD

			

			Actor and Roles

			TBD

			

			Assumptions

			TBD

			

			Pre conditions

			TBD

			

			Begins when

			TBD

			

			Step 1

			TBD

			

			Ends when

			TBD

			

			Exceptions

			TBD

			

			Post Conditions

			TBD

			

			Traceability

			REQ-OM-FUN-08

			

Use Case: Modify managed object

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			TBD

			

			Actor and Roles

			TBD

			

			Assumptions

			TBD

			

			Pre conditions

			TBD

			

			Begins when

			TBD

			

			Step 1

			TBD

			

			Ends when

			TBD

			

			Exceptions

			TBD

			

			Post Conditions

			TBD

			

			Traceability

			REQ-OM-FUN-09

			

Use Case: Subscribe for object management notification

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			TBD

			

			Actor and Roles

			TBD

			

			Assumptions

			TBD

			

			Pre conditions

			TBD

			

			Begins when

			TBD

			

			Step 1

			TBD

			

			Ends when

			TBD

			

			Exceptions

			TBD

			

			Post Conditions

			TBD

			

			Traceability

			REQ-OM-FUN-10

			

Use Case: Receive object management notifications

Figure TBD

			Use Case Stage

			Evolution / Specification

			<<Uses>>

Related use

			Goal

			TBD

			

			Actor and Roles

			TBD

			

			Assumptions

			TBD

			

			Pre conditions

			TBD

			

			Begins when

			TBD

			

			Step 1

			TBD

			Subscribe

			Ends when

			TBD

			

			Exceptions

			TBD

			

			Post Conditions

			TBD

			

			Traceability

			REQ-OM-FUN-10

			

Annex A (informative):
Change history

			Date

			Subject/Comment

			Sep 2005

			Initial draft

			

			

			

			

			

			

