
3GPP TSG-SA5 (Telecom Management)
S5-068089
Meeting #46, Sophia Antipolis, France, 13 - 17 February 2006
Source:

Siemens
Title:

Discussion Paper: Management of Legacy Equipment
Document for:

Discussion and decision

21
Problem Description

22
Requirements

23
Possible Solutions

23.1.
Solution I: Usage of previous IOC Definitions

23.1.1.
Description

23.1.2.
Open Issues

33.2.
Solution II: Chameleon Classes

33.2.1.
Description

33.2.2.
Open Issues

34
Additional Considerations

35
Open Issues

36
ANNEX A

46.1.1.
X.3.a IocA

56.1.2.
X.5.1 Definition and legal values

1 Problem Description
3GPP SA5 models networks using Network Resource Model (NRM) IRPs. These NRM IRPs define Information Object Classes (IOCs) on IS level and corresponding Managed Object Classes (MOCs) on SS level. In addition to this, containment relationships between them are specified. An instance of a MOC represents a managed resource in the network. The IOCs of an NRM IRP of a certain release model network resources of the same release. For this reason a NRM IRP of a certain Release cannot manage a network compliant to another (typically previous) release or a network being built from equipment compliant to multiple releases.

But there might also be another problem. Imagine a Rel-5 network that is managed by a corresponding Rel-5 NRM IRP. All managed resources are compliant to Rel-5 and feature OAM interfaces supporting the Rel-5 NRM IRP functionality. Now the NRM IRP instantiated in the EM is upgraded to Rel-6 and models a Rel-6 network. Let’s assume that the call processing functionality of the network elements and the OAM interfaces are upgraded to Rel-6 as well, but just in case the call processing functionality has changed. The network elements featuring the same call processing functionality in Rel-5 and Rel-6 are not at all changed and thus still feature the OAM interface supporting the Rel-5 NRM IRP functionality. However, the object representing this resource is enhanced and features extended OAM functionality in Rel-6. This functionality is not supported by the Rel-5 OAM interface of the network element. Also in this case the network resource needs to be represented by an object featuring the Rel-5 functionality in the Rel-6 NRM IRP.
2 Requirements

From the above the following requirements are derived

· It shall be possible to manage with an instance of an NRM IRP of a certain 3GPP release also network resources compliant to other (typically older) 3GPP releases.

3 Possible Solutions
3.1. Solution I: Usage of previous IOC Definitions

3.1.1. Description

It is possible to simply allow an NRM IRP of a certain version to re-use definitions of the NRM IRP of a previous version. This would require that the class names are tied to a certain version and cannot remain the same in case an IOC definition is changed (e. g. UtranCell_R62, UtranCell_R63). The easiest solution is probably to provide in the specification of an NRM IRP of Release X the object class definitions of this release and the object class definitions of the previous releases. However, this will lead to an explosion of class definitions. Maybe there are also smarter ways to do the same thing. There is a linkage to the BC work task that needs to be discussed.
3.1.2. Open Issues

What should the answer to getNRMIRPVersion look like ? Probably we would need to define an operation that returns the version on a per object basis. In case the IOC class name includes the release this operation is probably redundant.
Each IOC supports a number of notifications. A certain notification type may have a different definition in different releases. Up to now the notification name (type) remains the same, even though the definition of a notification has changed. Is this a problem for the agent ? Probably not. Is this a problem for the manager ? Probably yes, because he cannot deduct a certain notification structure from the notification type. A potential solution could be to include the release in the notification name and type.
Another problem is the getIRPVersion and getNotificationProfile response. Though the operations of an Interface IRP are all of the same release the notifications actually emitted could be of different releases in case IOCs of different NRM IRP releases are instantiated. A potential solution could be to make the notification definition part of Interface IRPs backwards compatible by supporting also notifications defined in previous releases).
The open issues related to notifications are linked closely to the Backwards Compatibility Work Task. Probably some requirements for this Work Task could come from the Management of Legacy Equipment Work Item.
3.2. Solution II: Chameleon Classes
3.2.1. Description
Instead of defining one object class for each release one could also think of defining one single object class for a certain network element type that adapts in a flexible way to different releases, like a chameleon adapts to its ambient colour. So depending on the release a certain network element is compliant to the concrete instantiation of this chameleon class representing the subject network element exhibits different attributes and behaviour. This approach would circumvent the explosion of object classes in one release, however, it needs to be discussed how this chameleon object class could be realized
One possibility could be to mark every object (= instantiation of the chameleon class) with a flag indicating its release or version. This flag could translate in a new attribute.

