3GPP TSG-SA5 (Telecom Management)

S5-020341c
Meeting #27, Cork, Ireland, April 2-5 2001
 S5ABC020abc

Source:
CMCC

Title:
3rd Generation Network Management Interface Technical Specification: CORBA-based Management Framework and Solution Set

Document for:
3GPP TSG-SA5

Agenda Item:

Category:

Work Item ID:
(OAM)

WT addressed:

Doc Summary:

Specs involved:

Overview and Introduction of Contribution
This document provides the CORBA Solution Set for the generic management interface described in the 3rd Generation Netowkr Management Interface Technical Specification: Generic Management Framework. In this document, a CORBA-based management framework mapping from the genneric is described, and the IDL-based interface definition is also given.

Contents
11 Scope

12 References

13 Definitions and abbreviations

13.1
Definitions

23.2
Abbreviations

24 Modelling of Managed Object

24.1
Naming of Managed Object

24.1.1
Naming convention

34.2
Representation of MO Attribute

34.3
Access Granularity of MOs

44.4
Generic MO accessing interface

44.4.1
Introduction

44.4.2
Class Diagram for MOHandler

44.4.3
Operations of MOHandler interface

85 NMS and OMC Interaction Control

95.1
Session interface

95.1.1
Introduction

95.1.2
Class Diagram of Session interface

95.1.3
Operations of Session interface

105.1.4
Session Management Scenario

115.2
OMC interface

115.2.1
Introduction

115.2.2
OMC Class Diagram

125.2.3
OMC Interface Operations

135.2.4
OMC Interaction Control Management Senario

136 Common Management Services

146.1
Notification Service

146.1.1
Introduction

146.1.2
General Requirements for Notification Service

146.2
Log Service

146.2.1
Introduction

156.2.2
General Requirment for Log Service

156.2.3
Log Management Scenario

166.3
Version Management

166.3.1
Introduction

166.3.2
Indication of Version Number

176.3.3
Version Negotiation

176.4
Bulk Data Transfer Service

186.5
Heartbeat Service

186.5.1
cTelheartbeat interface

186.5.2
Attributes and Operations of cTelheartbeat Interface

196.6
Security Management

196.6.1
Introduction

196.6.2
Authentication

206.6.3
Access Control

206.6.4
Time Out

227 Analysis of Management Domain Interface

227.1
Common Analysis Model Introduction

227.2
Fault Management

227.2.1
Introdunction of FMHandler Interface

237.2.2
Class Diagram of FMHandler_v2 interface

237.2.3
Attributes and Operations of FMHandler_v2 interface

297.2.4
Fault Management Senarios

327.3
Configuration Management

327.3.1
Introductiuon of CMHandler Interface

327.3.2
Class Diagram of CMHandler_v2 Interface

337.3.3
Attributes and Operations of CMHandler_v2 interface

407.3.4
Configuration Management Senarios

437.4
Performance Management

437.4.1
Introduction of PMHandler Interface

437.4.2
Class Diagram of PMHandler_v2 Interface

437.4.3
Attribute and Operaitons of PMHandler_v2 Interface

497.4.4
Performance Management Senarios

507.4.5
Introduction of JobFileInfoIterator Interface

517.4.6
Class Diagram of JobFileInfoIterator Interface

517.4.7
Operations of JobFileInfoIterator Interface

528 Mapping Table between Generic Requirements and CORBA-based Management Frameworke

59Annex A(normative) IDL Interface Definitions of CORBA-based Domain-oriented Coarse-grained Management Framework

59A.1 Introduction

59A.2 IDL Interface for CORBA-based Management Framework

59A.2.1 Common Data Type Module

61A.2.2 OMC Interface Module

61A.2.3 Session Interface Module

62A.2.4 Fmhandler Interface Module

64A.2.5 PMHandler Interface Module

67A.2.6 CMHandler Interface Module

69A.2.7 MOHandler Interface Module

70A.2.7 cTelHeartbeat Interface Module

72A.3 Definition of Notification Format

72A.3.1 Introduction

72A.3.2 Supported Notification Types

72A.3.3 Structured Event Information

73A.3.4 Definition of Notification Format

79A.3.5 IDL Definition for Notification Format

84A.4 ASN.1 Definition of CORBA-based File Format

84A.4.1 Introduction

84A.4.2 File Contents

86A.4.3 ASN.1 File Format Definition

1 Scope
The purpose of this CORBA-based Management Framework and Solution Set is to define the mapping of the Generic Management Framework (see [1]) to the protocol specific details necessary for implementation of function requirements in a CORBA/IDL environment.

As the desription way of generic management framework is a little different from that of CORBA-base management, thus in addition to the IDL interface definition, this document also provides detailed information about notifications and file format.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies.
[1] 3rd Generation Network Management Interface Technical Specification: Generic Management Framework.
[2] ITU-T Rec. M.3020 (1999)
"TMN interface specification methodology"
[3] OMG Rec.（1998）
Common Object Request Broker Architecture 2.2

[4] OMG Rec.（1999）
Unified Modelling Language 1.3
[5] OMG Rec.（1998）
Common Object Service Specification 1.0
[6] OMG Rec.（1998）
Notification Service Specification 1.0
[7] OMG Rec.（1998）
TelcomLog Service Specification 1.0
3 Definitions and abbreviations

3.1 Definitions
For terms and definitions please refer to 3rd Generation Network Management Interface Technical Specification: Generic Management Framework [1].
3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

ASN.1
Abstract Syntax Notation One

CM
Configuration Management
CORBA
Common Object Request Broker Architecture
FM
Fault Management
FTP
File Transfer Protocol

IDL
Interface Definition Language
IIOP
Internet Inter-ORB Protocol

NMS
Network Management System

QoS
Quality of Service

UML
Unified Modelling Language
OMC
Operation & Maitenance Center

PM
Performance Management
4 Modelling of Managed Object

This specification adopted a domain-oriented, coarse-grained CORBA-based management framework. In this framework, all the management functions are implemented through a few CORBA interfaces according to different domains; and managed objects do not appear as CORBA objects, instead, they may be accessed by NMS through a generic CORBA interface.

4.1 Naming of Managed Object

Each Managed Object in OMC needs to be identified by a unique identifier. In this specification, the Distinguished Name is adopted as the representation of MO identifier.

4.1.1 Naming convention

In this specification, naming convention in GDMO based information model is adopted. Distinguished name is used to uniquely identify managed objects. In ITU-T X.501 DN and RDN concepts are introduced, where DN is built from an ordered list of RDN, which is a sequence of attribute name and attribute value.

In this specification, DN in string representation is adopted, and the BNF for DN in string representation is illustrated as follows:
DistinguishedName: = RDNSequence

<spaced-separator> ::=<optional-space> <separator> <optional-space>

<separator> ::= “,”

<optional-space> ::= (<CR>) * (“ ”)*

RDNSequence: = RDNSequence <spaced-separator> RDNSequence | Rela tiveDistinguishedName

RelativeDistinguishedName: = NamingAttributeNameAndValue

NamingAttributeNameAndValue: = NamingAttributeName'=' NamingAttributeValue

NamingAttributeName: = <one or more StringChar>
NamingAttributeValue: = <one or more StringChar>

<special>: = “,” | “=” | <CR> | <LF> | “+” | “<” | “>” | “#” | “;” | “/”

StringChar: = any character except <special> or “\” or ‘"’

4.2 Representation of MO Attribute

For each managed object class, an attribute is represented as a name-value pair. As attributes may take values of different types, thus “any” is introduced to model attribute values. Attributes in a managed object can be modeled as a sequence of such name-value pair.
The definition for attribute representation based on IDL is given below:
typedef string AttrNameType;

typedef any AttrValueType;

struct AttrInfoType

{

AttrNameType name;

AttrValueType value;

};

typedef sequence< AttrInfoType> AttrInfoListType;

typedef sequence< AttrNameType> AttrNameListType;

4.3 Access Granularity of MOs

Each entity in OMC that can be managed is modeled as a MO. In CORBA environment, MO should be accessed by NMS directly or indirectly.

From the access granularity point of view, the modelling for MO may take the following approaches:

1) fine-grained approach: each MO is a CORBA object instance, and this object can be accessed directly by NMS;

2) MOC–oriented coarse-gained approach: each MO is not a CORBA object, and each MOC has at least one CORBA objects related, which is used for NMS to access the MOs for this specific MOC;

3) domain-oriented coarse-grained approach: all the MO is accessed through just one CORBA interface; and in order to provide different management functions, the other CORBA interfaces are defined according to different management domains.

The above three ways have their own benefits and weak points. Considering from the simplicity of implementation and product maturation, this specification adopted the third one.

4.4 Generic MO accessing interface

4.4.1 Introduction

Each entity in OMC that can be managed and accessed by NMS is modeled as a MO. In this specification, all the MOs are visited and controlled through a generic interface. In this specification, the “MOHandler” interface is defined to provide these functions.

4.4.2 Class Diagram for MOHandler

“MOHandler” interface contains the generic functions that OMC supports to operate on MOs. MOs of different kind MOCs in OMC are accessed through the generic interface “MOHandler” or its derived interfaces. “MOHandler” is formed by two interfaces: “MOHandler_v1” and “MOHandler_v2”. “MOHandler_v1” provides operations to get the attribute information of a specific MO instance and the information of MOs that it contains. “MOHnadler_v2” interface is derived from “MOHandler_v1”, and provided operations for creating, deleting and modifying a specific MO instance, which is an expansion of “MOHandler_v1”.

[image: image1.wmf]MOHandler_v1

getContainment(in moInstance, in depth, in scope, out moInstanceList) : ResultType

getAttriabute(in moInstance, in attrNameList, out attributeList) : ResultType

MOHandler_v2

createMO(in moInstance, in attributeList) : ResultType

deleteMO(in moInstance, out deletedMOList) : ResultType

updateAttribute(in moInstance, in attributeList) : ResultType

Figure 1 UML Class Diagram of MOHandler Interface

4.4.3 Operations of MOHandler interface

4.4.3.1 operation “getAttribute”
BEHAVIOUR

“This operation supports NMS to get attributes value of the specified object instance. If invalid attribute(s) is contained in attrNameList, value and name of that attribute will not occur in the out parameter attributeList. And the return value of this operation should be set to failure to indicate that not all attributes are returned.”

INPUT_PARAMETERS

moInstance : ManagedObjectType

---“moInstance parameter identifies the target managed object. It is a struct of class name and managed object distinguished name.”

attrNameList :AttrNameListType
---“specifies the attribute list. If the length of the value is zero, then information of all attributes should be returned.”

OUTPUT_PARAMETERS

attrInfoList: AttrInfoListType
---“return the list of attribute name and value pairs to NMS”

PRE_CONDITIONS

INVARIANT1: “given object instance exists in the OMC”

INVARIANT2: “given attributes contained in the object instance and its value can be retrieved”

POST_CONDITIONS

IF “operation success” THEN result=“success”

IF PRE_CONDITION INVARIANT2 NOT_VERIFIED THEN result=“failure”

RETURN_VALUE

result :eResultType

---“result value returned identifies operation success or failure.”

EXCEPTIONS

IF PRE_CONDITION INVARIANT1 NOT_VERIFIED RAISE_EXCEPTION

“UnknownObject”
4.4.3.2 operation “getContainment”
BEHAVIOUR

“This operation supports NMS to get information about contained objects of a specified object instance”

INPUT_PARAMETERS

 moInstance :ManagedObjectType

---“moInstance parameter identify the containing managed object. It is a struct of class name and managed object distinguished name.”

 depth : unsigned long

 ---“specifies the containment depth.”

scope: eScopeType

---“specifies the type of scope. It can be BaseLevel, IndividualLevel, BaseToNLevel and WholeSubTree. If its value is WholeSubTree and BaseLevel, the value of depth is ignored.”

OUTPUT_PARAMETERS

 moInstanceList: ManagedObjectListType

---“return information about the contained managed object which is a sequence of struct composed of managedObjectClass and managedObjectDN.”

PRE_CONDITIONS
INVARIANT1: “given object instance exist in the OMC”

INVARIANT2: “given depth is not greater than the maximum depth when the scope is IndividualLevel.”

INVARIANT3: “given depth is not greater than the maximum depth when the scope is BaseToNLevel.”

INVARIANT4: “given scope and its corresponding depth is currently supported by the vendor.”

POST_CONDITIONS

IF “operation success” THEN result= “success”

IF “operation failure” THEN result= “failure”

IF PRE_CONDITION INVARIANT3 NOT_VERIFIED THEN result= “failure”

RETURN_VALUE

result :eResultType

-----“result value returned identifies operation success or failure.”

EXCEPTIONS

IF PRE_CONDITION INVARIANT1 NOT_VERIFIED RAISE_EXCEPTION

“UnknownObject”

IF PRE_CONDITION INVARIANT2 NOT_VERIFIED RAISE_EXCEPTION

“InvalidScope”

IF PRE_CONDITION INVARIANT4 NOT_VERIFIED RAISE_EXCEPTION

“ScopeNotSupported”

4.4.3.3 operation “createMO”
BEHAVIOUR

 “This operation supports NMS to create a managed object instance. NMS may specify the DN of this MO instance and the attribute values needed for instantiation. If OMC may create this object, the result shall be success, and the related object creation notification shall be emitted to NMS. If OMC doesn’t support the creation of this MO, the “MO not creatable” exception shall be thrown; if the MO specified DN has already existed in OMC, the “MO already exist” exception shall be thrown, if the base object directly containing the MO specified by DN doesn’t exist, the “parent object not exist” exception is thrown; and if the input attribute list contains some invalid items, the “invalid attribute” exception is thrown.

INPUT_PARAMETERS

 moInstance :ManagedObjectType

---“moInstance parameter identify the managed object to be created. It is a struct of class name and managed object DN. This MO instance should not exist in OMC, and the parent MO containing this object to be created should exist in OMC.”

attributeList : AttributeInfoListType
---“specifies the attribute list used for MO instantiation.”

OUTPUT_PARAMETERS

NONE.

PRE_CONDITIONS

INVARIANT1: “given object instance doesn’t exist in the OMC”

INVARIANT2: “object directly containing the given object exists in OMC.”

INVARIANT3: “OMC supports NMS to create instances of this MOC”

INVARIANT4: “all the attributes in input parameter belong to this MOC.”
INVARIANT5: “all the attributes used for instantiate a MO are provided.”
POST_CONDITIONS

IF “operation success” THEN result= “success”, and the object creation notification is emitted to NMS

IF “operation failure” THEN result= “failure”

RETURN_VALUE

result :eResultType

---“result value returned identifies operation success or failure.”

EXCEPTIONS

IF PRE_CONDITION INVARIANT1 NOT_VERIFIED RAISE_EXCEPTION

“ObjectAlreadyExisted”

IF PRE_CONDITION INVARIANT2 NOT_VERIFIED RAISE_EXCEPTION

“ParentObjectNotExisted”

IF PRE_CONDITION INVARIANT3 NOT_VERIFIED RAISE_EXCEPTION

“NotCreatable”

IF PRE_CONDITION INVARIANT4 NOT_VERIFIED RAISE_EXCEPTION

“InvalidAttributeList”

IF PRE_CONDITION INVARIANT5 NOT_VERIFIED RAISE_EXCEPTION

“AttributeNotCompleted”

4.4.3.4 operation “deleteMO”
BEHAVIOUR

“This operation supports NMS to delete an MO instance and all the objects that it contains. If OMC may successfully delete this MO and its contained objects, the success result shall be returned, and the related object deletion notification shall be emitted to NMS. If OMC does not allow NMS to delete this MO instance, the “MO not deletable” exception shall be thrown; if the MO itself is deletable, but some of the objects it contains could not be deleted, then the return value shall be set to failure; in this case the deleting process is still carried out, and the deleting order is from bottom up, and there shall never exist ‘orphan’ objects. All the actually deleted MO instances shall be listed in output parameter.”
INPUT_PARAMETERS

 moInstance :ManagedObjectType

---“moInstance parameter identify the base managed object to be deleted. It is a struct of class name and managed object DN. This MO instance should exist in OMC.”

OUTPUT_PARAMETERS

 deletedMOList: DNListType

---“deletedMOList parameter specifies all the actually deleted MO instances.”

PRE_CONDITIONS

INVARIANT1: “given object instance exists in the OMC”

INVARIANT2: “OMC support NMS to delete instances of this MOC”

POST_CONDITIONS

IF “this MO instance and all the objects it contains are deleted” THEN result=“success”,

IF “this MO is not deleted” THEN result= “failure”

RETURN_VALUE

result :eResultType

-----“result value returned identifies operation success or failure.”

EXCEPTIONS

IF PRE_CONDITION INVARIANT1 NOT_VERIFIED RAISE_EXCEPTION

“UnknownObject”

IF PRE_CONDITION INVARIANT2 NOT_VERIFIED RAISE_EXCEPTION

“NotDeletable”

4.4.3.5 operation “updateAttribute”
BEHAVIOUR

 “This operation supports NMS to modify the values of writable attributes of the specified MO instance. If the specified attributes could not be modified, the “not writable” exception is thrown; if the specified attribute list contains some ones which don’t belong to this MOC, the ‘invalid attribute list’ exception shall be thrown.”
INPUT_PARAMETERS

 moInstance :ManagedObjectType

---“moInstance parameter identify the specific managed object instance.”

OUTPUT_PARAMETERS

NONE.

PRE_CONDITIONS

INVARIANT1: “given object instance exists in the OMC”

INVARIANT2: “OMC support NMS to modify the specified attributes of this MO.”
INVARIANT3: “all the attributes specified by NMS belong to this MOC.”

POST_CONDITIONS

IF “all the specified attributes are modified to new values successfully” THEN result=“success”, and attributeValueChange/stateChange notification shall be emitted to NMS;

IF “not all the attributes is modified” THEN result= “failure”;

RETURN_VALUE

result :eResultType

-----“result value returned identifies operation success or failure.”

EXCEPTIONS

IF PRE_CONDITION INVARIANT1 NOT_VERIFIED RAISE_EXCEPTION

“UnknownObject”

IF PRE_CONDITION INVARIANT2 NOT_VERIFIED RAISE_EXCEPTION

“NotWritable”

IF PRE_CONDITION INVARIANT3 NOT_VERIFIED RAISE_EXCEPTION

“InvalidAttributeList”

5 NMS and OMC Interaction Control

Before NMS starts normal management operation on OMC, some interaction control is required to perform some initialization and authentication. In this specification, the interaction control between NMS and OMC is implemented by “Session” interface and “OMC” interface.

5.1 Session interface

5.1.1 Introduction

Session is used to set up an one-to-one invocation relationship between NMS and OMC. It not only solves the problem of getting the IORs of management domain handler, but also increases the security of this management interface. At the same time, some necessary initialization and authorization is also processed.

Before NMS starts to apply management functions, it should open a session with OMC with authentication check firstly. After the session is opened, NMS can do activities in diverse domains, such as PM, CM and FM, in this session. When NMS finishes the activities, it should close the session.
OMC may limit the maximum number of concurrently sessions it supports, in order to avoid the performance decreasing of OMC system. The maximum number is decided by OMC according to its real system.

5.1.2 Class Diagram of Session interface
This interface is used for NMS to obtain the handlers specific to different management domains. It is the entry point for the NMS to invoke operations on the handler interfaces. the class diagram is shown below:

[image: image2.wmf]Session

getHandler(in handlerType, out handlerId, out handlerRef) : ResultType

releaseHandler(in handlerId) : ResultType

Figure 2 UML Class Diagram of Session Interface

5.1.3 Operations of Session interface
5.1.3.1 “getHandler” operation

BEHAVIOUR

“This operation supports NMS to get domain specific handler”

INPUT_PARAMETERS

handlerType: eHandlerType

OUTPUT_PARAMETERS

 handlerId : HandlerIdType

 ---“output parameter handlerId identifies the domain handler returned. ”

handlerRef : CORBA::Object

---“ output parameter handlerRef returns the IOR of the specified handler.”

