3GPP TSG-SA5 (Telecom Management)
S5-046675
Meeting #38bis, Sophia Antipolis, FRANCE, 28 Jun - 2 Jul 2004
Source:
Lucent Technologies

Title:
Creating backward compatible Specifications.

Agenda Item:
WT09

	Decision
	X

	Discussion
	X

	Information
	

Document for:

	Late submission
	

Work Item:
Rel-6 OAM-NIM
WT addressed
Backward Compatibility
Specs involved:

1
Review and agree inputs for backward compatibility work

2
References

S5-046134

3
Rationale

To clarify some wording in the existing backward compatibility work made by Motorola and Ercisson in S5-046134

To add IRP development guideline considerations.

Contributions from previous meetings are provided in a set of annexes to this contribution.

4 Detailed proposal

12
References

13
Rationale

14
Detailed proposal

3Foreword

4Introduction

41
Scope

42
References

43
Definitions and abbreviations

43.1
Definitions

53.2
Abbreviations

54.
Context

64.1
IRP Level – “Specification BC”

74.2
IRPAgent Level – “System/Implementation BC”

85.
Requirements

86.
Other Considerations

10Annex A: BC and Conformance

12Annex C
Information Service considerations for backward compatibility

13Annex D
Backward compatibility consideration for notifications

14Annex E
Backward compatibility consideration for CORBA solution sets

15Annex F
Backward compatibility consideration for CMIP solution sets

16Annex G
Backward compatibility consideration for XML definitions

Foreword

This Technical Specification (TS) [Note: we would like to discuss if it is more appropriate that this BC series be classified as TR and not TS.] has been produced by the 3rd Generation Partnership Project (3GPP).

The present document is part the 32.300-series covering the 3rd Generation Partnership Project: Technical Specification Group Services and System Aspects; Telecommunication Management; Notification Management, as identified below:

32.xyz:“Backward Compatibility Integration Reference Point: Requirements”;

32.xyz:
“---”;

(Note: we need to discuss if this work can be published as an independent IRP specification or not.)

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

The Itf-N partitions two group of interacting entities called an IRPManager and an IRPAgent.
The interactions between an IRPManager and IRPAgent are specified by the set of IRP specifications the IRPAgent supports, and which the IRPManager selects to use.
Each IRP permits a manager to inspect it's version. The IRPVersion, uniquely identifies one IRP Solution Set which is supported by the IRPAgent
The 3GPP IRP specifications are expected to evolve. For example, 3GPP Release 6 includes more or modified features compared to the corresponding set in Release 5.

An IRPManager and IRPAgent, with implementations compliant to the same IRP specification (at, the same IRPVersion) will be able to communicate.
However, an upgrade of the IRPVersion by IRPAgent or by IRPManager if not performed by both parties can result in inter-working failure if backward compatibility (BC) issues are not addressed.

This Requirement specification is applicable/relevant to a system context of a group of interacting IRPManagers and IRPAgents where some members are using one IRPVersion while others are using an upgraded IRPVersion.
Considerations for all aspects of IRP development, Requirements, Information service, and solution sets are provided in the set of annexes B through G.
1
Scope

This document specifies the requirements to develop future IRPs in a backward compatible way so that:-

The IRPManager and IRPAgent are not forced to be upgraded in lock step.

All the element management systems, and network management systems do not have to be upgraded to the next IRP versions at the same time.
The business case for supporting a group, as described above, is complex. It may not relate to the functions of the supported IRPs alone. Rather, it can relate to the cost of coordination of IRPVersion upgrades, the cost of maintaining an old IRPVersion and the cost of using single-vendor or multi-vendor IRPAgents. These considerations are operator deployment scenarios specific.

Clause 2 provides the list of references. Clause 3 provides the definitions and abbreviations used in the document. Clause 4 describes the system context where the Requirements are applicable. Clause 5 specifies the Requirements. Clause 6 captures “other considerations” related to BC issues.

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TS 32.101: "3G Telecom Management principles and high level requirements".

[2]
3GPP TS 32.102: "3G Telecom Management architecture".

[3]
3GPP TS 32.111-2: “Alarm IRP: Information Service”.

3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the following terms and definitions apply.
Element Manager (EM): See 3GPP TS 32.101 [1].
IRPAgent: See 3GPP TS 32.102 [2].

IRPManager: See 3GPP TS 32.102 [2].

IRPVersion: See 3GPP TS ???

Network Manager (NM): See 3GPP TS 32.101 [1].

3.2
Abbreviations

For the purposes of the present document, the following abbreviations apply:

BC
Backward Compatible\Compatibility

EM
Element Manager

IRP
Integration Reference Point

NE
Network Element

VSE
Vendor Specific Extension (to 3GPP IRP specification)
4.
Context

This section defines the context under which the requirements specified in this document are applicable.

