3GPP TR 32.8xy V0.0.1 (2006-02)
Technical Report

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

Telecommunication management;

Feasibility Study of XML-based (SOAP/HTTP) IRP Solution Sets
(Release 7)

[image: image1.jpg]K oy

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

<keyword[, keyword]>

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2004, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).

All rights reserved.

Contents

5Foreword

1
Scope
6
2
References
6
3
Definitions and abbreviations
6
3.1
Definitions
6
3.2
Abbreviations
7
4
XML-based (SOAP/HTTP) technical introduction
8
4.1
Foreword and vocabulary
8
4.2
What is SOAP?
8
4.3
How does SOAP work?
8
4.3.1
SOAP message construct
8
4.3.2
SOAP processing model
9
4.3.3
SOAP extensibility model
9
4.3.3.1
SOAP features
9
4.3.3.2
SOAP Message Exchange Patterns (MEPs)
10
4.3.3.3
SOAP modules
10
4.3.3.4
SOAP protocol binding framework
10
4.4
Heading towards a XML-based IRP Solution Set
11
4.4.1
Web Service Description Language (WSDL)
11
4.4.2
Universal Description Discovery and Integration (UDDI)
12
4.5
More about SOAP/HTTP XML-based Solution Set
12
4.5.1
Correct use of HTTP
12
4.5.2
Interoperability with non SOAP HTTP implementations
12
4.5.3
MEP operation
12
4.5.3.1
Behavior of the requesting SOAP node
12
4.5.3.2
Behavior of responding SOAP node
13
4.5.4
Security considerations
13
4.5.5
Request-Response RPC
13
5
Business status
14
5.1
Comparative analysis
14
5.1.1
Computing model
14
5.1.1.1
Data model
14
5.1.1.2
Scalability and reliability
14
5.1.1.3
Static and runtime checks
14
5.1.2
Features supported
15
5.1.2.1
Location transparency
15
5.1.2.2
Registry
15
5.1.2.3
Service discovery
15
5.1.2.4
Firewall Traversal
15
5.1.2.5
Security
15
5.1.2.6
Platform independence
15
5.1.3
Summary
16
5.2
Conclusion
16
6
Standardisation status
16
7
Usage status
17
8
Performance status
17
8.1
State of the art
17
8.2
Way forward
17
9
Market status
17
10
Overall conclusion and recommendations
18
Annex A: Example of SOAP message.
19
Annex B: Links to more literature concerning XML-based technologies
20
Annex C: Change history
21

Foreword

This Technical Report has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

1
Scope

This present document is for the requested 3GPP Release 7 Work Item “XML-based (SOAP/HTTP) IRP Solution Set".

The purpose of the present document is to give TSG SA5 some arguments, through a survey work, about the need to specify a new Solution Set for all Interfaces, Network Resource Models and Data Definition IRPs based on XML-based (SOAP/HTTP) technology, as additional choice to CORBA and CMIP Solution Sets.
This document is intended to gather all information in order to provide a survey work on XML-based (SOAP/HTTP) Solution Set, based on the following sections:

(1)
XML-based Solution Set technical introduction

(2)
 Business Status: Reasons
(3)
 Standardization Status

(4)
Vendor Status

(4)
Performance status:
(5)
Economic Status

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
SOAP Specification definition part 1: http://www.w3.org/TR/soap12-part1
[2]
SOAP specification definition part 2: http://www.w3.org/TR/soap12-part2/
[3]
MTOSI XML implementation user guide
[4]
MTOSI communication styles
[5]
OSS through Java Web Services Integration Profile

3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the following terms and definitions apply.

SOAP: formal set of conventions governing the format and processing rules of a SOAP message. The convention includes the interaction between SOAP nodes generating/accepting SOAP messages in order to exchange information along the SOAP message path.

SOAP application: An entity, typically software, that produces, consumes or otherwise acts upon SOAP messages in a way conforming to the SOAP processing model.

SOAP body: A collection of 0 or more element information items targeted at an ultimate SOAP receiver within the SOAP message path.
SOAP binding: formal set of rules for carrying a SOAP message within or on top of another protocol for the purpose of exchange.

