Page 1

3GPP TSG-SA5 (Telecom Management)
Tdoc (
S5-056028
Meeting #41, Lisbon, PORTUGAL, 24 - 28 January 2005

	CR-Form-v7.1

	CHANGE REQUEST

	

	(

	32.603
	CR
	CRNum
	(

rev
	-
	(

Current version:
	5.3.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	X
	Core Network
	X

	

	Title:
(

	SetMOAttributes operation cannot be used to define an attribute (having same name and desired value) and be applied to specific MOCs in the same operation.

	
	

	Source:
(

	SA5 (Islip@lucent.com)

	
	

	Work item code:
(

	OAM-NIM
	
	Date: (

	28/01/2004

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	Rel-5

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Ph2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)

 Rel-7
(Release 7)

	
	

	Reason for change:
(

	There is an error in the IDL specification, which prevents the setMOAttributes operation from modifying the same attribute in different specific MOCs via a single operation.
e.g. setting all user label attributes to the same string value in several MOs in as near to the same time as possible.
The type , level and filter parameters do not provide adequate control (filter is explicitly not supported with only "True" being specified.

A half way house is wanted between basic CM capabilities and the full support of bulk CM.

	
	

	Summary of change:
(

	To add a list of DNs as an additional input parameter via the structure "Attribute Modification".
This permits the attribute name and new value to be applied to multiple MOCs in a single operation.

	
	

	Consequences if
(

not approved:
	All managers wil have to use individual operations to set a complete set of attributes to the same value. The time delay incurred, and the usage of managemnt bandwidth is not desired.

	
	

	Clauses affected:
(

	Annex A

	
	

	
	Y
	N
	
	

	Other specs
(

	
	
	 Other core specifications
(

	

	affected:
	
	
	 Test specifications
	

	
	
	
	 O&M Specifications
	

	
	

	Other comments:
(

	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

KEEP the History box of the TS to be changed (see end of the present document), please

Change in Clause Annex A.

Annex A (normative):
CORBA IDL, Access Protocol

#ifndef BasicCmIRPSystem_idl

#define BasicCmIRPSystem_idl

#include "ManagedGenericIRPConstDefs.idl"

#include "ManagedGenericIRPSystem.idl"

// This statement must appear after all include statements

#pragma prefix "3gppsa5.org"

module BasicCmIRPSystem

{

 /**

 * Defines the name of a Managed Object Class

 */

 typedef string MOClass;

 /**

 * The format of Distinguished Name (DN) is specified in 3GPP TS 32.300

 * "Name Conventions for Managed Objects".

 */

 typedef string DN;

 /**

 * A sequecne of DNs to identify several instances.

 */

 typedef sequence <DN> DnSeq;

 /**

 * Defines the name of an attribute of a Managed Object

 */

 typedef string MOAttributeName;

 /**

 * Defines the value of an attribute of a Managed Object in form of a CORBA

 * Any. Apart from basic datatypes already defined in CORBA, the allowed

 * attribute value types are defined in the AttributeTypes module.

 */

 typedef any MOAttributeValue;

 /**

 * This module adds datatype definitions for types

 * used in the NRM which are not basic datatypes defined

 * already in CORBA.

 */

 module AttributeTypes

 {

 /**

 * A set of strings.

 */

 typedef sequence<string> StringSet;

 };

 exception IllegalFilterFormatException {

 string reason;

 };

 exception IllegalDNFormatException {

 string reason;

 };

 exception IllegalScopeTypeException {

 string reason;

 };

 exception IllegalScopeLevelException {

 string reason;

 };

 exception UndefinedMOException {

 string reason;

 };

 exception UndefinedScopeException {

 string reason;

 };

 exception FilterComplexityLimit {

 string reason;

 };

 exception DuplicateMO {};

 exception CreateNotAllowed {};

 exception ObjectClassMismatch {};

 exception NoSuchObjectClass {

 MOClass objectClass;

 };

exception ParentObjectDoesNotExist {};

 /**

 * System otherwise fails to complete the operation. System can provide

 * reason to qualify the exception. The semantics carried in reason

 * is outside the scope of this IRP.