The word ‘old’ qualifies the related entity (i.e., the Alarm IRP of an IRPAgent instance or Alarm IRPManager) that is using an older 3GPP IRPVersion (called old version). The word ‘new’ qualifies the related entity that is using a newer (upgraded) 3GPP IRPVersion. For example, 32.123 V6.0.0 is considered the old version with reference to 32.123 V6.1.0. The two versions in question can belong to the same or different major releases.
The box labelled EM in Figure 1 conveys the same idea as the box of the same label in the System Context-A of other IRP specifications such as Alarm IRP [3]. One or all EM-labelled boxes of this figure can be interchanged with the NE‑labelled box (see System Context‑B of other IRP specifications such as [3The NE entities are not shown in order to make the figure easier to read.

[image: image1.wmf]New

IRPAgent

Itf-N

EM

Old

IRPManager

NM

New

IRPManager

NM

Old

IRPAgent

EM

Figure 1: Overall BC System Context

In general, an IRPAgent instance may contain several Interface xxxIRP instances and associated supporting yyy NRM IRPs (where “xxx” can be for example “Alarm”, “Test Management”, “Notification”, etc and where “yyy” can be for example “Generic”). The Interface xxx and yyy NRM IRP specifications of particular IRPVersion(s) together specify the behaviour of an xxxIRP supporting yyy NRM(s).

It is worth noting that the IRPVersion concept is related to the IRP. The IRPVersion concept is not related to the IRPAgent as this may contain multiple IRPs.

Given this background, the BC issues are addressed at two separate but related levels as described in 4.1 and 4.2.

4.1 IRP Level – “Specification BC”

The following two diagrams illustrate conceptually the two possible contexts when we address BC at this IRP Level.

[image: image2.wmf]New

IRPAgent

Itf-N

EM

Old

IRPManager

NM

New

IRPManager

NM

xxxIRP

IRPVersion-new

Itf-N

EM

Old

IRPManager

NM

New

IRPManager

NM

Old

IRPAgent

EM

xxxIRP

IRPVersion-old

Figure 2: Specification BC System Context

An xxx IRP instance supports a particular Interface IRPVersion and a particular set of NRM IRPVersions. An IRPManager uses a particular Interface IRPVersion and a particular set of NRM IRPVersions.

If an xxx IRP instance supports Interface IRPVersion-X and NRM IRPVersions-Y, then it can interact successfully with an IRPManager that uses the same IRPVersions. This is illustrated by the case of the “Old IRPManager” and the “Old IRPAgent” of the bottom diagram (and note that the diagram does not show the NRM IRP version support).

If this same xxx IRP instance upgrades its Interface IRPVersion-X to X2 that is BC to X, then it can interact successfully with an IRPManager that uses the Interface IRPVersion-X or IRPVersion-X2. The top diagram of figure 2 illustrates this case (and note that the diagram does not show the NRM IRP version support).

If this same xxx IRP instance upgrades its NRM IRPVersion-Y to Y2 that is BC to Y, then it can interact successfully with an IRPManager that uses the NRM IRPVersion-Y or NRM IRPVersion-Y2. The top diagram of figure 2 illustrated this case (and note that the diagram does not show the NRM IRP version support).

Given the above, the BC issues addressed at this specification level are:

· How to determine if an IRP IS or SS specification (Interface IRP or NRM IRP) is BC to an earlier version? We can address it in another way. What are the rules that a 3GPP IRP specification author should use to produce a new version that can claim BC to an earlier version?

At this level, we shall define rules for each of the following:
· Interface IRP- Requirements
· Interface IRP IS

· Interface IRP CORBA SS; Interface IRP CMIP SS

· NRM IRP requirements

· NRM IRP IS

· NRM IRP CORBA SS; NRM IRP CMIP SS; NRM XML schema

· Data Definition IRP IS

One reason why we address BC at this IRP Level is that, for certain technologies, such as CORBA, it is possible that one entity using (compiles with) one IRP SS specification (i.e., the CORBA SS) while the other communicating entity using a new but BC version can interact successfully (such as the case of the IRPManager and IRPAgent-A of REQ-1).

4.2 IRPAgent Level – “System/Implementation BC”

The following two diagrams illustrate the two possible contexts when we address BC at this IRPAgent Level.

[image: image3.wmf]Old

IRPAgent

Itf-N

EM

Old

IRPManager

NM

New

IRPManager

NM

xxxIRP

IRPVersion-old

New

IRPAgent

xxxIRP

IRPVersion-new

IRPAgent

Itf-N

EM

Old

IRPManager

NM

New

IRPManager

NM

xxxIRP

IRPVersion-old

xxxIRP

IRPVersion-new

Figure 3: System/Implementation BC System Context

We note that an IRPAgent instance contains multiple xxx IRP instances such as Alarm IRP, Notification IRP, Test Management IRP, etc. Each xxx IRP instance implements/supports the corresponding xxx IRP specification of a particular IRPVersion.