In the specification it is possible to qualify the attributes being present or absent in different releases as conditional (in the new sense of this qualification as recently agreed). In the attribute constraints section it could then be specified for each release which attributes shall be supported.
For an example for the specification of the appearance indicator attribute, please refer to Annex A.
3.2.2. Open Issues

Depending on the value of the appearance indicator attribute the managed object supports different attributes depending on the release the object is appearing alike. The question is now how to treat notifications. Should we provide also the possibility to switch the supported set of notifications depending on the value of the appearance indicator attribute? The answer is probably yes.
Impacts on getNRMIRPVersion, getIRPVersion and getNotificationProfile need to be discussed as well. Below are provided some initial considerations.
The operation getNRMIRPVersion should be replaced by an operation that is returning the version information on a per instantiated object basis. This operation basically needs to read all appearance indicator attributes. Maybe a dedicated operation is not even required and one could simply use getMoAttributes or return the attributes as well when reading the containment tree.
The impact on the answer of getIRPVersion is more tricky, because operations are not impacted. Only notifications compliant to different releases could be emitted. This has to be reflected in the amendments by splitting the answer into a response for operations and a response for notifications. Also getNotificationProfile has to provide a response for each release that can be emitted by the agent.
4 Additional Considerations

In CO~OP horizontal peer-to-peer interfaces between Domain Managers (Itf-P2P) are specified. These interfaces offer a different view on the network than the Itf-N, or, in other words, different attributes are visible of an object representing a certain network resource. This is because different aspects of the network are managed via the Itf-P2P and the Itf-N. Numerous discussions hovered around the question whether new NRM IRPs shall be specified for the Itf-P2P or if the NRM IRPs defined for the Itf-N can be reused.

The appearance indicator attribute could also offer a potential solution here. For example it could assume two values: “Itf-N” and “Itf-P2P”.
5 Open Issues

The above discussion assumes that the containment tree is not changed. Implications of the case when the containment tree is changed as well need to be discussed.
6 ANNEX A

This annex gives an example of how an IOC featuring the appearance indicator attribute could look like.

--------------------------- EXAMPLE --
6.1.1. X.3.a
IocA

X.3.a.1
Definition

This section defines the IOC.

X.3.a.2
Attributes

Attributes of IocA

	Attribute name
	Visibility
	Support Qualifier
	Read Qualifier
	Write Qualifier

	iocAId
	+
	M
	M
	-

	appearance
	+
	M
	M
	-

	attributeA
	+
	M
	M
	M

	attributeB
	+
	O
	M
	M

	attributeC
	+
	C
	M
	M

	attributeD
	+
	C
	M
	M

	attributeE
	+
	C
	M
	M

	attributeF
	+
	C
	M
	M

X.3.a.3
Attribute constraints

The following conditional attributes shall be supported depending on the value of the appearance attribute as described below:

Release 6:
attributeC, attributeD;

Release 7:
attributeD, attributeE, attributeF;

X.3.a.4
Notifications

Notifications of IocA
	Name
	Qualifier
	Notes

	notifyNotificationA
	O
	

	notifyNotificationB
	C
	

	notifyNotificationC
	C
	

X.3.a.5
Notification constraints

The following conditional notifications shall be supported depending on the value of the appearance attribute as described below:

Release 6:
notifyNotificationB;

Release 7:
notifyNotificationC;

…

6.1.2. X.5.1
Definition and legal values

The following table defines the attributes that are present in several Information Object Classes (IOCs) of the present document.

Attributes

	Attribute Name
	Definition
	Legal Values

	…
	…
	…

	appearance
	The appearance of the instance of the IOC.
	Type: Enumerated value

Range: (“Release 6”, “Release 7”)

[image: image1.png]

5/6