SOAP envelope: Outermost element information item of a SOAP message.

SOAP feature: An extension of the SOAP messaging framework.

SOAP header: A collection of 0 or more SOAP header blocks, each of which might be targeted at any SOAP receiver within the SOAP message path.

SOAP header block: An element information item used to delimit data that logically constitutes a single computational unit within the SOAP header. The type of a SOAP header block is identified by the XML expanded name of the header block element information item.

SOAP intermediary: A SOAP intermediary is both a SOAP receiver and a SOAP sender.

SOAP message: Basic unit of communication between SOAP nodes.

SOAP message exchange pattern: Template for exchanging SOAP messages between SOAP nodes, enabled by one or more underlying SOAP protocol bindings.

SOAP message path: Set of SOAP nodes through which a single SOAP message passes.
SOAP module: A specification that contains the combined syntax and semantics of SOAP header blocks. A SOAP module realizes 0 or more SOAP features.

SOAP node: embodiment of the processing logic necessary to transmit, receive, process or relay a SOAP message. A SOAP node is responsible for enforcing the rules that govern the exchange of SOAP messages. It accesses the services provided by the underlying protocols through one or more SOAP bindings
SOAP receiver: A SOAP node that accepts a SOAP message..
SOAP role: A SOAP receiver’s expected function in processing a message. A SOAP receiver can act in multiple roles.

SOAP sender: SOAP node that transmits a SOAP message
Ultimate SOAP receiver: SOAP receiver that is the final destination of a SOAP message. It is responsible for processing the content of the SOAP body and any SOAP header blocks targeted at him.

3.2
Abbreviations

For the purposes of the present document, the following abbreviations apply:

CORBA
Common Object Request Broker Architecture
CORBA/IDL
Common Object Request Broker Architecture/Interface Definition Language

EM
Element Manager

EMS
Element Management System

IDL
Interface Definition Language

IRP
Integration Reference Point

IS
Information Service

MEPs
Message Exchange Patterns

NM
Network Manager

NMS
Network Management System

OAM&P
Operations, Administration, Maintenance and Provisioning

OS
Operations System

OSS
Operations Support System

SOAP
Simple Object Access Protocol

SS
Solution Set

TCP/IP
Transmission Control Protocol/ Internet Protocol

TMF
TeleManagement Forum

UDDI
Universal Description Discovery and Integration

WSDL
Web Services Description Language
4
XML-based (SOAP/HTTP) technical introduction
This section is a quick technical overview of XML-based Solution Set, SOAP and SOAP/HTTP that can be used as a reference to better understand the context of this document. This is not exhaustive but provides the main principles and gives enough information to be able to make a judgement concerning this candidate technology.
4.1
Foreword and vocabulary
The following section will introduce XML-based technologies that uses, as a vehicle, SOAP technologies as well as its add-ons such as WSDL and UDDI.
It has to be clear to the reader that SOAP is the protocol that is used to introduce XML-based IRP Solution Set.
As well, if SOAP is the XML-based protocol used, it comes with a number of add-ons such as WSDL, UDDI, and that this set of “tools” are an entire part of the XML-based IRP Solution Set that is being defined in this study.

4.2
What is SOAP?
SOAP is a lightweight protocol defined by the w3c organisation (see [1] and [2]). SOAP is intended to exchange information in decentralized and distributed environment. It uses XML technologies that allow defining an extensible messaging framework providing a message construct that can be exchanged over a variety of underlying protocols. As well, the framework has been designed to be independent of any particular programming model and other implementations specific semantics.
SOAP stands for Simple Object Access Protocol and is a XML messaging and invocation protocol. It does not specify a transport event though it is very commonly used with HTTP.
SOAP was designed with the two main goals that are simplicity and extensibility. Later on in this technical introduction there will be a detailed description about the way they have been implemented.

Globally SOAP is said to be agnostic in the sense that:

-
Independent of transport protocol used to carry the messages (HTTP, SMTP, etc, etc...)