Suppose IRPAgent-A contains xxxIRP of Interface IRPVersion-4, yyyIRP of Interface IRPVersion-5 and zzzIRP of Interface IRPVersion-6 and all IRPs support NRM IRPVersion-7 (see note 1), this IRPAgent-A is BC if it can inter-operate successfully with the following

· xxxIRPManager of Interface IRPVersion-4 or 3 using NRM IRPVersion-7 or 6.

· yyyIRPManager of Interface IRPVersion-5 or 4 using NRM IRPVersion-7 or 6.

· zzzIRPManager of Interface IRPVersion-6 or 5 using NRM IRPVersion-7 or 6.

It is anticipated that the IRPAgent Level BC solution includes:

· An IRPAgent service allowing IRPManager to discover all the IRPAgent supported Interface IRPVersion(s).

· An IRPAgent service allowing IRPManager to discover the IRPAgent supported NRM IRPVersion(s).

· An IRPAgent service allowing IRPManager to discover the reference/address of the IRP instance (of the IRPAgent) supporting a particular Interface IRPVersion.

The above two diagrams illustrate the two possible ways to support BC at this so-called IRPAgent Level.

The IRPVersion-new needs not to be BC to IRPVersion-old. In the case that IRPVersion-new is BC to IRPVersion‑old, it is EM supplier’s choice if “IRP Level” or “IRPAgent Level” solution will be used to support BC. In the case that the IRPVersion-new is not BC to IRPVersion‑old, then the EM supplier will have no choice but to use “IRPAgent Level” solution if it wants its EM to support BC.

Note that IRPAgent service supporting “discovery” (as stated by the above three bullets) is not illustrated in the two diagrams.

Note 1: All IRPs contained by the same IRPAgent instance should support the same set of NRM IRPVersions.

5. Requirements

This clause lists the requirements.

The words old and new, when qualifying an IRPVersion, refer to a single Interface IRPVersion of the same kind, e.g., Alarm IRP. They also refer to NRM IRPVersion of the same kind, e.g., Core NRM. The ‘new’ refers to a later release compared to the ‘old’.

The words old and new, when qualifying an IRPManager, refer to an entity that is using the old or the new (Interface or NRM) IRPVersion.

The words old and new, when qualifying an IRPAgent, refer to an entity that contains an IRP that is supporting the old or the new (Interface or NRM) IRPVersion.

In majority cases, an IRPAgent instance contains multiple IRPs, each of which is using a particular Interface IRPVersion. In these cases, each Requirement statement should be repeated to cover all IRPs involved.

The Requirements do not imply that vendors shall always supply their new IRPAgents in compliance to the solutions satisfying the Requirements. The Requirements simply identify the expected behaviours of a new system when it, claiming BC, interacts with an old system. Whether or not an IRPAgent should satisfy the Requirements is a decision of the supplier.

The Requirements do not imply that the next release of 3GPP Interface IRP or NRM IRP specification must be BC (to the older one). Whether or not a new release of an Interface IRP or NRM IRP should be BC to its older version is a decision of the 3GPP authors, on a case-by-case basis.

[REQ-1] An old IRPManager inter-operates with an old IRPAgent-A and a new IRPAgent-B. The interaction shall be successful in that the IRPManager can obtain the network management services (capabilities and features) defined by the old IRPVersion from both IRPAgents. The IRPManager needs not have knowledge of new network management services defined by the new IRPVersion.

[REQ-2] A new IRPManager inter-operates with a new IRPAgent‑A and an old IRPAgent‑B. The interaction shall be successful in that the IRPManager can obtain the network management services defined by (a) the new IRPVersion from IRPAgent‑A and (b) the old IRPVersion from IRPAgent‑B.

It should be noted that if the next minor and/or major release of 3GPP Interface IRP or NRM IRP specification is BC (to the older one), one could reduce or eliminate the difficult coordination task to introduce IRPVersion upgrades in a large management domain containing multiple IRPManagers and IRPAgents. It can be more cost-effective if IRPVersion upgrades to individual entity (i.e., IRPManager and IRPAgent) is done at different times.

6.
Other Considerations

3GPP will standardize extension rules for Interface IRP, Data Definition IRP and NRM IRP. 3GPP authors can use those rules to produce newer versions of the respective IRP specifications.
Under existing 3GPP rules no modifications to interface specifications may be made. I.e. adding additional parameters or additional operations to an existing interface definition.
The only permitted extension is the use of class specializations, or the use of the vendor specific data container.

Where extension are made using these techniques of sub classing, a mechanism is required that allows a manager to obtain from the agent a description of the extensions (i.e. which classes have been sub classed and which classes have had vendor specific data container extensions applied.

Interface extensions which require modification of operational signatures, need to be provided by the3GPP development process for a new release.
A vendor specific extension may be provided as long as the extensions are done in interface definitions that are not classed as 3GPP standard complaint interfaces.
Extended interface capabilities (new operations, and/or modified input or output parameters to an operation require that new interface definitions are provided. These extended interfaces are not classed as 3GPP compliant since they are vendor specific.

