3GPP TSG S5 (Telecom Management)
Meeting #28, Antipoles, France

May, 2002
Tdoc S5 026133

Title:

Source:
Edwin Tse, Edwin.Tse@ericsson.ca
Dave Raymer, David.Raymer@motorola.com
Olaf Pollakowski, olaf.pollakowski@icn.siemens.de

Agenda item:
SWG-C / WT 15

Document for:
Discussion / Decision

Category:
B

Work Item ID:
OAM-NIM

Doc Summary:
UML Repertoire for IRP IS

Specs involved:
To be determined

Intent

This document identifies the set of UML notations for use by all IRP IS specifications. The set is termed UML Repertoire for IRP IS.

21
Introduction

2
References
2
3
Requirements
2
4
Model Elements and Notations
3
4.1
Basic model elements
3
4.2
Stereotype
3
4.2.1
<<Interface>>
3
4.2.2
<<Type>>
4
4.2.3
<<ProxyClass>>
5
4.2.4
<<Archetype>>
6
4.2.5
<<InformationObjectClass>>
7
4.2.6
<<use>> and <<may use>>
8
4.2.7
Relation realize and <<may realize>>
9
4.2.8
<<emits>>
10
4.2.9
<<names>>
10
4.3
Visibility
11

Annex ? (normative):

3GPP IRP-IS UML Modeling Repertoire

1 Introduction

3GPP SA5 has chosen UML to capture systems behavior in the IRP IS context.

UML provides a rich set of concepts, notations and model elements to model distributive systems. Usage of all UML notations or model elements is not necessary for the purpose of IRP IS specifications. This annex documents the necessary and sufficient set of UML notations, including the ones built by the UML extension mechanism <<stereotype>>, for use by 3GPP IRP IS authors. Collectively, this set of notations and model elements is called the 3GPP IRP IS modeling repertoire.

The selection of the UML notations and model elements in this repertoire is based on the needs of the existing 3GPP IRP IS specifications. Future IRP IS releases may require the use of additional UML notations or model elements.

IRP IS specifications shall employ the UML notation and model elements of this repertoire and may also employ other UML notation and model elements considered necessary. However before any other UML notation and model elements may be employed in an approved 3GPP IRP specification, the other notation and model elements should be agreed for inclusion first in this repertoire.

All quotes are from [1].

Capitalized words are defined by various 3GPP IRP IS specifications or the reference [1].

2 References

[1] OMG Unified Modeling Language Specification, Version 1.4, September 2001

3 Requirements

IRPAgent can be characterized by several different but related models. The models can be exterior or interior to the IRPAgent. Exterior models are use case models and interior models are object models.

Current version of this Annex focuses on the interior model aspects of IRPAgents.

The notation elements captured in this repertoire shall be used to model all aspects of NRM IRP IS (such as GERAN NRM IRP: IS) and (protocol) IRP (such as Alarm IRP: IS).

4 Model Elements and Notations

4.1 Basic model elements

UML defined a number of basic model elements. This section lists the selected subset for use in the repertoire. The semantics of the selected ones are defined in [1].

· attribute

· composition

· aggregation

· operation

· association, association name

· realization (relation realize)

· generalization

· dependency

· note

· qualifier

· role name

· Actor

4.2 Stereotype

This sub-clause defines all allowable stereotypes that are summarized in the following table. Except <<Interface>>, <<Type>> and <<use>>, all other stereotypes are extension specifically designed for use in IRP IS specifications.

Table 1: Stereotypes

Stereotype
Base Class

Interface
Class

Type
Class

ProxyClass
Class

Archtetype
Classifier

InformationObjectClass
Classifier

use
Association

may use
Association

may realize
Association

emits
Association

names
Aggregation

4.2.1 <<Interface>>
“An interface is a named set of operations that characterize the behavior of an element. In the metamodel, an Interface contains a set of Operations that together define a service offered by a Classifier realizing the Interface. A Classifier may offer several services, which means that it may realize several Interfaces, and several Classifiers may realize the same Interface.

Interfaces are GeneralizableElements. Interfaces may not have Attributes, Associations, or Methods. An Interface may participate in an Association provided the Interface cannot see the Association; that is, a Classifier (other than an Interface) may have an Association to an Interface that is navigable from the Classifier but not from the Interface.”