 */

 exception NextBasicCmInformations { string reason; };

 exception NextDeleteErrors { string reason; };

 exception NextModifyErrors { string reason; };

 exception DestroyException { string reason; };

 exception GetBasicCmIRPVersion { string reason; };

 exception GetBasicCmIRPOperationProfile { string reason; };

 exception GetBasicCmIRPNotificationProfile { string reason; };

 exception FindManagedObjects { string reason; };

 exception CreateManagedObject { string reason; };

 exception DeleteManagedObjects { string reason; };

 exception ModifyManagedObjects { string reason; };

 /**

 *

 * In this version the only allowed filter value is "TRUE" i.e. a filter that

 * matches everything.

 */

 typedef string FilterType;

 /**

 * ResultContents is used to tell how much information to get back

 * from the find_managed_objects operation.

 *

 * NAMES: Used to get only Distinguished Name

 * for MOs.

 * The name contains both the MO class

 * and the names of all superior objects in the naming

 * tree.

 *

 * NAMES_AND_ATTRIBUTES: Used to get both NAMES plus

 * MO attributes (all or selected).

 */

 enum ResultContents

 {

 NAMES,

 NAMES_AND_ATTRIBUTES

 };

 /**

 * ScopeType defines the kind of scope to use in a search

 * together with SearchControl.level, in a SearchControl value.

 *

 * SearchControl.level is always >= 0. If a level is bigger than the

 * depth of the tree there will be no exceptions thrown.

 * BASE_ONLY: level ignored, just return the base object.

 * BASE_NTH_LEVEL: return all subordinate objects that are on "level"

 * distance from the base object, where 0 is the base object.

 * BASE_SUBTREE: return the base object and all of its subordinates

 * down to and including the nth level.

 * BASE_ALL: level ignored, return the base object and all of it's

 * subordinates.

 */

 enum ScopeType

 {

 BASE_ONLY,

 BASE_NTH_LEVEL,

 BASE_SUBTREE,

 BASE_ALL

 };

 /**

 * SearchControl controls the find_managed_object search,

 * and contains:

 * the type of scope ("type" field),

 * the level of scope ("level" field), level 0 means the "baseObject",

 * level 1 means baseobject including its sub-ordinates etc..

 * the filter ("filter" field),

 * the result type ("contents" field).

 * The type, level and contents fields are all mandatory.

 * The filter field contains the filter expression.

 * The string "TRUE" indicates "no filter",

 * i.e. a filter that matches everything.

 */

 struct SearchControl

 {

 ScopeType type;

 unsigned long level;

 FilterType filter;

 ResultContents contents;

 };

 /**

 * Represents an attribute: "name" is the attribute name

 * and "value" is the attribute value.

 */

 struct MOAttribute

 {

 MOAttributeName name;

 MOAttributeValue value;

 };

 typedef sequence<MOAttribute> MOAttributeSet;

 struct Result

 {

 DN mo;

 MOAttributeSet attributes;

 };

 typedef sequence<Result> ResultSet;

 /**

 * AttributeErrorCategory defines the categories of errors, related to

 * attributes, that can occur during creation or modification of MOs.

 *

 * NO_SUCH_ATTRIBUTE: The specified attribute does not exist.

 * INVALID_ATTRIBUTE_VALUE: The specified attribute value is not valid.

 * MISSING_ATTRIBUTE_VALUE: An attribute value is required but none was

 * provided and no default value is defined for the attribute.

 * INVALID_MODIFY_OPERATOR: The specified modify operator is not valid

 * (e.g. operator ADD_VALUES applied to a non multi-valued attribute

 * or operator SET_TO_DEFAULT applied where no default value is defined).

 * MODIFY_NOT_ALLOWED: The modification of the attribute is not allowed.

 * MODIFY_FAILED: The modification failed because of an unspecified reason.

 */

 enum AttributeErrorCategory

 {

 NO_SUCH_ATTRIBUTE,

 INVALID_ATTRIBUTE_VALUE,

 MISSING_ATTRIBUTE_VALUE,

 INVALID_MODIFY_OPERATOR,

 MODIFY_NOT_ALLOWED,

 MODIFY_FAILED

 };

 /**

 * DeleteErrorCategory defines the categories of errors that can occur

 * during deletion of MOs.

 *

 * SUBORDINATE_OBJECT: The MO cannot be deleted due to subordinate MOs.