A vendor may provide a hybrid solution in which a set of fully compliant interfaces is presented for use by a 3GPP complaint IRPManager. These standard interfaces will remain 3GPP compliant event if the vendor adds some additional capabilities via a set of different interfaces, which may be available via some proprietary mechanism. Resource contention issues are an implementation concern for the vendor, which should not affect the standard 3GPP complaint interface definitions.

Vendor specific extended interfaces may refer to standard 3GPP object instances, which are also available via the standard 3GPP interfaces. Vendor extensions will not cause any notifications to be sent which are different in terms of data fields, and legal value ranges defined for the set of notifications specified for the particular release.

1.
2.

The compliance statements for a particular vendors product implementation is a legal subject that is between the particular vendor and potential customer.

A vendor of a 3GPP system, may use the backward compatibility rules to enhance interfaces, providing the solution can support an IRP manager with 3GPP standard interface definition and behaviour.
If a vendor chooses, all and any extended behaviour may be subject to contract specific negotiation.

3GPP encourages or permits vendors to use the rules to extend the 3GPP NRM IRPs and Data Definition IRPs that relate to NRM definitions. In these cases, the new vendor extended IRP specification can claim BC to the old one. In these cases, the following scenario will be true.

· An IRPManager (with a Vendor-A VSE NRM IRP specification) may inter-operate with an IRPAgent-A (with the same Vendor-A VSE NRM IRP specification) and IRPAgent‑B (with Vendor-B VSE NRM IRP specification).
· The two VSE NRM IRP specifications are BC to a 3GPP NRM IRP specification. The interaction shall be successful in that the IRPManager can

· interact successfully with IRPAgent-A using the network model defined by Vendor-A VSE NRM IRP specification

· interact with IRPAgent-B using the network model defined by the 3GPP NRM IRP specification.

Note 2: An example of Data Definition IRP that is related to operations/notifications is the Generic IRP Management.

Annex A: BC and Conformance

This appendix illustrates the following.

An IRP, implementing a new-version IRP specification that is BC to an old-version IRP specification, may or may not be compliant to the old-version IRP specification.

[image: image4.wmf]Old-IRP

New-IRP

Conformance tests

extend,

based on BC-Rules

implement

test

(should be OK)

Conformance tests

test

(should be OK)

test

(should fail)

depend

implement

depend

Old-version IRP

specification

New-version IRP

specification

Suppose 3GPP has an older-version IRP specification (the “Old-version IRP specification” box) and we have a valid/correct implementation (the “Old-IRP” box). Suppose also that 3GPP produce a “New-version IRP specification” by extending the “Old-version IRP specification” using the BC-rules.

The “New-IRP” should interwork with IRPManager that uses the “New-version IRP specification”. This “New-IRP” should also interwork with IRPManager that uses the “Old-version IRP specification”.

The “Old-IRP” should pass the conformance test that is based on (see “depend” relation) the “Old-version IRP specification”. Likewise, the “New-IRP” should pass the conformance test that is based on the “New-version IRP specification”.

However, this “New-IRP” may not be able to pass the conformance test that is based on “Old-version IRP specification” (see “test (should fail)” relation). Likewise, the “Old-IRP” should not be able to pass the conformance test that is based on “New-Version IRP specification”.

Annex B
Requirement considerations for easing backward compatibility
Purpose of requirements

Requirements specification provides 2 functions.

The first is to state clearly what should be achieved by a particular interface.

The second purpose is to allow an unfamiliar reader, who might not be an expert in any of the solution set technologies to determine the following:-

a) An appreciation of what a system implementing a conformant product will achieve

b) Appreciate both what is in, and what is out of the scope of the standard

c) Appreciate what changes have been made to the particular specification in the current release, compared with the standard in the previous release.

Proposal for improving requirement documents.

d) The requirements are handled slightly differently to current practice. The latest active release contains the requirements for the previous release(s). i.e. there is a single document, which is maintained, and it includes the previous releases. The copy and paste technique from release N to release N+1 ceases.
e) The document is split into separate release specific sections, where each section has independent version control for CR processing and updating.
f) The requirements must read as a functional summary of the IRP specifications. Which evolve from earlier releases to the current release.
This may require that some of the analysis work performed in developing the Information service, and solution set(s) are brought into the requirements document at an appropriate level of abstraction.

g) An identifying "tag" precedes each requirement. The tag is unique within the specification.

h) Each requirement tag permits new requirements to be inserted so that modifications may be made to the current and previous releases without destroying references used from either other 3GPP specifications, or from compliance statements.

i) Each requirement tag, once allocated in an approved document will not be changed, except by way of indicating it has been withdrawn (marked as Void).
j) To ease backward compatibility it is proposed that a clear distinctions are made regarding:
· Requirements included from a previous release
· Requirements amended under change request control within a release
· Requirements withdrawn from the previous release
· Requirements added for the new release.