-
Independent from other web services such as WSDL or UDDI
-
Independent from programming languages
4.3
How does SOAP work?
SOAP provides a distributed processing model that assumes a SOAP message originates at an initial SOAP sender and is sent to an ultimate SOAP receiver via a number of SOAP intermediaries.
4.3.1 SOAP message construct

A SOAP message is specified as an XML infoset that consists in a SOAP envelope, a SOAP header and a SOAP body.

The SOAP envelope element information item is embedded within an XML infoset and specifies that this infoset is a SOAP message. It contains a local name (envelope) as well as a namespace and a number of namespace qualified attribute information items (for example encoding Style). Finally it has to contain (Mandatory) a Body element information item and optionally a Header element information item.
The SOAP header provides a mechanism for extending a SOAP message in a decentralized and modular way. The header can be inspected, inserted or deleted by SOAP nodes. It allows SOAP intermediaries nodes to add value added services such as correlation, audit, security etc, etc… Basically, the intermediaries SOAP nodes can potentially check through the header to get info if necessary or to know which SOAP node is to be the ultimate SOAP receiver. The SOAP header is defined by a local name (header), a namespace, a number of namespace qualified attribute information items and a number of namespace element information items (header blocks). The header blocks attributes can be, for example, EncodingStyle, role, mustUnderstand or relay.
The SOAP body provides a mechanism to transmit information to an ultimate SOAP receiver. It is a mandatory field since it contains the message or payload that is to be processed by the ultimate SOAP receiver.

An example of the SOAP flexibility is that the decision to determine which data is to be placed in the header block or body is decided at the application design stage.

4.3.2 SOAP processing model
The SOAP processing model specifies the way a SOAP receiver processes a SOAP message.

While processing a SOAP message, a SOAP node (identified by an URI) is said to act in one or more SOAP role, each of which is identified by a URI known as the SOAP role name. For example, there are three main role names in the context of SOAP:
-
Next: Each SOAP intermediary and the ultimate SOAP receiver must act in this role
-
None: SOAP nodes must NOT act in this role
-
UltimateReceiver: Only the ultimate receiver must act in this role
For example, a SOAP header block may carry a role attribute information item that is used to target the header block at SOAP nodes operating in the specified role. In the same way, a SOAP header block may carry a mustUnderstand attribute information item set to true, in which case the header block is said to be mandatory because a targeted node must process the header block and act according to its content.
Finally, the ultimate SOAP receiver must process correctly the SOAP body.

4.3.3 SOAP extensibility model

As said earlier, SOAP provides a simple messaging framework whose core functionality is concerned with providing extensibility. Mainly, the SOAP extensibility is provided by the following three “possibilities”:
-
SOAP Message Exchange Patterns (MEPs)
-
SOAP modules
-
SOAP protocol binding framework

4.3.3.1
SOAP features

A SOAP feature is an extension of the SOAP messaging framework. Although SOAP poses no constraints on the potential scope of such features, those can be reliability, security, correlation, routing or MEPs such as request/response, one-way and peer to peer conversation.

There are two mechanisms through which features can be expressed: SOAP processing model (See Section 4.3.2) or SOAP protocol binding framework (See sub-clause 4.3.3.4). The first mechanism is already known. The second mechanism mediates the act of sending/receiving SOAP messages by a SOAP node via an underlying protocol.

The SOAP processing model enables SOAP nodes that include the necessary mechanisms to implement one or more features to express such features within the SOAP envelope as SOAP header blocks. Such header blocks can be intended for any SOAP node or nodes along the SOAP message path. The combined syntax and semantics of SOAP header blocks are known as a SOAP module (See sub-clause 4.3.3.3).
On the other hand, the SOAP protocol binding operates between two adjacent SOAP nodes along a SOAP message path. There are no requirements that the same underlying protocol is used for all hops along a SOAP message path. In some cases, underlying protocols are equipped, either directly or through extension, with mechanisms for providing certain features. The SOAP protocol binding framework provides a scheme for describing these features and how they relate to SOAP nodes through a binding specification.

