Tutorial on CT1 discussion paper - Identifying charging for multiple session branches generated by UAC or proxy
This report is the response to an action item to explain the purpose of the CT1 paper on branching, to clarify its salient points, as aid in a group discussion. The following paraphrases the CT1 paper and contains information and conclusions based on text taken from the original paper.

History

Lucent Technologies brought in a contribution into the April 2005 CT1 meeting asking for a discussion on redirection scenarios, with the purpose of determining if it was possible clearly charge any or all legs in multiple branch scenarios. There was a consensus in CT1 that charging each leg of a redirected call would be a problem in certain circumstances, and that it warranted notifying SA5 SWG-B for their consideration.

Problem Statement

Multiple outgoing branches can be generated by INVITE transactions for a single incoming event. This can be an incoming IAM at an MGCF or incoming INVITE request at a proxy. There are three possible reasons this may occur:

1. recursion (redirection)
2. forking

3. retry on error

CT1’s analysis of TS 24.229 determined that in some cases, all branches are assigned the same ICID for charging purposes. Notably, TS 24.229 leaves some cases unspecified. Typically when multiple branches occur during a session, the charging system will receive charging records from the various IMS nodes associated with the different branches of the request, all with the same ICID.

Therefore CT1 concluded that, there is insufficient information to uniquely identify records that are associated with which branch, or to determine the sequence in which the branches were created.

It is generally only possible to charge the final success branch, even when, for example, the final node on a preceding branch causes a redirection to a different user by sending a 3xx response.

Because the branch result and called party information may differ from branch to branch;

1. It is not always possible to uniquely identify and charge the redirecting party.

2. It is unclear how the charging system should combine charging information from multiple branches.

Proposal
We believe that the problems with charging for branches as discussed in this document require essential corrections to Release 5 and Release 6 since it is not always possible with the current procedures to charge the correct user for IMS services when redirection is employed.

We propose to generate an outgoing liaison from CT1 to SA5 with the following content:

· CT1 has examined cases of SIP branching due to redirection, forking and retry on error and has concluded that it is not always possible with existing procedures to charge the correct party when an IMS node recurses on a 3xx redirection response. CT1 believes this problem to require an essential correction to procedures in Release 5 and Release 6.

· CT1 believes that a potential solution to the problem contains the following elements:

· Each branch of a request must be assigned unique identifying information for charging purposes (potentially a different ICID).

· Charging records must include information identifying the antecedent branch when a node recurses on a redirection response.

· Charging records for a redirecting branch must include information identifying the type of redirection (e.g., 302 or 305) to distinguish between the types of redirection and to distinguish it from the 200 OK success case.

· Further information can be found in this contribution.

· CT1 wishes to inform SA5 that procedures in TS 24.229 are only intended to describe when to include an ICID within a SIP message. CT1 understands that specifications under control of SA5 are to describe how to assign values to an ICID. CT1 furthermore has no control over the content of charging records.

· CT1 respectfully requests SA5 to examine this information, make any necessary corrections to specifications under its control, and to inform CT1 and any other affected groups if other changes are needed.

Solution Requirements

The key requirement to enable proper charging for recursion is to clearly identify the antecedent branch (which provides the new called party) for each branch. It is not sufficient to uniquely identify each branch since time sequence information is lost due to the coarse granularity of the time stamp. Even if it is possible to reconstruct the exact sequence of branches, there is insufficient information to uniquely identify each antecedent branch.

Due to the complexities associated with correctly associating charging records with each branch, and the desire to provide procedures that are as robust as possible when future feature are adopted that impact the branching process, it seems appropriate to create a unique identifier for every branch. If there are no charging implications to certain failed branches, then the corresponding records can be easily identified and discarded. If there are charging implications to these failed branches, now or in the future, they can be easily identified.

Every branch associated with a single request should have

· a unique identifier common to all nodes in the branch and

· a parameter identifying its antecedent branch, if one exists.

Note that the first branch never has an antecedent but all others do.

I. Unique branch identifier

The most straightforward way to satisfy the first solution requirement is for a node to assign a new ICID every time it creates a new branch. Just adding a branch number to the ICID could accomplish this, although this would have to be done in such a way that the branch identifiers remain unique even when different entities branch on the same request. A possible alternative is to add a unique branch identifier from the existing SIP messages to each charging record.

II. Uniquely identifying the antecedent branch

If a new ICID is assigned to each new branch, then the charging record could identify the antecedent branch by including a new parameter whose value is the ICID of the antecedent branch. Let’s call this new parameter a Linked ICID (L-ICID).

For further in depth discussion, the following use cases describe each branching case in detail.

Detailed Use Cases and Flows

I. Recursion (Redirection)

1. In RFC 3261, any proxy or UA in the IMS may receive a 3xx response and may recurse on the response to create a new branch for a request in a manner similar to retry on error and forking.

2. The MGCF in Release 6 may recurse.

3. The AS from Release 5 onward may recurse.

4. Proxies are not precluded from recursing in Release 5 onward.

5. It is possible to limit recursion to the MGCF, AS, I-CSCF and BGCF.

6. The UE may recurse but does not create charging records.

7. The charging records from the redirecting branch (that returns a 3xx response) will have the same ICID as charging records from subsequent branches.

8. Charging records from the redirecting branch will be success event records from a charging perspective.

Conclusion: If multiple success branches occur due to redirection, there is insufficient information to uniquely determine the branch that provided the contact information for recursion, although it may be possible to distinguish between charging records for different redirecting branches by the called party information used on each branch.