 The simplest way of identifying this would be to provide requirement tags e.g.:-

Each requirement is tagged with the release it was introduced.
To aid inserting requirements it is suggest that the requirements are numbered in increments of 10.
 e.g.
3.1
Release 99 Requirements
[R99 requirement [10]
aaaaaaaaaaaaaa

[R99 requirement [20]
bbbbbbbbbbbb
etc
3.2
Release 4 Requirements

[R4 requirement 10]
cccccccccccc

[R4 requirement 20]
ddddddddddd
etc.

Annex C
Information Service considerations for backward compatibility

The Information service provides a definition of the data that is exchanged over the interface.

The solution set defines, for a specific technology, the actual data to be exchanged across the interface and includes

· Data inherited from other specifications

· Attributes

· Name containment to determine the correct form of object names

· Operations which are available

· Permitted "legal" value of attribute ranges.

This needs to be structured so that for any release it is possible to determine what was defined within a previous release.

What is withdrawn from the previous release

What has been added to the new release

The techniques used to show these may well be dependant upon the extent of the changes necessary.

As previously discussed there may be a decision that the changes are so extensive that backward compatibility is not possible.

Where backward compatibility is to be achieved there are several techniques, which may help.

The selective use of font colours to identify amendments between releases.

Tagging clauses to indicate the release the clause was introduced.

Structuring the document into sections to address multiple releases.

Annex D
Backward compatibility consideration for notifications
Backward compatibility requires some consideration to be given regarding how a management system at one release provides notifications to a management system at a different release.

When the notifications changes are of an additional nature this may not be so bad, however it is possible that the evolution of a specification could remove information from notifications in release (N+1).

If the intent is to support backward compatibility some considerations is necessary with respect to how the management system at release N+1 is to interpret the semantics of information compliant to the previous release N.

D1
Management System Worst Scenarios

A mechanism to allow the selection of notifications to a particular IRP version should overcome most situations.

In the event that invalid notifications are sent to the manager the worst behaviour a management system could exhibit would be to crash should any data element sent to it within a notification not be recognized.

As a minimal behaviour a management system should be able to dispose of a rogue notification if it is received.

An enhancement on this would be to log any notifications that cannot be interpreted and raise some form of indication that this has happened, as an investigation is probably necessary.

In another situation there could be confusion regarding the interpretation of notifications, which include an enumerated value, where the enumeration changes from release N to release N+1. This could result in not so much an error, as in the manager's mis-interpretation of the enumerated values received over the wire. This would not necessarily cause a detectable error, but could cause an invalid processing of the notification, resulting in the management system doing the wrong, unexpected thing – which can be viewed as being more dangerous.
D2
Proposal

One way of handling this is for the manager to check which versions of alarms and notifications are supported using either the entry point in release 6, or using the "get_xxx_IRP_versions" operation, and subscribe to an IRP version which both manager and agent can support.

 This should permit the management system to support the notifications correctly.

Note however that should the agent support backward compatible IDL, it should only support the notifications with the

set and range of data values defined for the subscribed release.

It would not be acceptable for the agent system to send any notification that is valid within release N+1, to a management system, which has subscribed and, is therefore expecting notifications at release N.

Neither is it acceptable for an IRP agent to send a notification at release N-1 to an IRP manger at release N.
Annex F
Backward compatibility consideration for CMIP solution sets

This section is for further study
Annex F
Backward compatibility consideration for CORBA solution sets

F.1
Introduction

The intent of this annex is threefold. The first intent is for 3GPP internal use to document how a 3GPP CORBA Solution Set is produced and how it is structured. The second intent with the annex is to give the reader or implementor of a CORBA Solution Set a better understanding on how to interpret the CORBA Solution Set document. The last and maybe most important intent is to put requirement on an implementor of a CORBA Solution Set.

F.2
Rules for specification of CORBA Solution Sets

F.2.1
Introduction

This clause identifies rules for specification of CORBA Solution Sets. This clause is mainly for 3GPP internal use. It is only for information for the implementor of a CORBA Solution Set.

F.2.2
Pragma prefix

All IDL-code shall define the pragma prefix using the following statement:

#pragma prefix "3gppsa5.org"

This should appear following all #include statements, but before the initial module definition and any other identifiers.

F.3
Implementation aspects of CORBA Solution Sets

F.3.1
Introduction

This clause identifies rules for the implementation of CORBA Solution Sets. This clause is normative for the implementor of a CORBA Solution Set.

F.3.2
IRPAgent behaviour on incoming optional method

The IRPAgent, claiming compliance to a particular SS version of a particular IRP such as the Alarm IRP, shall implement all mandatory and all optional methods. Each method implementation shall have a signature specifying all mandatory and all optional parameters.

-
If the IRPAgent does not support a particular optional method, it shall throw the OperationNotSupported exception when the IRPManager invokes that method.

-
If the IRPAgent have not implemented a particular method (because it is compiled with an IDL version that does not define the method), the CORBA ORB of the IRPAgent shall throw a system exception if the IRPManager invokes that method.

