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Annex A (normative):
CORBA IDL, Access Protocol

#ifndef BasicCmIRPSystem_idl

#define BasicCmIRPSystem_idl

#include "ManagedGenericIRPConstDefs.idl"

#include "ManagedGenericIRPSystem.idl"

// This statement must appear after all include statements

#pragma prefix "3gppsa5.org"

module BasicCmIRPSystem 

{

   /**

    * Defines the name of a Managed Object Class

    */

   typedef string MOClass;

   /**

    * The format of Distinguished Name (DN) is specified in 3GPP TS 32.300

    * "Name Conventions for Managed Objects".

    */

   typedef string DN;

   /**

    * A sequecne of DNs to identify several instances.

    */

    typedef sequence <DN> DnSeq;

   /**

    * Defines the name of an attribute of a Managed Object

    */

   typedef string MOAttributeName;

   /**

    * Defines the value of an attribute of a Managed Object in form of a CORBA

    * Any. Apart from basic datatypes already defined in CORBA, the allowed

    * attribute value types are defined in the AttributeTypes module.

    */

   typedef any MOAttributeValue;

   /**

    *  This module adds datatype definitions for types 

    *  used in the NRM which are not basic datatypes defined

    *  already in CORBA. 

    */

   module AttributeTypes

   {

      /**

       *  A set of strings. 

       */

      typedef sequence<string> StringSet;

   };

    exception IllegalFilterFormatException {

       string reason;

    };

    exception IllegalDNFormatException {

       string reason;

    };

    exception IllegalScopeTypeException {

       string reason;

    };

    exception IllegalScopeLevelException {

       string reason;

    };

    exception UndefinedMOException {

       string reason;

    };

   exception UndefinedScopeException {

       string reason;

   };

   exception FilterComplexityLimit {

      string reason;

   };

   exception DuplicateMO {};

   exception CreateNotAllowed {};

   exception ObjectClassMismatch {};

   exception NoSuchObjectClass {

      MOClass objectClass;

   };


exception ParentObjectDoesNotExist {};

   /**

    * System otherwise fails to complete the operation.  System can provide

    * reason to qualify the exception. The semantics carried in reason

    * is outside the scope of this IRP.

    */

   exception NextBasicCmInformations { string reason; };

   exception NextDeleteErrors { string reason; };

   exception NextModifyErrors { string reason; };

   exception DestroyException { string reason; };

   exception GetBasicCmIRPVersion { string reason; };

   exception GetBasicCmIRPOperationProfile { string reason; };

   exception GetBasicCmIRPNotificationProfile { string reason; };

   exception FindManagedObjects { string reason; };

   exception CreateManagedObject { string reason; };

   exception DeleteManagedObjects { string reason; };

   exception ModifyManagedObjects { string reason; };

   /**

    * 

    * In this version the only allowed filter value is "TRUE" i.e. a filter that

    * matches everything.

    */

   typedef string FilterType;

    /**

     * ResultContents is used to tell how much information to get back

     * from the find_managed_objects operation.

     *

     * NAMES: Used to get only Distinguished Name 

     *        for MOs. 

     *        The name contains both the MO class 

     *        and the names of all superior objects in the naming

     *        tree.

     *

     * NAMES_AND_ATTRIBUTES: Used to get both NAMES plus  

     *    MO attributes (all or selected).

     */

    enum ResultContents 

    {

       NAMES,

       NAMES_AND_ATTRIBUTES

    };

    /**

     * ScopeType defines the kind of scope to use in a search

     * together with SearchControl.level, in a SearchControl value.

     *

     * SearchControl.level is always >= 0. If a level is bigger than the

     * depth of the tree there will be no exceptions thrown.

     * BASE_ONLY: level ignored, just return the base object.

     * BASE_NTH_LEVEL: return all subordinate objects that are on "level"

     * distance from the base object, where 0 is the base object.

     * BASE_SUBTREE: return the base object and all of its subordinates

     * down to and including the nth level.

     * BASE_ALL: level ignored, return the base object and all of it's

     * subordinates.