 * DELETE_NOT_ALLOWED: The deletion of the MO is not allowed.

 * DELETE_FAILED: The deletion failed because of an unspecified reason.

 */

 enum DeleteErrorCategory

 {

 SUBORDINATE_OBJECT,

 DELETE_NOT_ALLOWED,

 DELETE_FAILED

 };

 /**

 * AttributeError represents an error, related to an attribute, that occured

 * during creation or modification of MOs.

 * It contains:

 * - the name of the indicted attribute ("name" field),

 * - the category of the error ("error" field),

 * - optionally, the indicted attribute value ("value" field),

 * - optionally, additional details on the error ("reason" field).

 */

 struct AttributeError

 {

 MOAttributeName name;

 AttributeErrorCategory error;

 MOAttributeValue value;

 string reason;

 };

 typedef sequence<AttributeError> AttributeErrorSeq;

 /**

 * DeleteError represents an error that occured during deletion of MOs.

 * It contains:

 * - the distinguished name of the indicted MO ("objectName" field),

 * - the category of the error ("error" field),

 * - optionally, additional details on the error ("reason" field).

 */

 struct DeleteError

 {

 DN objectName;

 DeleteErrorCategory error;

 string reason;

 };

 typedef sequence<DeleteError> DeleteErrorSeq;

 /**

 * ModifyAttributeErrors represents errors that occured during

 * modification of attributes of a MO.

 * It contains:

 * - the distinguished name of the indicted MO ("objectName" field),

 * - a sequence containing the attribute errors ("errors" field).

 */

 struct ModifyAttributeErrors

 {

 DN objectName;

 AttributeErrorSeq errors;

 };

 typedef sequence<ModifyAttributeErrors> ModifyAttributeErrorsSeq;

 /**

 The BasicCmInformationIterator is used to iterate through a snapshot of

 Managed Object Information when IRPManager invokes find_managed_objects.

 IRPManager uses it to pace the return of Managed Object Information.

 IRPAgent controls the life-cycle of the iterator. However, a destroy

 operation is provided to handle the case where IRPManager wants to stop

 the iteration procedure before reaching the last iteration.

 */

 interface BasicCmInformationIterator

 {

 /**

 This method returns between 1 and "how_many" Managed Object information.

 The IRPAgent may return less than "how_many" items even if there are

 more items to return. "how_many" must be non-zero. Return TRUE if there

 may be more Managed Object information to return. Return FALSE if there

 are no more Managed Object information to be returned.

 If FALSE is returned, the IRPAgent will automatically destroy the

 iterator.

 @parm how_many how many elements to return in the "fetchedElements" out

 parameter.

 @parm fetchedElements the elements.

 @returns A boolean indicating if any elements are returned.

 "fetchedElements" is empty when the BasicCmInformationIterator is

 empty.

 */

 boolean next_basicCmInformations (

 in unsigned short how_many,

 out ResultSet fetchedElements

)

 raises (NextBasicCmInformations,

 ManagedGenericIRPSystem::InvalidParameter);

 /**

 This method destroys the iterator.

 */

 void destroy ()

 raises (DestroyException);

 }; // end of BasicCmInformationIterator

 /**

 The DeleteResultIterator is used to iterate through the list of deleted MOs

 when IRPManager invokes method "delete_managed_objects".

 IRPManager uses it to pace the return of Managed Object Information.

 IRPAgent controls the life-cycle of the iterator. However, a destroy

 operation is provided to handle the case where IRPManager wants to stop

 the iteration procedure before reaching the last iteration.

 */

 interface DeleteResultIterator : BasicCmInformationIterator

 {

 /**

 Inherited method "next_basicCmInformations" has the same behaviour as

 for interface BasicCmInformationIterator, except that:

 - The Managed Object information returned in parameter

 "fetchedElements" contains only the DNs of the deleted MOs

 (no attributes are returned).

 - If FALSE is returned, the IRPAgent will not automatically destroy the

 iterator.

 */

 /**

 This method returns between 0 and "how_many" deletion errors. The

 IRPAgent may return less than "how_many" items even if there are more

 items to return. "how_many" must be non-zero. Return TRUE if there are

 more deletion errors to return. Return FALSE if there are no more

 deletion errors to be returned.