In all the above cases when an exception is thrown, the IRPAgent shall restore its state before the method invocation.

F.3.3
IRPAgent Behaviour on incoming optional parameter of operation

An IRPAgent must implement all optional parameters, as well as mandatory parameters, in all methods.

If the IRPAgent supports the implemented method but does not support its (one or more) optional input parameters, upon method invocation, the IRPAgent shall check if those parameters carry "no information" or absence semantics (defined later in sub-clause "Encoding rule for absence semantics"). If the check is negative, the IRPAgent shall throw the ParameterNotSupported exception with a string carrying the name of the unsupported optional parameter.

F.3.4
IRPAgent Behaviour on outgoing attributes of Notification

CORBA SS uses OMG defined structured event to carry notification. The structured event is partitioned into header and body.

The absence semantics of attribute in the header is realised by a string of zero length.

The body consists of one or more name-value pair attributes. The absence semantics of these attributes is realised by their absence.

For optional sub-attributes of an attribute carried by the name-value pair, their absence semantics is realised by the encoding rule of "absence semantics". See sub-clause E.3.5, "Encoding rule of absence semantics".

F.3.5
Encoding rule of absence semantics

The operation parameters are mapped to method parameters of CORBA SS. The absence semantics for an operation (input and output) parameter is method parameter type dependent.

· For a string type, if the parameter is specified as a string type, the absence semantics is a string of zero length. If the parameter is specified as a union structure (preferred), the absence semantics is conveyed via a FALSE Boolean value switch.

· For an integer type, if the parameter is specified as a signed, unsigned, long, etc type, the absence semantics is the highest possible positive number. If the parameter is specified as a union structure (preferred), the absence semantics is conveyed via a FALSE Boolean value switch.

· For a boxed valueType (supported by CORBA 2.3), it is the null value.

The notification parameters are mapped to attributes of the CORBA Structured Events. The absence semantics for a notification parameter is attribute position (within the Structured Event) dependent.

· For the fixed header of the Structured Event header, the absence semantics is realised by a string of zero length.

· For the filterable body fields of the Structured Event body, the absence semantics is realised by the absence of the corresponding attribute.

F.4
IDL file name rule

CORBA IDL uses "#include "X"" statement where X is a name of a file containing IDL statements. In the CORBA Solution Set, IDL statements are specified.

The rule defined here specifies

(a) the IDL statements that shall belong to one file; and

(b) the name of the file.

Rule: In the Annex where IDL statements are defined, use a special marker to indicate that a set of IDL statements shall be contained in one file. If this is the first released version of this CORBA IDL file, the name of the file shall be the name of the first IDL module of that set (of IDL statements) followed by ".idl". If this is a subsequent release version of this CORBA IDL file, the name of the file shall be the name of the first IDL module of that set (of IDL statements) with "_r", a release number and ".idl" appended.

As an example, if the first module in a CORBA IDL file is called AlarmIRPConstDefs, then the CORBA IDL file would be named as follows:

(a) AlarmIRPConstDefs.idl (if this is the first release that this file occurs)

(b) AlarmIRPConstDefs_r6.idl (if the file changed in R6 and this is not the first release of the file)

F.5
COBRA IDL Unique Constant Rule

Typical practice with CORBA IDL files is to provide a unique constant in the CORBA IDL that will prevent double inclusion of the IDL identifiers. If this is the first released version of this CORBA IDL file, the name of this constant shall be the name of the first IDL module of that set (of IDL statements) followed by "_idl". If this is a subsequent release version of this CORBA IDL file, the name of this constant shall be the name of the first IDL module of that set (of IDL statements) with "_R", a release number and "_idl" appended.

As an example, if the first module in a CORBA IDL file is called AlarmIRPConstDefs and if this is the first release that this file occurs, we would use:

#include AlarmIRPConstDefs_idl

#define AlarmIRPConstDefs_idl

. . .

#endif
If the file changed in R6 and this is not the first release of the file, we would use:

#include AlarmIRPConstDefs_R6_idl

#define AlarmIRPConstDefs_R6_idl

. . .

#endif

F.6
CORBA IDL Backward Compatibility

Using 3GPP R5 as a starting point, all subsequent 3GPP CORBA IDL shall be backward compatible with the previous releases of CORBA IDL. In this context, backward compatible means that a single program can compile the CORBA IDL from multiple releases. Subsequence clauses list the rules for providing backward compatible IDL.

F.6.1
New CORBA IDL Files

CORBA IDL files that only contain modules whose name(s) have not been used in previous releases (starting from 3GPP R5) do not need to be adjusted to be made backward compatible.

F.6.2
Unchanged CORBA IDL Files

If there are no changes to a CORBA IDL file for a particular release (starting from 3GPP R5) then no CORBA IDL file will be required for that particular release. Software will use the previous release version(s) of the CORBA IDL.

If the only changes are in comments, then this shall be provided in the 3GPP specification and no CORBA IDL file will be required for that particular release.