     */

    enum ScopeType 

    {

       BASE_ONLY,

       BASE_NTH_LEVEL,

       BASE_SUBTREE,

       BASE_ALL

    };

    /**

     * SearchControl controls the find_managed_object search,

     * and contains:

     * the type of scope ("type" field),

     * the level of scope ("level" field), level 0 means the "baseObject",

     *    level 1 means baseobject including its sub-ordinates etc..

     * the filter ("filter" field),

     * the result type ("contents" field).

     * The type, level and contents fields are all mandatory.

     * The filter field contains the filter expression. 

     *  The string "TRUE" indicates "no filter",

     * i.e. a filter that matches everything.

     */

    struct SearchControl 

    {

       ScopeType type;

       unsigned long level;

       FilterType filter;

       ResultContents contents;

    };

    /**

     * Represents an attribute: "name" is the attribute name

     * and "value" is the attribute value.

     */

   struct MOAttribute 

   {

      MOAttributeName name;

      MOAttributeValue value;

   };

   typedef sequence<MOAttribute> MOAttributeSet;

    struct Result

    {

       DN mo;

       MOAttributeSet attributes;

    };

    typedef sequence<Result> ResultSet;

    /**

     * AttributeErrorCategory defines the categories of errors, related to

     * attributes, that can occur during creation or modification of MOs.

     *

     * NO_SUCH_ATTRIBUTE: The specified attribute does not exist.

     * INVALID_ATTRIBUTE_VALUE: The specified attribute value is not valid.

     * MISSING_ATTRIBUTE_VALUE: An attribute value is required but none was

     *   provided and no default value is defined for the attribute.

     * INVALID_MODIFY_OPERATOR: The specified modify operator is not valid

     *   (e.g. operator ADD_VALUES applied to a non multi-valued attribute

     *   or operator SET_TO_DEFAULT applied where no default value is defined).

     * MODIFY_NOT_ALLOWED: The modification of the attribute is not allowed.

     * MODIFY_FAILED: The modification failed because of an unspecified reason.

     */

    enum AttributeErrorCategory

    {

       NO_SUCH_ATTRIBUTE,

       INVALID_ATTRIBUTE_VALUE,

       MISSING_ATTRIBUTE_VALUE,

       INVALID_MODIFY_OPERATOR,

       MODIFY_NOT_ALLOWED,

       MODIFY_FAILED

    };

    /**

     * DeleteErrorCategory defines the categories of errors that can occur

     * during deletion of MOs.

     *

     * SUBORDINATE_OBJECT: The MO cannot be deleted due to subordinate MOs.

     * DELETE_NOT_ALLOWED: The deletion of the MO is not allowed.

     * DELETE_FAILED: The deletion failed because of an unspecified reason.

     */

    enum DeleteErrorCategory

    {

       SUBORDINATE_OBJECT,

       DELETE_NOT_ALLOWED,

       DELETE_FAILED

    };

    /**

     * AttributeError represents an error, related to an attribute, that occured

     * during creation or modification of MOs.

     * It contains:

     * - the name of the indicted attribute ("name" field),

     * - the category of the error ("error" field),

     * - optionally, the indicted attribute value ("value" field),

     * - optionally, additional details on the error ("reason" field).

     */

    struct AttributeError

    {

       MOAttributeName name;

       AttributeErrorCategory error;

       MOAttributeValue value;

       string reason;

    };

    typedef sequence<AttributeError> AttributeErrorSeq;

    /**

     * DeleteError represents an error that occured during deletion of MOs.

     * It contains:

     * - the distinguished name of the indicted MO ("objectName" field),

     * - the category of the error ("error" field),

     * - optionally, additional details on the error ("reason" field).

     */

    struct DeleteError

    {

       DN objectName;

       DeleteErrorCategory error;

       string reason;

    };

    typedef sequence<DeleteError> DeleteErrorSeq;

    /**

     * ModifyAttributeErrors represents errors that occured during

     * modification of attributes of a MO.

     * It contains:

     * - the distinguished name of the indicted MO ("objectName" field),

     * - a sequence containing the attribute errors ("errors" field).

     */

    struct ModifyAttributeErrors

    {

       DN objectName;

       AttributeErrorSeq errors;

    };

    typedef sequence<ModifyAttributeErrors> ModifyAttributeErrorsSeq;

    /**

     The BasicCmInformationIterator is used to iterate through a snapshot of 

      Managed Object Information when IRPManager invokes find_managed_objects.