“The purpose of an interface is to collect a set of operations that constitute a coherent service offered by classifiers. Interfaces provided a way to partition and characterize groups of operations. An interface is only a collection of operations with a name. It cannot be directly instantiated. Instantiable classifiers, such as class or use case, may use interfaces for specifying different services offered by their instances. Several classifiers may realize the same interface. All of them must contain at least the operations matching those contained in the interface. The specification of an operation contains the signature of the operation (i.e., its name, the types of the parameters and the return type). An interface does not imply any internal structure of the realizing classifier. For example, it does not include which algorithm to use for realizing an operation. An operation may, however, include a specification of the effects [e.g., with pre and post-conditions] of its invocation.” Section 2.5.4.6 of [1].

4.2.1.1 Sample

This sample shows an AlarmIRPOperations_1 <<Interface>> that has two operations. The operation visibility is public (see definition of public visibility applicable to operation in section…). The signature and return type of the operations are hidden (not shown). The AlarmIRP has a unidirectional mandatory realise relation with the <<interface>>.
Figure 1 : <<Interface>> Notation
[image: image1.emf]AlarmIRP

<<InformationObjectClass>>

AlarmIRPOperations_1

getAlarmList()

acknowledgeAlarms()

<<Interface>>

4.2.2 <<Type>>

“[A Type is] a domain of objects together with the operations applicable to the objects, without defining the physical implementation of those objects. A Type may not contain any methods, maintain its own thread of control, or be nested. However, it may have Attributes and Associations. The Associations of a Type are defined solely for the purpose of specifying the behavior of the Type's operations and do not represent the implementation of state data.”

4.2.2.1 Sample

This sample shows the NotificationIRPNotification <<Type>> that specifies the five parameters (the notification header of Notification IRP). The AlarmIRPNotification_2 <<Interface>> depends (see the dependency relation, a dotted open arrow line) on this <<Type>> for the construction of the notification emitted via the operation notifyChangedAlarm(). The visibility of attributes and operation in the example is public.

Figure 2 : <<Type>> Notation

[image: image2.emf]AlarmIRPNotification_2

+ notifyChangedAlarm()

<<Interface>>

NotificationIRPNotification

+ objectClass

+ objectInstance

+ notificationId

+ eventTime

+ systemDN

+ notificationType

<<Type>>

4.2.3 <<ProxyClass>>

It is a form or template representing a number of <<InformationObjectClass>>. It encapsulates attributes, links, methods (or operations), and interactions that are present in the represented <<InformationObjectClass>>.

The semantics of an <<proxyClass>> is that all behavior of the <<proxyClass>> are present in the represented <<InformationObjectClass>>. Since this class is simply a representation of other classes, this class cannot define its own behavior other than those already defined by the represented <<InformationObjectClass>>.

A particular <<InformationObjectClass>> can be represented by zero, one or more <<ProxyClass>> or <<Archtype>>. For example, the ManagedElement <<InformationObjectClass>> can have MonitoredEntity <<ProxyClass>> and ManagedEntity <<ProxyClass>>.

The attributes of the <<proxyClass>> are accessible by the source entity that has an association with the <<ProxyClass>>.

4.2.3.1 Sample

This shows a <<ProxyClass>> named MonitoredEntity. It represents all NRM <<InformationObjectClass>> (e.g., GgsnFunction <<InformationObjectClass>>) whose instances are being monitored for alarm conditions. The MonitoredEntity plays the role of theMonitoredEntity.

The AlarmInformation has a unidirectional relation with the MonitoredEntity. The capability of this role allows the MonitoredEntity’s attributeA to be represented in AlarmInformation.

Note that <<MonitoredEntity>> does not define attributeA. The attributeA is already defined by all <<InformationObjectClass>> represented by the <<MonitoredEntity>>, i.e., ClassA and ClassB.

Figure 3: <<ProxyClass>> and Role Notation

[image: image3.emf]MonitoredEntity

attributeA

<<ProxyClass>>

AlarmInformation

- probableCause

- otherAttributes

<<Type>>

+theMonitoredEntity

ClassA

attributeA

attributeB

attributeX

attributeY

<<InformationObjectClass>>

ClassB

attributeA

attributeB

attributeC

<<InformationObjectClass>>

4.2.4 <<Archetype>>

It is a form or template representing a number of <<InformationObjectClass>>. It encapsulates attributes, links, operations, and interactions that are typical of the represented <<InformationObjectClass>>.