 If FALSE is returned and last call to inherited method

 "next_basicCmInformations" also returned FALSE (i.e. no more Managed

 Object information to be returned), the IRPAgent will automatically

 destroy the iterator.

 @parm how_many: how many deletion errors to return in the

 "fetchedDeleteErrors" out parameter.

 @parm fetchedDeleteErrors: the deletion errors.

 @returns: a boolean indicating if any deletion errors are returned.

 */

 boolean next_deleteErrors (

 in unsigned short how_many,

 out DeleteErrorSeq fetchedDeleteErrors

)

 raises (NextDeleteErrors,

 ManagedGenericIRPSystem::InvalidParameter);

 }; // end of DeleteResultIterator

 /**

 The ModifyResultIterator is used to iterate through the list of modified

 MOs when IRPManager invokes method "modify_managed_objects".

 IRPManager uses it to pace the return of Managed Object Information.

 IRPAgent controls the life-cycle of the iterator. However, a destroy

 operation is provided to handle the case where IRPManager wants to stop

 the iteration procedure before reaching the last iteration.

 */

 interface ModifyResultIterator : BasicCmInformationIterator

 {

 /**

 Inherited method "next_basicCmInformations" has the same behaviour as

 for interface BasicCmInformationIterator, except that:

 - The Managed Object information returned in parameter

 "fetchedElements" contains DNs and attributes of the modified MOs.

 - If FALSE is returned, the IRPAgent will not automatically destroy the

 iterator.

 */

 /**

 This method returns between 0 and "how_many" modification errors. The

 IRPAgent may return less than "how_many" items even if there are more

 items to return. "how_many" must be non-zero. Return TRUE if there are

 more modification errors to return. Return FALSE if there are no more

 modification errors to be returned.

 If FALSE is returned and last call to inherited method

 "next_basicCmInformations" also returned FALSE (i.e. no more Managed

 Object information to be returned), the IRPAgent will automatically

 destroy the iterator.

 @parm how_many: how many modification errors to return in the

 "fetchedModifyErrors" out parameter.

 @parm fetchedModifyErrors: the modification errors.

 @returns: a boolean indicating if any modification errors are returned.

 */

 boolean next_modificationErrors (

 in unsigned short how_many,

 out ModifyAttributeErrorsSeq fetchedModifyErrors

)

 raises (NextModifyErrors,

 ManagedGenericIRPSystem::InvalidParameter);

 }; // end of ModifyResultIterator

 typedef sequence<MOAttributeName> AttributeNameSet;

 /**

 * ModifyOperator defines the way in which an attribute value is to be

 * applied to an attribute in a modification of MO attributes.

 *

 * REPLACE: replace the current value with the provided value

 * ADD_VALUES: for a multi-valued attribute, add the provided values to the

 * current list of values

 * REMOVE_VALUES: for a multi-valued attribute, remove the provided values

 * from the current list of values

 * SET_TO_DEFAULT: set the attribute to its default value

 */

 enum ModifyOperator

 {

 REPLACE,

 ADD_VALUES,

 REMOVE_VALUES,

 SET_TO_DEFAULT

 };

 /**

 * AttributeModification defines an attribute value and the way it is to

 * be applied to an attribute in a modification of MO attributes.

 * It contains:

 * - the name of the attribute to modify ("name" field),

 * - the value to apply to this attribute ("value" field),

 * - the way the attribute value is to be applied to the attribute

 * ("operator" field).
 * - A sequence of DNs (SelectedMocs) that the operation is to be applied to
 * this may be an Empty sequence, but if populated it allows the
 * specification of several instances which are to all have the

 * attributes matching the input parameter attribute name to be set to the

 * value as carried by the value input parameter
 */
 struct AttributeModification

 {

 MOAttributeName name;

 MOAttributeValue value;

 ModifyOperator operator;
 DnSeq SelectedMocs;
 };

 typedef sequence<AttributeModification> AttributeModificationSet;

 /**

 * The BasicCmIrpOperations interface.

 * Supports a number of Resource Model versions.

 */

 interface BasicCmIrpOperations

 {

 /**

 * Get the version(s) of the interface

 *

 * @raises GetBasicCmIRPVersion when the system for some reason

 * can not return the supported versions.

 * @returns all supported versions.