      IRPManager uses it to pace the return of Managed Object Information.

     IRPAgent controls the life-cycle of the iterator. However, a destroy

      operation is provided to handle the case where IRPManager wants to stop

      the iteration procedure before reaching the last iteration.

     */

    interface BasicCmInformationIterator 

    {

       /**

        This method returns between 1 and "how_many" Managed Object information.

         The IRPAgent may return less than "how_many" items even if there are

         more items to return. "how_many" must be non-zero. Return TRUE if there

         may be more Managed Object information to return. Return FALSE if there

         are no more Managed Object information to be returned. 

         If FALSE is returned, the IRPAgent will automatically destroy the

          iterator.

         @parm how_many how many elements to return in the "fetchedElements" out

          parameter.

         @parm fetchedElements the elements.

         @returns A boolean indicating if any elements are returned. 

          "fetchedElements" is empty when the BasicCmInformationIterator is

          empty.

        */

        boolean next_basicCmInformations (

          in unsigned short how_many,

          out ResultSet fetchedElements

        )

        raises (NextBasicCmInformations,

                ManagedGenericIRPSystem::InvalidParameter);

        /**

        This method destroys the iterator.

        */

        void destroy ()

        raises (DestroyException);

    }; // end of BasicCmInformationIterator

    /**

     The DeleteResultIterator is used to iterate through the list of deleted MOs

      when IRPManager invokes method "delete_managed_objects".

      IRPManager uses it to pace the return of Managed Object Information.

     IRPAgent controls the life-cycle of the iterator. However, a destroy

      operation is provided to handle the case where IRPManager wants to stop

      the iteration procedure before reaching the last iteration.

     */

    interface DeleteResultIterator : BasicCmInformationIterator

    {

       /**

        Inherited method "next_basicCmInformations" has the same behaviour as

         for interface BasicCmInformationIterator, except that:

         - The Managed Object information returned in parameter 

           "fetchedElements" contains only the DNs of the deleted MOs

           (no attributes are returned).

         - If FALSE is returned, the IRPAgent will not automatically destroy the

           iterator.

        */

       /**

        This method returns between 0 and "how_many" deletion errors. The

         IRPAgent may return less than "how_many" items even if there are more

         items to return. "how_many" must be non-zero. Return TRUE if there are

         more deletion errors to return. Return FALSE if there are no more

         deletion errors to be returned.

         If FALSE is returned and last call to inherited method

         "next_basicCmInformations" also returned FALSE (i.e. no more Managed

         Object information to be returned), the IRPAgent will automatically

         destroy the iterator.

         @parm how_many: how many deletion errors to return in the

          "fetchedDeleteErrors" out parameter.

         @parm fetchedDeleteErrors: the deletion errors.

         @returns: a boolean indicating if any deletion errors are returned.

        */

        boolean next_deleteErrors (

          in unsigned short how_many,

          out DeleteErrorSeq fetchedDeleteErrors

        )

        raises (NextDeleteErrors,

                ManagedGenericIRPSystem::InvalidParameter);

    }; // end of DeleteResultIterator

    /**

     The ModifyResultIterator is used to iterate through the list of modified

      MOs when IRPManager invokes method "modify_managed_objects".

      IRPManager uses it to pace the return of Managed Object Information.

     IRPAgent controls the life-cycle of the iterator. However, a destroy

      operation is provided to handle the case where IRPManager wants to stop

      the iteration procedure before reaching the last iteration.

     */

    interface ModifyResultIterator : BasicCmInformationIterator

    {

       /**

        Inherited method "next_basicCmInformations" has the same behaviour as

         for interface BasicCmInformationIterator, except that:

         - The Managed Object information returned in parameter 

           "fetchedElements" contains DNs and attributes of the modified MOs.

         - If FALSE is returned, the IRPAgent will not automatically destroy the

           iterator.

        */

       /**

        This method returns between 0 and "how_many" modification errors. The

         IRPAgent may return less than "how_many" items even if there are more

         items to return. "how_many" must be non-zero. Return TRUE if there are

         more modification errors to return. Return FALSE if there are no more

         modification errors to be returned.

         If FALSE is returned and last call to inherited method

         "next_basicCmInformations" also returned FALSE (i.e. no more Managed

         Object information to be returned), the IRPAgent will automatically

         destroy the iterator.