Globally, in the case where the feature requires an end to end processing, it is probably recommended to use the SOAP header blocks to reuse the SOAP processing model rules. Otherwise, SOAP protocol binding can be used.

A SOAP feature is fully defined by the following:
-
A URI used to name the feature. This enables the feature to be unambiguously referenced in description language or during negotiation
-
The information state required at each node to implement the feature
-
The processing required at each node in order to fulfil the obligations of the feature, including handling of communication failures that might occur in the underlying protocol
-
The information to be provided from node to node
4.3.3.2
SOAP Message Exchange Patterns (MEPs)

A Message Exchange Pattern (MEP) is a template that establishes a pattern for the exchange of the messages between SOAP nodes. In a way, MEPs are a kind of feature.
A MEP is defined by the following:

-
A URI used to name the MEP
-
Description of life cycle of a message exchange conforming to the pattern
-
Description the temporal/causal relationships, if any, of multiple messages exchanged in conformance with the pattern

-
Description of the normal and abnormal termination of a message exchange conforming to the pattern

4.3.3.3
SOAP modules

SOAP module refers to the specification of the syntax and semantics of one or more header blocks.

A SOAP module:
-
Must identify itself with a URI. This enables the module to be unambiguously referenced in description languages or during negotiation
-
Must declare the features provided by a module
-
Must clearly and completely specify the content and semantics of the SOAP header blocks used to implement the behaviour in question, including if necessary any modifications to the SOAP processing model
4.3.3.4
SOAP protocol binding framework

SOAP enables exchange of SOAP messages using a variety of underlying protocols. The formal set of rules for carrying a SOAP message within or on top of another protocol for the purpose of exchange is called a binding.
A SOAP binding specification:

-
Declares the features provided by a binding
-
Describes how the services of the underlying protocol are used to transmit SOAP messages infosets
-
Describes how the services of the underlying protocol are used to honour the contract formed by the features supported by that binding
-
Describes the handling of all potential failures that can be anticipated within the binding
-
Defines the requirements for building a conformant implementation of the binding being specified
Globally, it can be considered that a binding does not really provide a separate processing model and does not constitute a SOAP node by itself. Rather, a SOAP binding is an integral part of a SOAP node.

Two or more bindings can offer a given optional feature using different means. One binding might exploit an underlying protocol that directly facilitates the feature and the other binding might provide the necessary logic itself. In such cases, the feature can be made available to applications in a consistent manner, regardless of which binding is being used.

Finally, since the SOAP processing model describes the processing that is common to all SOAP nodes when receiving a message, the purpose of a binding is to augment the core SOAP rules with additional processing that is particular to the binding and to specify the manner in which the underlying protocol is used to transmit information between adjacent nodes in the message path.

4.4 Heading towards a XML-based IRP Solution Set

This study’s goal is to assess whether or not SA5 can head towards a XML Solution Set based on SOAP as a protocol, WSDL as a description language and UDDI as a discovery “layer”. WSDL and UDDI will be described in the following section.

[image: image2]
4.4.1 Web Service Description Language (WSDL)

WSDL is a Standard to define Web Services.

WSDL is an XML format that allows Web Services description as a set of endpoints operating on messages containing either a document oriented or procedure oriented information. Operations and messages are described at an abstract level and then bound to a concrete network protocol and message format to define an endpoint.

Basically WSDL describes the format and protocols of a web service in a standardized way. For example, the requestor and the Service Provider have a standard way to describe:

-
Service to be provided
-
Messages needed to be sent by both parties in order to provide the service:

-
Data contained in each message
-
Binding of the messages to a communication protocol
-
What the service does
-
How the service is accessed
-
Where the service is located
The Service provider publishes service WSDL description to a UDDI registry. The service requestor discovers the service by searching the UDDI registry and then binds the WSDL description to a specific message it uses to access the service. Finally, the service requestor can use the service.
4.4.2 Universal Description Discovery and Integration (UDDI)
UDDI allows service providers to publish information about their services. The requestor can then find those information when looking for a service.

