S5-037131

3GPP TSG-SA5 (Telecom Management)
S5-037131r1
Meeting #35bis, New Orleans, LOUISIANA, USA, 06 - 10 Oct 2003

Source:
John Islip (islip@lucent.com), Mohan Rao (mohanr@lucent.com), Randall Scheer (rjscheer@lucent.com)
Title:
3GPP SA5 CORBA Backward Compatibility

Document for:
Discussion and decision
Agenda Item:
To Be Determined

Work Item:
OAM-NIM
WT addressed:
WT 09 - Backward Compatibility
Specs involved:
3GPP TS 32.102
1. INTRODUCTION

This document proposes updates to 3GPP TS 32.102 Annex F (Rules for CORBA Solution Sets) to provide instructions for providing backward compatible CORBA IDL. The proposed updated 3GPP SA5 R6 Annex F is listed below. The new text is in blue.

Annex F (normative):
Rules for CORBA Solution Sets
F.1
Introduction

The intent of this annex is threefold. The first intent is for 3GPP internal use to document how a 3GPP CORBA Solution Set is produced and how it is structured. The second intent with the annex is to give the reader or implementor of a CORBA Solution Set a better understanding on how to interpret the CORBA Solution Set document. The last and maybe most important intent is to put requirement on an implementor of a CORBA Solution Set.

It can be noted that it is expected that this annex is to be extended in later versions of the present document.

F.2
Rules for specification of CORBA Solution Sets

F.2.1
Introduction

This clause identifies rules for specification of CORBA Solution Sets. This clause is mainly for 3GPP internal use. It is only for information for the implementor of a CORBA Solution Set.

F.2.2
Pragma prefix

All IDL-code shall define the pragma prefix using the following statement:

#pragma prefix "3gppsa5.org"

This should appear following all #include statements, but before the initial module definition and any other identifiers.

F.3
Implementation aspects of CORBA Solution Sets

F.3.1
Introduction
This clause identifies rules for the implementation of CORBA Solution Sets. This clause is normative for the implementor of a CORBA Solution Set.

F.3.2
IRPAgent behaviour on incoming optional method

The IRPAgent, claiming compliance to a particular SS version of a particular IRP such as the Alarm IRP, shall implement all mandatory and all optional methods. Each method implementation shall have a signature specifying all mandatory and all optional parameters.

-
If the IRPAgent does not support a particular optional method, it shall throw the OperationNotSupported exception when the IRPManager invokes that method.

-
If the IRPAgent have not implemented a particular method (because it is compiled with an IDL version that does not define the method), the CORBA ORB of the IRPAgent shall throw a system exception if the IRPManager invokes that method.

In all the above cases when an exception is thrown, the IRPAgent shall restore its state before the method invocation.

F.3.3
IRPAgent Behaviour on incoming optional parameter of operation

An IRPAgent must implement all optional parameters, as well as mandatory parameters, in all methods.

If the IRPAgent supports the implemented method but does not support its (one or more) optional input parameters, upon method invocation, the IRPAgent shall check if those parameters carry "no information" or absence semantics (defined later in sub-clause "Encoding rule for absence semantics"). If the check is negative, the IRPAgent shall throw the ParameterNotSupported exception with a string carrying the name of the unsupported optional parameter.

F.3.4
IRPAgent Behaviour on outgoing attributes of Notification

CORBA SS uses OMG defined structured event to carry notification. The structured event is partitioned into header and body.

The absence semantics of attribute in the header is realised by a string of zero length.

The body consists of one or more name-value pair attributes. The absence semantics of these attributes is realised by their absence.

For optional sub-attributes of an attribute carried by the name-value pair, their absence semantics is realised by the encoding rule of "absence semantics". See sub-clause E.3.5, "Encoding rule of absence semantics".

F.3.5
Encoding rule of absence semantics

The operation parameters are mapped to method parameters of CORBA SS. The absence semantics for an operation (input and output) parameter is method parameter type dependent.

· For a string type, if the parameter is specified as a string type, the absence semantics is a string of zero length. If the parameter is specified as a union structure (preferred), the absence semantics is conveyed via a FALSE Boolean value switch.

· For an integer type, if the parameter is specified as a signed, unsigned, long, etc type, the absence semantics is the highest possible positive number. If the parameter is specified as a union structure (preferred), the absence semantics is conveyed via a FALSE Boolean value switch.

