3GPP TSG-SA5 (Telecom Management)
S5-056449
Meeting #42bis, Sophia Antipolis, FRANCE, 27 Jun - 1 Jul 2005

Source:
Ericsson
Title:
Management of AlarmList of AlarmIRP

Agenda Item:

	Decision
	X

	Discussion
	

	Information
	

Document for:

	Late submission
	

Work Item:
Alarm IRP
WT addressed
WT 06
Specs involved:
Rel-6 Alarm IRP IS

1
Decision/action requested

Identify the root cause of large AlarmList and its implication to Itf-N performance. Suggest possible mechanisms for standardization to eliminate the need of large AlarmList.

2
References

[1] 3GPP TS Alarm IRP IS

4 Background

Based on reference [1], one can categorize alarms into 4 groups:

· Alarm that is cleared (i.e. perceived severity is CLEAR) and acked (i.e. acknowledge state is ACKNOWLEDGED) (C&A)

· Alarm that is cleared and not-acked (C&NA)

· Alarm that is not-cleared and not-acked (NC&NA)

· Alarm that is not-cleared and acked (NC&A)

Ref [1] defines an IOC AlarmList. This AlarmList holds alarm records (i.e. AlarmInformation(s) as defined formally in ref [1]) that can be NC&A, NC&NA or C&NA. AlarmList does not hold alarm records that are C&A.

The above alarm categorization and AlarmList behaviour have been standardized since R99.

Deployment experience showed that AlarmIRP AlarmList can grow to size of 50K alarm records and beyond.

5 Root cause of large AlarmList

We have done some investigation on the cause of large AlarmList. Our investigation reveals that large AlarmList holds high percentage of C&NA alarm records. It is not uncommon that such high percentage be 90%. This leads us to conclude that the AlarmIRP IRPManager does not issue acknowledgeAlarms() on alarms that are C&NA. This leads us to suspect that AlarmIRP IRPManager just display/process/handle alarms that are not cleared (NC&NA or NC&A). It ignores C&NA alarms.

6.
Problem with large AlarmList

This section lists the problems of managing large (say 50K alarm records) AlarmList.

· In CORBA SS, AlarmIRP must use iterator since the response to get_alarm_list cannot be large enough to hold 50K alarm records. To iterate through 50K alarm records requires time.

· AlarmIRP requires complex processing logic to handle large AlarmList.

· If AlarmIRP locks the AlarmList while doing iteration to satisfy the get_alarm_list() requests, then AlarmList has to queue (do not process) all incoming alarm notification from its NEs. This implies all IRPManagers will not know about the alarm situation of the NEs while AlarmIRP is doing the iteration. Such simple processing logic is not acceptable.

· If AlarmIRP locks small portion of the AlarmList, i.e. locks the amount of alarm records that will be carried in one iterator, it needs two queues to hold incoming alarm notifications from its NEs while doing the iteration. For example, when AlarmIRP does not find an alarm record matching an incoming notifyChanged/Cleared/AckStateChanged/CommentAlarm from NE, it must place that notification in the second queue so that it can be processed after AlarmIRP finishes the iteration. This multiple queue mechanism eliminates the implication identified in the above bullet but its implementation is complex.

· There are other implementations but all are more complex than the simple one (first bullet).

· When AlarmIRP receives an incoming alarm notification from NEs, it needs much time to scan through its large AlarmList to find the corresponding alarm record. (It may not be “too bad” for AlarmIRP to handle methods since AlarmIRP can use the alarm ID for indexing into large AlarmList.)

· Large AlarmList may require long processing time in IRPManager. Suppose the NMS, playing the role of IRPManager, shows the alarm record with corresponding trouble ticket number, if there is a trouble ticket assigned. Such NMS cannot simply purge its memory all its alarm records and rebuild (re-populate) it by using the response of get_alarm_list(). (This simple purge and rebuild would be fast.) Such NMS must compare alarm records in NMS with alarm records in response of get_alarm_list() one by one. This scheme requires long processing time.

7. Suggestions

This section suggests possible standardized mechanisms that can eliminate the need of large AlarmList.

· Standardize an auto-acknowledgement capability. Such capability is optional. The trigger, of such capability, is vendor defined. For example, it runs once a day, once every 4 hours, or always. The algorithm for determining which cleared alarm should be “auto-acked” is vendor specific. For example: auto-ack alarm records that have been cleared more than 24 hours, auto-ack alarm records whose highest perceived severity level has been MINOR. When auto-acked, AlarmIRP shall emit corresponding notifyAckStateChanged.

· Standardize an auto-alarm-record removal capability. Such capability is optional. The trigger, of such capability, is vendor defined. For example, it runs once a day, once every 4 hours, or always. The algorithm for determining which cleared alarm should be removed is vendor specific. When alarm record is removed, AlarmIRP shall not emit any notification.