PRE_CONDITIONS

INVARIANT1 : “handler number is less than maximum value”

POST_CONDITIONS

IF “operation success” THEN result=“success”

IF “operation failure” THEN result=“failure”

RETURN_VALUE

result :eResultType

---“return value result identifies operation success or failure.”

EXCEPTIONS

 IF PRE_CONDITION INVARIANT1 NOT_VERIFIED RAISE_EXCEPTION

“MaxNumHandlerExceed”

5.1.3.2 “releaseHandler” operation

BEHAVIOUR

“This operation supports NMS to release an existed handler. When the handler is a CMHandler, all the MOHandler used by it shall also be implicitly released, in order to keep the data consistency.”

INPUT_PARAMETERS

 handlerId : HandlerIdType

 ---“input parameter handlerId identifies the existed handler”

PRE_CONDITIONS

 INVARIANT1 : “specified handler exists in OMC”

POST_CONDITIONS

IF “operation success” THEN Result=“success”

IF “operation failure” THEN Result=“failure”

RETURN_VALUE

result :eResultType

---“result value returned identifies operation success or failure.”

EXCEPTIONS

 IF PRE_CONDITION INVARIANT1 NOT_VERIFIED RAISE_EXCEPTION

“UnknownHandler”

5.1.4 Session Management Scenario
In figure 3, a whole interaction phase between NMS and OMC with session interface is illustrated. When the session is opened, NMS can get domain specific handler to achieve diverse management function. After the interaction, NMS release the handler explicitly by invoking the releaseHandler operation.

[image: image3.wmf]:Session

:

PMHandler

NMS

create or connect

release or disconnect

NMS do performance

management functions

releaseHandler(in handlerId)

getHandler(in handlerType, out

handlerId, out handlerRef)

Figure 3 UML Sequence Diagram for Session Management
5.2 OMC interface

5.2.1 Introduction

To start an interaction between NMS and OMC, OMC should provide an entry point object to NMS and NMS use this object to set up the communication with OMC and do management functions.

In this specification, a mechanism is provided to set up the CORBA communication as automatically as possible. OMC is responsible for registering itself to the NMS (it is out of the scope of this specification), so IOR of the entry point object is externally available in the NMS’s CORBA naming service or store. And this entry point object is a persistent object in the OMC.
In this specification, interface “OMC” is introduced as the entry point.

5.2.2 OMC Class Diagram

This interface is used as an entry point into the OMC. It is responsible for OMC-NMS interface interaction control. The interface profile is shown as follows. As performance is considered, OMC may limit the maximum session number that can be supported at the same time. The number is up to OMC and out of the scope of this specification.

[image: image4.wmf]OMC

openSession(out sessionId, out sessionRef) : ResultType

closeSession(in sessionId) : ResultType

Figure 4 UML Class Diagram for OMC Interface
5.2.3 OMC Interface Operations

5.2.3.1 “openSession” operation

BEHAVIOUR

“This operation supports NMS to open a interaction session in OMC.”

OUTPUT_PARAMETERS

 sessionId: SessionIdType

 ---“output parameter sessionId is the identifier for the opened session .”

 sessionRef: Session

 ---“output parameter sessionRef is the IOR of the opened session.”

PRE_CONDITIONS

INVARIANT1 “session number is less than the max value permitted.”

POST_CONDITIONS

IF “operation success” THEN result=“success”

IF “operation failure” THEN result=“failure”

RETURN VALUE

result : eResultType

---“result value returned identify whether the operation success or not”

EXCEPTIONS

IF PRE_CONDITION INVARIANT1 NOT_VERIFIED RAISE_EXCEPTION

“MaxNumSessionExceed”
---“The maximum number of simulataneous sessions are vendor specific, but should be stated when the system has been implemented.”

5.2.3.2 “closeSession” operation

BEHAVIOUR

“This operation supports NMS to close an existed session with an OMC. After the successful operation, to this NMS all the handler interface obtained in the session will be invalid at the same time”

INPUT_PARAMETERS
sessionId : SessionIdType

---“input parameter sessionId identifies an existing session”

PRE_CONDITIONS

INVARIANT1 : “given session exists ”

POST_CONDITIONS

IF “operation success” THEN result=“success”

IF “operation failure” THEN result=“failure”

RETURN_VALUE

result :eResultType

-----“result value returned identifies operation success or failure.”

EXCEPTIONS

 IF PRE_CONDITION INVARIANT1 NOT_VERIFIED RAISE_EXCEPTION

“UnknownSession”
5.2.4 OMC Interaction Control Management Senario

[image: image5.wmf]:OMC

:

Session

NMS

openSession(out

sessionId,out

sessionRef,...)

create

releaseHandler(in handlerId)

NMS do

management

activities

getHandler(in handlerType,out

handlerId,out handlerRef)

closeSession(in

sessionId)

release

Figure 5 UML Sequence Digram for OMC Interface Managing Session Interface
Figure 5 illustrates an interaction instance of the explicit session creation and session deletion. Symbol “X” in the diagram symbolizes the deletion of session object.
6 Common Management Services

This section described all the commonlt services used in thi specification. Some of the services are introduced from OMG specification, such as Notification Service and Log Service; some of them are specifically used in this CORBA-based netowrk management interface specification.

6.1 Notification Service

6.1.1 Introduction
In order to support event report function, CORBA notification service is adopted to realize it. Please refer to OMG Notification Service Specification for details of the notification report reference model. And the push model is adopted in this specification.
6.1.2 General Requirements for Notification Service

This specification adopts the push model as the working style of notification service, and uses structured event as the representation of notification contents.

In this specification, the “domain_type” of structured event fixed header is used to specify the mangementment domain, including common management part, CM, PM, FM etc.; “type_name” is used to describe the event type; and “event_name” is used for uniquely identifies a notification.
In this specification, the service reliability QoS should support “ConnectionReliability=Persistent & EventReliability=Persistent”. That is, each event should be delivered to all consumers registered to receive it after the event was delivered to the channel, within expiry limits.

Event consumer can specify filtering constraints to accept the notification with criteria. Generally the event type, alarm severity, MOC type, are used for setting the filtering constraints. The default filtering constraint language for notification service is adopted in this specification.

There are at least one instance of notification channel be instantiated in OMC system. In this specification, 3 notification channel instances are recommended to be instantiated, which are responsible for CM, alarm and common management part respectively.

For the definition of notification format, please refer to Annex A for details.

6.2 Log Service

6.2.1 Introduction

OMC is responsible to collect relevant event information and record it in persistent storage, and supports NMS to get the event information at any time.
This specification adopted the Log Service to implement the event logging function. For log management reference model and IDL definitions, please refer to OMG TelecomLog Service Specification for details.

6.2.2 General Requirment for Log Service

The OMG defined Log interface (NotifyLog) adopted in this specification is derived from the event channel (NotifyChannel) interface defined in OMG Notification Service, which is able to store structured events as log records, and have all the abilities of notification channel. Thus for OMC which provide Log Service, the Notification Service is not required any more.

All the event types that may be logged are described in Annex A of this document. The log-generated event is out of the scope of this specification. Each log record contains the log record identifier (a unique number assigned by log), logging time and the event being logged. Queries can be constructed based on logging time, log record id, and event contents etc. to retrieve log records.

Log supports client to operate on log record, including query and delete. In query operation, client can specify filter constraints based on log record information (including loggingTime, logRecordId, or record contents). This specifcation adopts the default filter constraint language of notification service to describe the filtering criteria.

At least one instance of Log object shall be instantiated in OMC system. It is recommended in this specification that 3 log objects to be instantiated, which are responsible for CM, FM and common management part.

The contents and format of each log record is the same as the corresponding event notification, please refer to Annex A for detaled definition.

6.2.3 Log Management Scenario
In figure 6, a log scenario is illustrated. NMS invokes subscription operation on OMC actor (the explicit interface is not shown in the figure). Then corresponding log CORBA object will be created to deal with log. NMS can invokes operation on log object, for example set filter operation, set log attributes, and so on. NMS can also invoke operations on log object about log record, for example, get log record and delete log record. When NMS is not interested in log any more, it may invoke unsubscribeLog operation on OMC explicitly. Then OMC will stop logging records.

[image: image6.wmf]Log

subscribe log

create

set log filter

operation on log record

unsubscribe log

destroy

NMS

OMC

Figure 6 UML Sequence Diagram of Log Management

6.3 Version Management

6.3.1 Introduction

The version of the interface may be updated for some appropriate reasons. To provide an effective way of describing the interface evolution and make it easy to be used and controlled, this specification adopted the following two ways: firstly the interface shall support version number indication, and secondly this interface supports version negotiation.

6.3.2 Indication of Version Number

Each IDL interface should have the version name associated with it to identify the version of interface being used. This can be achieved in IDL by suffixing the IDL interface name with the version number. For example, “CMHandler” interface may have a name “CMHandler_v1”. This denotes that vertion 1 of “CMHandler” interface is being used.

Due to the fact that the NMS and OMCs are updated independently, it will be necessary that both sides are capable of supporting more than one interface version. The version number of the interface only states which version the interface belongs to. No other meaning is contained in the version number.
6.3.3 Version Negotiation
Version negotiation means that when OMC supports more than one interface vesions, there is a mechanism for NMS to select the needed interface version, and invoke the most appropriate mangement operations.

In order to support version negotiation, “getHandler” operation of “Session” interface and “getMOHandler” operation of “CMHandler” interface will have an additional input parameter “versionNum” and an additional output parameter “supportVersionList”. The parameter “versionNum” will be used by NMS to indicate which version of the interface it wants to use. If OMC can support the specified version, the operation will return “success” result and the output parameter “supportVersionList” will return the same value as inputted. If OMC cannot support the specified version, operation will return “failure” result and the out parameter “supportVersionList” will return all the versions that it supports, thus NMS can choose one of the returned versions to get the handler object. And if NMS can support none of the returned versions, the interaction between NMS and OMC will not be performed. The scenario of version negotiation is illustrated in figure 7.

[image: image7.wmf]:Session

NMS

:PMHandler

getHandler(in type,in

versionNum,out

supportVersionList,...):result

result=success,implies version is

supported,handlerRef returned.

result=failure,implies version is not

supported,supported vewsion list are

returned in parameter

supportVersionList

[result=success]

do PM_operation

[result=failure]

getHandler(...)

result=success,NMC continues PM

operation.

result=failure,NMC use version number

returned to get handler

Figure 7 UML Sequence Diagram of Version Negociation

6.4 Bulk Data Transfer Service

The function requirement and detailed analysis of bulk data transfer service has been described in Genneric Management Framework [1]. In this CORBA-based interface framework, all of the requests related to bulk data transfer functions are divided into different management domains, and they are not defined in just one interface, but are mapped to several operations in its domain related interfaces. The detailed IDL operation and notification definitions of different domains will be given in Annex A.
6.5 Heartbeat Service

6.5.1 cTelheartbeat interface

In this specification, the heartbeat service is implemented by “cTelheartbeat” interface. The function description and class diagram can be found in [1].
6.5.2 Attributes and Operations of cTelheartbeat Interface

6.5.2.1 A.7.2.1 “systemLabel” attribute

BEHAVIOUR
“This attribute stands for the user friendly name of an OMC system, which is to be filled in heartbeat notification. And this label is used for NMS to distinguish different heartbeat notification sent to it. This is a readable and writable attribute, and OMC may read it through the attribute get operation, or modify the name by invoking the attribute set operation.”
6.5.2.2 “periodGet” operation

BEHAVIOUR
“This operation supports NMS to get the period attribute value of the cTelHeartbeat object instance.”

INPUT_PARAMETERS

NONE.

OUTPUT_PARAMETERS

 NONE.

RETURN_VALUE

result :eResultType

---“return value result identifies operation success or failure.”

6.5.2.3 “periodSet” operation

BEHAVIOUR

“This operation supports NMS to change the period attribute value of the cTelHeartbeat object instance.”
INPUT_PARAMETERS

period : unsigned short

---“the new period to be set in the cTelHeartbeat obejct instance.”

OUTPUT_PARAMETERS

 NONE.

PRE_CONDITIONS

INVARIANT1 : “The value of input period is reasonable, if it is not zero, it should not be shorter than the lower limit period that OMC permits, or else the performance of OMC is influenced greately.”
POST_CONDITIONS

“After this operation is successfully performed, the cTelHeartbeat object instance will immediately send a heartbeat notification with the new period in it. And later heartbeat notification will be sent according to the newly set period.”

RETURN_VALUE

NONE.

EXCEPTIONS

 IF PRE_CONDITION INVARIANT1 NOT_VERIFIED RAISE_EXCEPTION

“InvalidPeriod”

6.6 Security Management

6.6.1 Introduction

The security management in this specification is to ensure reliability of the interaction between NMS and OMC. In this specification, three mechanisims are defined to implement the security management functions: authentication, timeout and access control.

6.6.2 Authentication
This is the first level of security check applied before a session is established in the OMC. OMC will decide whether the NMS is a valid or invalid user according to the user name and password.
To implement this mechanism, some change should be applied to the “OMC” interface. Additional user and password parametersare appended to “openSesssion”operation. Whether the password is encrypted is out of the scope of this specification. If both NMS and OMC agree to support a special encryption algorithm, the algorithm can be adopted. User and password information should be assigned by OMC and registered in OMC locally; NMS may know user name and password through other ways. If the inputted user password is invalid with the user name, an exception should be raised to indicate authenticaiton failure to NMS, and in this case, NMS won’t get the IOR of a “Session” interface object.

[image: image8.wmf]:OMC

:

Session

NMS

openSession(in user,in passwd,out

sessionId,out sessionRef)

[passwd valid]

create session

[passwd invalid] raises

AuthenticationFailure

Figure 8 UML Sequence Diagram for Authentication Check
Figure 8 illustrates a whole process of password authentication. When NMS invokes “openSession” operation on “OMC” interface, it should provide user name and password as input parameters. User name and password are known to OMC. Then OMC will decide whether the user and password is valid. If authentication fails, the corresponding “AuthenticationFailure”exception will be thrown.
6.6.3 Access Control
The access control mechanism is a key way to provide the interface security. Each management operation sent from NMS should be authenticated by OMC. To achieve this, firstly in “openSession” operation, user credential is returned for future use of all the operations in this session. Secondly, for each management operation applied on OMC, authentication parameter (user credential, returned in openSession operation) needs to be presented as an input parameter. And exception for access control violation should be thrown if the user credential is invalid. In this case the management operation is not performed. Figure 9 illustrates a whole interaction senario in which access control mechanism is applied.

[image: image9.wmf]:Session

:

PMHandler

NMS

getHandler(...) context("credential")

create or connect

startMeasurementJob(...) context("credential")

[credential invalid] Raises InvalidCredential

[credential valid] do

measurementJob

:OMC

opensession(...,out

credential)

Figure 9 UML Sequence Diagram for Access Control Examples

6.6.4 Time Out
As the performance needs to be considered, OMC cannot support an unlimited number of session and handler instances. In order to achieve the performance goal, time out mechanism is introduced to session and handler instances.

When a session has not been activated by NMS for a certain time (exceed the specified maximum inactive time), time out event will occur. Then the corresponding session will be closed automatically, and to this NMS all the handler(s) obtained in this session will be invalid. (But in OMC, handler interface instances may not be released as these instances may be used by other sessions between NMS and OMC.) When NMS invokes operation on handler interface instances with credential contained in the session that has already timed out, OMC will throw an exception “InvalidCredential” and the credentialInvalidReason will be filled with SESSION_TIMEOUT.

If a handler interface instance remains inactive for a certain time, it will be released automatically and it does not affect the lifecycle of other handler interface instances. If NMS uses an IOR of the released handler interface, ORB will detect the inexistence of the object and throw a corresponding exception.

To implement this function, timeout attribute in session and handle interface is introduced to specify the inactive time. When NMS invokes “openSession” on “OMC”interface or “getHandler” operation on “Session” interface, it should specify the time out value for corresponding interface and the type of timeout is unsigned long (unit: minute). If no value is provided in openSession or getHandler operation for time out value, then the default value 60 minutes will be applied. If the specified timeout value is too long, OMC may throw the exception “InvalidTimeout” to reject the operations. The maximum timeout value is negotiated by NMS and OMC, which is out of the scope of this specification.
Each time when NMS invokes operations on “Session” interface, the session inactive time will be reset. When NMS invokes operations on handler interface, inactive time of corresponding handler and session will be reset. When a hander is shared by multi sessions, it should be transparent to NMS, which means that to each NMS the handler is exclusive. So, to different sessions, the handler inactive time should be reset and counted respectively according to its actual conditions. Figure 10 illustrates an example of timeout scenario.

[image: image10.wmf]:Session

:PMHandler

NMS

getHandler(..., in timeout)

create or connect

when session inactivity

time exceeds timeout

value ,session timeout

operation

throw InvalidCredential exception

:OMC

create

openSession (in

userName,in password,in

timeout,...)

Figure 10 UML Sequence Diagram for Timeout Scenario

7 Analysis of Management Domain Interface

7.1 Common Analysis Model Introduction

This section describes the UML class diagram of analysis model, which is the summary of CORBA/IDL based management interface. All the relations between interfaces are clearly depicted in figure 11.

[image: image11.wmf]NMC

OMC

SequencePu

shConsumer

SequenceProxyP

ushSupplier

Log

PMHandler

_v2

CMHandler

_v2

FMHandler

_v2

MOHandler

Session

IOR

IOR

IOR

IOR

create

create or connect

useHandler

use log

create

1..*

1..*

1..*

1..*

1..*

1..*

connect

include

1..*

sessionControl

getHandlerFrom

create or connect

1..*

create or connect

include

1..*

cTelHeart

beat

JobFileInfoI

terator

connect

create

connect

1..*

FiFigure 11 UML Class Diagram of Analysis Model
In the abve figure, class diagram with light grey background is not inside of this specification. It is only used to illustrate the relationship more explicitly. Class diagrams with italic text are inside the scope but are imported from other interface definitions. Interface SequenceProxyPushSupplier and SequencePushConsumer are imported from CORBA Notification Service. And interface NotifyLog is imported from Telecom Log Service.
Probable associations between interfaces are specified in names; for example “connect” association exists between SequencePushConsumer and SequenceProxyPushSupplier. Multiplicity in association is also shown at the end of the association line.
7.2 Fault Management

7.2.1 Introdunction of FMHandler Interface

In this specification, the fault management function set is implemented by FMHandler interface. This interface provides the fault management functions described in FM functional requrement.

7.2.2 Class Diagram of FMHandler_v2 interface

FMHandler_v2 interface provides all the operations of fault management functions. And its class diagram is shown in figure 12, as below:

[image: image12.wmf]FMHandler_v2

timeout

subscribeNotif_v2(in consumerRef, in constranList, out subId, out slyRef, out channelId) : ResultType

unsubscribeNotif(in subId) : ResultType

getSubscriptionStatus(in subId) : ResultType

subscribeLog_v2(in logFullAction, in maxsize, in constrainList, out subId, out logRef, out channelId) : ResultType

unsubscribeLog(in subId) : ResultType

queryLogRecord_v2(in consumerRef, in constranList, in logRef, out subId, out channelId) : ResultType

synchronizeAlarm_v2(in consumerRef, in constranList, out subId, out slyRef, out channelId) : ResultType

getHeartbeat(in channelId, out heartbeatRef) : ResultType

Figure 12 UML class diagram of FMHandler_v2 interface

7.2.3 Attributes and Operations of FMHandler_v2 interface

7.2.3.1 attribute “timeout”
BEHAVIOUR

“This read only attribute stores the timeout value of FMHandler object, which can be queried by NMS. The initial value of this attribute is obtained from the input parameter of ‘getHandler’ operation.”
7.2.3.2 operation “subscribeNotif_v2”

BEHAVIOUR

“this operation supports NMS to subscribe alarm notification in OMC”

INPUT_PARAMETERS

consumerRef : SequencePushConsumer

---“consumerRef parameter is the IOR to which OMC can invoke push operation to send alarm notification to NMS. It is SequencePushConsumer type compliant, which is imported from CORBA event service CosNotifyComm module.”

constraintList : ConstrainExpSeq

---“constraintList parameter specifies the filter constraint that OMC shall use to filter alarms. It is ConstrainExpSeq type compliant, which is imported from CORBA notification service CosNotifyFilter module. A NULL value indicates that no filter constraints shall be applied. Constraint_expr in ConstraintExp should conform to the default filter constraint language defined in OMG notification service.”