This is done using the UDDI functionalities providing a registry in which information such as business entity, service provided by this entity and the WSDL description of those services is stored. UDDI provides as well an interface to insert information of the registry and possibly search for a service.

4.5 More about SOAP/HTTP XML-based Solution Set

The SOAP HTTP binding provides a binding of SOAP to HTTP. The binding conforms to the SOAP protocol binding framework defined in Section 4.3.3.4.

The SOAP HTTP binding is optional and SOAP nodes are not required to implement it. However, this binding does not preclude the development of other bindings to HTTP or to other protocols, but communication with nodes using such bindings is not a goal even if those nodes can use HTTP features or status codes.
4.5.1 Correct use of HTTP

The SOAP HTTP binding defines a base URI which is the HTTP Request-URI or the value of the HTTP Content-Location header field.
This binding of SOAP to HTTP is intended to make appropriate use of HTTP as an application protocol. In fact, this binding is not intended to fully exploit the HTTP features but rather to use HTTP specifically for the purpose of communicating with other SOAP nodes implementing the same binding.

4.5.2 Interoperability with non SOAP HTTP implementations

When used with MEPs, the HTTP messages produced by the SOAP HTTP binding are likely to be indistinguishable from those produced by non SOAP implementations performing similar operations. Accordingly, some degree of interoperation can be made possible between SOAP nodes and other HTTP implementations when using this binding.
4.5.3 MEP operation
A SOAP node instantiated at an HTTP client may assume the following two role properties:
-
Requesting SOAP node
-
Responding SOAP node
4.5.3.1
Behavior of the requesting SOAP node

This binding supports streaming and, as a result, requesting SOAP nodes must avoid deadlock by accepting and, if necessary, processing SOAP response information while the SOAP request is being transmitted.

A number of state help for that purpose:

-
Init: In this state a HTTP request is formulated and the transmission of the request is initiated
-
Requesting: the sending of the request continues while waiting for the start of the response message. A number of statuses can be allocated at this stage (successful, Ok, redirection, client error, bad request etc, etc…). Depending on the status, the node acts in consequence. It has to be noticed that the SOAP HTTP binding follows the rules of any HTTP application which means that an implementation of the SOAP HTTP binding must understand the class of any status code
-
Sending + Receiving: the transmission of the request message and receiving of the response message is completed. The response message is assumed to contain a SOAP envelope serialized according to the rules for carrying SOAP messages in the media type given and the content-type header field
-
Receiving: in the receiving state, receiving of the response is completed
-
Success and Fail: Success and Fail are the terminal states of the Request-Response and SOAP response MEPs. Control over the message exchange context returns to the local SOAP node
4.5.3.2
Behavior of responding SOAP node

In the same way, the Responding SOAP node has a number of state that are driving the node behaviour

-
Init: the binding waits for the start of an inbound request message. In this state, no SOAP message has been received
-
Receiving: the binding receives the request and any associated message and waits for the start of a response message to be available
-
Receiving + Sending: the binding completes receiving of the request message and transmission of the response message
-
Sending: the binding completes transmission of the response message
-
Success and Fail: they are the terminal states for the Request- Response and SOAP Response MEPs. From the point of view of the local node, this message exchange has completed
4.5.4 Security considerations

The SOAP HTTP binding can be considered as an extension of the HTTP application protocol. As such, all the security considerations described in the HTTP specification apply to the SOAP HTTP binding. In particular, HTTPS is supported.

On top of that, SOAP security items apply as well (see [2]).

4.5.5 Request-Response RPC
One of the goals of the SOAP to HTTP binding is to encapsulate remote procedure call functionality, using XML’s flexibility and extensibility.
In this context, RPC is used to model a certain programmatic behaviour. To invoke a SOAP RPC, the following information is necessary:

-
The address of the target SOAP node. URI can be included in header blocks or outside of SOAP message, in bindings
-
The procedure or method name
-
The identities and values of any arguments to be passed to the procedure or method together with any output parameters and return value
-
A clear separation of the arguments used to identify the Web resource which is the actual target for the RPC, as contrasted with those that convey data or control information used for processing the call by the target resource
-
The message exchange pattern which will be employed to convey the RPC
-
Optionally, data which may be carried as a part of SOAP header blocks
5 Business status

This section is a rough business assessment of the proposed XML-based IRP solution set. The goal of this section is to assess and estimate whether or not the proposed solution can be an alternative to existing Solution Sets, notably CORBA/IDL.
It has to be clear as well that the following is not a plea against CORBA but just a comparison with an existing solution set. Globally, it will be demonstrated that everything (or nearly) that can be achieved using CORBA is do-able using the XML-based Solution Set.