         @parm how_many: how many modification errors to return in the 

          "fetchedModifyErrors" out parameter.

         @parm fetchedModifyErrors: the modification errors.

         @returns: a boolean indicating if any modification errors are returned.

        */

        boolean next_modificationErrors (

          in unsigned short how_many,

          out ModifyAttributeErrorsSeq fetchedModifyErrors

        )

        raises (NextModifyErrors,

                ManagedGenericIRPSystem::InvalidParameter);

    }; // end of ModifyResultIterator

   typedef sequence<MOAttributeName> AttributeNameSet;

    /**

     * ModifyOperator defines the way in which an attribute value is to be

     * applied to an attribute in a modification of MO attributes.

     *

     * REPLACE: replace the current value with the provided value

     * ADD_VALUES: for a multi-valued attribute, add the provided values to the

     *   current list of values

     * REMOVE_VALUES: for a multi-valued attribute, remove the provided values

     *   from the current list of values

     * SET_TO_DEFAULT: set the attribute to its default value

     */

    enum ModifyOperator

    {

       REPLACE,

       ADD_VALUES,

       REMOVE_VALUES,

       SET_TO_DEFAULT

    };

    /**

     * AttributeModification defines an attribute value and the way it is to

     * be applied to an attribute in a modification of MO attributes.

     * It contains:

     * - the name of the attribute to modify ("name" field),

     * - the value to apply to this attribute ("value" field),

     * - the way the attribute value is to be applied to the attribute

     *   ("operator" field).
     * - A sequence of DNs (SelectedMocs) that the operation is to be applied to
     *   this may be an Empty sequence, but if populated it allows the 
     *   specification of several instances which are to all have the

     *   attributes matching the input parameter attribute name to be set to the

     *   value as carried by the value input parameter
     */
    struct AttributeModification

    {

       MOAttributeName name;

       MOAttributeValue value;

       ModifyOperator operator;
       DnSeq SelectedMocs;
    };

    typedef sequence<AttributeModification> AttributeModificationSet;

   /**

     * The BasicCmIrpOperations interface.

     * Supports a number of Resource Model versions.

     */

    interface BasicCmIrpOperations

    {

       /**

        * Get the version(s) of the interface 

        *

        * @raises GetBasicCmIRPVersion when the system for some reason 

        *   can not return the supported versions. 

        * @returns all supported versions.

        */

       ManagedGenericIRPConstDefs::VersionNumberSet get_basicCm_IRP_version()

          raises (GetBasicCmIRPVersion);

       /**

        * Return the operation profile for a specific Basic CM IRP version.

        *

        * @raises GetBasicCmIRPOperationProfile when the system for some reason

        *   cannot return the supported operations and parameters.

        * @returns the list of all supported operations and their supported

        *   parameters for the specified version.

        */

       ManagedGenericIRPConstDefs::MethodList get_basicCm_IRP_operation_profile

       (

          in ManagedGenericIRPConstDefs::VersionNumber basicCm_IRP_version

       )

       raises (GetBasicCmIRPOperationProfile,

               ManagedGenericIRPSystem::OperationNotSupported,

               ManagedGenericIRPSystem::InvalidParameter);

       /**

        * Return the notification profile for a specific Basic CM IRP version.

        *

        * @raises GetBasicCmIRPNotificationProfile when the system for some

        *   reason cannot return the supported notifications and parameters.

        * @returns the list of all supported notifications and their supported

        *   parameters for the specified version.

        */

       ManagedGenericIRPConstDefs::MethodList

          get_basicCm_IRP_notification_profile (

             in ManagedGenericIRPConstDefs::VersionNumber basicCm_IRP_version

       )

       raises (GetBasicCmIRPNotificationProfile,

               ManagedGenericIRPSystem::OperationNotSupported,

               ManagedGenericIRPSystem::InvalidParameter);

       /**

        * Performs a containment search, using a SearchControl to

        * control the search and the returned results.

        *

        * All MOs in the scope constitute a set that the filter works on.

        * The result BasicCmInformationIterator contains all matched MOs,

        * with the amount of detail specified in the SearchControl.