OUTPUT_PARAMETERS

slyRef : SequenceProxyPushSupplier

---“slyRef parameter is the proxy created for NMS by the event channel. It can be used by NMS to control notifications and filter constraints”
subId : SubscriptionIdType
---“subId parameter is the subscription identifier for this particular operation. NMS can use this id to control subscription”
channelId : ChannelIdType
---“channelId parameter is the identifier of the event channel to which the consumerRef is connected. This parameter will later be used for ‘getHeartbeat’ operation to get the proper IOR of the associated cTelHeartbeat object.”

PRE_CONDITIONS

INVARIANT1: “given filter constraints is valid”

POST_CONDITIONS

IF “operation success” THEN result=“success”

IF “operation failure” THEN result=“failure” AND slyRef=NULL

RETURN_VALUE

result :eResultType

---“result value returned identifies operation success or failure.”

EXCEPTIONS

IF PRE_CONDITION INVARIANT1 NOT_VERIFIED RAISE_EXCEPTION

InvalidConstraint
7.2.3.3 operation “unsubscribeNotif”

BEHAVIOUR

“This operation supports NMS to cancel an existed alarm subscription”

INPUT_PARAMETERS

subId:SubscriptionIdType

---“subId parameter identifies the subscription.”

PRE_CONDITIONS

INVARIANT1: “the specified subscription exists in OMC”

POST_CONDITIONS

IF “operation success” THEN result=“success”

IF “operation failure” THEN result=“failure”

RETURN_VALUE

result : eResultType

---“result value returned identifies operation success or failure.”

EXCEPTIONS

IF PRE_CONDITION INVARIANT1 NOT_VERIFIED RAISE_EXCEPTION

UnknownSubscription

7.2.3.4 operation “getSubscriptionStatus”

BEHAVIOUR

“This operation supports NMS to get status about an existed alarm subscription”

INPUT_PARAMETERS

subId : SubscriptionIdType

---“subId parameter identifies the subscription.”
OUTPUT_PARAMETERS

subStatus : eSubscriptionStatusType

---“subStatus parameter specifies the status about the specified subscription”

PRE_CONDITIONS

INVARIANT1 : “the specified subscription exists”

POST_CONDITIONS

IF “operation success” THEN result=“success”

IF “operation failure” THEN result=“failure”

RETURN_VALUE

result : eResultType

---“result value returned identifies operation success or failure.”

EXCEPTIONS

IF PRE_CONDITION INVARIANT1 NOT_VERIFIED RAISE_EXCEPTION

UnknownSubscription

7.2.3.5 operation “subscribeLog_v2”
BEHAVIOUR

“This operation supports NMS to subscribe alarm log in an OMC.”
INPUT_PARAMETERS

constrainList : ConstrainExpSeq

---“constrainList parameter specifies the filter constraint that OMC shall use to filter alarms which will be logged. It is ConstrainExpSeq type compliant, which is imported from CORBA notification service CosNotifyFilter module. A NULL value indicates that no filter constraints shall be applied. constraint_expr in ConstraintExp should conform to the default filter constraint language defined in OMG notification service.”

logFullAction : LogFullAction

---“logFullAction parameter specifies the action will be adopted when the number of log records reach its maximum value. It can be either wrap or halt.”
maxsize : unsigned long

---“maxsize parameter specifies the maximum size (measured in number of octets) of the log records that can be contained in the log. A log may have an indeterminate size. A value of zero is used to specify unlimited size.”

OUTPUT_PARAMETERS

logRef : NotifyLog

---“logRef parameter is the IOR of an log interface object. It can be used by NMS to control log filter constraints and invoke operations on log records”

subId : SubscriptionIdType

---“subId parameter is the subscription identifier for this particular operation. NMS can use this id to control subscription”
channelId : ChannelIdType
---“channelId parameter is the identifier of the event channel to which the consumerRef is connected. This parameter will later be used for ‘getHeartbeat’ operation to get the proper IOR of the associated cTelHeartbeat object.”

PRE_CONDITIONS

INVARIANT1: “OMC supports given filter constraints”

INVARIANT2: “LogService is supported”

POST_CONDITIONS

IF “operation success” THEN result=“success”

IF “operation failure” THEN result=“failure”

RETURN_VALUE

result : eResultType

---“result value returned identifies operation success or failure.”

EXCEPTIONS

IF PRE_CONDITION INVARIANT1 NOT_VERIFIED RAISE_EXCEPTION

InvalidConstraint

IF PRE_CONDITION INVARIANT2 NOT_VERIFIED RAISE_EXCEPTION

LogNotSupported

7.2.3.6 operation “unsubscribeLog”

BEHAVIOUR

“This operation supports NMS to cancel an existed alarm log subscription.”

INPUT_PARAMETERS

subId : SubscriptionIdType

---“parameter subId identifies the subscription.”

PRE_CONDITIONS

INVARIANT1: “the specified subscription exists”

INVARIANT2: “LogService is supported”

POST_CONDITIONS

IF “operation success” THEN result=“success”

IF “operation failure” THEN result=“failure”

RETURN_VALUE

result : eResultType

-----“result value returned identifies operation success or failure.”

EXCEPTIONS

IF PRE_CONDITION INVARIANT1 NOT_VERIFIED RAISE_EXCEPTION

UnknownSubscription

IF PRE_CONDITION INVARIANT1 NOT_VERIFIED RAISE_EXCEPTION

LogNotSupported

7.2.3.7 operation “queryLogRecord_v2”
BEHAVIOUR

“This operation supports NMS to get alarm log records in an OMC.”

INPUT_PARAMETERS

consumerRef : SequencePushConsumer

---“This parameter is the IOR against which OMC shall invoke push() operation to inform it about the availability of result files. It is SequencePushConsumer type compliant, which is imported from CORBA notification service CosNotifyComm module.”
constraintList : string

---“constraintList parameter specifies the filter constraint that OMC shall use to filter alarm record. A NULL string value indicates that no filter constraints shall be applied. Its format should conform to default filter constraint language defined in OMG notification service.”

logRef : NotifyLog

---“logRef parameter specifies the IOR of the log interface object to which it subscribes log .”

OUTPUT_PARAMETERS

subId : SubscriptionIdType

---“subId parameter is the subscription identifier for this particular operation. NMS can use this id to control subscription.”
channelId : ChannelIdType
---“channelId parameter is the identifier of the event channel to which the consumerRef is connected. This parameter will later be used for ‘getHeartbeat’ operation to get the proper IOR of the associated cTelHeartbeat object.”

PRE_CONDITIONS

INVARIANT1: “given filter constraints is valid”

INVARIANT2: “specified log existed in OMC”

INVARIANT3: “LogService is supported”

POST_CONDITIONS

IF “operation success” THEN result=“success”

IF “operation failure” THEN result=“failure”

RETURN_VALUE

result : eResultType

-----“result value returned identifies operation success or failure.”

EXCEPTIONS

IF PRE_CONDITION INVARIANT1 NOT_VERIFIED RAISE_EXCEPTION

InvalidConstraint

IF PRE_CONDITION INVARIANT2 NOT_VERIFIED RAISE_EXCEPTION

UnknownLog

IF PRE_CONDITION INVARIANT3 NOT_VERIFIED RAISE_EXCEPTION

LogNotSupported

7.2.3.8 operation “synchronizeAlarm_v2”
BEHAVIOUR

“This operation supports NMS to get all active alarm information in an OMC. When OMC has finished alarm summary, the alarm information will be contained in summary report. The report maybe transferred to NMS in options, one is through the Notification channel, the other is through the FTP service. In the first case, when OMC finished data collection, it shall send one or more NOTIFY_ALARM_SUMMARY_REPORT notification(s) to NMS, the report data could be slitted into several notifications so that each Notification is not too big. In the second case, after OMC finishes data collection, it writes the data into one or more report files, and sends a NOTIFY_FM_SYNC_TRANSFER_UP_READY notification to notify NMS to get the file(s). This case is usually used when the data amout is very big and not suiteable for notification channel to transfer. OMC may just select one mechanism, in the first phase, the file format transferring is optional.”

INPUT_PARAMETERS

consumerRef : SequencePushConsumer

---“consumerRef parameter is the IOR against which OMC shall invoke push operation to send the either NOTIFY_FM_SYNC_TRANSFER_UP_READY notification or NOTIFY_FM_SYNC_TRANSFER_PREPARATION_ERROR notification to NMS. It is SequencePushConsumer type compliant, which is imported from CORBA notification service CosNotifyComm module.”
constraintList : ConstrainExpSeq
---“constraintList parameter specifies the filter constraint that OMC shall use to filter alarms. It is ConstrainExpSeq type compliant, which is imported from CORBA notification service CosNotifyFilter module. A NULL value indicates that no filter constraints shall be applied. Grammar used in ConstraintExpSeq should conform to the default filter constraint language defined in OMG notification service.”

OUTPUT_PARAMETERS

slyRef : SequenceProxyPushSupplier

---“slyRef parameter is the proxy created for NMS by notification channel via OMC. It can be used by NMS to control notifications and filter constraints”

subId : SubscriptionIdType

---“subId parameter is the subscription identifier for this particular operation. NMS can use this id to control subscription”
channelId : ChannelIdType
---“channelId parameter is the identifier of the event channel to which the consumerRef is connected. This parameter will later be used for ‘getHeartbeat’ operation to get the proper IOR of the associated cTelHeartbeat object.”

PRE_CONDITIONS

INVARIANT1: “OMC supports given filter constraints”

POST_CONDITIONS

IF “operation success” THEN result=“success”

IF “operation failure” THEN result=“failure” AND slyRef=NULL

RETURN_VALUE

result : eResultType

---“result value returned identifies operation success or failure.”

EXCEPTIONS

IF PRE_CONDITION INVARIANT1 NOT_VERIFIED RAISE_EXCEPTION

InvalidConstraint
7.2.3.9 operation “getHeartbeat”

BEHAVIOUR

“This operation supports NMS to get the object reference of the cTelHeartbeat object, which is associated with the event channel specified by the channelId parameter.”

INPUT_PARAMETERS

 channelId : ChannelIdType
---“input parameter channelId identifies the event channel to which the target cTelHeartbeat is associated.”

OUTPUT_PARAMETERS

 heartbeartRef : cTelHeartbeart
---“output parameter heartbeartRef identifies the object reference of the cTelHeartbeat object instance which is associated with the event channel specified by the channelId parameter.”

POST_CONDITIONS

IF “operation success” THEN Result=“success”

IF “operation failure” THEN Result=“failure”

RETURN_VALUE

result :eResultType

---“result value returned identifies operation success or failure.”

EXCEPTIONS

IF PRE_CONDITION INVARIANT1 NOT_VERIFIED RAISE_EXCEPTION

UnknowChannel

7.2.4 Fault Management Senarios

This section shows several scenarios of fault management:

[image: image13.wmf]:Session

:

FMHandler

:SequenceProx

yPushSupplier

NMS

create or connect

create or connect

real time notification

releaseHandler(in

handlerId)

subscribeNotif(in consumerRef,in

constrainLIst,out slyRef,out subId)

getSubscriptionStatus(in subId,out subStatus)

realse or disconnect

unSubscribeNotif(in subId)

getHandler(...)

release or

disconnect

Figure 13 UML Sequence Diagram of Alarm Notificaiton Subscription

In figure 13, a whole interaction scenario of notification subscription is illustrated. NMS can invoke “subscribeNotif” operation on FMHandler interface with appropriate parameters. Then NMS will receive notifications fulfilling specified criteria. NMS can also invoke operation on FMHandler to get all active alarm information in OMC. When NMS is not interested in the alarm event any more, it can invoke “unsubscribeNotif” operation to cancel the notification subscription.

[image: image14.wmf]:Session

:

FMHandler

:Log

NMS

create or connect

create

file_transfer_up_ready notification

getSubscriptionStatus(in subId, out status)

relaease or disconnect

releaseHandler(in

handlerId)

NMS get alarm log

information files

subscribeLog(in logFullAction,in maxsize,in

constraintList,out logRef,out subId)

queryLogRecord(in consumerRef,in logRef,in

constraintlist,out subId)

unSubscribeLog(in subId)

OMC collets alarm kig

information, when

finished, send file

ready notification

:SequenceProxyP

ushSupplier

getHandler(...)

Figure14 UML Sequence Diagram of Alarm Log Subscription

In figure 14, a whole interaction scenario of log subscription is illustrated. NMS invokes “subscribeLog” operation on FMHandler interface with appropriate parameters. OMC will be responsible for storing event information satisfied with filter constraint as log records. NMS can invoke explicit query operation on FMHandler_v2 to get log records information. When NMS is not interested in the alarm log subscription any more, it can invoke “unsubscribeLog” operation to cancel the log subscription.

[image: image15.wmf]:Session

:

:FMHandler

:SequenceProx

yPushSupplier

NMS

create or connect

releaseHandler(in

handlerId)

release or diconnect

getHandler(...)

synchroniseAlarm(in consumerRef,in

constraintList,out slyRef,out subId)

alarm summary report notificaiton(s) /

OMC collects alarm

information

when finished, send the

alarmSummaryReport

notifications or

fileTransferReady

notificaton

NMC process the current

alarm summmary report

notifications or get the

current alarm summary

report file(s)

file transfer ready notification

Figure 15 UML Sequence Diagram of Getting Active Alarms

In figure15, a whole interaction scenario of alarm synchronisation is illustrated. NMS invokes “sysnchronizeAlarm” operation on FMHandler interface. OMS will start collecting information about active alarms in the system. When OMC finishes data collection, it sends one or several alarm summary report notification(s) with the active alarm information, or file transfer uo ready notification to NMS.
7.3 Configuration Management

7.3.1 Introductiuon of CMHandler Interface

In this specification, the configuration management function set is implemented by CMHandler and MOHandler interfaces. These two interfaces provide the configuration management functions described in CM functional requirement. And please refer to section 4.4.2 for the detailed description of MOHandler interfaces.

7.3.2 Class Diagram of CMHandler_v2 Interface

CMHandler_v2 interface provides NMS all the operations of configuration management functions, and the operations to control MOHandler interface. And its class diagram is shown in figure 16, as below:

[image: image16.wmf]CMHanlder_v2

timeout

subscribeNotif_v2(in consumerRef, in constranList, out subId, out slyRef, out channelId) : ResultType

unsubscribeNotif(in subId) : ResultType

getSubscriptionStatus(in subId) : ResultType

subscribeLog_v2(in logFullAction, in maxsize, in constrainList, out subId, out logRef, out channelId) : ResultType

unsubscribeLog(in subId) : ResultType

queryLogRecord_v2(in consumerRef, in constranList, in logRef, out subId, out channelId) : ResultType

getMOHandler(in moInstance, in versionId, supportVersionList, out handlerId, out moHandlerRef) : ResultType

releaseMOHandler(in handlerId) : ResultType

getTopology_v2(in consumerId, out tranId, out channelId) : ResultType

synchronizeCM_v2(in consumerRef, in moInstance, out tranId, out channelId) : ResultType

getHeartbeat(in channelId, out heartbeatRef) : ResultType

Figure 16 UML class diagram of CMHandler_v2 interface

7.3.3 Attributes and Operations of CMHandler_v2 interface

7.3.3.1 attribute “timeout”
BEHAVIOUR

“This read only attribute stores the timeout value of the CMHandler object, which can be queried by NMS. The initial value of this attribute is obtained from the input parameter of the invoked ‘getHandler’ operation.”
7.3.3.2 operation “subscribeNotif_v2”
BEHAVIOUR

“This operation supports NMS to subscribe configuration notification in an OMC.”

 INPUT_PARAMETERS

consumerRef : SequencePushConsumer

---“consumerRef parameter is the IOR which OMC can invoke push operation to send notification to NMS. It is SequencePushConsumer type compliant, which is imported from CORBA notification service CosNotifyComm module.”

constrainList : ConstrainExpSeq

---“constraintList parameter specifies the filter constraint that OMC shall use to filter alarms. It is ConstrainExpSeq type compliant, which is imported from CORBA notification service CosNotifyFilter module. A NULL value indicates that no filter constraints shall be applied. constraint_expr in ConstraintExp should conform to the default filter constraint language defined in OMG notification service.”

OUTPUT_PARAMETERS

slyRef : SequenceProxyPustSupplier

---“slyRef parameter is the proxy created for NMS by the notification chanel via OMC. It can be used by NMS to control notifications and filter constraints”

subId : SubscriptionIdType

---“subId parameter is the subscription identifier for this particular operation. NMS can use this id to control subscription”
channelId : ChannelIdType
---“channelId parameter is the identifier of the event channel to which the consumerRef is connected. This parameter will later be used for ‘getHeartbeat’ operation to get the proper IOR of the associated cTelHeartbeat object.”

PRE_CONDITIONS

INVARIANT1: “OMC supports given filter constraints”

POST_CONDITIONS

IF “operation success” THEN result=“success”

IF “operation failure” THEN result=“failure”

RETURN_VALUE

result : eResultType

----“result value returned identifies operation success or failure.”

EXCEPTIONS

IF PRE_CONDITION INVARIANT1 NOT_VERIFIED RAISE_EXCEPTION

InvalidConstraint

7.3.3.3 operation “unsubscribeNotif”

BEHAVIOUR

“This operation supports NMS to cancel an existed notification subscription.”

INPUT_PARAMETERS

subId : SubscriptionIdType

---“subId parameter identifies the subscription.”

PRE_CONDITIONS

INVARIANT1: “the specified subscription exists”

POST_CONDITIONS

IF “operation success” THEN result=“success”

IF “operation failure” THEN result=“failure”

RETURN_VALUE

result : eResultType

---“result value returned identifies operation success or failure.”

EXCEPTIONS

IF PRE_CONDITION INVARIANT1 NOT_VERIFIED RAISE_EXCEPTION

UnknownSubscription

7.3.3.4 operation “getSubscriptionStatus”

BEHAVIOUR

“This operation supports NMS to get status about an existed subscription”

INPUT_PARAMETERS

subId : SubscriptionIdType

---“subId parameter identifies the subscription.”

OUTPUT_PARAMETERS

status : eSubscriptionStatus

---“status parameter specifies the subscription status about the specified subscription”

PRE_CONDITIONS

INVARIANT1: “the specified subscription exists”

POST_CONDITIONS

IF “operation success” THEN result=“success”

IF “operation failure” THEN result=“failure”

RETURN_VALUE

result : eResultType

----“result value returned identifies operation success or failure.”

EXCEPTIONS

IF PRE_CONDITION INVARIANT1 NOT_VERIFIED RAISE_EXCEPTION

UnknownSubscription

7.3.3.5 operation “subscribeLog_v2”
BEHAVIOUR

“This operation supports NMS to subscribe configuration log in an OMC.”

INPUT_PARAMETERS

logFullAction : LogFullAction

---“logFullAction parameter specifies the action will be adopted when log record reaches its maximum size.”

maxSize: unsigned long

---“maxSize parameter specifies the size of the log measured in number of octets. A log may have an indeterminate size. A value of zero is used to specify unlimited size.”

constrainList : ConstrainExpSeq

---“constraintList parameter specifies the filter constraint that OMC shall use to filter alarms. It is ConstrainExpSeq type compliant, which is imported from CORBA notification service CosNotifyFilter module. A NULL value indicates that no filter constraints shall be applied. constraint_expr in ConstraintExp should conform to the default filter constraint language defined in OMG notification service.”