F.6.3
Revised CORBA IDL Files

If there are any changes to CORBA IDL #include files, constant definitions, type definitions, enumerations, enumeration constants, interfaces, methods, modules, etc. for a subsequent release CORBA IDL file, then the CORBA IDL file needs to be made backward compatible by following the subsequent steps.

F.6.3.1
CORBA IDL File Update Comments

Each revised CORBA IDL file shall include initial comments specifying what identifiers are no longer supported for this release, what identifiers are new in this release and what identifiers have been modified in this release.

F.6.3.2
Module Name

The new identifiers shall be defined within the same module name(s) as the existing interface. (CORBA modules are really just name spaces, and may be spread across multiple files.)

F.6.3.3
Indicating Revisions in Interfaces

The following rules apply to extending an existing interface providing for backward compatibility.

Note that these rules apply only to extensions being made to a base class that do not result in changing the business purpose of the object. That is, the new class models the same resource as the old class; it simply has some additional or changed capabilities. If this business purpose of the object changes, then a new interface with a new name should be used.

1. Interfaces that do not change from previous versions of the interface would not appear in the revised CORBA IDL file.

2. The name of the new interface shall be the same as the existing interface with the letters "_r" and a numeral appended, depending on the 3GPP release. Subsequent extensions will similarly be updated. So, extending an interface for AlarmInformationIterator interface in R6 would result in an interface named AlarmInformationIterator_r6.

3. The new interface shall inherit from the existing interface.

4. Capabilities inherited from the existing interface cannot be removed or modified in the new interface. If a method definition must be modified, a new operation must be defined. The name of the new method shall be the same as the existing operation with the letters "_r" and a numeral appended, depending on the 3GPP release. Subsequent extensions will similarly be updated.

5. References to the new interfaces should be of the most specific type for the particular release. (If they aren't, the new capabilities can't be accessed.)

For example, consider the following interface:

interface Foo

{

void action(in int A, in int B);

};
The action method might be extended in R6 like this:

interface Foo_r6 : Foo

{

void action_r6(in int A, in int B, in int C);

};
In the previous release(s), the action method of interface Foo would be accessed. In R6 (and subsequent releases, until the interface is again changed), the action_r6 of interface Foo_r6 would be accessed.

6. With changes involving interfaces and multiple inheritances, some thought must be given as to where the changes belong.

F.6.3.4
Indicating Revisions In Other Types Of Identifiers

A similar approach, appending the name with "_r" and the 3GPP release number, shall be used when other existing IDL definitions are revised, including constant definitions, type definitions, enumerations and enumeration constants, etc.

The OMG CORBA specification December 2002 Version 3.0 formal/02-12-06 defines the following types.

The backward compatibility rules for each of these types is provided in the following sub subsections.
F.6.3.4.1
16-bit, 32-bit, and 64-bit signed and unsigned 2’s complement integers.

There is no special consideration necessary when producing a new release which extends the previous release with this type.
It is shown by appending the "_rn" to the identifier(s) associated with this type.

F.6.3.4.2
Single-precision (32-bit), double-precision (64-bit), and double-extended (amantissa of at least 64 bits, a sign bit and an exponent of at least 15 bits) IEEE floating point numbers.

There is no special consideration necessary when producing a new release which extends the previous release with this type.
It is shown by appending the "_rn" to the identifier(s) associated with this type.

F.6.3.4.3
Fixed-point decimal numbers of up to 31 significant digits.

There is no special consideration necessary when producing a new release which extends the previous release with this type.
It is shown by appending the "_rn" to the identifier(s) associated with this type.

F.6.3.4.4
Characters, as defined in ISO Latin-1 (8859.1) and other single- or multi-byte character sets.

There is no special consideration necessary when producing a new release which extends the previous release with this type.
It is shown by appending the "_rn" to the identifier(s) associated with this type.

F.6.3.4.5
A Boolean type taking the values TRUE and FALSE.

There is no special consideration necessary when producing a new release which extends the previous release with this type.
It is shown by appending the "_rn" to the identifier(s) associated with this type.

F.6.3.4.6
An 8-bit opaque detectable, guaranteed to not undergo any conversion during transfer between systems.

There is no special consideration necessary when producing a new release which extends the previous release with this type.
It is shown by appending the "_rn" to the identifier(s) associated with this type.

F.6.3.4.7
Enumerated types consisting of ordered sequences of identifiers.

Note that enumeration constants are considered identifiers in CORBA IDL. As example, adding the meal “breakfast” to the following enumeration:

enum meal

{

lunch,

dinner

};
would require the following updates (if updated in 3GPP R6):

enum meal_r6

{

breakfast,

lunch_r6,

dinner_r6

};
Note that it may be desirable for programmer convenience, to add a release indication on new identifiers. (As an example, breakfast_r6 could be used above to enhance consistency.)

F.6.3.4.8
A string type, which consists of a variable-length array of characters; the length of the string is a non-negative integer, and is available at run-time. The length may have a maximum bound defined.