· For a boxed valueType (supported by CORBA 2.3), it is the null value.

The notification parameters are mapped to attributes of the CORBA Structured Events. The absence semantics for a notification parameter is attribute position (within the Structured Event) dependent.

· For the fixed header of the Structured Event header, the absence semantics is realised by a string of zero length.

· For the filterable body fields of the Structured Event body, the absence semantics is realised by the absence of the corresponding attribute.

F.4
IDL file name rule

CORBA IDL uses "#include "X"" statement where X is a name of a file containing IDL statements. In the CORBA Solution Set, IDL statements are specified.

The rule defined here specifies

(a) the IDL statements that shall belong to one file; and

(b) the name of the file.

Rule: In the Annex where IDL statements are defined, use a special marker to indicate that a set of IDL statements shall be contained in one file. If this is the first released version of this CORBA IDL file, the name of the file shall be the name of the first IDL module of that set (of IDL statements) followed by ".idl". If this is a subsequent release version of this CORBA IDL file, the name of the file shall be the name of the first IDL module of that set (of IDL statements) with "_r", a release number and ".idl" appended.

As an example, if the first module in a CORBA IDL file is called AlarmIRPConstDefs, then the CORBA IDL file would be named as follows:

(a) AlarmIRPConstDefs.idl (if this is the first release that this file occurs)

(b) AlarmIRPConstDefs_r6.idl (if the file changed in R6 and this is not the first release of the file)

F.5
COBRA IDL Unique Constant Rule

Typical practice with CORBA IDL files is to provide a unique constant in the CORBA IDL that will prevent double inclusion of the IDL identifiers. If this is the first released version of this CORBA IDL file, the name of this constant shall be the name of the first IDL module of that set (of IDL statements) followed by "_idl". If this is a subsequent release version of this CORBA IDL file, the name of this constant shall be the name of the first IDL module of that set (of IDL statements) with "_R", a release number and "_idl" appended.

As an example, if the first module in a CORBA IDL file is called AlarmIRPConstDefs and if this is the first release that this file occurs, we would use:

#include AlarmIRPConstDefs_idl

#define AlarmIRPConstDefs_idl

. . .

#endif
If the file changed in R6 and this is not the first release of the file, we would use:

#include AlarmIRPConstDefs_R6_idl

#define AlarmIRPConstDefs_R6_idl

. . .

#endif
F.6
CORBA IDL Backward Compatibility

Using 3GPP R5 as a starting point, all subsequent 3GPP CORBA IDL shall be backward compatible with the previous releases of CORBA IDL. In this context, backward compatible means that a single program can compile the CORBA IDL from multiple releases. Subsequence clauses list the rules for providing backward compatible IDL.

F.6.1
New CORBA IDL Files

CORBA IDL files that only contain modules whose name(s) have not been used in previous releases (starting from 3GPP R5) do not need to be adjusted to be made backward compatible.

F.6.2
Unchanged CORBA IDL Files

If there are no changes to a CORBA IDL file for a particular release (starting from 3GPP R5) then no CORBA IDL file will be required for that particular release. Software will use the previous release version(s) of the CORBA IDL.

If the only changes are in comments, then this shall be provided in the 3GPP specification and no CORBA IDL file will be required for that particular release.

F.6.3
Revised CORBA IDL Files

If there are any changes to CORBA IDL #include files, constant definitions, type definitions, enumerations, enumeration constants, interfaces, methods, modules, etc. for a subsequent release CORBA IDL file, then the CORBA IDL file needs to be made backward compatible by following the subsequent steps.

F.6.3.1
CORBA IDL File Update Comments

Each revised CORBA IDL file shall include initial comments specifying what identifiers are no longer supported for this release, what identifiers are new in this release and what identifiers have been modified in this release.

F.6.3.2
Module Name

The new identifiers shall be defined within the same module name(s) as the existing interface. (CORBA modules are really just name spaces, and may be spread across multiple files.)

F.6.3.3
Indicating Revisions in Interfaces
The following rules apply to extending an existing interface providing for backward compatibility.

Note that these rules apply only to extensions being made to a base class that do not result in changing the business purpose of the object. That is, the new class models the same resource as the old class; it simply has some additional or changed capabilities. If this business purpose of the object changes, then a new interface with a new name should be used.