OUTPUT_PARAMETERS

logRef : NotifyLog

---“logRef is the IOR of the log interface object. It can be used by NMS to control log and invoke operation against log record”

subId : SubscriptionIdType

---“subId parameter is the subscription identifier for this particular operation. NMS can use this id to control subscription”
channelId : ChannelIdType
---“channelId parameter is the identifier of the event channel to which the consumerRef is connected. This parameter will later be used for ‘getHeartbeat’ operation to get the proper IOR of the associated cTelHeartbeat object.”

PRE_CONDITIONS

INVARIANT1 : “OMC supports given filter constraints”

INVARIANT2 : “LogService is supported”

POST_CONDITIONS

IF “operation success” THEN result=“success”

IF “operation failure” THEN result=“failure” AND logRef=NULL

RETURN_VALUE

result : eResultType

-----“result value returned identifies operation success or failure.”

EXCEPTIONS

IF PRE_CONDITION INVARIANT1 NOT_VERIFIED RAISE_EXCEPTION

InvalidConstraint

IF PRE_CONDITION INVARIANT2 NOT_VERIFIED RAISE_EXCEPTION

LogNotSupported

7.3.3.6 operation “unsubscribeLog”
BEHAVIOUR

“This operation supports NMS to cancel an existed configuration log subscription”

INPUT_PARAMETERS

subId : SubscriptionIdType

---“subId parameter identifies the log subscription.”

PRE_CONDITIONS

INVARIANT1: “the specified subscription exists”

INVARIANT2: “LogService is supported”

POST_CONDITIONS

 IF “operation success” THEN result= “success”

 IF “operation failure” THEN result= “failure”

RETURN_VALUE

result : eResultType

---“result value returned specifies whether the operation success or not”

EXCEPTIONS

IF PRE_CONDITION INVARIANT1 NOT_VERIFIED RAISE_EXCEPTION

UnknownSubscription

IF PRE_CONDITION INVARIANT2 NOT_VERIFIED RAISE_EXCEPTION

LogNotSupported

7.3.3.7 operation “queryLogRecord_v2”
BEHAVIOUR

“This operation supports NMS to get configuration log records in an OMC.”
 INPUT_PARAMETERS

consumerRef : SequencePushConsumer

--“consumerRef parameter is the IOR against which OMC shall invoke push() operation to inform it about the availability of result files. It is SequencePushConsumer type compliant, which is imported from CORBA notification service CosNotifyComm module.”

constraintList : string

---“constraintList parameter specifies the filter constraint that OMC shall use to filter alarm records. A NULL string value indicates that no filter constraints shall be applied. Its format should conform to default filter constraint language defined in OMG notification service.”

logRef : NotifyLog

---“logRef parameter specifies the IOR of the log interface object to which it subscribes log.”

OUTPUT_PARAMETERS

subId : SubscriptionIdType

---“subId parameter is the subscription identifier for this particular operation. NMS can use this id to control subscription”
channelId : ChannelIdType
---“channelId parameter is the identifier of the event channel to which the consumerRef is connected. This parameter will later be used for ‘getHeartbeat’ operation to get the proper IOR of the associated cTelHeartbeat object.”

PRE_CONDITIONS

INVARIANT1: “given filter constraints is valid”

INVARIANT2: “specified log existed in OMC”

INVARIANT3: “LogService is supported”

POST_CONDITIONS

IF “operation success” THEN result=“success”

IF “operation failure” THEN result=“failure”

RETURN_VALUE

result : eResultType

-----“result value returned identifies operation success or failure.”

EXCEPTIONS

IF PRE_CONDITION INVARIANT1 NOT_VERIFIED RAISE_EXCEPTION

InvalidConstraint

IF PRE_CONDITION INVARIANT2 NOT_VERIFIED RAISE_EXCEPTION

UnknownLog

IF PRE_CONDITION INVARIANT2 NOT_VERIFIED RAISE_EXCEPTION

LogNotSupported

7.3.3.8 operation “getMOHandler”

BEHAVIOUR

“This operation supports NMS to get the handler for specific managed object.”

INPUT_PARAMETERS

moInstance : ManagedObjectType

---“moInstance parameter identifies the object whose corresponding handler is to be got. It is a struct, which is composed of class name and managed object distinguished name.”

 OUTPUT_PARAMETERS

moHandlerRef : CORBA::Object

---“moHandlerRef is the IOR of interface MOHandler object. NMS will use this IOR to operate on managed object”

handlerId : HandlerIdType

---“handerId identifies the MOHandler interface uniquely”

PRE_CONDITIONS

INVARIANT1 “given object instance existed in OMC”
POST_CONDITIONS
 IF “operation success” THEN result=“success”

 IF “operation failure” THEN result=“failure” AND moHandlerRef=NULL

RETURN_VALUE

result : eResultType

---“result value returned specifies whether the operation success or not”

EXCEPTIONS

 IF PRE_CONDITION INVARIANT1 NOT_VERIFIED RAISE_EXCEPTION

UnknownObject

7.3.3.9 operation “releaseMOHandler”

BEHAVIOUR

“This operation supports NMS to release the handler for specific managed object.”

INPUT_PARAMETERS

handlerId : HandlerId

---“handlerId parameter identifies the MOHandler to be released.”

PRE_CONDITIONS

INVARIANT1 : “specified MOHandler exists”
POST_CONDITIONS
 IF “operation success” result=“success”

 IF “operation failure” result=“failure”

RETURN_VALUE

result : eResultType

---“result value returned specifies whether the operation success or not”

EXCEPTIONS

IF PRE_CONDITION INVARIANT1 NOT_VERIFIED RAISE_EXCEPTION

UnknownHandler

7.3.3.10 operation “getTopology_v2”
BEHAVIOUR

“This operation supports NMS to get topology of the network. When OMC finishes data collection, a file transfer ready notification should be sent to NMS. Then NMS can use bulk data transfer function to get result file. If error occurs during file preparation, an indicative notification should be sent to NMS”

INPUT_PARAMETERS

consumerRef : SequencePushConsumer

---“consumerRef parameter is the IOR against which OMC will invoke push() operation to inform the availability of files or transfer preparation error”

OUTPUT_PARAMETERS

tranId : TransactionIdType

---“parameter tranId is the transaction identifier of this particular operation, and it will be used in the response file.”
channelId : ChannelIdType
---“channelId parameter is the identifier of the event channel to which the consumerRef is connected. This parameter will later be used for ‘getHeartbeat’ operation to get the proper IOR of the associated cTelHeartbeat object.”

POST_CONDITIONS

IF “operation success” THEN result=“success”

IF “operation failure” THEN result=“failure”

RETURN_VALUE

result : eResultType

---“return value result specifies whether the operation success or not”

7.3.3.11 operation “synchronizeCM_v2”

BEHAVIOUR

“This operation supports NMS to get CM data in a containment tree. When OMC finishes data collection, a ready notification should be sent to NMS. Then NMS can use bulk data transfer function to get result file. If error occurs during file preparation, an indicative notification should be sent to NMS”

INPUT_PARAMETERS

moInstance : ManagedObjectType

---“moInstance parameter identifies the starting point of the subtree in the containment tree for which CM data is required. It is a struct of class name and managed object distinguished name.”

consumerRef : SequencePushConsumer

---“consumerRef parameter is the IOR against which OMC will invoke push operation to inform the availability of files or transfer preparation error”

 OUTPUT_PARAMETERS

tranId : TransactionIdType

---“tranId parameter is the transaction identifier of this particular operation, and it will be used in the response file”
channelId : ChannelIdType
---“channelId parameter is the identifier of the event channel to which the consumerRef is connected. This parameter will later be used for ‘getHeartbeat’ operation to get the proper IOR of the associated cTelHeartbeat object.”
PRE_CONDITIONS

INVARIANT1 : “given object instance existed in OMC”
POST_CONDITIONS
 IF “operation success” THEN result=“success”

 IF “operation failure” THEN result=“failure”

RETURN_VALUE

result : eResultType

---“result value returned specifies whether the operation success or not”

EXCEPTIONS

 IF PRE_CONDITION INVARIANT1 NOT_VERIFIED RAISE_EXCEPTION

UnknownObject

7.3.3.12 operation “getHeartbeat”

BEHAVIOUR

“This operation supports NMS to get the object reference of the cTelHeartbeat object, which is associated with the event channel specified by the channelId parameter.”

INPUT_PARAMETERS

 channelId : ChannelIdType
---“input parameter channelId identifies the event channel to which the target cTelHeartbeat is associated.”

OUTPUT_PARAMETERS

 heartbeartRef : cTelHeartbeart
---“output parameter heartbeartRef identifies the object reference of the cTelHeartbeat object instance which is associated with the event channel specified by the channelId parameter.”

POST_CONDITIONS

IF “operation success” THEN Result=“success”

IF “operation failure” THEN Result=“failure”

RETURN_VALUE

result :eResultType

---“result value returned identifies operation success or failure.”

EXCEPTIONS

IF PRE_CONDITION INVARIANT1 NOT_VERIFIED RAISE_EXCEPTION

UnknowChannel

7.3.4 Configuration Management Senarios

This section shows several scenarios of configuration management.

[image: image17.wmf]:Session

:

CMHandler

:MOHandler

NMS

getHandler(...)

create or connect

create or connect

releaseMOHandler(in handlerId)

getMOHandler(in moInstance,out

moHandler,out handlerId)

getAttribute(in moInatance,in

attrNameList,out attrList)

 MSC

instance

get attributes

getConatinment(in moInstance,in scopeType,

in depth,out moInstanceList)

release or

disconnect

releaseHandler(in

handlerId)

release or

disconnect

get contained MOs

Figure 17 UML Sequence Diagram of Managing MOHandler
In the scenario shown in figure 17, NMS firstly invokes “getMOHandler” operation on a CMHandler interface instance and gets the IOR of the MOHandler interface. Then NMS invokes operation on MOHandler to access information of the specific managed object information. After NMS finishes management operations on this specific MO, it may invoke “releaseMOHandler” operation to release the corresponding instance of MOHandler interface.

[image: image18.wmf]:Session

:

CMHandler

:SequenceProxy

PushSupplier

NMS

getHandler(...)

create or connect

create or connect

file_transfer_ready_notifcation

getTopology(out tranId)

release or disconnect

release or disconnect

NMC get configuration

infomation files

subscribeNotif(in consumerRef,in constraintList,out

slyRef,out subId)

synchroniseCM(in moInstance,out tranId)

OMC collect topology

infomation

when finished send ready

notification

file_transfer_ready_notifcation

NMC get topology

infomation files

unsubscribeNotif(in subId)

OMC collects

configuration info

when finished send ready

notification

object_cration_notifcation

releaseHandler(in

handlerId)

Figure 18 UML Sequence Diagram of Configuration Management Senario

NMS invokes configuration information collecting operation on CMHandler interface. OMC starts to do information collection and organizes the result into CM files. When the collection has finished, NMS will receive a file transfer ready notification. And then NMS can get the result files through FTP service.
7.4 Performance Management

7.4.1 Introduction of PMHandler Interface

In this specification, the performance management function set is implemented by PMHandler interface. This interface provides the performance management functions described in PM functional requrements.

7.4.2 Class Diagram of PMHandler_v2 Interface

PMHandler_v2 interface provides NMS all the operations of performance management functions. And its class diagram is shown in figure 19, as below:

[image: image19.wmf]PMHandler_v2

timeout

startMeasurementJob_v2(in consumerRef, in measurementInfoList, in aggregationPeriod, in reportingPeriod, ...) : ResultType

joinMeasurementJob_v2(in jobId, in consumerRef, in startTime, in stopTime, out subId, out channelId) : ResultType

stopMeasurementJob(in subId, in jobId, out jobStatus) : ResultType

listMeasurementJob(out jobInfoList) : ResultType

listJobFile_v2(in jobId, in subId, out jobFileInfo) : ResultType

getHeartbeat(in channelId, out heartbeatRef) : ResultType

Figure 19 UML Class Diagram of PMHandler_v2

7.4.3 Attribute and Operaitons of PMHandler_v2 Interface

7.4.3.1 attribute “timeout”
BEHAVIOUR

“This read only attribute stores the timeout value of this FMHandler object, which can be queried by NMS. The initial value of this attribute is obtained from the input parameter of the invoked ‘getHandler’ operation.”
7.4.3.2 operation “startMeasurementJob_v2”
BEHAVIOUR

 “This operation supports NMS to start a measurement job in OMC.”
INPUT_PARAMETERS

consumerRef : SequencePushConsumer

--“consumerRef parameter is the IOR against which OMC shall invoke push operation to inform NMS about the availability of files”

 measurementInfoList : MeasurementInfoListType

--“measurementInfoList parameter specifies selected measurement object attributes and additional information required. If only the object class is specified in the measurementInfo, the measurement job will be applied to all instances of the class. If the length of the attributeList field is zero, it means all the attributes in the specific measurementJob shall be returned.”

 aggregationPeriod : AggregationPeriodType

--“aggregationPeriod parameter specifies the time period between two successive measurement data aggregation. It is based on fifteen minutes.”

 reportingPeriod : ReportingPeriodType

--“reportingPeriod parameter specifies the time period between two successive data ready notification being sent to NMS. It should be several times of aggregation period. The default value is two times of aggregation period. It is based on fifteen minutes.”

startTime : GeneralizedTimeType

--“startTime parameter specifies the actual start time of the measurement job. If no value is given, the measruement job will be run by OMC at once. Format of the parameter is GeneralizedTimeType, which is string type.”

stopTime : GeneralizedTimeType

--“stopTime parameter specifies the stop time of the measurement job. If no value is given, the job will run forever until the NMS stops it with stopMeasurementJob operation. Format of the parameter is GeneralizedTimeType, which is string type. When time specified expires, it has the same behaviour as stopMeasurementJob invocation”

OUTPUT_PARAMETERS

jobId : JobIdType

---“parameter jobId and subId is the identifier for this particular operation”

subId : SubscriptionIdType

---“parameter jobId and subId is the identifier for this particular operation”
channelId : ChannelIdType
---“channelId parameter is the identifier of the event channel to which the consumerRef is connected. This parameter will later be used for ‘getHeartbeat’ operation to get the proper IOR of the associated cTelHeartbeat object.”
PRE_CONDITIONS

INVARIANT1 “measurementInfoList specified is valid”

INVARIANT2 “startTime specified is later than current time”

INVARIANT3 “stopTime specified is later than startTime”

POST_CONDITIONS

IF “operation success” result=“success”
IF “operation failure” result=“failure”

RETURN_VALUE

result : eResultType

---“result value returned specifies whether the operation success or not”

RAISAED_EXCEPTIONS

 IF PRE_CONDITION INVARIANT1 NOT_VERIFIED RAISE_EXCEPTION

InvalidMeasurementInfo

IF PRE_CONDITION INVARIANT2 NOT_VERIFIED RAISE_EXCEPTION

InvalidStartTime

IF PRE_CONDITION INVARIANT3 NOT_VERIFIED RAISE_EXCEPTION

InvalidStopTime

7.4.3.3 operation “joinMeasurementJob_v2”

BEHAVIOUR

“This operation suppports NMS to join an existed measurement job started by another NMS.”

INPUT_PARAMETERS

 jobId : JobIdType
 --“jobId parameter identifies an existed measurement job”
 consumerRef : SequencePushConsumer

--“cosnumerRef parameter is the IOR against which OMC will invoke push operation to inform NMS the availability of measurement result files”

startTime : GeneralizedTimeType

--“startTime parameter specifies the actual start time of the measurement job. If no value is given, the measurement job will be run by OMC at once. Format of the parameter is GeneralizedTime, which is string type. The start time should not be earlier than that of the job created by another NMS, Otherwise OMC may raise the InvalidStartTime exception.”

stopTime : GeneralizedTimeType

--“stopTime parameter specifies the stop time of the measurement job. If no value is given, the job will be run forever until the NMS stops it with stopMeasurementJob operation. Format of the parameter is GeneralizedTimeType, which is string type. When time specified expires, it has the same behaviour as stopMeasurementJob invocation”

OUPUT_PARAMETERS

subId : SubscriptionIdType

--“paramter subId identifies this particular subscription”
channelId : ChannelIdType
---“channelId parameter is the identifier of the event channel to which the consumerRef is connected. This parameter will later be used for ‘getHeartbeat’ operation to get the proper IOR of the associated cTelHeartbeat object.”

PRE_CONDITIONS

INVARIANT1: “the measurement job specifies exists”

INVARIANT2: “startTime specified is later than current time, or it is not earlier than the real startTime, when the job is to be run.”

INVARIANT3: “stopTime specified is later than startTime”

 POST_CONDITIONS

IF “operation success” result=“success”
IF “operation failure” result=“failure”

 RETURN_VALUE

result : eResultType

---“result value returned specifies whether the operation success or not”
EXCEPTIONS

 IF PRE_CONDITION INVARIANT1 NOT_VERIFIED RAISE_EXCEPTION

UnknownJob

IF PRE_CONDITION INVARIANT2 NOT_VERIFIED RAISE_EXCEPTION

InvalidStartTime

IF PRE_CONDITION INVARIANT3 NOT_VERIFIED RAISE_EXCEPTION

InvalidStopTime

7.4.3.4 operation “stopMeasurementJob”

BEHAVIOUR

“This operation supppors an NMS to unsubscribe from an existed measurement job in OMC. If the job is only run for the specified NMS currently, then the job will be stopped.”

INPUT_PARAMETERS

subId : SubscriptionIdType
jobId : JobIdType

---“subId and jobId parameters identifie an existed measurement job and its corresponding NMS initiator”

OUTPUT_PARAMETERS

jobStauts : eJobStatusType

---“jobStatus parameter specifies the status of the job. It can be JOB_STOPPED or JOB_DISCONNECTED_BUT_STILL_RUNNING”

PRE_CONDITIONS

INVARIANT1: “the measurement job specified exists”

INVARIANT2: “the subscription identifed by subId exists”

POST_CONDITIONS

INVARIANT3: “the specified measurement job stopped”

INVARIANT4: “the job disconnected but still run by other NMSs”

IF INVARIANT3 VERIFIED THEN jobStatus=JOB_STOPPED

IF INVARIANT4 VERIFIED THEN jobStatus=JOB_DISCONNECTED_BUT_STILL_
RUNNING

 IF “operation success” result=“success”

IF “operation failure” result=“failure”

RETURN_VALUE

result : eResultType

---“result value returned specifies whether the operation success or not”

EXCEPTIONS

IF PRE_CONDITION INVARIANT1 NOT_VERIFIED RAISE_EXCEPTION

UnknownJob

IF PRE_CONDITION INVARIANT2 NOT_VERIFIED RAISE_EXCEPTION

UnknownSubscription

7.4.3.5 operation “listMeasurementJob”
BEHAVIOUR

 “This operation supppors NMS to get information of all existed measurement job in OMC.”
OUTPUT_PARAMETERS

 measurementJobInfo : MeasurementJobInfoType

 ---“parameter measurementJobInfo specifies all the measurement job information running or to be run in OMC”

POST_CONDITIONS

IF “operation success” result=“success”

IF “operation failure” result=“failure”

RETURN_VALUE

result : eResultType

---“result value returned specifies whether the operation success or not”

7.4.3.6 operation “listJobFiles_v2”
BEHAVIOUR

“This operation supppors NMS to get file information list about an existed measurement job in OMC. Only NMS which has subscribed the measurement job is authorised to invoke this operation.”

INPUT_PARAMETERS

 jobId : JobIdType

 ---“jobId parameter identifies an existed measurement job”

subId : SubscriptionIdType

---“subId parameter identified the job subscription.”

how_many : unsigned long
---“how_many parameter specifies the number of file information which will be returned by the output parameter jobFileInfoList. The rest of file information will then be got throuth the output parameter iterator, if there are any.”

OUTPUT_PARAMETERS

 jobFileInfo : JobFileInfoType

---“jobFileInfoList parameter contains file information list of the specified measurement job”

 iterator : JobFileInfoIterator

---“iterator parameter is an object instance of JobFileInfoIterator interface. When the file information is not all returned by the jobFileInfoList parameter, this parameter is used to get the rest of the information. If all the file inforamtion is returned, this parameter should be a nill object..”