        * For the special case when no managed objects are matched in 

        * find_managed_objects, the BasicCmInformationIterator will be returned.

        * Executing the next_basicCmInformations in the 

        * BasicCmInformationIterator will return FALSE for 

        * completion.

        *

        * @parm baseObject The start MO in the containment tree.

        * @parm searchControl the SearchControl to use.

        * @parm requestedAttributes defines which attributes to get.

        *   If this parameter is empty (""),  all attributes shall 

        *   be returned. In this version this is the only supported semantics.

        *   Note that this argument is only

        *   relevant if ResultContents in the search control is 

        *   specifed to NAMES_AND_ATTRIBUTES.

        *  

        * 

        * @raises ManagedGenericIRPSystem::ValueNotSupported if a valid but

        * unsupported parameter value is passed. E.g. the contents

        * field in the searchcontrol parameter contains the value NAMES and

        * the optional getContainment IS operation is not supported.

        * @raises UndefinedMOException The MO does not exist.

        * @raises IllegalDNFormatException The dn syntax string is

        * malformed.

        * @raises IllegalScopeTypeException The ScopeType in scope contains

        * an illegal value.

        * @raises IllegalScopeLevelException The scope level is negative

        * (<0).

        * @raises IllegalFilterFormatException The filter string is

        * malformed.

        * @raises FilterComplexityLimit if the filter syntax is correct,

        *   but the filter is too complex to be processed by the IRP agent.

        * @see SearchControl

        * @see BasicCmInformationIterator

        */

       BasicCmInformationIterator find_managed_objects(in DN baseObject,  

                                     in SearchControl searchControl,

                                     in AttributeNameSet requestedAttributes)

          raises (FindManagedObjects,

                  ManagedGenericIRPSystem::ParameterNotSupported,

                  ManagedGenericIRPSystem::InvalidParameter,

                  ManagedGenericIRPSystem::ValueNotSupported,

                  UndefinedMOException,

                  IllegalDNFormatException,

                  UndefinedScopeException,

                  IllegalScopeTypeException,

                  IllegalScopeLevelException,

                  IllegalFilterFormatException,

                  FilterComplexityLimit);

       /**

        * Performs the creation of a MO instance in the MIB maintained

        * by the IRPAgent.

        *

        * @parm objectName: the distinguished name of the MO to create.

        * @parm referenceObject: the distinguished name of a reference MO.

        * @parm attributes: in input, initial attribute values for the MO to

        *   create; in output, actual attribute values of the created MO.

        * @parm attributeErrors: errors, related to attributes, that caused the

        *   creation of the MO to fail.

        *

        * @raises ManagedGenericIRPSystem::OperationNotSupported: The operation

        *   is not supported.

        * @raises ManagedGenericIRPSystem::ParameterNotSupported: An optional

        *   parameter is not supported.

        * @raises ManagedGenericIRPSystem::InvalidParameter: An invalid

        *   parameter value has been provided.

        * @raises UndefinedMOException: The MO does not exist.

        * @raises IllegalDNFormatException: The DN syntax string is malformed.

        * @raises DuplicateMO: A MO already exist with the same DN as the one

        *   to create.

        * @raises CreateNotAllowed: The creation of the MO is not allowed.
        * @raises ObjectClassMismatch: The object class of the MO to create does

        *   not match with the object class of the provided reference MO.

        * @raises NoSuchObjectClass: The class of the object to create is not

        *   recognized.
        * @raises ParentObjectDoesNotExist: The parent MO instance of the
        *  ManagedEntity specified to be created does not exist.
        */

       void create_managed_object (

           in DN objectName,

           in DN referenceObject,

           inout MOAttributeSet attributes,

           out AttributeErrorSeq attributeErrors
       )

       raises (CreateManagedObject,

               ManagedGenericIRPSystem::OperationNotSupported,

               ManagedGenericIRPSystem::ParameterNotSupported,

               ManagedGenericIRPSystem::InvalidParameter,

               UndefinedMOException,

               IllegalDNFormatException,

               DuplicateMO,

               CreateNotAllowed,

               ObjectClassMismatch,

               NoSuchObjectClass,

               ParentObjectDoesNotExist);

       /**

        * Performs the deletion of one or more MO instances from the MIB

        * maintained by the IRPAgent, using a SearchControl to control the

        * instances to be deleted.

