3GPP TSG-SA5 (Telecom Management)
S5-038321

Meeting #34, Sophia Antipolis, FRANCE, 19-23 May 2003

Source:
[image: image1.png]
(Rick Porter, fdpo@research.telcordia.com,
 B. Dasarathy, das@research.telcordia.com,

 Krishna Kant, kkant@research.telcordia.com)

Title:
Addition of PM configuration data to NRMs
Document for:
Discussion
Agenda Item:
Joint SWG-C/D (Performance Management)
Work Item:
OAM-PM
WT addressed
WT1
Specs involved:
TS 32.622, TS 32.403, TS 32.632, TS 32.642, TS 32.411, Draft TS 32.412
Background

This contribution continues the discussion that was started in Berlin with “S5-038213r1 PM ManagedEntityConfigurationQuery.” It also includes some of the functionality that was requested via “S5-038215 SupportedGranularityPeriods.” Both of these earlier contributions addressed the question of how an IRPManager can discover PM-related configuration of an IRPAgent. This contribution attempts to clarify the issues and add more detail to the previous discussion.

Justification

This contribution proposes adding PM configuration information to the NRMs. Currently, the NRMs do not include PM-related information. The justification for making this addition to the NRMs is as follows:

Draft TS 32.412 (v0.1.3) includes operations createMeasurementJob in the PMIRPOperations_1 Interface and createThresholdMonitor in the PMIRPOperations_2 Interface. The inputs to these operations include (but are not limited to):

1. the managed entity class name for the objects to be monitored (moClass)

2. a list of instances of this class to monitor (moInstanceList)

3. a list of measurement types to monitor on these instances (measurementCategoryList)

4. the granularity period for the MeasurementJob (granularityPeriod)

It is thus highly desirable for the IRPManager to be able to determine valid values for these inputs. One use case for this is a GUI that displays to the user a list of choices when he is creating a measurement job. Another use case is non-GUI code in an IRPManager that attempts to pick the best granularity period for the measurement job based on what is supported by the IRPAgent.

If this configuration information is not available via a standard interface, then either the PM IRPManager is very static and contains hard-coded configuration data (e.g., as fixed choices in a GUI), or the PM IRPManager is slightly more dynamic and depends on some external mechanism to get the configuration information. For example, this information could be extracted from user manuals and entered into configuration files (which must be updated with each update to the equipment). There are several problems with such an approach. First, it is a time-consuming and error-prone job to write the configuration files. Second, there is the danger that the configuration files will be out of sync with the equipment. It is better to have the equipment be “self-describing.” Third, there is no standard for such configuration files, so if equipment vendors were to provide them (rather than making the user extract the information from manuals) an IRPManager which supports multiple vendors would have to be able to read multiple proprietary file formats.

NRM Additions

If appropriate additions are made to the NRMs, the Basic CM or Bulk CM operations could be used to retrieve the needed information. The required additions to the NRMs are as follows:

· Associated with each PM object class there should be a list of the standard measurement types that the IRPAgent supports (for that object class). Although the spec (32.403) defines standard performance measurements associated with each object class, it is optional for an IRPAgent to support them. Thus, it is important to indicate which measurements are actually supported by the implementation. Valid values for measurement types in the NRMs would come from the values listed in the item (e)’s of the performance measurements listed in 32.403 (e.g., RAB.AttEstabCS.Conv).

· Associated with each PM object class there should be a list of vendor-specific measurements that the IRPAgent supports (for that object class). Each item in this list would contain most of the data described in the Measurement Definition Template in 32.403; i.e., measurement name, description, collection method, result type, object class. (Note that although this is vendor-specific data, its structure is standardized. Thus, vsDataContainer – intended to model vendor extensions – is not sufficient to model it.)

· For each measurement type supported by the IRPAgent (both standard and vendor-specific), there should be an associated list of supported granularity periods. It is recognized that the fact that an IRPAgent supports a particular granularity period on a measurement does not necessarily mean that it will always be able to successfully create a measurement job on that measurement at that granularity period. Other factors, such as system load, may prevent it. In spite of this, the range of potentially valid granularity periods is still useful information for the IRPManager to discover.

Modelling the NRM Additions

We assume that the PM configuration information is the same for all PM objects of a particular object class under an IRPAgent. For example, all UtranCells under an IRPAgent in a particular implementation would support the same set of measurements and granularity periods. If this is true, then the PM configuration information should not be contained in individual PM objects, but should be contained directly under the IRPAgent. A new class should be created to contain the PM configuration information. This class would contain the following attributes:
· The name of the performance object class to which it applies

· A list of the supported standard measurement types for the performance object class

· A list of supported vendor-specific measurements (as explained above) for the performance object class

· A mapping from measurement type (both standard and vendor-specific) to a list of supported granularity periods

If PM configuration information is not necessarily the same for all performance objects of a particular object class under an IRPAgent, then an instance of the PM configuration class should be contained by each PM object.
Suggestions on how best to model this are welcome.