PRE_CONDITIONS

INVARIANT1: “the measurement job specified exists”

INVARIANT2: “NMS has subscribed the measurement job”

POST_CONDITIONS

IF “operation success” result=“success”

IF “operation failure” result=“failure”

RETURN_VALUE

result : eResultType

---“result value returned specifies whether the operation success or not”

EXCEPTIONS

 IF PRE_CONDITION INVARIANT1 NOT_VERIFIED RAISE_EXCEPTION

UnknownJob

IF PRE_CONDITION INVARIANT2 NOT_VERIFIED RAISE_EXCEPTION

UnknownSubscription

7.4.3.7 operation “getHeartbeat”

BEHAVIOUR

“This operation supports NMS to get the object reference of the cTelHeartbeat object, which is associated with the event channel specified by the channelId parameter.”

INPUT_PARAMETERS

 channelId : ChannelIdType
---“input parameter channelId identifies the event channel to which the target cTelHeartbeat is associated.”

OUTPUT_PARAMETERS

 heartbeartRef : cTelHeartbeart
---“output parameter heartbeartRef identifies the object reference of the cTelHeartbeat object instance which is associated with the event channel specified by the channelId parameter.”

PRE_CONDITIONS

None.

POST_CONDITIONS

IF “operation success” THEN Result=“success”

IF “operation failure” THEN Result=“failure”

RETURN_VALUE

result :eResultType

---“result value returned identifies operation success or failure.”

EXCEPTIONS

IF PRE_CONDITION INVARIANT1 NOT_VERIFIED RAISE_EXCEPTION

UnknowChannel

7.4.4 Performance Management Senarios

[image: image20.wmf]:Session

:

PMHandler

:SequenceProx

yPushSupplier

NMS

getHandler(...)

create or connect

startMeasurementJob(in consumerRef,in

measurementConstraints,in aggregationPeriod,in

reportingPeriod,in startTime,in stopTime,out

jobId,out subId)

create or connect

file_transfer_ready_notifcation

stopMeasurementJob(in jobId,in

subId,out jobStatus)

release or disconnect

releae or disconnect

releaseHandler(in

handlerId)

OMC collect measurement data

when reporting period

expires send ready

notification

NMC get measurement

result files

Figure 20 UML Sequence Diagram 1 of Performance Management
Figure 20 illustrates how NMS interacts with OMC to start a measurement job and get the measurement result. NMS invokes startMeasurementJob operation on PMHandler interface, and then OMC begins to do the measurement job according to the specified parameters. And according to another input parameter “reportingPeriod”, OMC will periodically send a file transfer ready notification to NMS when OMC finishes file preparation, and then NMS can get the measurement result file with File Transfer Protocol service. When NMS invokes “stopMeasurementJob” operation, it will unsubscribe the job and the output parameter jobStatus will indicate whether the job is stopped or is still running for other NMSs.

[image: image21.wmf]:Session

:

PMHandler

:SequenceProxy

PushSupplier

getHandler(...)

create or correct

joinMeasurementJob(in jobId in consumerRef,in

startTime,in stopTime,out subId)

create or connect

file_transfer_ready_notifcation

stopMeasurementJob(in jobId,in subId,out

jobSatus)

release or disconnect

release or disconnect

releaseHandler(in

handlerId)

listMeasurementJob(out

jobinfoList)

NMCget PM result

files

listJobFiles(in jobId,in

subId, out fileInfolist)

NMS

OMS collect measurement

data，when reporting period�

expires, send file prepare

ready notification

 Figure 21 UML Sequence Diagram 2 of Performance Management

The sequence diagram in figure 21 illustrates how NMS joins in an existed measurement job and gets measurement result files. In this diagram, the preconditoin is that the measurement job has already been started by another NMS. This NMS invokes “joinMeasurementJob” operation with job identifier and the IOR of event consumer. When NMS receives the file prepare ready notification, NMS can get measurement result files using File Transfer Protocol service.

7.4.5 Introduction of JobFileInfoIterator Interface

This interface is used for NMS to get the rest of job file information which are not returned by the “listJobFiles_v2” operation. This interafce supports two operation: “getNext” and “destroy”. The former is used for getting out more file information and the latter is used to release this object instance when all the information has been returned to NMS.

7.4.6 Class Diagram of JobFileInfoIterator Interface

Figure 22 shows the class diagram of JobFileInfoIterator interface:
[image: image22.wmf]JobFileInfoIterator

getNext(in how_many, out jobFileInfo) : boolean

destroy() : void

Figure 22 UML Class Diagram of JobFileInfoIterator Interface

7.4.7 Operations of JobFileInfoIterator Interface

7.4.7.1 operation “getNext”

BEHAVIOUR

“This operation supports NMS to get all or part of the the rest job file information. When not all the information is return by just once invocation on this operation. NMS may try another invoation to get more, until all the information is returned to NMS.”

INPUT_PARAMETERS

 how_many : unsigned long
---“input parameter how_many specifies number of file information which will be returned through the output parameter jobFileInfo.”

OUTPUT_PARAMETERS

 jobFileInfo :JobFileInfoType
---“output parameter jobFileInfo contains the job file information which are part of the result of the listJobFiles_v2 operation. The number of the file information are specified by input parameter how_many. If there are no file information left after this invocation, the number of the file information may be equal to or less than the number specified by how_many, according to the real count of file records; otherwise the number should be equal to the how_many. in this case , another invocation on this operation is required.”

POST_CONDITIONS

IF “there are still file information left in the JobFileInfoIterator object” THEN result=“TRUE”

IF “there are no file information left in the JobFileInfoIterator object” THEN result=“FALSE”

RETURN_VALUE

result :boolean

---“result value returned identifies whether there are still file information left in the JobFileInfoIterator. object.”
7.4.7.2 operation “destroy”

BEHAVIOUR

 “When NMS has already got all the information related to a specified measurement job, this operation can be invoked by NMS to release this JobFileInfoIterator instance.”

INPUT_PARAMETER

 None.

OUTPUT_PARAMETER

 None.

RETURN_VALUE

 None.

8 Mapping Table between Generic Requirements and CORBA-based Management Frameworke

Table A-1 Mapping from Common management function set to CORBA interfaces

	Common Function Requirements
	Interfaces or Services in CORBA-based Management Framework
	Status
	Additional information

	notification management function
	OMG Notification Service
	M
	

	log management function
	OMGTelecomLog Service
	O
	all operations related with Log is optional

	bulk data transfer function
	CMHandler interface,

FMHandler interface,

PMHandler interface,

FTP Service
	M
	

	communication surveillance function
	cTelHeartbeat interface
	M
	

	fault management function
	FMHandler interface
	M
	

	configuration management function
	CMHandler interface,

MOHandler interface
	M
	

	performance management function
	PMHandler interface,

JobFileInfoIterator interface
	M
	

	security management function
	OMC interface,

Session interface
	M
	

Table A-2 Mapping from notification management function set to CORBA interface operations

	Common Function Requirements
	Operations or function in CORBA-based Management Framework
	Status
	Additional information

	Log

filtering management
funtion
	create log
	No corresponding operations
	O
	the creation of Log object is controlled by OMC, and it is transparent ot NMS.

	notification forwarding function
	No corresponding operations
	M
	implemented by OMG Notification Service (NotifyChannel).

NotifyChannel is created by OMC, which is transparent to NMS.

	event filtering management function
	create EFD
	no corresponding operations
	O
	the creation of NotifyChannel is controlled by OMC, and it is transparent ot NMS.

	
	delete EFD
	no corresponding operations
	M
	the deletion of NotifyChannel is controlled by OMC, and it is transparent ot NMS.

	
	suspend EFD
	none
	M
	not supported

	
	resume EFD
	none
	M
	not supported

	
	modify EFD
	modify_constraints operation of Filter interface
	M
	the filtering constraints can be modified

	
	query EFD
	in OMG Notification Service, get_filte operation in FilterAdmin interface, get_constraints and get_all_constraints operations in Filter interface
	M
	the filtering constraints can be queried

	event buffering mechanism
	no corresponding operations
	O
	implemented by the connection and event reliability in Notification Service

	event synchronization function
	no corresponding operations
	O
	may be indirectedly implemented by Log Service

Table A-3 Mapping from log management function set to CORBA interface operations

	Common Function Requirements
	Operations or function in CORBA-based Management Framework
	Status
	Additional information

	log
management

funtion
	create log
	no corresponding operations
	O
	the creation of Log object is controlled by OMC, and it is transparent ot NMS.

	
	delete log
	no corresponding operations
	O
	the deletion of Log object is controlled by OMC, and it is transparent ot NMS.

	
	suspend log
	none
	O
	not supported

	
	resume log
	none
	O
	not supported

	
	modify log
	modify_constraints operation in Filter interface of OMG TelecomLog Service
	O
	

	
	query log
	get_filter operation in FilterAdmin, get_constraints and get_all_constraints operations in Filter interface of OMG TelecomLog Service
	O
	

	log record management function
	delete log records
	delete_records and delete_records_by_id operations in Log interface of OMG TelecomLog Service
	O
	

	
	query log records
	query and retrieve operations in Log interface of OMG TelecomLog Service
	O
	

Table A-4 Mapping from security management function set to CORBA interface operations

	Common Function Requirements
	Operations or function in CORBA-based Management Framework
	Status
	Additional information

	open session function
	openSession operation in OMC interface
	M
	

	close session function
	closeSession operation in OMC interface
	M
	

	auto-close ofsession when timed out
	no corresponding operations
	M
	This function is implement in OMC internally

Table A-5 Mapping from link monitoring function set to CORBA interface operations

	Common Functional Requirements
	Operations or function in CORBA-based Management Framework
	Status
	Additional information

	query heartbeat service function
	systemLabel attribute get and periodGet operation of cTelHeartbeat interface
	M
	

	modify heartbeat service function
	systemLabel attribute set and periodSet operation of cTelHeartbeat interface
	M
	

	heartbeat notification report function
	no corresponding operations
	M
	implemente by cTelheatbeat object when sending heartbeat notifications to NotifyChannel

Table A-6 Mapping from bulk data transfer function set to CORBA interface operations

	Common Function Requirements
	Operations or function in CORBA-based Management Framework
	Status
	Additional information

	request file preparation function
	no specific operations
	M
	file preparation request is actually mapped to several operations in deferent domains, for example, getTopology, synchronizeCM in CMHandler, and queryLogRecord in FMHandler.

	get data files function
	no corresponding functions
	M
	the retrieval of files is implemented through FTP service.

	get file ACK function
	none
	O
	not supported

	“transfer up ready” and “file preparation error” notifications report function
	no corresponding notifications
	M
	implemented by Notification Service, the contents of these two notifications conform to the generic analysis.

Table A-7 Mapping from generic performance managemnet function set to CORBA interface operations

	Common Function Requirements
	Operations or function in CORBA-based Management Framework
	Status
	Additional information

	measurement job management function
	create measurement job
	none
	O
	not supported, in this specification, measurement collection is transparent to NMS. OMC will decide to create or connect to a measurement collection according to the related measurement reporting job.

	
	delete measurement job
	none
	O
	not supported, in this specification, measurement collection is transparent to NMS. OMC will decide to stop or disconnect to a measurement collection according to the related measurement reporting job.

	
	suspend measurement job
	none
	O
	not supported

	
	resume measurement job
	none
	O
	not supported

	
	modify measurement job
	none
	O
	not supported

	
	query measurement job
	none
	O
	not supported

	measurement data report job management function
	create a measurement report job
	startMeasurementJob and joinMeasurementJob operations of PMHandler interface
	M
	

	
	delete a measurement report job
	stopMeasurementJob operation in PMHandler interface
	M
	

	
	suspend a measurement report job
	none
	O
	not supported

	
	resume a measurement report job
	none
	O
	not supported

	
	query a measurement report job
	listMeasurementJobs operation in PMHandler interface
	M
	

	performance threshold management function
	create threshold data
	none
	O
	not supported

	
	delete threshold data
	none
	O
	not supported

	
	query threshold data
	none
	O
	not supported

	
	modify threshold data
	none
	O
	not supported

	
	assign threshold data
	none
	O
	not supported

	query history data function
	listJobFiles operation in PMHandler interface
	M
	the queried information is all the files which stores the history data, and then through FTP NMS can get these files.

Table A-8 Mapping from generic fault managemnet function set to CORBA interface operations

	Common Function Requirements
	Operations or function in CORBA-based Management Framework
	Status
	Additional information

	configure alarm filtering criteria
	subscribeNotif operation in FMHandler interface
	M
	NMS subscribe alarm notifications from OMC, and when subscribing, NMS may specify the filtering constrains for alarms.

	alarm report function
	no corresponding operation
	M
	implemented by NotifyChannel

	synchronize alarm information
	synchrinizeAlarm and queryLogRecord operations in FMHandler
	M
	may be accompleshed through current alarm summary report notifications, or by querying alarm log records.

	configure alarm log filtering criteria
	subscribeLog operation in FMHandler interface
	O
	NMS subscribe alarm log records from OMC, and when subscribing, NMS may specify the log filtering constrains for alarms.

	cancel alarm log filtering criteria
	unsubscribeLog operation in FMHandler interface
	O
	

	query alarm log records
	queryLogRecord operation of FMHandler, or query operation in Log interface
	O
	implemented indirectly by Log Service.

	delete alarm log records
	delete_records operation of Log interface
	O
	provided by Log Service.

Table A-9 Mapping from generic configuration managemnet function set to CORBA interface operations

	Common Function Requirements
	Operations or function in CORBA-based Management Framework
	Status
	Additional information

	configuration MO management function
	create MO function
	createMO operation of MOHandler interace
	M
	

	
	delete MO function
	deleteMO operation of MOHandler interace
	M
	

	
	query MO attributes function
	getAttribute operation of MOHandler interace
	M
	

	
	modify MO function
	updateAttribute operation of MOHandler interace
	M
	

	
	query MO containment information function
	getContainment operation of MOHandler interace
	M
	

	synchronize configuration information function
	synchronizeCM operation in CMHandler interface
	M
	CM synchronization file is obtained by FTP

Annex A(normative) IDL Interface Definitions of CORBA-based Domain-oriented Coarse-grained Management Framework

A.1 Introduction

The CORBA-based, domain-oriented coarse-grained IDL interface definition is given in this appendix. First the IDL definition according to the analysis model is given, which will be listed in Annex A.2; second some difference between the generic analysis and this framework is shown, according to CORBA-specific characteristics, and the corresponding IDL definitions are also given. In addition, these IDL definitions are only involed with the common CORBA-based management framework, as for the information related to techinique-dependent networks will be given in another specification in this series.

A.2 IDL Interface for CORBA-based Management Framework

A.2.1 Common Data Type Module

	// File : NmcIfComm.idl

// Common part of the NMC-OMC interface definition. In this file, base types and

// exception that will be referenced in other modules are defined.

#ifndef _NMC_IF_COMMON_IDL_

#define _NMC_IF_COMMON_IDL_

#include <NmcIfIMBaseType.idl>

module NmcIfComm

{

typedef string HandlerIdType;

typedef string VersionIdType;

typedef sequence<VersionIdType> VersionIdListType;

typedef unsigned long SubscriptionIdType;

typedef unsigned long SessionIdType;

typedef NmcIfIMBaseType::eClassIdType MOClassNameType;

typedef string ChannelIdType;

//In this OMC-NMC interface, class adopted is defined in annex D.4

typedef string DistinguishedNameType;

typedef sequence<DistinguishedNameType> DNListType;

struct ManagedObjectType

{

MOClassNameType

className;

DistinguishedNameType
moDN;

};

typedef sequence<ManagedObjectType> ManagedObjectListType;

typedef NmcIfIMBaseType::eAttrIdType AttrNameType;

//in this OMC-NMC interface, attribute that can be adopted is defined in Annex D.4

typedef any AttrValueType;

typedef sequence<AttrNameType> AttrNameListType;

struct AttrInfoType

{

AttrNameType
name;

// here any is used as attrValueType

// actual value type is determined by attribute name based on

// information defined in file NmcIfIMComm.idl

// and all referenced types are defined in file NmcIfIMCommType.idl

AttrValueType
value;

// value is based on the attribute name.

};

typedef sequence<AttrInfoType> AttrInfoListType;

typedef string CredentialType;

enum eCredentialInvalidReasonType

{

UNKNOWN_CREDENTIAL,

SESSION_TIMEOUT

};

enum eSubscriptionStatusType

{

SUBSCRIPTION_OK,

SUBSCRIPTION_SUSPEND,

SUBSCRIPTION_CLOSED

};

enum eResultType

{

success,

failure

};

enum eObjectInvalidReasonType

{

UNKNOWN_OBJECT_CLASS,

UNKNOWN_DISTINGUISHED_NAME

};

typedef string GeneralizedTimeType;

exception InvalidCredential {eCredentialInvalidReasonType reason;};

exception ExceedMaxNumberOfHandler {};

exception UnknownHandler {HandlerIdType handlerId;};

exception UnknownSubscription {};

// imported from CosNotifyFilter module

//exception CosNotifyFilter::InvalidConstraint {ConstraintExp constr;};

exception UnknownAttribute {AttrNameType unknowAttr;};

exception AuthenticateFailure {};

exception UnknownObject

{

ManagedObjectType unknownMOInstance;

eObjectInvalidReasonType invalidReason;

};

exception UnknownLog {};

exception LogNotSupported {};
// for optional LogService

exception InvalidTimeout { string reason; }; // for unreasonable timeout values;

exception UnknownChannel {};

};

#endif

A.2.2 OMC Interface Module

	// File : NmcIfOMC.idl

// This file contains interface OMC definition

#ifndef _NMC_IF_OMC_IDL_

#define _NMC_IF_OMC_IDL_

#include <NmcIfComm.idl>

#include <NmcIfSession.idl>

module NmcIfOMC

{

exception ExceedMaxNumSession {};

exception UnknownSession { NmcIfComm::SessionIdType unknownSessionId;};

interface OMC

{

NmcIfComm::eResultType openSession(

in string userName,

in string password,

in unsigned long timeout,

out NmcIfComm::SessionIdType
sessionId,

out NmcIfSession::Session
sessionRef,

out NmcIfComm::CredentialType
credential) //content given by OMC

raises(
NmcIfComm::AuthenticateFailure,

ExceedMaxNumSession,

NmcIfComm::InvalidTimeout);

NmcIfComm::eResultType closeSession(

in NmcIfComm::SessionIdType sessionId,

in string credential)

raises(
NmcIfComm::InvalidCredential,

UnknownSession);

};

};

#endif

A.2.3 Session Interface Module

	// File : NmcIfSession.idl

// In this file, session interface is defined.

#ifndef _NMC_IF_SESSION_IDL_

#define _NMC_IF_SESSION_IDL_

#include <NmcIfComm.idl>

module NmcIfSession

{

enum eHandlerType

{

FAULT_MANAGEMENT,

CONFIGURATION_MANAGEMENT,

PERFORMANCE_MANAGEMENT

};

interface Session

{

readonly attribute unsigned long timeout;

NmcIfComm::eResultType
getHandler(

in eHandlerType

handlerType,

in NmcIfComm::VersionIdType
versionId,

in string
credential,

in unsigned long
timeout,

out NmcIfComm::VersionIdListType supportVersionList,

out NmcIfComm::HandlerIdType
handlerId,

out Object

handlerRef)

raises(
NmcIfComm::ExceedMaxNumberOfHandler,

NmcIfComm::InvalidCredential,

NmcIfComm::InvalidTimeout);

NmcIfComm::eResultType releaseHandler(

in NmcIfComm::HandlerIdType handlerId,

in string
credential)

raises(NmcIfComm::UnknownHandler,

NmcIfComm::InvalidCredential);

};

};

#endif

A.2.4 Fmhandler Interface Module

	// File :NmcIfFMHandler.idl

// This file contains interface FMHandler definition.