5.1 Comparative analysis

The comparison will be made against two different aspects which are the computing model and the features supported by each technology.
The comparison will be based on a number of criteria developed in the following.

Finally, this is obviously not an exhaustive comparison but that should be enough information to get a good enough assessment of the proposed XML-based solution set.

The following table provides a first level of comparison between the two technologies:

	CORBA stack
	XML-based stack

	IDL
	WSDL

	CORBA Services (naming service, trader service, IR)
	UDDI

	CORBA Stubs/Skeletons
	SOAP Message

	CDR (common data representation) binary encoding
	XML Unicode encoding

	GIOP/IIOP
	HTTP

	TCP/IP
	TCP/IP

5.1.1 Computing model

5.1.1.1 Data model

CORBA is a true Object Oriented component framework, whereas the XML-based solution set are focused around a message passing paradigm with no notions of objects.

As well, with CORBA, there is a tight coupling between the client and the server. First of all, both of them must share the same interface and must run an ORB (Object Request Broker) at both ends. Then, the interaction between the client and the server may be achieved directly with no need to further intermediation. In the case of the XML-based solution, everything is decoupled. The client sends or receives a message.
5.1.1.2 Scalability and reliability
In CORBA, the Portable Object Adapter (POA) policies combined with the Fault-tolerant CORBA features and the Load-balancing CORBA service provide the desired scalability to CORBA applications

In the context of XML-based solution, standards do not address these issues. However, this is done on purpose and left to the responsibility of the components.

5.1.1.3 Static and runtime checks

CORBA IDL is strongly typed and provides some static guarantees, DII (Dynamic Invocation Interface) addresses runtime checks

In the XML-based solution, there is no standardized infrastructure support to offer static checking. At runtime, only the structure of the SOAP message is checked, and the payload is only required to be a piece of well-formed XML. It is the responsibility of the application to verify the payload further (i.e., validate against a schema). In the future, WSDL could be used to generate a mapping to a programming language to offer some static guarantees.

XML Schemas are more expressive than IDL and define some syntactic checks (e.g., regular expression describing a date format, etc.), as well as some semantic checks (e.g., range constraints), which cannot be captured in IDL.

5.1.2 Features supported
5.1.2.1 Location transparency

CORBA client applications obtain references to objects and invoke operations without concern for the location of the objects

XML-based solution client applications (using SOAP) refers to services using URLs which implicitly encode the location (IP address) of the service

5.1.2.2 Registry

CORBA defines an Interface Repository (IR) that provides run-time information about IDL interfaces and invokes via DII

UDDI provides searchable central repositories using a publish/subscribe mechanism to store service definitions. UDDI registries can store structural information about the service in the form of a WSDL specification

5.1.2.3 Service discovery

CORBA Naming service provides lookup via service name. The Trading Object Service supports an advanced lookup, registration and discovery of services based on service type.

In the XML-based solution, UDDI registries are allowing to discover services matching a given interface.
5.1.2.4 Firewall Traversal

The upcoming CORBA Firewall Traversal specification allows CORBA requests to be routed through firewalls. Explicit routing information is added to the interoperable object references (IOR).