1. Interfaces that do not change from previous versions of the interface would not appear in the revised CORBA IDL file.

2. The name of the new interface shall be the same as the existing interface with the letters "_r" and a numeral appended, depending on the 3GPP release. Subsequent extensions will similarly be updated. So, extending an interface for AlarmInformationIterator interface in R6 would result in an interface named AlarmInformationIterator_r6.

3. The new interface shall inherit from the existing interface.

4. Capabilities inherited from the existing interface cannot be removed or modified in the new interface. If a method definition must be modified, a new operation must be defined. The name of the new method shall be the same as the existing operation with the letters "_r" and a numeral appended, depending on the 3GPP release. Subsequent extensions will similarly be updated.

5. References to the new interfaces should be of the most specific type for the particular release. (If they aren't, the new capabilities can't be accessed.)

For example, consider the following interface:

interface Foo

{

void action(in int A, in int B);

};
The action method might be extended in R6 like this:

interface Foo_r6 : Foo

{

void action_r6(in int A, in int B, in int C);

};
In the previous release(s), the action method of interface Foo would be accessed. In R6 (and subsequent releases, until the interface is again changed), the action_r6 of interface Foo_r6 would be accessed.

6. With changes involving interfaces and multiple inheritances, some thought must be given as to where the changes belong.

F.6.3.4
Indicating Revisions In Other Types Of Identifiers

A similar approach, appending the name with "_r" and the 3GPP release number, shall be used when other existing IDL definitions are revised, including constant definitions, type definitions, enumerations and enumeration constants, etc.

The OMG CORBA specification December 2002 Version 3.0 formal/02-12-06 defines the following types.
The backward compatibility rules for each of these types is provided in the following sub subsections.
F.6.3.4.1
16-bit, 32-bit, and 64-bit signed and unsigned 2’s complement integers.

There is no special consideration necessary when producing a new release which extends the previous release with this type.
It is shown by appending the "_rn" to the identifier(s) associated with this type.
F.6.3.4.2

Single-precision (32-bit), double-precision (64-bit), and double-extended (amantissa of at least 64 bits, a sign bit and an exponent of at least 15 bits) IEEE floating point numbers.
There is no special consideration necessary when producing a new release which extends the previous release with this type.
It is shown by appending the "_rn" to the identifier(s) associated with this type.

F.6.3.4.3
Fixed-point decimal numbers of up to 31 significant digits.
There is no special consideration necessary when producing a new release which extends the previous release with this type.
It is shown by appending the "_rn" to the identifier(s) associated with this type.

F.6.3.4.4
Characters, as defined in ISO Latin-1 (8859.1) and other single- or multi-byte character sets.

There is no special consideration necessary when producing a new release which extends the previous release with this type.
It is shown by appending the "_rn" to the identifier(s) associated with this type.

F.6.3.4.5
A boolean type taking the values TRUE and FALSE.

There is no special consideration necessary when producing a new release which extends the previous release with this type.
It is shown by appending the "_rn" to the identifier(s) associated with this type.

F.6.3.4.6
An 8-bit opaque detectable, guaranteed to not undergo any conversion during transfer between systems.
There is no special consideration necessary when producing a new release which extends the previous release with this type.
It is shown by appending the "_rn" to the identifier(s) associated with this type.

F.6.3.4.7
Enumerated types consisting of ordered sequences of identifiers.
Note that enumeration constants are considered identifiers in CORBA IDL. As example, adding the meal “breakfast” to the following enumeration:

enum meal

{

lunch,

dinner

};
would require the following updates (if updated in 3GPP R6):

enum meal_r6

{

breakfast,

lunch_r6,

dinner_r6

};
Note that it may be desirable for programmer convenience, to add a release indication on new identifiers. (As an example, breakfast_r6 could be used above to enhance consistency.)

F.6.3.4.8
A string type, which consists of a variable-length array of characters; the length of the string is a non-negative integer, and is available at run-time. The length may have a maximum bound defined.
There is no special consideration necessary when producing a new release which extends the previous release with this type.
It is shown by appending the "_rn" to the identifier(s) associated with this type.

F.6.3.4.9
A wide character string type, which consist of a variable-length array of (fixed width) wide characters; the length of the wide string is a non-negative integer, and is available at run-time. The length may have a maximum bound defined.
There are no special considerations necessary when producing a new release which extends the previous release with this type.
It is shown by appending the "_rn" to the identifier(s) associated with this type.