#ifndef _NMC_IF_FMHANDLER_IDL_

#define _NMC_IF_FMHANDLER_IDL_

#include <NmcIfComm.idl>

#include <CosNotifyChannelAdmin.idl>

#include <DsNotifyLogAdmin.idl>

#include <NmcIfHeartbeat.idl>

module NmcIfFMHandler

{

interface FMHandler_v2

{

readonly attribute unsigned long timeout;

NmcIfComm::eResultType subscribeNotif_v2 (

in CosNotifyComm::SequencePushConsumer consumerRef,

in CosNotifyFilter::ConstraintExpSeq
constrainList,

in string
credential,

out NmcIfComm::SubscriptionIdType
subId,

out CosNotifyChannelAdmin::SequenceProxyPushSupplier slyRef,

out NmcIfComm::ChannelIdType channelId)

raises(
CosNotifyFilter::InvalidConstraint,

NmcIfComm::InvalidCredential);

NmcIfComm::eResultType unsubscribeNotif(

in NmcIfComm::SubscriptionIdType subId,

in string
credential)

raises(
NmcIfComm::UnknownSubscription,

NmcIfComm::InvalidCredential);

NmcIfComm::eResultType getSubscriptionStatus(

in NmcIfComm::SubscriptionIdType subId,

in string
credential,

out NmcIfComm::eSubscriptionStatusType subStatus)

raises(
NmcIfComm::UnknownSubscription,

NmcIfComm::InvalidCredential)

NmcIfComm::eResultType subscribeLog_v2 (

in DsLogAdmin::LogFullAction logFullAction,

in unsigned long maxsize, //based on octet

in CosNotifyFilter::ConstraintExpSeq constrainList,

in string
credential,

out NmcIfComm::SubscriptionIdType subId,

out DsNotifyLogAdmin::NotifyLog logRef,

out NmcIfComm::ChannelIdType channelId)

raises(
NmcIfComm::InvalidCredential,

CosNotifyFilter::InvalidConstraint,

NmcIfComm::LogNotSupported);

NmcIfComm::eResultType unsubscribeLog(

in NmcIfComm::SubscriptionIdType subId,

in string
credential)

raises(
NmcIfComm::UnknownSubscription,

NmcIfComm::InvalidCredential,

NmcIfComm::LogNotSupported);

NmcIfComm::eResultType queryLogRecord_v2 (

in CosNotifyComm::SequencePushConsumer consumerRef,

in string constrainList,

in DsNotifyLogAdmin::NotifyLog logRef,

in string
credential,

out NmcIfComm::SubscriptionIdType subId,

out NmcIfComm::ChannelIdType channelId)

raises(
NmcIfComm::UnknownLog,

CosNotifyFilter::InvalidConstraint,

NmcIfComm::InvalidCredential,

NmcIfComm::LogNotSupported);

NmcIfComm::eResultType synchronizeAlarm_v2 (

in CosNotifyComm::SequencePushConsumer consumerRef,

in CosNotifyFilter::ConstraintExpSeq constrainList,

in string
credential,

out CosNotifyChannelAdmin::SequenceProxyPushSupplier slyRef,

out NmcIfComm::SubscriptionIdType subId,

out NmcIfComm::ChannelIdType channelId)

raises(
CosNotifyFilter:: InvalidConstraint,

NmcIfComm::InvalidCredential);

NmcIfComm::eResultType getHeartbeat (

in NmcIfComm::ChannelIdType channelId,

in string
credential,

out NmcIfHeartbeat::cTelHeartbeat heartbeatRef)

raises(NmcIfComm::UnknownChannel,

NmcIfComm::InvalidCredential);

};

};

#endif

A.2.5 PMHandler Interface Module

	// File : NmcIfPMHandler.idl

// This file contains interface PMHandler definition.

#ifndef _NMC_IF_PM_HANDLER_IDL_

#define _NMC_IF_PM_HANDLER_IDL_

#include <CosNotifyComm.idl>

#include <NmcIfComm.idl>

#include <NmcIfIMMeasurement.idl>

#include <NmcIfIMCommType.idl>

#include <NmcIfHeartbeat.idl>

module NmcIfPMHandler

{

exception AlreadySubscribed {};

exception InvalidStartTime {};

exception InvalidStopTime {};

typedef
unsigned long
JobIdType;

typedef string
GeneralizedTimeType;//format conforms to GeneralizedTime defined in ASN.1

typedef unsigned long
AggregationPeriodType;// time period is based on 15 minutase.

typedef unsigned long
ReportingPeriodType;
//time period is based on 15 minutes.

typedef
sequence<NmcIfIMMeasurement::mAttrIdType>
MeasurementAttrListType;

typedef
CosNotification::PropertySeq
PropertyListType;

const string ObservedCell = "ObservedCell";

const string AdjacentCell = "AdjacentCell";

// for use of value in CosNotification::Property.

enum eMeasurementCategoryType // need to be modified

{

circuitEndpointSubGroup, // 0

observedDestination, // 1

trafficFlow, // 2

callCategory, // 3

bscHDOStatistics, // 4

bscTrafficStatistics, // 5

bscProcessorLoad, // 6

bscGRPSSubLayerTraffic, // 7

btsTrafficData, // 8

powerLevelOfBS, // 9

btsHDOStatistics, // 10

btsLocationUpdate, // 11

btsGPRSRadioResource, // 12

btsGPRSPacketService, // 13

eirPerformanceStatistics, // 14

eirProcessorLoad, // 15

handoverObservation, // 16

hlrPerformanceStatistics, // 17

hlrProcessorLoad, // 18

mscPerformance, // 19

mscQoS, // 20

mscProcessorLoad, // 21

ssfTraffic, // 22

smsPerformanceStatistics, // 23

smsProcessorLoad, // 24

vlrPerformanceStatistics, // 25

vlrProcessorLoad, // 26

signallingLinkSetTPTraffic // 27

};

struct MeasurementInfoType

{

NmcIfComm::ManagedObjectType
moInstance;

//if only the class name is given, the measurement job will be applied to all instances of the class

eMeasurementCategoryType
measurementCategory;

MeasurementAttrListType measurementAttrNameList;

// if the length of measurementAttrNameList is 0, it means

// all the attributeName for the specified measurementJob.

PropertyListType
additionalInfo;

// optional. Can be null, but in special cases can contain special property

// for example, in handover measurement it should contain

// the observed cell and adjacent cell.

// set the "ObservedCell" or "AdjacentCell" constant in Property.name

// and set the value of "NmcIfIMCommType::CellGlobalIdType" in Property.value,

// which specifies the cell Id.

};

typedef sequence<MeasurementInfoType> MeasurementInfoListType;

enum eJobStatusType

{

JOB_OK,

JOB_FAIL,

JOB_TO_BE_RUN,

JOB_DISCONNECTED_BUT_STILL_RUNNING,

JOB_STOPPED

};

struct JobInfoType

{

JobIdType

jobId;

AggregationPeriodType
aggregationPeriod;

ReportingPeriodType
reportingPeriod;

MeasurementInfoListType
measurementInfoList;

GeneralizedTimeType
firstStartTime;//specifies time when first NMC started the job

// or the earliest time when the job will be started.

GeneralizedTimeType
lastStopTime;//specifies the latest time when the job will

// be stopped to several NMC

eJobStatusType

jobStatus;

};

typedef sequence<JobInfoType> JobInfoListType;

struct FileInfoType

{

string

fileDirectory;

string

fileName;

unsigned long
fileSize;

string

fileCompression; // empty string means no compression.

GeneralizedTimeType
creationTime;

GeneralizedTimeType
deletionTime; // the file should be held for at least two weeks.

};

typedef sequence<FileInfoType> FileInfoListType;

struct JobFileInfoType

{

JobIdType
jobId;

string

serverAddr;

string

userName;

string
passwd;

FileInfoListType relatedFileList;

};

exception UnknownJob { JobIdType unknownJobId;};

exception InvalidMeasurementInfo { MeasurementInfoType invalidInfo;};

interface JobFileInfoIterator; //forward declaration

interface PMHandler_v2

{

readonly attribute unsigned long
timeout;

NmcIfComm::eResultType startMeasurementJob_v2 (

in CosNotifyComm::SequencePushConsumer consumerRef,

in MeasurementInfoListType
measurementInfoList,

in AggregationPeriodType
aggregationimePeriod,

in ReportingPeriodType

reportingPeriod,

in GeneralizedTimeType

startTime,

in GeneralizedTimeType

stopTime,

in string
credential,

out JobIdType

jobId,

out NmcIfComm::SubscriptionIdType subId,

out NmcIfComm::ChannelIdType channelId)

raises(
InvalidMeasurementInfo,

InvalidStartTime,

InvalidStopTime,

NmcIfComm::InvalidCredential);

NmcIfComm::eResultType joinMeasurementJob_v2 (

in JobIdType jobId,

in CosNotifyComm::SequencePushConsumer consumerRef,

in GeneralizedTimeType
startTime,

in GeneralizedTimeType
stopTime,

in string
credential,

out NmcIfComm::SubscriptionIdType
subId,

out NmcIfComm::ChannelIdType channelId)

raises(
UnknownJob,

InvalidStartTime,

InvalidStopTime,

NmcIfComm::InvalidCredential);

NmcIfComm::eResultType stopMeasurementJob(

in NmcIfComm::SubscriptionIdType subId,

in JobIdType
jobId,

in string
credential,

out eJobStatusType

jobStatus)

raises(
UnknownJob,

NmcIfComm::UnknownSubscription,

NmcIfComm::InvalidCredential);

NmcIfComm::eResultType listMeasurementJob(

in string
credential,

out JobInfoListType jobInfoList)

raises(
NmcIfComm::InvalidCredential);

NmcIfComm::eResultType listJobFiles_v2 (

in JobIdType jobId,

in NmcIfComm::SubscriptionIdType subId,

in unsigned long how_many,

in string
credential,

out JobFileInfoType jobFileInfo,

out JobFileInfoIterator iterator)

raises(
UnknownJob,

NmcIfComm::UnknownSubscription,

NmcIfComm::InvalidCredential);

NmcIfComm::eResultType getHeartbeat (

in NmcIfComm::ChannelIdType channelId,

in string
credential,

out NmcIfHeartbeat::cTelHeartbeat heartbeatRef)

raises(NmcIfComm::UnknownChannel,

NmcIfComm::InvalidCredential);

};

interface JobFileInfoIterator

{

boolean getNext (

in unsigned long how_many,

out JobFileInfoType jobFileInfo);

void destroy ();

};

};

#endif

A.2.6 CMHandler Interface Module

	// File : NmcIfCMHandler.idl

// This file contains idl definition for CMHandler interface

#ifndef
_NMC_IF_CMHANDLER_IDL_

#define _NMC_IF_CMHANDLER_IDL_

#include <NmcIfComm.idl>

#include <CosNotifyChannelAdmin.idl>

#include <DsNotifyLogAdmin.idl>

#include <NmcIfHeartbeat.idl>

module NmcIfCMHandler

{

typedef unsigned long TransactionIdType;

interface CMHandler_v2 : CMHandler_v1

{

readonly attribute unsigned long timeout; //count in minutes

NmcIfComm::eResultType subscribeNotif_v2 (

in CosNotifyComm::SequencePushConsumer consumerRef,

in CosNotifyFilter::ConstraintExpSeq constraintList,

in string credential,

out NmcIfComm::SubscriptionIdType subId,

out CosNotifyChannelAdmin::SequenceProxyPushSupplier slyRef,

out NmcIfComm::ChannelIdType channelId)

raises(
CosNotifyFilter:: InvalidConstraint,

NmcIfComm::InvalidCredential);

NmcIfComm::eResultType unsubscribeNotif(

in NmcIfComm::SubscriptionIdType subId,

in string credential)

raises(
NmcIfComm::UnknownSubscription,

NmcIfComm::InvalidCredential);

NmcIfComm::eResultType getSubscriptionStatus(

in NmcIfComm::SubscriptionIdType subId,

in string credential,

out NmcIfComm::eSubscriptionStatusType subStatus)

raises(
NmcIfComm::UnknownSubscription,

NmcIfComm::InvalidCredential);

NmcIfComm::eResultType subscribeLog_v2 (

in DsLogAdmin::LogFullAction logFullAction,

in unsigned long maxsize, //maxsize is based on octet

in CosNotifyFilter::ConstraintExpSeq constraintList,

in string credential,

out NmcIfComm::SubscriptionIdType subId,

out DsNotifyLogAdmin::NotifyLog logRef,

out NmcIfComm::ChannelIdType channelId)

raises(
NmcIfComm::InvalidCredential,

CosNotifyFilter::InvalidConstraint,

NmcIfComm::LogNotSupported);

NmcIfComm::eResultType unsubscribeLog(

in NmcIfComm::SubscriptionIdType subId,

in string credential)

raises(
NmcIfComm::UnknownSubscription,

NmcIfComm::InvalidCredential,

NmcIfComm::LogNotSupported);

NmcIfComm::eResultType queryLogRecord_v2 (

in CosNotifyComm::SequencePushConsumer consumerRef,

in string constrainList,

in DsNotifyLogAdmin::NotifyLog logRef,

in string credential,

out NmcIfComm::SubscriptionIdType subId,

out NmcIfComm::ChannelIdType channelId)

raises(
NmcIfComm::UnknownLog,

CosNotifyFilter::InvalidConstraint,

NmcIfComm::InvalidCredential,

NmcIfComm::LogNotSupported);

NmcIfComm::eResultType getMOHandler(

in NmcIfComm::ManagedObjectType moInstance,

in NmcIfComm::VersionIdType versionId,

in string
credential,

in unsigned long
timeout,

out NmcIfComm::VersionIdListType supportVersionList,

out NmcIfComm::HandlerIdType handlerId,

out Object moHandlerRef)

raises(
NmcIfComm::InvalidCredential,

NmcIfComm::UnknownObject,

NmcIfComm::ExceedMaxNumberOfHandler,

NmcIfComm::InvalidTimeout);

NmcIfComm::eResultType releaseMOHandler(

in NmcIfComm::HandlerIdType handlerId,

in string
credential)

raises(
NmcIfComm::InvalidCredential,

NmcIfComm::UnknownHandler);

NmcIfComm::eResultType getTopology_v2 (

in CosNotifyComm::SequencePushConsumer consumerRef,

in string
credential,

out TransactionIdType tranId,

out NmcIfComm::ChannelIdType channelId)

raises(NmcIfComm::InvalidCredential);

NmcIfComm::eResultType synchronizeCM_v2 (

in CosNotifyComm::SequencePushConsumer consumerRef,

in NmcIfComm::ManagedObjectType moInstance,

in string
credential,

out TransactionIdType tranId,

out NmcIfComm::ChannelIdType channelId)

raises(
NmcIfComm::InvalidCredential,

NmcIfComm::UnknownObject);

NmcIfComm::eResultType getHeartbeat (

in NmcIfComm::ChannelIdType channelId,

in string
credential,

out NmcIfHeartbeat::cTelHeartbeat heartbeatRef)

raises(NmcIfComm::UnknownChannel,

NmcIfComm::InvalidCredential);

};

};

#endif

A.2.7 MOHandler Interface Module

	// File : NmcMOHandler.idl

// This file contains idl definition for MOHandler interface

#ifndef _NMC_IF_MANAGED_OBJECT_HANDLER_IDL_

#define _NMC_IF_MANAGED_OBJECT_HANDLER_IDL_

#include <NmcIfComm.idl>

module NmcIfMOHandler

{

exception InvalidScope {};

enum eScopeType

{

BaseLevel,

IndividualLevel,

BaseToNLevel,

WholeSubTree

};

exception ScopeNotSupported

{

eScopeType scope;

string reason;

};

interface MOHandler_v1

{

readonly attribute unsigned long timeout ;

NmcIfComm::eResultType getContainment(

in NmcIfComm::ManagedObjectType moInstance,

in unsigned long depth,

in eScopeType scope,

in string
credential,

out NmcIfComm::ManagedObjectListType moInstanceList)

raises(
NmcIfComm::UnknownObject,

InvalidScope,

ScopeNotSupported,

NmcIfComm::InvalidCredential);

NmcIfComm::eResultType getAttribute(

in NmcIfComm::ManagedObjectType moInstance,

in NmcIfComm::AttrNameListType attrNameList,

in string
credential,

out NmcIfComm::AttrInfoListType attrInfoList)

raises(
NmcIfComm::UnknownObject,

NmcIfComm::InvalidCredential);

};

interface MOHandler_v2 : MOHandler_v1

{

NmcIfComm::eResultType createMO(

in NmcIfComm::ManagedObjectType moInstance,

in NmcIfComm::AttrInfoListType attrInfoList,

in string
credential)

raises(
NmcIfComm::ObjectAlreadyExisted,

NmcIfComm::ParentObjetNotExisted,

NmcIfComm::NotCreatable,

NmcIfComm::InvalidAttributeList,

NmcIfComm::AttributeNotcompleted,

NmcIfComm::InvalidCredential);

NmcIfComm::eResultType deleteMO(

in NmcIfComm::ManagedObjectType moInstance,

in string
credential)

raises(
NmcIfComm::UnknownObject,

NmcIfComm::NotDeletable,

NmcIfComm::InvalidCredential);

NmcIfComm::eResultType updateAttribute (

in NmcIfComm::ManagedObjectType moInstance,

in NmcIfComm::AttrInfoListType attrInfoList,

in string
credential)

raises(
NmcIfComm::UnknownObject,

NmcIfComm::NotWritable,

NmcIfComm::InvalidAttributeList,

NmcIfComm::InvalidCredential);

};

};

#endif

A.2.7 cTelHeartbeat Interface Module

	// File : Heartbeat.idl

// This file contains interface Heartbeat definition

#ifndef _NMC_IF_HEARTBEAT_IDL_

#define _NMC_IF_HEARTBEAT_IDL_

module NmcIfHeartbeat

{

/**

This interface defines a service used to periodically test the

operation of the notification channels on a system. The service

supporting this interface periodically emits a short "heartbeat"

notification on each channel on the system.

*/

/**

 The InvalidPeriod exception is used by OMC when the NMC period

 value to be set is not a reasonable in OMC's implementation. A very

 short period may cause OMC to send many heartbeatReport in a short

 time, which may decrease the performance of OMC. To prevent this,

 OMC may set the lower limit period in its system implemntation.

 When the period to be set is shorter the lower limit period, OMC may

 throw this exception and reject to set the period to new value.

 Note: set the period to zero must be allowed. The behaviour of

 setting period to zero will be described below.

 */

 exception InvalidPeriod

 {

 unsigned short periodLowerLimit;

 string reason;

 };

interface cTelHeartbeat {

/** The systemLabel attribute is sent in heartbeat

notifications. It is used to identify the heartbeat service

instance from which the notification came. Resetting this does

not cause the service to immediately emit a notification, but

the new value will be sent with the next notification. */

attribute string systemLabel;

/** The period is the interval, in seconds, at which the

heartbeat service emits the heartbeat notification. If it is

zero, the service does not emit notifications. */

unsigned short periodGet();

/** Updating of the period shall cause the service to deliver a

notification to all channels with the new period value and then

begin a new period. Setting the period to zero shall cause the

service to emit one final notification with a period value of

zero, then no more (until the period is reset). An attempt to

set the period to a value outside the range supported will

result in an ApplicationError with the error code set to

invalidParameter. */

void periodSet(in unsigned short period)

raises (InvalidPeriod);

/** This operation signature defines the notification emitted

by the heartbeat service.

@param systemLabel the current value of the Heartbeat

service systemLabel attribute.

@param channelId
the Identifier of the channel through which the

notification was sent.

@param period
 the current value of the Heartbeat

service period attribute.

@param timeStamp
the current time when the notification

is emitted.

*/

}; // end of Heartbeat interface

};

#endif

A.3 Definition of Notification Format

A.3.1 Introduction

As this specification adopts the OMG Notificaiton Service to implement the notification forwarding, reporting and filtering, and uses structuered event to transfer event information, the usage of some fields and the notification format are not quite consistent with the descriptionin of generic analysis in [1]. The following sections in this annex shows the notification format and descriptions of structured event to be used in this CORBA-based interface.