For XML-based solution, since the preferred transport protocol is HTTP, firewalls are usually configured to allow inbound and outbound HTTP traffic

5.1.2.5 Security

Security features include authentication, authorization, encryption, data integrity, delegation, non-repudiation and auditing

Security features are supported by the CORBA Security service

The XML-based solution stack does not define security services. However, security can be addressed by transport network and internet technologies like SSL and XML-Signature

5.1.2.6 Platform independence

CORBA has been designed to be platform independent. This includes hardware, operating systems, and programming and scripting languages independency.
On the XML-based solution, since all messages communication is via SOAP, and that no other restrictions (e.g., platform similarities) are imposed on the client or the server, the only requirement is to be able to read and write SOAP messages (i.e. XML documents)
5.1.3 Summary

	Aspect
	CORBA
	XML-based SS

	Data model
	Object model
	SOAP message exchange model

	Client-Server coupling
	Tight
	Loose

	Location transparency
	Object references
	URL

	Type system
	IDL
	XML schemas

	
	static + runtime checks
	runtime checks only

	Error handling
	IDL exception
	SOAP fault messages

	Serialization
	built into the ORB
	can be chosen by the user

	Parameter passing
	by reference
	by value (no notion of objects)

	
	by value (valuetype)
	

	Transfer syntax
	CDR used on the wire
	XML used on the wire

	
	binary format
	Unicode

	State
	stateful
	stateless

	Request semantics
	at-most-once
	defined by SOAP

	Runtime composition
	DII
	UDDI/WSDL

	Registry
	Interface Repository
	UDDI/WSDL

	
	Implementation repository
	

	Service discovery
	CORBA naming/trading service
	UDDI

	Language support
	any language with an IDL binding
	any language

	Security
	CORBA security service
	HTTP/SSL, XML signature

	Firewall Traversal
	work in progress
	uses HTTP port 80

5.2 Conclusion
Basically, it seems that most of the things that can be achieved using CORBA are achievable as well using the proposed XML-based solution.

There are a number of points that are not actually defined at the XML-based solution specification level but this is on purpose and those are left to the discretion of the design team when implementing the application.

As a result of that, the flexibility of XML-based solution is clearly demonstrated.

XML-based solution seems as well to be easy to use with possibly less constraints than CORBA based solution set. There is no need to compile each time a change or a new implementation is done and the fact that there is a binding to HTTP seems interesting as well.

However there are few concerns that would need probably further studies. For example, there is a question mark towards the performance of the system (See clause 8). As well, the interoperability might not be yet up to speed.
Finally, it looks like the notification are not defined in the XML-based Standards and are therefore open to the four winds which potentially means that every standardisation organism is setting its own standard on those. SA5 should look into that as well for further studies.

6 Standardisation status

The XML-based IRP Solution Set discussed in this document is built on SOAP protocol, WSDL and UDDI. All three are today standardised by the W3C organization. The details of those specifications can be found by the link given in Reference [2] and [3].
Since this solution is transport independent, it can easily be based on a standardised transport layer.
Today SOAP version is v1.2 and is not expected to change. However, the extensibility features are open and linked to bindings to protocol.

7 Usage status
There is a real growing demand for the XML-based complete set of solution, which are today very widely used and implemented in the industry. Especially XML-based solutions over HTTP or HTTPS since most of the web applications are choosing this kind of implementation. It seems to be a well known and accepted fact, and is driving the industry at the moment. For example, travel booking companies, music download sites and banking activities are using XML-based solution to perform their activities.

This is in that regard, really, that this feasibility study has been set up. The question asked really is: “can we use, or re-use” those XML-based technologies in the context of the telecom management and this is the answer that has to be provided as an output to this feasibility study.
As a matter of fact, a number of Telecom Standard organisations have already made a positive assessment regarding this XML-based solution set.
For example, the TMF MTOSI industry group has already progressed on that topic and presented their work to the SA5. In the same way OSS/J study group have produced an assessment document that concludes that this the way going forward. Both those documents are available and given as references [3] and [4]. Other groups from Telecommunications and other industries are actively working on that topic.
8 Performance status
8.1 State of the art
It seems that the performances offered by an XML-based solution would not be as good as the ones provided by a CORBA solution set.

Globally, it seems to be an agreed and accepted point that SOAP, being XML-based, is too verbose as compared to CORBA IIOP's binary format. Therefore, it is likely to introduce a performance hit.