 */

 ManagedGenericIRPConstDefs::VersionNumberSet get_basicCm_IRP_version()

 raises (GetBasicCmIRPVersion);

 /**

 * Return the operation profile for a specific Basic CM IRP version.

 *

 * @raises GetBasicCmIRPOperationProfile when the system for some reason

 * cannot return the supported operations and parameters.

 * @returns the list of all supported operations and their supported

 * parameters for the specified version.

 */

 ManagedGenericIRPConstDefs::MethodList get_basicCm_IRP_operation_profile

 (

 in ManagedGenericIRPConstDefs::VersionNumber basicCm_IRP_version

)

 raises (GetBasicCmIRPOperationProfile,

 ManagedGenericIRPSystem::OperationNotSupported,

 ManagedGenericIRPSystem::InvalidParameter);

 /**

 * Return the notification profile for a specific Basic CM IRP version.

 *

 * @raises GetBasicCmIRPNotificationProfile when the system for some

 * reason cannot return the supported notifications and parameters.

 * @returns the list of all supported notifications and their supported

 * parameters for the specified version.

 */

 ManagedGenericIRPConstDefs::MethodList

 get_basicCm_IRP_notification_profile (

 in ManagedGenericIRPConstDefs::VersionNumber basicCm_IRP_version

)

 raises (GetBasicCmIRPNotificationProfile,

 ManagedGenericIRPSystem::OperationNotSupported,

 ManagedGenericIRPSystem::InvalidParameter);

 /**

 * Performs a containment search, using a SearchControl to

 * control the search and the returned results.

 *

 * All MOs in the scope constitute a set that the filter works on.

 * The result BasicCmInformationIterator contains all matched MOs,

 * with the amount of detail specified in the SearchControl.

 * For the special case when no managed objects are matched in

 * find_managed_objects, the BasicCmInformationIterator will be returned.

 * Executing the next_basicCmInformations in the

 * BasicCmInformationIterator will return FALSE for

 * completion.

 *

 * @parm baseObject The start MO in the containment tree.

 * @parm searchControl the SearchControl to use.

 * @parm requestedAttributes defines which attributes to get.

 * If this parameter is empty (""), all attributes shall

 * be returned. In this version this is the only supported semantics.

 * Note that this argument is only

 * relevant if ResultContents in the search control is

 * specifed to NAMES_AND_ATTRIBUTES.

 *

 *

 * @raises ManagedGenericIRPSystem::ValueNotSupported if a valid but

 * unsupported parameter value is passed. E.g. the contents

 * field in the searchcontrol parameter contains the value NAMES and

 * the optional getContainment IS operation is not supported.

 * @raises UndefinedMOException The MO does not exist.

 * @raises IllegalDNFormatException The dn syntax string is

 * malformed.

 * @raises IllegalScopeTypeException The ScopeType in scope contains

 * an illegal value.

 * @raises IllegalScopeLevelException The scope level is negative

 * (<0).

 * @raises IllegalFilterFormatException The filter string is

 * malformed.

 * @raises FilterComplexityLimit if the filter syntax is correct,

 * but the filter is too complex to be processed by the IRP agent.

 * @see SearchControl

 * @see BasicCmInformationIterator

 */

 BasicCmInformationIterator find_managed_objects(in DN baseObject,

 in SearchControl searchControl,

 in AttributeNameSet requestedAttributes)

 raises (FindManagedObjects,

 ManagedGenericIRPSystem::ParameterNotSupported,

 ManagedGenericIRPSystem::InvalidParameter,

 ManagedGenericIRPSystem::ValueNotSupported,

 UndefinedMOException,

 IllegalDNFormatException,

 UndefinedScopeException,

 IllegalScopeTypeException,

 IllegalScopeLevelException,

 IllegalFilterFormatException,

 FilterComplexityLimit);

 /**

 * Performs the creation of a MO instance in the MIB maintained

 * by the IRPAgent.

 *

 * @parm objectName: the distinguished name of the MO to create.

 * @parm referenceObject: the distinguished name of a reference MO.

 * @parm attributes: in input, initial attribute values for the MO to

 * create; in output, actual attribute values of the created MO.

 * @parm attributeErrors: errors, related to attributes, that caused the

 * creation of the MO to fail.

 *

 * @raises ManagedGenericIRPSystem::OperationNotSupported: The operation

 * is not supported.