There is no special consideration necessary when producing a new release which extends the previous release with this type.
It is shown by appending the "_rn" to the identifier(s) associated with this type.

F.6.3.4.9
A wide character string type, which consist of a variable-length array of (fixed width) wide characters; the length of the wide string is a non-negative integer, and is available at run-time. The length may have a maximum bound defined.

There are no special considerations necessary when producing a new release which extends the previous release with this type.
It is shown by appending the "_rn" to the identifier(s) associated with this type.

F.6.3.4.10
A container type “any,” which can represent any possible basic or constructed type.

There are no special considerations necessary when producing a new release which extends the previous release with this type.
It is shown by appending the "_rn" to the identifier(s) associated with this type.

F.6.3.4.11
Wide characters that may represent characters from any wide character set.

There are no special considerations necessary when producing a new release which extends the previous release with this type.
It is shown by appending the "_rn" to the identifier(s) associated with this type.

F.6.3.4.12
Wide character strings, which consist of a length, available at runtime, and a variable-length array of (fixed width) wide characters.

There are no special considerations necessary when producing a new release which extends the previous release with this type.
It is shown by appending the "_rn" to the identifier(s) associated with this type.

F.6.3.4.13
A record type (called struct), which consists of an ordered set of (name,value) pairs.

There are no special considerations necessary when producing a new release which extends the previous release with this type.
It is shown by appending the "_rn" to the identifier(s) associated with this type.

F.6.3.4.14
A discriminated union type, which consists of a discriminator (whose exact value is always available) followed by an instance of a type appropriate to the discriminator value.

There are no special considerations necessary when producing a new release which extends the previous release with this type.
It is shown by appending the "_rn" to the identifier(s) associated with this type.

F.6.3.4.15
A sequence type, which consists of a variable-length array of a single type; the length of the sequence is available at run-time.

There are no special considerations necessary when producing a new release which extends the previous release with this type.
It is shown by appending the "_rn" to the identifier(s) associated with this type.

F.6.3.4.16
An array type, which consists of a fixed-shape multidimensional array of a single type.

There are no special considerations necessary when producing a new release which extends the previous release with this type.
It is shown by appending the "_rn" to the identifier(s) associated with this type.

F.6.3.4.17
An interface type, which specifies the set of operations that an instance of that type must support.

There are no special considerations necessary when producing a new release which extends the previous release with this type.
It is shown by appending the "_rn" to the identifier(s) associated with this type.

F.6.3.4.18
A value type, which specifies state as well as a set of operations that an instance of that type must support.

There are no special considerations necessary when producing a new release which extends the previous release with this type.
It is shown by appending the "_rn" to the identifier(s) associated with this type.

Changes to comments need to be included, even if the identifiers have not changed.

Remember that changing an identifier may result in the changing of other identifiers, which may result in the changing of other identifiers, and so on. Changing an identifier requires the changing of all the places it is used, and all of the places they are used, and so on.

All CORBA IDL changes (other than comments) result in transformations, even spelling changes (without changing the type) or adding typedefs without changing the meaning (for example, instead of using type string, use a typedef defined as a string). For example, consider the following interface:

interface Foo

{

void method(in int A, in int B);

};
Adding a typedef to the type of attribute B in 3GPP R6, could look like the following:

typedef int BType;

interface Foo_r6 : Foo

{

void method_r6(in int A, in BType B);

};

F.6.3.5
Indicating Identifiers That Have Not Changed

Identifiers that have no changes from previous values will not be included in the revised CORBA IDL file. They will be referenced via #include of the previous CORBA IDL files.

F.6.3.6
Indicating New Identifiers

Identifiers that are new to a revised CORBA IDL File are used without appending the release marker ("_rn"

F.6.3.7
Referencing Previous CORBA IDL Files

Once changes are required for a particular CORBA IDL file, the previous CORBA IDL file must be included via a #include reference. As an example, if the AlarmIRPConstDefs module was revised in R6 (first revision) and in R7 (second revision), the following additional references would be required:

In AlarmIRPConstDefs_r6.idl:

#include "AlarmIRPConstDefs.idl"

In AlarmIRPConstDefs_r7.idl:

#include "AlarmIRPConstDefs.idl"

#include "AlarmIRPConstDefs_r6.idl"
Order CORBA IDL header file #include statements by releases (put all of the IDL files for the initial release first, then all of the IDL files of the next release following them, and so on).

Annex G
Backward compatibility consideration for XML definitions

This section is for further study

Annex H
Version dependency between IRP manager, and IRP Agent

The manger to agent interfaces has considerable dependency between the set of IRPs used for a particular release.

e.g. constant definitions, notification types etc.

It is recommended that a manager and agent instance communicate using a set of IRPs which comply to a single release version., and that no attempt to communicate using a "pick and mix" of IRPS at different releases is suggested or attempted.

Annex H (informative):
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

_1118660685.vsd

_1118663805.vsd

_1137413120.vsd

_1100077299.vsd