However, that may be true for certain kinds of applications, but in most complex business applications, the cost of message passing is dwarfed by the cost of processing the business logic

Anyway, this should be studied further to get maybe a clearer overview of the real performances impacts.

8.2 Way forward
There is clearly an argument to be discussed concerning performances. However, the industry makers, including in the Telecommunication world seem to privilege the wider use of an XML-based solution rather than what seems to be a small enough and acceptable impact on performances.

Unfortunately, at this stage, there is not a sufficient set of references to give definite arguments on that purpose. But a discussion on that topic should be set up.

The discussion could stand, for example, over the use of an XML-based solution set against all our IRPs. Or is it only applicable to PM, CM basic and Bulk and maybe not for FM, even though there are no existing studies demonstrating the inefficiency of those type of solution in this sector.

On top of that, it would be very interesting, in the context of SA5, and even beyond, to set up a work task group that would study the performances in an XML-based environment versus existing solutions to find out if there is an impact on performances and if any, how big it is.

9 Market status

Using a flexible and extensible feature, based on XML schema is easy to set up and therefore necessitates a shorter development cycle. As well, due to the fact that XML-based solutions do not need to be compiled, once again, it is very convenient to use and making changes don’t have the same cost than a solution for which compiling is necessary each time a change is to be made.
There is not really such things as companies providing services to the XML-based technologies unlike in the CORBA world where you can have companies such as Orbix providing those services. In the XML-based technologies, there are no tools per say, excepted the parsers. The services at developed independently.

10 Overall conclusion and recommendations
XML-based IRP solution set, based on SOAP, WSDL and UDDI is clearly the solution picked going forward by the industry. This is recognized for a number of industrial sectors and many Telecommunication organisms are coming to that conclusion and technology to go forward.

XML-based solution do not introduce significant restrictions when compared to existing and used Solution sets. CORBA is clearly a tool that is very efficient but XML-based solution can compete with it and has strong arguments to stand for. Flexibility, extensibility, independence on the transport layer, simplicity of usage are strong arguments in its favor and are attracting to operators/manufacturers that want an easy to implement solution set.

However, there are still a few things to investigate such as notification handling for which a standard is still not fully defined. The performance aspect needs to be prospected further as well.

Finally, and to conclude this feasibility study, moving to XML-based technologies is a big step forward in the objective of heading towards Standards convergence, both on the technology and on the models.

Annex A:
Example of SOAP message.

SOAP Message Header:
<?xml version='1.0' ?>

<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
env is the namespace name

<env:Header>

optional element

<m:reservation xmlns:m=“…"
env:role="http://www.w3.org/2003/05/soap-envelope/role/next"

env:mustUnderstand="true">

child element, header block, with

attribute: role,

mustUnderstand,encodingStyle, relay

<m:priority>1</m:priority>

character or element infor element item

<m:expires>2001-11-29T13:20:00.000-05:00</n:expires>

</m:reservation>

</env:Header>

SOAP Message Body:

<env:Body>

mandatory element

<m:alert xmlns:m="http://example.org/alert">

character infor item child element

<m:msg>Pick up Mary at school at 2pm</m:msg>

character or element infor element item

</m:alert>

<env:Fault>

</env:Fault>

</env:Body>

</env:Envelope>

Annex B:
Links to more literature concerning XML-based technologies

General:
http://www.bitpipe.com/rlist/term/Web-Services-(Software).html
http://www.globusworld.org/program/abstract.php?id=80
http://soapclient.com/papers.html
http://www.developers.net/tsearch
http://www.webservicesarchitect.com/
Performances:

http://www.orchestranetworks.com/fr/soa/contraintesws.cfm

http://www.orchestranetworks.com/fr/soa/extraitws.cfm

Annex C:
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	2006-02
	
	
	
	
	Creation.
	-
	0.0.1

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

Wire

XML

SOAP 1.1/1.2

Reliability

Attachments

Routing

Security

Description

XML Schema

Service Description �(WSDL)

WS Business Process

Discovery

Discovery

Directory (UDDI)