However, the called party information is not acceptable from a charging perspective since the parent branches must be known to determine if a request was redirected and who redirected it, especially when recursion occurs in combination with retry and/or forking. Thus it is not always possible to charge the redirecting party when redirection occurs.

II. Forwarding

This is not a form of branching but is worth noting due to its similarity to redirection. From Release 5 on, the AS, on behalf of the registered user, causes itself to recurse on the target without making the first branch attempt. The charging procedures for recursion and forwarding should be identical for the redirected/forwarded branch.

III. Serial Forking

1. The S-CSCF in Release 6 may perform forking on a SIP request to a public user identity registered to multiple private user identities.

2. An AS in Release 5 onwards may also perform serial forking.

3. In either case, the charging records from all branches will have the same ICID and there is insufficient information to determine the sequence of branches.

4. It may also be difficult to distinguish between different branches that terminate with the same error. Is it important to know which branches fail when forking? For example, is important to document that higher priority targets were attempted and failed before lower priority targets are tried, given that the lower priority targets may involve additional charges (e.g., roaming)?

5. If it is clear that there are no charging implications associated with the failure branches and it is acceptable to discard charging information from the failure branches.

IV. Parallel Forking

1. For Release 6, the discussion of serial forking also applies to parallel forking, except that the branches are not sequenced.

2. In addition, more than one branch may succeed with 200 OK (INVITE). Although all but one of these will be cleared by the UAC, current charging procedures will create separate charging start records for each successful branch.

3. The charging system may not be able to distinguish between charging records created by nodes on different branches.

V. Retry on Error

This case only applies to UACs in the IMS that participate in the charging architecture – MGCF and AS (as UA).

1. If the first branch of an INVITE request from an outgoing MGCF fails with a 420 or other recoverable error, the MGCF may retry if it is able to modify the request so as to eliminate the reason for the initial error.

2. TS 24.229 implies that the SIP requests from the first error and subsequent branches will have the same ICID.

3. Charging records from the first branch will be error event records, but if multiple branches occur there is insufficient information to determine the sequence of branches or to distinguish between different branches with the same error.

4. It may be acceptable from a charging perspective if it is clear that there are no charging implications associated with the failure branches and it is acceptable to discard charging information from the failure branches.

Discussion Point

Is it important to know which branches fail due to potentially correctable errors? For example, if certain endpoints always fail the first attempt due to lack of a software upgrade, either additional unnecessary signalling will occur before successful session establishment, the UAC will attempt other (potentially more expensive) targets, or the request will fail. It may be useful to have access to this failure history information to properly manage and charge for the use of the network resources.

Example Flow 1
This example shows a multiple leg redirection scenario to demonstrate the charging implications of the current procedures.

 The charging system cannot reconstruct the sequence in which nodes are visited due to the lack of sequencing information in the charging records and the coarse granularity of the time stamps. Thus it is not possible to identify the party invoking the redirection to the 3rd called party to apply the desired charging discipline.

The minimum information required to reconstruct the necessary charging information is:

· For each branch, list all the nodes creating charging records for the branch, the called party (Request URI) on the branch, and the final outcome (2xx-6xx) of the branch.

· For each branch, identify the branch (current or previous) that provides the called party (Request URI) for the branch.

Other examples might show the use of redirection in combination with retry and forking, or show recursion at an AS or I-CSCF, but the charging principles are identical.

Example Flow 2

The following figure is a more theoretical example of a complex combination of branches due to redirection, retry on error, serial forking and parallel forking, which demonstrates many of the issues that can arise for charging. Branches are shown in numbered sequence. Antecedent branches are identified by both curves in the figure and the text descriptions of the sequence shown to the right of the figure. It would be appropriate to test any solution against a more elaborate example like this one to validate the ability of the charging architecture to identify the correct users to be charge.

[image: image1.wmf]

Inconsistencies in 3xx handling

The result code (3xx) is not stored in the charging record, so we cannot distinguish between the different types of redirect (e.g., 302 and 305), which have very different semantics. Furthermore, it is not clear how to determine whether or not this successful event causes a node to recurse without knowing the precise antecedent branch.

For atomic requests, this charging strategy is also faulty since there is no way to distinguish between a normal success event and a redirect success event for an atomic request such as METHOD.

I-CSCF-S-CSCF

UE

UE - AS

AS

I-CSCF/S-CSCF

7. Redirect: 302 w/URI

5. Invite

6. Invite

First Redirection

Second Redirection

Third Invite

8. Invite

Second Call Leg to 2nd IMS network

(Redirected Call)

Redirected Service:

Announcement,

Alternate number, Voice Mail

4. Invite

First Call Leg

3. Redirect: 302 w/URI

2. Invite

1. Invite

I-CSCF/S-CSCF

MGCF

ISUP

PSTN/CSN Origination

3xx

3xx

3xx

3xx

3xx

F

3xx

4xx

4xx

E

200

B

D

4xx

200

C

A

G

H

I

J

K

A

A

B

E

1. A redirects A to B

2. B redirects B to C or D

9. I fails

8. Fork H redirects H to I and K

11. K succeeds

3. Fork C fails

4. Fork D redirects D to E or D

10. I retried as J and succeeds

5. E redirects E to F or G

6. Fork F redirects F to H or D

7. Fork G fails

_1175077197.doc