 * @raises ManagedGenericIRPSystem::ParameterNotSupported: An optional

 * parameter is not supported.

 * @raises ManagedGenericIRPSystem::InvalidParameter: An invalid

 * parameter value has been provided.

 * @raises UndefinedMOException: The MO does not exist.

 * @raises IllegalDNFormatException: The DN syntax string is malformed.

 * @raises DuplicateMO: A MO already exist with the same DN as the one

 * to create.

 * @raises CreateNotAllowed: The creation of the MO is not allowed.
 * @raises ObjectClassMismatch: The object class of the MO to create does

 * not match with the object class of the provided reference MO.

 * @raises NoSuchObjectClass: The class of the object to create is not

 * recognized.
 * @raises ParentObjectDoesNotExist: The parent MO instance of the
 * ManagedEntity specified to be created does not exist.
 */

 void create_managed_object (

 in DN objectName,

 in DN referenceObject,

 inout MOAttributeSet attributes,

 out AttributeErrorSeq attributeErrors
)

 raises (CreateManagedObject,

 ManagedGenericIRPSystem::OperationNotSupported,

 ManagedGenericIRPSystem::ParameterNotSupported,

 ManagedGenericIRPSystem::InvalidParameter,

 UndefinedMOException,

 IllegalDNFormatException,

 DuplicateMO,

 CreateNotAllowed,

 ObjectClassMismatch,

 NoSuchObjectClass,

 ParentObjectDoesNotExist);

 /**

 * Performs the deletion of one or more MO instances from the MIB

 * maintained by the IRPAgent, using a SearchControl to control the

 * instances to be deleted.

 *

 * All MOs in the scope constitute a set that the filter works on.

 * All matched MOs will be deleted by this operation.

 * The returned DeleteResultIterator is used to retrieve the DNs of the

 * MOs deleted and the errors that may have occurred preventing deletion

 * of some MOs.

 * For the special case when no managed objects are matched in

 * delete_managed_objects, the DeleteResultIterator will be returned.

 * Executing the next_basicCmInformations in the DeleteResultIterator

 * will return FALSE for completion.

 *

 * @parm baseObject: the start MO in the containment tree.

 * @parm searchControl: the SearchControl to use; field "contents" has no

 * meaning here and shall be ignored.

 @returns: a DeleteResultIterator (see above).

 *

 * @raises ManagedGenericIRPSystem::OperationNotSupported: The operation

 * is not supported.

 * @raises ManagedGenericIRPSystem::InvalidParameter: An invalid

 * parameter value has been provided.

 * @raises UndefinedMOException: The MO does not exist.

 * @raises IllegalDNFormatException: The DN syntax string is malformed.

 * @raises IllegalScopeTypeException: The ScopeType in scope contains

 * an illegal value.

 * @raises IllegalScopeLevelException: The scope level is negative (<0).

 * @raises IllegalFilterFormatException: The filter string is malformed.

 * @raises FilterComplexityLimit: The filter syntax is correct,

 * but the filter is too complex to be processed by the IRPAgent.

 */

 DeleteResultIterator delete_managed_objects (

 in DN baseObject,

 in SearchControl searchControl

)

 raises (DeleteManagedObjects,

 ManagedGenericIRPSystem::OperationNotSupported,

 ManagedGenericIRPSystem::InvalidParameter,

 UndefinedMOException,

 IllegalDNFormatException,

 UndefinedScopeException,

 IllegalScopeTypeException,

 IllegalScopeLevelException,

 IllegalFilterFormatException,

 FilterComplexityLimit);

 /**

 * Performs the modification of MO attributes. One or more MOs attributes

 * may be modified according to a SearchControl.

 *

 * All MOs in the scope constitute a set that the filter works on.

 * All matched MOs will have their attributes modified by this operation.

 * The returned ModifyResultIterator is used to retrieve the DNs of the

 * modified MOs together with the values of the modified attributes, and

 * the errors that may have occurred preventing modification of some

 * attributes.

 * For the special case when no managed objects are matched in

 * modify_managed_objects, the ModifyResultIterator will be returned.

 * Executing the next_basicCmInformations in the ModifyResultIterator

 * will return FALSE for completion.