The semantics of an <<archetype>> is that all attributes, links operations and interactions encapsulated by the <<archetype>> may or may not be present in the represented <<InformationObjectClass>>. The <<archetype>> represents a place holder class that is most useful in technology neutral analysis models that will require further specification and/or mapping within a more complete construction model.
4.2.4.1 Sample

This shows a <<Archetype>> named MonitoredEntity2. It represents two <<InformationObjectClass>> (e.g., ClassA and ClassB).

The X has a unidirectional relation with the MonitoredEntity2. The capability of this role allows the MonitoredEntity2 attributeA and attributeY to be represented in X.

Note that <<MonitoredEntity2>> does not define attributeA and attributeY. Either ClassA or ClassB or both have already defined these attributes.

[image: image4.emf]ClassA

attributeA

attributeB

attributeX

attributeY

<<InformationObjectClass>>

ClassB

attributeA

attributeB

attributeC

<<InformationObjectClass>>

X

<<InformationObjectClass>>

MonitoredEntity2

attributeA

attributeY

<<Archetype>>

+theMonitoredEntity2

4.2.5 <<InformationObjectClass>>

It is the descriptor for a set of network resources and network management capabilities. Each <<InformationObjectClass>> represents a set of instances with similar structure, behavior and relationships.

This <<InformationObjectClass>> and other information classes such as <<interface>> are mapped into technology specific model elements such as GDMO Managed Object Class for CMIP technology. The mapping of IS modeling constructs to technology specific modeling constructs are captured in the corresponding IRP Solution Set specifications.

The name of a <<InformationObjectClass>> has scope within the 3GPP IRP IS document in which it is specified and the name must be unique among all <<InformationObjectClass>> names within that 3GPP IRP IS document. The IRP IS document name is considered in the similar way as the UML Package-name.

The <<InformationObjectClass>> is identical to UML class except that it does not include/define methods or operations.

Reference [1] section 3.22.1 defines the semantics of UML class as follows. “A class represents a concept within the system being modeled. Classes have data structure and behavior and relationships to other elements.”

4.2.5.1 Sample

This sample shows an AlarmList <<InformationObjectClass>>.

Figure 4: <<InformationObjectClass>>> Notation

[image: image5.emf]AlarmList

- attribute1

- otherAttributes

<<InformationObjectClass>>

4.2.6 <<use>> and <<may use>>

The <<use>> and <<may use>> are unidirectional associations. The target must be an <<interface>>. The <<use>> states that the source class must have the capability to use the target <<interface>> in that it can invoke the operations defined by the <<interface>>. Support of the capability by the source entity is mandatory. The <<may use>> states that the source class may have the capability to use the target <<interface>> in that it may invoke the operations defined by the <<interface>>. Support of the capability by the source entity is optional.

The operations defined by the <<interface>> are visible across the itf-n.

4.2.6.1 Sample

This shows that the AlarmList shall use the notifyNewAlarm and otherOperations of AlarmIRPNotification_1 and may use the notifyChangedAlarm of AlarmIRPNotification_2.

Figure 5: <<use>> and <<may use>> Notation

[image: image6.emf]AlarmList

- attribute1

- otherAttributes

<<InformationObjectClass>>

<<use>>

AlarmIRPNotification_1

+ notifyNewAlarm()

+ otherOperations()

<<Interface>>

<<may use>>

AlarmIRPNotification_2

+ notifyChangedAlarm()

<<Interface>>

This shows that the MonitoredEntity can, via <<emits>>, send notification information to NotificationIRPAgent. This emission is not visible across the itf-n. The NotificationIRPAgent has the capability to invoke notifyNewAlarm() and otherOperations() of the <<Interface>>. This invocation is visible across the itf-n. The IRPManager realizes the <<Interface>>.

Figure 6: <<use>>, <<emits>> and realize relation Notation

[image: image7.emf]MonitoredEntity

objectclass

objectInstance

<<ProxyClass>>

AlarmIRPNotification_1

+ notifyNewAlarm()

+ otherOperations()

<<Interface>>

NotificationIRPAgent

<<InformationObjectClass>>

<<emits>>

<<use>>

IRPManager

<<InformationObjectClass>>

4.2.7 Relation realize and <<may realize>>

The relation realize and <<may realize>> are unidirectional association. The target must be an <<interface>>. The relation ‘realize’ shows that the source entity must realize the operations defined by the target <<interface>>. Realization of operations by the source entity is mandatory. The <<may realize>> shows the source entity may realize the operations defined by the target <<interface>>. Realization of the <<interface>> by the source entity is optional.

The operations defined by <<interface>> are visible across the itf-n.