        *

        * All MOs in the scope constitute a set that the filter works on.

        * All matched MOs will be deleted by this operation.

        * The returned DeleteResultIterator is used to retrieve the DNs of the

        * MOs deleted and the errors that may have occurred preventing deletion

        * of some MOs.

        * For the special case when no managed objects are matched in 

        * delete_managed_objects, the DeleteResultIterator will be returned.

        * Executing the next_basicCmInformations in the DeleteResultIterator

        * will return FALSE for completion.

        *

        * @parm baseObject: the start MO in the containment tree.

        * @parm searchControl: the SearchControl to use; field "contents" has no

        *   meaning here and shall be ignored.

         @returns: a DeleteResultIterator (see above).

        *

        * @raises ManagedGenericIRPSystem::OperationNotSupported: The operation

        *   is not supported.

        * @raises ManagedGenericIRPSystem::InvalidParameter: An invalid

        *   parameter value has been provided.

        * @raises UndefinedMOException: The MO does not exist.

        * @raises IllegalDNFormatException: The DN syntax string is malformed.

        * @raises IllegalScopeTypeException: The ScopeType in scope contains

        *   an illegal value.

        * @raises IllegalScopeLevelException: The scope level is negative (<0).

        * @raises IllegalFilterFormatException: The filter string is malformed.

        * @raises FilterComplexityLimit: The filter syntax is correct,

        *   but the filter is too complex to be processed by the IRPAgent.

        */

       DeleteResultIterator delete_managed_objects (

          in DN baseObject,

          in SearchControl searchControl

       )

       raises (DeleteManagedObjects,

               ManagedGenericIRPSystem::OperationNotSupported,

               ManagedGenericIRPSystem::InvalidParameter,

               UndefinedMOException,

               IllegalDNFormatException,

               UndefinedScopeException,

               IllegalScopeTypeException,

               IllegalScopeLevelException,

               IllegalFilterFormatException,

               FilterComplexityLimit);

       /**

        * Performs the modification of MO attributes. One or more MOs attributes

        * may be modified according to a SearchControl.

        *

        * All MOs in the scope constitute a set that the filter works on.

        * All matched MOs will have their attributes modified by this operation.

        * The returned ModifyResultIterator is used to retrieve the DNs of the

        * modified MOs together with the values of the modified attributes, and

        * the errors that may have occurred preventing modification of some

        * attributes.

        * For the special case when no managed objects are matched in 

        * modify_managed_objects, the ModifyResultIterator will be returned.

        * Executing the next_basicCmInformations in the ModifyResultIterator

        * will return FALSE for completion.

        *

        * @parm baseObject: the start MO in the containment tree.

        * @parm searchControl: the SearchControl to use; field "contents" has no

            meaning here and shall be ignored.

        * @parm modifications: the values for the attributes to modify and

            the way those values are to be applied to the attributes.

         @returns: a ModifyResultIterator (see above).

        *

        * @raises ManagedGenericIRPSystem::OperationNotSupported: The operation

        *   is not supported

        * @raises ManagedGenericIRPSystem::InvalidParameter: An invalid

        *   parameter value has been provided

        * @raises UndefinedMOException: The MO does not exist.

        * @raises IllegalDNFormatException: The DN syntax string is malformed.

        * @raises IllegalScopeTypeException: The ScopeType in scope contains

        *   an illegal value.

        * @raises IllegalScopeLevelException: The scope level is negative (<0).

        * @raises IllegalFilterFormatException: The filter string is malformed.

        * @raises FilterComplexityLimit: The filter syntax is correct,

        *   but the filter is too complex to be processed by the IRPAgent.

        */

       ModifyResultIterator modify_managed_objects (

          in DN baseObject,

          in SearchControl searchControl,

          in AttributeModificationSet modifications

       )

       raises (ModifyManagedObjects,

               ManagedGenericIRPSystem::OperationNotSupported,

               ManagedGenericIRPSystem::InvalidParameter,

               UndefinedMOException,

               IllegalDNFormatException,

               UndefinedScopeException,

               IllegalScopeTypeException,

               IllegalScopeLevelException,

               IllegalFilterFormatException,

               FilterComplexityLimit);

    };

};

#endif 
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