A.3.2 Supported Notification Types

In this specification, the following types of notifications are supported:

· Object Creation Notification
· Object Deletion Notification
· Object Attribute Value Change Notification
· Object State Change Notification

· Alarm Notification (include New Alarms, Alarm changed, and alarm cleared)

· Bulk Data Transfer Ready Notification

· Bulk Data Transfer Preparation Error Notification
· Current Alarm Summary Report Notification
· Heartbeat Report Notification

· Request CM synchronization Notification

A.3.3 Structured Event Information

This section defines the syntax of the OMC-NMS Notification and its attributes for the CORBA environment. OMC-NMS notification is in forms of structured event defined in the OMG Notification Service.

The composition of the Structured Event is:

Header

- Fixed Header:

-Event_type

- Domain_name

- Type_name

- Event_name

- Variable Header

Body

Filterable_body_fields

Remaining_body
Table B1 Attributes of Structured Event

	Part in notification
	NAME
	TYPE
	VALUE

	Fixed Header
	domain_type
	string
	It identifies the vertical industry domain.

In this specification, it can be GSM_CM_NETWORK_MGMT, GSM_FM_NETWORK_MGMT,

GSM_PM_NETWORK_MGMT,

	
	type_name
	string
	It identifies the event type in given domain. For example, it can be NOTIFY_STATE_CHANGE, NOTIFY_PM_TRANSFER_UP_READY, etc.

	
	event_name
	string
	It uniquely identifies this event in OMC scope. Here Event_name is also called Notificaton Id. Together with System_Name, it uniquely identify a notification within the network level management domain.

	Variable Header
	
	
	Its usage is optional.

	Filterable_body_fields
	
	
	It contains a sequence of name and value pair. The value pair types are given in respective tables for each notification formats.

	Remaining_body
	
	
	Its usage is optional.

A.3.4 Definition of Notification Format

A.3.4.1 Object Creation Notification

Table B2 Fixed Header for Managed Object Creation
	NAME
	VALUE

	domain_name
	GSM_CM_NETWORK_MGMT

	type_name
	NOTIFY_OBJECT_CREATION

	event_name
	<Notificaiton Identifier>

Table B3 Filterable Body for Managed Object Creation
	NAME
	TYPE
	COMMENT

	SystemName
	string
	Mandatory. It identifies in which OMC the notification occurs.

	MOInstance
	ManagedObjectType
	Mandatory. It identifies the managed object instance of network resource which was created.

	AttributeList
	AttrInfoListType
	Mandatory. It contains the attribute list of the object instance.

A.3.4.2 Object Deletion Notification

Table B4 Fixed Header for Managed Object Deletion Notification
	NAME
	VALUE

	domain_name
	GSM_CM_NETWORK_MGMT

	type_name
	NOTIFY_OBJECT_DELETION

	event_name
	<Notificaiton Identifier>

Table B5 Filterable Body for Managed Object Deletion Notification
	NAME
	TYPE
	COMMENT

	SystemName
	string
	Mandatory. It identifies in which OMC the notification occurs.

	MOInstance
	ManagedObjectType
	Mandatory. It identifies the managed object instance of network resource that was deleted.

A.3.4.3 Object Attribute Value/State Change Notification

Table B6 Fixed Header for Object AttributeValue/State Change Notification
	NAME
	VALUE

	domain_name
	GSM_CM_NETWORK_MGMT

	type_name
	NOTIFY_ATTRIBUTE_VALUE_CHANGE/

NOTIFY_STATE_CHANGE

	event_name
	<Notification Identifier>

Table B7 Filterable Body for Object AttributeValue/State Change Notification
	NAME
	TYPE
	COMMENT

	SystemName
	string
	Mandatory. It identifies in which OMC the notification occurs.

	MOInstance
	ManagedObjectType
	Mandatory. It identifies the managed object instance of network resource, whose attribute(s) or state(s) was changed

	AttrChangeDef
	AttrChangeInfoListType
	Mandatory. It identifies the attribute list that has changed value. It is a sequence of AttrChangeInfoType which is a struct of attrName, oldAttrValue and newAttrValue.

A.3.4.4 Fault Alarm Notification
Table B8 Fixed Header for Alarm Notification
	NAME
	VALUE

	domain_name
	GSM_FM_NETWORK_MGMT

	type_name
	NOTIFY_NEW_ALARM /

NOTIFY_ALARM_CHANGED /

NOTIFY_ALARM_CLEARED

	event_name
	<Notification Identifier>

Table B9 Filterable Body for Alarm Notification
	NAME
	TYPE
	COMMENT

	SystemName
	string
	Mandatory. It identifies in which OMC the notification occurs.

	AlarmId
	string
	Mandatory. It uniquely identifies this alarm from all other alarms generated by OMC

	MOInstance
	ManagedObjectType
	Mandatory. It identifies the managed object instance of network resource in which alarm occurs

	EventTime
	string
	Mandatory. It identifies the time of occurrence of the alarm. The time indication is Generalised time format defined in X.208.

	AlarmType
	eAlarmType
	Mandatory. It identifies alarm types.

It can be one of the following defined in X.733:

· Communication_alarm

· Quality_of_service_alarm

· Processing_error_alarm

· Equipment_alarm

· Environmental_alarm

or one of the following defined in X.736:

· Integrity_violence

· Operational_violence

· Physical_violence

· Security_service_or_mecHanism_violence

· Time_domain_violence

	ProbableCause
	string

	Mandatory. The format of the string is numeric. It identifies the cause of the alarm, value =“1,000,000” indicates that the actual probable cause is available in specificProblem field. It will be defined clearly in Appendix E.

	PerceivedSeverity
	eSeverityType
	Mandatory. It can be one of the following:

· INDETERMINATE

· CRITICAL

· MAJOR

· MINOR

· WARNING

· CLEARED.

	SpecificProblem
	string

	Optional. It contains “domain, domain_specific_probable_cause” where domain will be the vendor name. This is the domain specific probable cause. This attribute value shall be a single-value and of simple type such as integer.

	CorrelatedNotifications
	AlarmIdentifierListType
	Optional. A sequence of AlarmIdentifierType which is a struct of systemName and alarmId. It indicates a set of all notifications to which this notification is considered to be correlated. If the severity is “CLEARED”, it indicates a set of cleared alarms. To a changed alarm, it indicates a set of correlated alarms.

	AdditionalInfo

	AddiPropertyListType

	Optional. It is a list of property, which is composed of property name and property value. Currently the following fields is suggested to be used in this field, which are:

locatingInfo : the detailed information of network entity generating alarm event

originalType : original alarm type assigned by vendors

originalSeverity : original alarm severity assigned by vendors

detailedContext : detailed alarm context provided by vendors

repairProposal : repair proposal provided by vendor

Each of the above fields corresponds to one Property of AdditionalInfo, where the “name” field shall be field with one of “locatingInfo”, “originalType”, “originalSeverity”, “detailedContext”, “repairProposal”, and the corresponding description for this field is filled in the “value” field, which is of type “string”.

A.3.4.5 Bulk Data Transfer Ready Notification
Table B10 Fixed Header for Bulk Data Transfer Ready Notification
	NAME
	VALUE

	domain_name
	GSM_CM_NETWORK_MGMT/

GSM_FM_NETWORK_MGMT/

GSM_PM_NETWORK_MGMT

	type_name
	NOTIFY_PM_TRANSFER_UP_READY /

NOTIFY_FM_SYNC_TRANSFER_UP_READY/

NOTIFY_CM_SYNC_TRANSFER_UP_READY /

NOTIFY_TOP_SYNC_TRANSFER_UP_READY/

NOTIFY_CM_LOG_RECORD_TRANSFER_UP_READY/

NOTIFY_FM_LOG_RECORD_TRANSFER_UP_READY

	event_name
	<Notification Identifier>

Table B11 Filterable Body for Bulk Data Transfer Ready Notification
	NAME
	TYPE
	COMMENT

	SystemName
	string
	Mandatory. It identifies in which OMC the notification occurs.

	TransferId
	string
	This is the transfer job identifier.

	JobFileInfoList
	FileInfoListType
	All information pertaining to the files are provided here. It is a Sequence of struct FileInfoType, which contains fileDirectory, fileName, fileSize, fileCompression, creationTime and deletionTime.

	IPAddr
	string
	The IP address of the host machine where the files are located

	UserName
	string
	The user name to be used in ftp

	Password
	string
	The password to be used in ftp

A.3.4.6 Bulk Data Transfer Preparation Error Notification
Table B12 Fixed Header for Bulk Data Transfer Preparation Error Notification
	Name
	VALUE

	domain_name
	GSM_CM_NETWORK_MGMT/

GSM_PM_NETWORK_MGMT/

GSM_FM_NETWORK_MGMT

	type_name
	NOTIFY_TOP_SYNC_TRANSFER_PREPARATION_ERROR/

NOTIFY_FM_SYNC_TRANSFER_PREPARATION_ERROR/

NOTIFY_CM_SYNC_TRANSFER_PREPARATION_ERROR/

NOTIFY_PM_TRANSFER _PREPARATION_ERROR/

NOTIFY_CM_LOG_RECORD_TRANSFER_PREPARATION_ERROR/

NOTIFY_FM_LOG_RECORD_TRANSFER_ PREPARATION_ERROR

	event_name
	<Notification Identifier>

Table B13 Filterable Body for Bulk Data Transfer Preparation Error Notification

	NAME
	TYPE
	COMMENT

	SystemName
	string
	Mandatory. It identifies in which OMC the notification occurs.

	TransferId
	string
	Mandatory. This is the transfer job identifier. It may be transactionId, subId or jobId.

	ProbableCause
	string
	Mandatory. This indicates error reason why bulk data transfer preparation failed. The possible probable cause is defined in X.721.

	PerceivedSeverity
	eSeverityType
	Mandatory. This indicates the severity of the error, can be one of the following: MAJOR, MINOR, WARNING.

	 AdditionalText
	string
	Optional. It provides more information about the error in stringified format.

A.3.4.7 Current Alarm Summary Report Notification
Table B14 Fixed Header for Current Alarm Summary Report Notification
	NAME
	VALUE

	domain_name
	GSM_FM_NETWORK_MGMT

	type_name
	NOTIFY_ALARM_SUMMARY_REPORT

	event_name
	<Notification Identifier>

Table B15 Filterable Body for Current Alarm Summary Report Notification
	NAME
	TYPE
	COMMENT

	SystemName
	string
	Mandatory. It identifies in which OMC the notification occurs.

	AlarmSummary
	AlarmSummaryDataType
	Mandatory. It identifies current active alarm in OMC. It is of type AlarmSummaryDataType, which is defined in detail in A.3.5

	SubscriptionId
	SubscriptionIdType
	Mandatory. It identifies which subscription this notification is related to. The value should be the same as the output parameters of the subId of “synchronizeAlarm” operation.

	IsLast
	boolean
	Mandatory. If the notification is the last notification for the Current Alarm Summary Report, the value should be TRUE; otherwise this should be FALSE, indicating that other alarm information is in succeeding notifications

	FormerNotificationId
	string
	Optional. Present if the notification is not the first one of the Current Alarm Summary Report. This field is to indicate its former NotificationId, so that the NMS could fix several Notifications into one Current Alarm Summary Report.

	SuccessFlag
	boolean
	Optional. Present if the “IsLast” field takes value TRUE, and OMC is not able to finish collecting the entire current Alarm information from its equipments, which is due to OMC internal reasons, (such as communication failure between OMC and the NEs/NRs it manages). This field always take value of TRUE if present. When NMS get such a notification with this field, it shall try another “synchronizeAlarm” operation in a appropriate time.

A.3.4.8 Heartbeat Notification
Table B16 Fixed Header for Heartbeat Notification
	Name
	VALUE

	domain_name
	GSM_COMMON_NETWORK_MGMT

	type_name
	NOTIFY_HEARTBEAT

	event_name
	<Notification Idendifier>

Table B17 Filterable Body for Heartbeat Notification
	NAME
	TYPE
	COMMENT

	SystemName
	string
	Mandatory. It identifies the current value of attribute systemLabel of interfacce cTelHeartbeart, which specifies from which OMC the beartbeat Notification comes.

	ChannelId
	string
	Mandatory. It identifies the channel through which the heartbeat notification is emitted. It is of type string. OMC gives each channel a stringified name.

	Period
	unsigned short
	Mandatory. It identifies the reporting period of the heartbeat service.

	TimeStamp
	UtcT
	Mandatory. It specifies the time when this heartbeat is sent.

A.3.4.9 Request CM Synchronization Notification
Table B18 Fixed Header for Heartbeat Notification
	Name
	VALUE

	domain_name
	GSM_CM_NETWORK_MGMT

	type_name
	NOTIFY_REQUEST_CM_SYNCHRONIZATION

	event_name
	<Notification Identifier>

Table B19 Filterable Body for Heartbeat Notification
	NAME
	TYPE
	COMMENT

	SystemName
	string
	Mandatory. It identifies in which OMC the notification occurs.

	BaseMOInstance
	ManagedObjectType
	Mandatory. It identifies the base managed object instance of network resource that shall be synchronized by NMS.

	EventTime
	GeneralizedTimeType
	Mandatory. It identifies the time when this notification is generated.

A.3.5 IDL Definition for Notification Format

In this section, the format definitions based on IDL are given. IDL definition for basic notification format is based on CORBA notification service CosNotification module.
	// File : NmcIfNotifFormat.idl

// This file specifies the format of notifications involved in this interface.

#ifndef _NMC_IF_NOTIF_FORMAT_IDL_

#define _NMC_IF_NOTIF_FORMAT_IDL_

#include <NmcIfComm.idl>

#include <NmcIfIMCommType.idl>

#include <CosNotification.idl>

module NmcIfNotifFormat

{

//***

//* * the following IDL definition is contained in CosNotification module in

//* * CORBA Notification service.

//**

//* * typedef string Istring;

//* * typedef Istring PropertyName;

//* * typedef any PropertyValue;

//* * struct Property {

//* *
PropertyName name;

//* *
PropertyValue value;

//* * };

//* * typedef sequence<Property> PropertySeq;

//* * // The following are the same, but serve different purposes.

//* * typedef PropertySeq OptionalHeaderFields;

//* * typedef PropertySeq FilterableEventBody;

//* * struct EventType {

//* *
string domain_name;

//* *
string type_name;

//* * };

//* * typedef sequence<EventType> EventTypeSeq;

//* * struct FixedEventHeader {

//* *
 EventType event_type;

//* *
 string event_name;

//* * };

//* * struct EventHeader {

//* *
FixedEventHeader fixed_header;

//* *
OptionalHeaderFields variable_header;

//* * };

//* * struct StructuredEvent {

//* *
EventHeader header;

//* *
FilterableEventBody filterable_data;

//* *
any remainder_of_body;

//* * }; // StructuredEvent

//* * typedef sequence<StructuredEvent> EventBatch;

//**/

// The following constant declarations define the standard domain name in this

// interface.

typedef string DomainNameType;

const DomainNameType GSM_CM_NETWORK_MGMT = "GSM_CM_NETWORK_MGMT";

const DomainNameType GSM_FM_NETWORK_MGMT = "GSM_FM_NETWORK_MGMT";

const DomainNameType GSM_PM_NETWORK_MGMT = "GSM_PM_NETWORK_MGMT";

const DomainNameType GSM_COMMON_NETWORK_MGMT = "GSM_COMMON_NETWORK_MGMT";

// The following constant declarations define the standard event type name.

typedef string TypeNameType;

const TypeNameType NOTIFY_ATTRIBUTE_VALUE_CHANGE = "NOTIFY_ATTRIBUTE_VALUE_CHANGE";

const TypeNameType NOTIFY_STATE_CHANGE = "NOTIFY_STATE_CHANGE";

const TypeNameType NOTIFY_PM_TRANSFER_UP_READY = "NOTIFY_PM_TRANSFER_UP_READY";

const TypeNameType NOTIFY_FM_SYNC_TRANSFER_UP_READY = "NOTIFY_FM_SYNC_TRANSFER_UP_READY";

const TypeNameType NOTIFY_CM_SYNC_TRANSFER_UP_READY = "NOTIFY_CM_SYNC_TRANSFER_UP_READY";

const TypeNameType NOTIFY_TOP_SYNC_TRANSFER_UP_READY = "NOTIFY_TOP_SYNC_TRANSFER_UP_READY";

const TypeNameType NOTIFY_CM_LOG_RECORD_TRANSFER_UP_READY = "NOTIFY_CM_LOG_RECORD_TRANSFER_UP_READY";

const TypeNameType NOTIFY_FM_LOG_RECORD_TRANSFER_UP_READY = "NOTIFY_FM_LOG_RECORD_TRANSFER_UP_READY";

const TypeNameType NOTIFY_TOP_SYNC_TRANSFER_PREPARATION_ERROR = "NOTIFY_TOP_SYNC_TRANSFER_PREPARATION_ERROR";

const TypeNameType NOTIFY_CM_SYNC_TRANSFER_PREPARATION_ERROR = "NOTIFY_CM_SYNC_TRANSFER_PREPARATION_ERROR";

const TypeNameType NOTIFY_PM_TRANSFER_PREPARATION_ERROR = "NOTIFY_PM_TRANSFER_PREPARATION_ERROR";

const TypeNameType NOTIFY_CM_LOG_RECORD_TRANSFER_PREPARATION_ERROR = "NOTIFY_CM_LOG_RECORD_TRANSFER_PREPARATION_ERROR";

const TypeNameType NOTIFY_FM_LOG_RECORD_TRANSFER_PREPARATION_ERROR = "NOTIFY_FM_LOG_RECORD_TRANSFER_PREPARATION_ERROR";

const TypeNameType NOTIFY_NEW_ALARM = "NOTIFY_NEW_ALARM";

const TypeNameType NOTIFY_ALARM_CHANGED = "NOTIFY_ALARM_CHANGED";

const TypeNameType NOTIFY_ALARM_CLEARED = "NOTIFY_ALARM_CLEARED";

const TypeNameType NOTIFY_OBJECT_CREATION = "NOTIFY_OBJECT_CREATION";

const TypeNameType NOTIFY_OBJECT_DELETION = "NOTIFY_OBJECT_DELETION";

const TypeNameType NOTIFY_CURRENT_ALARM_SUMMARY_REPORT = "NOTIFY_CURRENT_ALARM_SUMMARY_REPORT";

const TypeNameType NOTIFY_HEARTBEAT = "NOTIFY_HEARTBEAT";

// The following constant declarations define the standard property name contained in

//filterable body. Including common property for each notification and speicial property

// for special notification.

//for common property

const string SystemName = "SystemName";

//SystemName takes a value of type string

// special property for alarm notification

const string AlarmId = "AlarmId";

//alarmId takes a value of type string.

const string MOInstance = "MOInstance";

//moInstance take a value of NmcIfComm::ManagedObjectType

const string EventTime = "EventTime";

//eventTime takes a value of type string, and it should conform to what defined as

//GeneralizedTime in ASN.1

const string AlarmType = "AlarmType";

//AlarmType takes a value of type eAlarmType, defined as following.

enum eAlarmType

{

CommunicationAlarm,

QualityOfServiceAlarm,

ProcessingErrorAlarm,

EquipmentAlarm,

EnvironmentAlarm,

IntergrityViolence,

OperationViolence,

PhysicalViolence,

SecurityServiceViolence,

MechanismViolence,

TimeDomainViolence

};

const string ProbableCause = "ProbableCause";

//ProbableCause takes a value of type string, and the value it can take should be contained in

//the list of value field in the tables of Annex E.

const string PerceivedSeverity = "PerceivedServerity";

//PerceivedServerity takes a value of eServity

enum eSeverityType

{

INDERTERMINATE,

CRITICAL,

MAJOR,

MINOR,

WARNING,

CLEARED

};

const string SpecificProblem = "SpecificProblem";

//SpecificProblem takes a value of string, the format should be "domain, domain_specific_probable_cause".

const string CorrelatedNotifications = "CorrelatedNotifications";

//CorrelatedNotifications takes a value of AlarmIdentifierListTypeList, as is defined below

struct AlarmIdentifierType

{

string systemName;

string alarmId;

};

typedef sequence<AlarmIdentifierType> AlarmIdentifierListType;

const string AdditionalInfo = "AdditionalInfo";

// AdditionalInfo takes a value of AddiPropertyListType,

// which is a sequence of properties.

typedef CosNotification::PropertySeq AddiPropertyListType;

//speicial properties for transfer ready notification

const string TransferId = "TransferId";

//TransferId takes a value of string.

const string IPAddr = "IPAddr";

//IPAddr takes a value of string. It should conform to the format defined in TCP/IP

const string UserName = "UserName";

//UserName takes a value of string.

const string Password = "Password";

//Password takes a value of string.

const string JobFileInfoList = "JobFileInfoList";

//JobFileInfoList takes a value of NmcIfPMHandler::FileInfoListType,

//which is defined in NmcIfPMHandler module

//special properties for transfer preparation error notification

//here also contains the "TransferId" property.

const string Reason = "Reason";

//Reason takes a value of type string.