4.2.7.1 Sample

This shows that the AlarmList shall realize (or support, implement) the two operations of AlarmIRPOperations_1 and may realize the operation of AlarmIRPOperations_2.

Figure 7: Relation realize and <<may realize>> Notations

[image: image8.emf]AlarmIRPOperations_2

+ getAlarmCount()

<<Interface>>

<<may realize>>

AlarmList

- attribute1

- otherAttributes

<<InformationObjectClass>>

AlarmIRPOperations_1

+ getAlarmList()

+ acknowledgeAlarms()

<<Interface>>

.

4.2.8 <<emits>>

This is a unidirectional association. The source sends information to target. In the case that the target is NotificationIRPAgent, the information will then carry the semantics of 3GPP notification (e.g., notifyObjectCreation, notifyNewAlarm) such that the target NotificationIRPAgent can construct the relevant 3GPP notification for reception by the NotificationIRPManager.

The visibility of the information passed by <<emits>> is always “IRPAgent Internal” (see section on “Visibility”).

4.2.8.1 Sample

This shows the MonitoredEntity (e.g., a GgsnFunction instance) emits notifications that is received by the NotificationIRPAgent. The emission is not visible across the itf-N.

Figure 8: <<emits>> Notation

[image: image9.emf]MonitoredEntity

<<ProxyClass>>

NotificationIRPAgent

<<InformationObjectClass>>

<<emits>>

4.2.9 <<names>>

It specifies a unidirectional aggregation. The target instance is uniquely identifiable, within the namespace of the source entity, among all other targeted instances of the same target classifier and among other targeted instances of other classifiers that has the same <<name>> aggregation with the source.

A source can have multiple <<names>> with multiple targets. The set of <<names>> used between the source and its targets forms the source namespace.

A target can have multiple <<names>> with multiple sources, i.e., a target can participate/belong to multiple namespaces.

By convention, the name of the attribute in the target model element to hold part of the unique identification shall be formed by the name of the target class concatenated with “Id”.

4.2.9.1 Sample

This shows that all instances of GgsnFunction are uniquely identifiable within the ManagedElement namespace.

Figure 9: <<names>> Notation

[image: image10.emf]ManagedElement

<<InformationObjectClass>>

GgsnFunction

+ ggsnFunctionId

+ otherAttributes

<<InformationObjectClass>>

<<names>>

4.3 Visibility

It specifies the accessibility of the operation and attribute. There are three types of visibility, i.e., private, public and IRPAgent Internal.

Table 2: Private Visibility (notation ‘-‘)

Operation
NA

Attribute
It indicates that the attribute is not accessible by other entities, e.g., the IRPManager, other entities not holding the subject attribute

Table 3: Public Visibility (notation ‘+’)(default)

Operation
It indicates that the operation is visible across the itf-N, e.g., the IRPManager can invoke the operation across the itf-N interface.

Attribute
it indicates that the attribute is accessible across the itf-N, i.e., the IRPManager can invoke an operation to read the attribute and to write to this attribute if the attribute is so qualified. The read or write operation must be directly invoked against the entity holding the subject attribute or against the CM IRP Agent.

Table 4: IRPAgent Internal Visibility (notation ‘%’)

Operation
It indicates that the operation is not visible across the itf-N, i.e., the IRPManager cannot invoke the operation. However, other entities can invoke the operation

Attribute
It indicates that the attribute is not directly accessible across the itf-N, i.e., the IRPManager cannot read/write this attribute. However, other entities can read/write this attribute.

4.3.1.1 Sample

This sample shows four attributes whose visibility are private, public (default notation), public and IRPAgent Internal.

Figure 10: Visibility of attributes

[image: image11.emf]ClassSample

- attributeA

attribteB

+ attributeC

attributeD%

<<InformationObjectClass>>

This sample shows two operations whose visibility is public.

Figure 11: Visibility of operations

[image: image12.emf]ClassSample

- attributeA

attribteB

+ attributeC

attributeD%

<<InformationObjectClass>>

This sample shows one operation whose visibility is public.

Figure 12: Visibility of operation (carrying notification information)

[image: image13.emf]AlarmIRPNotification_2

+ notifyChangedAlarm()

<<Interface>>

�PAGE \# "'Page: '#'�'" ��I would use a “Classes” and a “Association” chapter here instead of “StereoType”. [Olaf Pollakowski]

>>OK you mean 3 chapters then, class stereotypes, association stereotypes and aggregation stereotypes. [Edwin Tse]