 *

 * @parm baseObject: the start MO in the containment tree.

 * @parm searchControl: the SearchControl to use; field "contents" has no

 meaning here and shall be ignored.

 * @parm modifications: the values for the attributes to modify and

 the way those values are to be applied to the attributes.

 @returns: a ModifyResultIterator (see above).

 *

 * @raises ManagedGenericIRPSystem::OperationNotSupported: The operation

 * is not supported

 * @raises ManagedGenericIRPSystem::InvalidParameter: An invalid

 * parameter value has been provided

 * @raises UndefinedMOException: The MO does not exist.

 * @raises IllegalDNFormatException: The DN syntax string is malformed.

 * @raises IllegalScopeTypeException: The ScopeType in scope contains

 * an illegal value.

 * @raises IllegalScopeLevelException: The scope level is negative (<0).

 * @raises IllegalFilterFormatException: The filter string is malformed.

 * @raises FilterComplexityLimit: The filter syntax is correct,

 * but the filter is too complex to be processed by the IRPAgent.

 */

 ModifyResultIterator modify_managed_objects (

 in DN baseObject,

 in SearchControl searchControl,

 in AttributeModificationSet modifications

)

 raises (ModifyManagedObjects,

 ManagedGenericIRPSystem::OperationNotSupported,

 ManagedGenericIRPSystem::InvalidParameter,

 UndefinedMOException,

 IllegalDNFormatException,

 UndefinedScopeException,

 IllegalScopeTypeException,

 IllegalScopeLevelException,

 IllegalFilterFormatException,

 FilterComplexityLimit);

 };

};

#endif

End of Change in Annex A

End of Document

Annex B (informative):
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	Jun 2001
	S_12
	SP-010283
	--
	--
	Approved at TSG SA #12 and placed under Change Control
	2.0.0
	4.0.0

	Sep 2001
	S_13
	SP-010476
	001
	--
	Correction of invokeIdentifier usage
	4.0.0
	4.1.0

	Mar 2002
	S_15
	SP-020019
	002
	--
	Correction of erroneous CORBA module names and mapping tables
	4.1.0
	4.2.0

	Mar 2002
	S_15
	SP-020019
	003
	--
	Corrections to Basic CM IRP CORBA Solution Set IDLs
	4.1.0
	4.2.0

	Mar 2002
	S_15
	SP-020038
	004
	--
	Addition of missing CORBA exception "ManagedGenericIRPSystem::ValueNotSupported" onto CORBA method "find_managed_objects"
	4.1.0
	4.2.0

	Jun 2002
	S_16
	SP-020294
	005
	--
	Correcting IDL definitions of notification structured event Name Value pair names
	4.2.0
	4.3.0

	Jul 2002
	--
	--
	--
	--
	Updated the Version number (420->431) and the Date on the cover page
	4.3.0
	4.3.1

	Sep 2002
	S_17
	SP-020483
	006
	--
	Add Active Basic CM feature - CORBA Solution Set
	4.3.1
	5.0.0

	Mar 2003
	S_19
	SP-030139
	007
	--
	Add CORBA equivalents to IS operations "get{Operation Notification}Profile" - alignment with 32.602 & 32.312
	5.0.0
	5.1.0

	Mar 2003
	S_19
	SP-030139
	008
	--
	Correction of IDL errors
	5.0.0
	5.1.0

	Mar 2003
	S_19
	SP-030144
	009
	--
	Add description for notifications of each activeCM operation and one exception for createMO - alignment with 32.602, Information Service
	5.0.0
	5.1.0

	Jun 2003
	S_20
	SP-030279
	010
	--
	Alignment with Basic CM IRP information service (32.602) - add one exception for the operation createMO
	5.1.0
	5.2.0

	Sep 2004
	S_25
	SP-040567
	011
	--
	Removal of Rules for NRM extensions - Align with 32.622 (Generic NRM IS)
	5.2.0
	5.3.0

	Sep 2004
	S_25
	SP-040566
	013
	--
	Removal of unused/duplicate definition of types MOReference and MOReferenceSet
	5.2.0
	5.3.0

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

�PAGE \# "'Page: '#'�'" �� Document number

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least three digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/� .�The list is also included in a MS Excel file included in the zip file containing the CR cover sheet template.

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2002.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

CR page 1