F.6.3.4.10
A container type “any,” which can represent any possible basic or constructed type.
There are no special considerations necessary when producing a new release which extends the previous release with this type.
It is shown by appending the "_rn" to the identifier(s) associated with this type.

F.6.3.4.11
Wide characters that may represent characters from any wide character set.
There are no special considerations necessary when producing a new release which extends the previous release with this type.
It is shown by appending the "_rn" to the identifier(s) associated with this type.

F.6.3.4.12
Wide character strings, which consist of a length, available at runtime, and a variable-length array of (fixed width) wide characters.
There are no special considerations necessary when producing a new release which extends the previous release with this type.
It is shown by appending the "_rn" to the identifier(s) associated with this type.

F.6.3.4.13
A record type (called struct), which consists of an ordered set of (name,value) pairs.
There are no special considerations necessary when producing a new release which extends the previous release with this type.
It is shown by appending the "_rn" to the identifier(s) associated with this type.

F.6.3.4.14
A discriminated union type, which consists of a discriminator (whose exact value is always available) followed by an instance of a type appropriate to the discriminator value.
There are no special considerations necessary when producing a new release which extends the previous release with this type.
It is shown by appending the "_rn" to the identifier(s) associated with this type.

F.6.3.4.15
A sequence type, which consists of a variable-length array of a single type; the length of the sequence is available at run-time.
There are no special considerations necessary when producing a new release which extends the previous release with this type.
It is shown by appending the "_rn" to the identifier(s) associated with this type.

F.6.3.4.16
An array type, which consists of a fixed-shape multidimensional array of a single type.
There are no special considerations necessary when producing a new release which extends the previous release with this type.
It is shown by appending the "_rn" to the identifier(s) associated with this type.

F.6.3.4.17
An interface type, which specifies the set of operations that an instance of that type must support.
There are no special considerations necessary when producing a new release which extends the previous release with this type.
It is shown by appending the "_rn" to the identifier(s) associated with this type.

F.6.3.4.18
A value type, which specifies state as well as a set of operations that an instance of that type must support.
There are no special considerations necessary when producing a new release which extends the previous release with this type.
It is shown by appending the "_rn" to the identifier(s) associated with this type.

Changes to comments need to be included, even if the identifiers have not changed.

Remember that changing an identifier may result in the changing of other identifiers, which may result in the changing of other identifiers, and so on. Changing an identifier requires the changing of all the places it is used, and all of the places they are used, and so on.

All CORBA IDL changes (other than comments) result in transformations, even spelling changes (without changing the type) or adding typedefs without changing the meaning (for example, instead of using type string, use a typedef defined as a string). For example, consider the following interface:

interface Foo

{

void method(in int A, in int B);

};
Adding a typedef to the type of attribute B in 3GPP R6, could look like the following:

typedef int BType;

interface Foo_r6 : Foo

{

void method_r6(in int A, in BType B);

};
F.6.3.5
Indicating Identifiers That Have Not Changed

Identifiers that have no changes from previous values will not be included in the revised CORBA IDL file. They will be referenced via #include of the previous CORBA IDL files.

F.6.3.6
Indicating New Identifiers

Identifiers that are new to a revised CORBA IDL File are used without appending the release marker ("_rn"
F.6.3.7
Referencing Previous CORBA IDL Files

Once changes are required for a particular CORBA IDL file, the previous CORBA IDL file must be included via a #include reference. As an example, if the AlarmIRPConstDefs module was revised in R6 (first revision) and in R7 (second revision), the following additional references would be required:

In AlarmIRPConstDefs_r6.idl:

#include "AlarmIRPConstDefs.idl"

In AlarmIRPConstDefs_r7.idl:

#include "AlarmIRPConstDefs.idl"

#include "AlarmIRPConstDefs_r6.idl"
Order CORBA IDL header file #include statements by releases (put all of the IDL files for the initial release first, then all of the IDL files of the next release following them, and so on).

PAGE
NOTICE
This document has been prepared by Lucent Technologies Inc. (“Lucent”) to assist 3GPP subcommittee SA5. It is proposed to the subcommittee as a basis for discussion and is not to be construed as a binding proposal on Lucent. Lucent specifically reserves the right to amend or modify the material contained herein and nothing herein shall be construed as conferring or offering licenses or rights with respect to any intellectual property of Lucent.

Page 9 of 9