//in this notification PerceivedServeity is also contained.

//SpecificProblem is also contained

const string AdditionalText = "AdditionalText";

//AdditioanalText takes a value of type string

//special properties for object deletion notification

//MOInstance is contained in this notification

//special properties for object creation notification

//moInstance is contained in this notification

const string AttributeList = "AttributeList";

//AttributeList takes a value of AttrInfoListType, as defined in NmcIfComm module, which

//is a list of sequence of attrName and attrValue.

//special properties for attribute change and state change notification

//MOInstance is contained in this notification

const string AttrChangeDef = "AttrChangeDef";

//AttrChangeDef takes a value of AttrChangeInfoListType which is a list of sequence of struct of

//attrName, newAttrValue and oldAttrValue, as defined below.

union OptionalAttrValueType switch(boolean)

{

case TRUE : NmcIfComm::AttrValueType value;

// when the implementor doesn't support the old value,

// set the discriminator value to FALSE.

};

struct AttrChangedInfoType

{

NmcIfComm::AttrNameType attrName;

NmcIfComm::AttrValueType newAttrValue;

OptionalAttrValueType oldAttrValue;

};

typedef sequence<AttrChangedInfoType> AttrChangeInfoListType;

//special properties for current alarm summary report notification

const string AlarmSummary = "AlarmSummary";

//AlarmSummary takes a value of type AlarmSummaryDataType, which is defined below

typedef NmcIfIMCommType::eAlarmStatusType eAlarmStatusType;

typedef string ProbableCauseType;

// ProbableCauseType takes a value of type string, and the value it can take should

// be contained in the list of value field in the tables of Annex E.

struct AlarmInfoType

{

AlarmIdentifierType
alarmIdentifier;

string

eventTime;

eAlarmType

eventType;

eSeverityType

alarmSeverity;

ProbableCauseType
probableCause;

string

specificProblem;

AlarmIdentifierListType
correlatedAlarms;

AddiPropertyListType
additionalInfo;

};

typedef sequence<AlarmInfoType> AlarmInfoListType;

struct ObjectAlarmInfoType

{

NmcIfComm::ManagedObjectType
moInstance;

eAlarmStatusType

alarmStatus;

AlarmInfoListType

objectAlarms;

};

typedef sequence<ObjectAlarmInfoType> AlarmSummaryDataType;

// The AlarmSummaryDataType could be sent to NMS by a sequence of

// notificaitons, each contains part of the data, so as to avoid

// a very long notificaiton. The max length of alarms for each

// notificaiton is not defined here, it is decided by the implementor.

const string SubscriptionId = "SubscriptionId";

// SubscriptionId takes a value of SubscriptionIdType.

const string IsLast = "IsLast";

// IsLast takes a value of boolean.

const string FormerNotificationId = "FormerNotificationId";

// FormerNotificationId takes a value of string.

// constant definitions for Heartbeat Notificaiton

const string ChannelId = "ChannelId";

// ChannelId takes type of string

const string Period = "Period";

// Period takes type of unsigned short

const string TimeStamp = "TimeStamp";

// Period takes type of TimeBase::UtcT

};

#endif

A.4 ASN.1 Definition of CORBA-based File Format

A.4.1 Introduction

This specification adopts ASN.1 as the file format description language. All the CM, PM and FM file are encoded in ASN.1 format. The following sections in this appendix shows contents of each type of files, and the common ASN.1 definition is given at the end of this section. The specific MO related ASN.1 type definitions will be given in other documents of this series of specifications.

A.4.2 File Contents

A.4.2.1 PM Measurement File

The contents of the PM measurement file should be:

· jobId (M): Identification of the specific measurement. It may be used by the NMC to correlate this information with a measurement job started by it.

· startingTime (M): specifies when the aggregation starts.

· Aggregation Period (M): The time period between two successive measurement data aggregation.

· reportingPeriod (M): Time period between two successive ready notifications being sent to NMC.
· measurementInfoList (M): a list of measurement information

· moInstance(M): identify managed object, a structure composed of moDN and class name

· moDN(M): distinguished name of the managed object, whose format follows the naming convention defined in section 2.1.1.1

· moClass(M): class name of the managed object

· measurementAttrInfoList(M): a list of measurement attribute information

· measurementAttrName(M): the name of the measurement attribute

· attrValue(M): the value of the measurement attribute

· IncompleteScan (O): Present if the scan report is not complete. It is of type integer and may have the value 0, which means "size limit exceeded", 1, which means "scan time exceeded", or 2, which means "other".

A.4.2.2 CM Synchronization File

The contents of the CM synchronization file should be:

· transactionId (M): This information may be used by the NMC to correlate this information with a synchronize operation started by it.
· moInfoList (M): a list of managed object information
· moInstance (M): a sequence of managed object class and distinguished name

· moDN (M): distinguished name of managed object, the format of DN should follow what is defined in section 2.1.1.1

· moClass(M): class name of managed object

· attrInfoList (M): a list of attribute information

· attrName (M); the name of attribute

· attrValue (M): the value of attribute
A.4.2.3 Topology File

The contents of the Topology file should be:

· transactionId (M): This information may be used by the NMC to correlate the information with a synchronize operation started by it.

· moInstanceList(M): a list of ManagedObject which is a sequence of:

· moDN (M): distinguished name of managed object, the format of DN should follow that defined in section 2.1.1.1

· moClass(M) :class name of managed object.

A.4.2.4 Log Records File

The contents of the log record file should be:

· subscriptionId(M): the identicator of the log record synchronization. It may be used by the NMC to correlate this information with a synchronize operation started by it.

· logRecordList(M): a list of log records

· logRecordId(M): the identifier of the log record

· loggingTime(M): indicates when the log record is created.

· recordInfo(M): contains the event information to be logged.
A.4.2.5 FM Synchronization File
· transactionId (M): This information may be used by the NMC to correlate this information with a synchronize operation started by it.
· alarmSummaryData (M): a list of managed object with its currentAlarm information
· moInstance (M): a sequence of managed object class and distinguished name

· moClass(M): class name of managed object

· moDN (M): distinguished name of managed object, the format of DN should follow what is defined in section 2.1.1.1

· alarmStatus (M): the alarmStatus of the managed object

· objectAlarms (M): a list of alarm information, each one is a sequence

· alarmIdentifier(M): identifies an alarm
· eventTime(M): the name of the alarm
· eventType(M): the type of the alarm
· alarmSeverity(M): the severity of the alarm
· probableCause(M): the probableCause of the alarm
· specificProblem(O): present if it specifies the specific probable case for this alarm
· correlatedAlarms(O): present if it has correlated alarms with it.
· additionalInfo(O): additional Information
A.4.3 ASN.1 File Format Definition

This section gives the common ASN.1 definition of all types of file format. The detailed CM and PM data type ASN.1 definitions will be added in the network resources related documents.

	-- DOCUMENT FILEFORMAT-NMCIF-TMN-ASN1Module

FILEFORMAT-NMCIF-TMN-ASN1Module

DEFINITIONS IMPLICIT TAGS::=

BEGIN

MOClassNameType::=GraphicString

-- The values of MOClasssNameType should conform to the MOC names

-- defined in module NmcIfIMBaseType::eClassIdType

DistinguishedNameType ::= GraphicString

DNListType ::= SET OF DistinguishedNameType

ManagedObjectType::=SEQUENCE {

className
MOClassNameType,

moDN

DistinguishedNameType

}

ManagedObjectListType ::= SET OF ManagedObjectType

AttrNameType::=GraphicString

-- The values of AttrNameType should conform to the attribute names

-- defined in module NmcIfIMBaseType::eAttrIdType

AttrInfoType::=SEQUENCE {

attrName
AttrNameType,

attrValue
ANY DEFINED BY attrName

}

JobIdType::=INTEGER

AggregationPeriodType::=INTEGER

ReportingPeriodType::=INTEGER

MeasurementAttrNameType::=GraphicString

-- The names of MeasurementAttrName should confirm to the MOC names

-- defined NmcIfIMMeasurement::mAttrIdType

MeasurementAttrInfoType::=SEQUENCE {

measurementAttrName
MeasurementAttrNameType,

measurementAttrValue
ANY DEFINED BY measurementAttrName

}

MeasurementCategoryType ::= ENUMERATED

{

--this field will be fill in PM specific document.

}

MeasurementInfoType::=SEQUENCE {

moInstance
ManagedObjectType,

measurementCategory MeasurementCategoryType,

measurementAttrInfoList
SET OF MeasurementAttrInfoType,

additionalInfo
PropertyListType OPTIONAL

}

IncompleteScanType ::= INTEGER {sizeExceeded(0), timeExceeded(1), other(2)}

PmMeasurementFileType ::= SEQUENCE

{

jobId

JobIdType,

startingTime

GeneralizedTime,

aggregationPeriod
AggregationPeriodType,

reportingPeriod
ReportingPeriodType,

measurementInfoList
SET OF MeasurementInfoType,

incompleteScan

IncompleteScanType OPTIONAL

}

TransactionIdType::= INTEGER

AdditionalInfoType::= GraphicString

TopologyFileType::= SEQUENCE

{

tranId
TransactionIdType,

moList
SET OF ManagedObjectType

}

MOInfoListType::= SEQUENCE

{

moInstance
ManagedObjectType,

attrList
SET OF AttrInfoType

}

CMFile::=SEQUENCE

{

tranId
TransactionIdType,

moInfoList
SET OF MOInfoListType

}

SubscriptionIdType::=INTEGER

LogRecordIdType::=INTEGER

LoggingTimeType::=GeneralizedTime

LogRecordType::=SEQUENCE {

logRecordId
LogRecordIdType,

loggingTime
LoggingTimeType,

recordInfo
ANY

}

--the recordInfo element should be the logged event information.

LogFileType::=SEQUENCE

{

subId
SubscriptionIdType,

logRecordList
SET OF LogRecordType

}

-- The following type definitions for CM part,

-- which will be used to fill the ANY

AlarmStatusType ::= ENUMERATED

{

cleared(0),

activeReportable-Indeterminate(1),

activeReportable-Warning(2),

activeReportable-Minor(3),

activeReportable-Major(4),

activeReportable-Critical(5),

activePending(6)

}

-- type definitions for alarmRecord

DomainNameType ::= GraphicString

TypeNameType ::= GraphicString

EventNameType ::= GraphicString

AlarmIdType ::= GraphicString

EventTimeType ::= GeneralizedTime

AlarmType ::= ENUMERATED

{

communicationAlarm(0),

qualityOfServiceAlarm(1),

processingErrorAlarm(2),

equipmentAlarm(3),

environmentAlarm(4),

intergrityViolence(5),

operationViolence(6),

physicalViolence(7),

securityServiceViolence(8),

mechanismViolence(9),

timeDomainViolence(10)

}

SeverityType ::= ENUMERATED

{

inderterminate(0),

critical(1),

major(2),

minor(3),

warning(4),

cleared(5)

}

SpecificProblem ::= GraphicString

AlarmIdentifierType ::= SEQUENCE

{

alarmId
 GraphicString,

systemName GraphicString

}

AlarmIdentifierListType ::= SET OF AlarmIdentifierType

PropertyType ::= SEQUENCE

{

name GraphicString,

value ANY

}

PropertyListType ::= SET OF PropertyType

AttrChangedInfoType ::= SEQUENCE

{

attrName
 GraphicString,

newAttrValue AttrInfoType,

oldAttrValue AttrInfoType OPTIONAL

}

ProbableCauseType ::= GraphicString -- contains the value of integer

AlarmInfoType ::= SEQUENCE

{

alrmIdentifier
AlarmIdentifierType,

eventTime
GeneralizedTime,

eventType
AlarmType,

alarmSeverity
SeverityType,

probableCause
ProbableCauseType,

specificProblem GraphicString,

correlatedAlarms AlarmIdentifierListType,

additionalInfo
PropertyListType

}

AlarmInfoListType ::= SET OF AlarmInfoType

ObjectAlarmInfoType ::= SEQUENCE

{

moInstance
ManagedObjectType,

alarmStatus
AlarmStatusType,

objectAlarms
AlarmInfoListType

}

AlarmSummaryDataType ::= SET OF ObjectAlarmInfoType

AlarmSummaryFileType ::= SEQUENCE

{

tansactionId

TransactionIdType,

alarmSummaryData
AlarmSummaryDataType

}

END

Note : All the attribute of type “string” in IDL defintion are mapped to “GraphicString” in ASN.1 format.

66
1

_1077270882.vsd
:Session�

NMS�

:PMHandler�

getHandler(in type,in versionNum,out supportVersionList,...):result�

result=success,implies version is supported,handlerRef returned.
result=failure,implies version is not supported,supported vewsion list are returned in parameter supportVersionList�

[result=success]
do PM_operation�

[result=failure] getHandler(...)�

result=success,NMC continues PM operation.
result=failure,NMC use version number returned to get handler �

_1077346729.vsd
:Session�

:FMHandler�

:SequenceProxyPushSupplier�

release or disconnect�

NMS�

getHandler(...)�

create or connect�

create or connect�

real time notification�

releaseHandler(in handlerId)�

getSubscriptionStatus(in subId,out subStatus)�

subscribeNotif(in consumerRef,in constrainLIst,out slyRef,out subId)�

realse or disconnect�

unSubscribeNotif(in subId)�

_1077348629.vsd
synchroniseAlarm(in consumerRef,in constraintList,out slyRef,out subId)�

NMC process the current alarm summmary report notifications or get the current alarm summary report file(s)�

:Session�

:�

:FMHandler�

:SequenceProx�

yPushSupplier�

file transfer ready notification�

OMC collects alarm information
when finished, send the alarmSummaryReport notifications or fileTransferReady notificaton�

NMS�

create or connect�

alarm summary report notificaiton(s) /�

releaseHandler(in�

handlerId)�

release or diconnect�

getHandler(...)�

_1078140104.vsd
:Session�

:CMHandler�

:SequenceProxyPushSupplier�

NMS�

getHandler(...)�

create or connect�

create or connect�

file_transfer_ready_notifcation�

getTopology(out tranId)�

release or disconnect�

release or disconnect�

releaseHandler(in handlerId)�

NMC get configuration infomation files�

subscribeNotif(in consumerRef,in constraintList,out slyRef,out subId)�

synchroniseCM(in moInstance,out tranId)�

OMC collect topology infomation
when finished send ready notification�

file_transfer_ready_notifcation�

NMC get topology infomation files�

unsubscribeNotif(in subId)�

OMC collects configuration info
when finished send ready notification�

object_cration_notifcation�

_1078229507.vsd
Log�

subscribe log�

create�

set log filter�

operation on log record�

unsubscribe log�

destroy�

NMS�

OMC�

_1077356405.vsd
:Session�

:PMHandler�

:SequenceProxyPushSupplier�

NMS�

getHandler(...)�

create or connect�

startMeasurementJob(in consumerRef,in measurementConstraints,in aggregationPeriod,in reportingPeriod,in startTime,in stopTime,out jobId,out subId)�

create or connect�

file_transfer_ready_notifcation�

stopMeasurementJob(in jobId,in subId,out jobStatus)�

release or disconnect�

releae or disconnect�

releaseHandler(in handlerId)�

OMC collect measurement data
when reporting period expires send ready notification�

NMC get measurement result files�

_1077363449.vsd
:Session�

:PMHandler�

:SequenceProxyPushSupplier�

getHandler(...)�

create or correct�

joinMeasurementJob(in jobId in consumerRef,in startTime,in stopTime,out subId)�

create or connect�

file_transfer_ready_notifcation�

stopMeasurementJob(in jobId,in subId,out jobSatus)�

release or disconnect�

release or disconnect�

releaseHandler(in handlerId)�

listMeasurementJob(out jobinfoList)�

NMCget PM result files�

listJobFiles(in jobId,in subId, out fileInfolist)�

NMS�

OMS collect measurement data��when reporting period expires, send file prepare ready notification�

_1077352345.vsd
:Session�

:CMHandler�

:MOHandler�

NMS�

getHandler(...)�

create or connect�

getMOHandler(in moInstance,out moHandler,out handlerId)�

create or connect�

getConatinment(in moInstance,in scopeType, in depth,out moInstanceList)�

releaseMOHandler(in handlerId)�

release or disconnect�

releaseHandler(in handlerId)�

get attributes�

release or disconnect�

get contained MOs�

getAttribute(in moInatance,in attrNameList,out attrList)�

 MSC instance�

_1077347600.vsd
:Session�

:FMHandler�

:Log�

NMS�

getHandler(...)�

create or connect�

create�

file_transfer_up_ready notification�

getSubscriptionStatus(in subId, out status)�

relaease or disconnect�

releaseHandler(in handlerId)�

NMS get alarm log information files�

subscribeLog(in logFullAction,in maxsize,in constraintList,out logRef,out subId)�

queryLogRecord(in consumerRef,in logRef,in constraintlist,out subId)�

unSubscribeLog(in subId)�

OMC collets alarm kig information, when finished, send file ready notification�

:SequenceProxyPushSupplier�

_1077280511.vsd
operation�

:Session�

:PMHandler�

throw InvalidCredential exception�

�

:OMC�

create�

openSession (in userName,in password,in timeout,...)�

NMS�

�

getHandler(..., in timeout)�

create or connect�

when session inactivity�

time exceeds timeout�

value ,session timeout�

_1077281145.vsd
NMC�

OMC�

SequencePushConsumer�

SequenceProxyPushSupplier�

Log�

PMHandler_v2�

CMHandler_v2�

FMHandler_v2�

MOHandler�

Session�

IOR�

IOR�

IOR�

IOR�

create�

create or connect�

useHandler�

use log�

create�

1..*�

1..*�

1..*�

1..*�

1..*�

1..*�

connect�

include�

include�

1..*�

sessionControl�

getHandlerFrom�

create or connect�

1..*�

create or connect�

1..*�

cTelHeartbeat�

JobFileInfoIterator�

connect�

create�

connect�

1..*�

_1077278796.vsd
:Session�

:PMHandler�

NMS�

getHandler(...) context("credential")�

create or connect�

startMeasurementJob(...) context("credential")�

[credential invalid] Raises InvalidCredential�

[credential valid] do measurementJob�

:OMC�

opensession(...,out credential)�

_1077089258.vsd
:OMC�

:Session�

NMS�

openSession(out sessionId,out sessionRef,...)�

create�

releaseHandler(in handlerId)�

NMS do management activities�

getHandler(in handlerType,out handlerId,out handlerRef)�

closeSession(in sessionId)�

release�

_1077269725.vsd
:OMC�

:Session�

[passwd valid] create session�

[passwd invalid] raises AuthenticationFailure�

NMS�

openSession(in user,in passwd,out sessionId,out sessionRef)�

_1077087107.vsd
:Session�

:PMHandler�

releaseHandler(in handlerId)�

NMS�

getHandler(in handlerType, out handlerId, out handlerRef)�

create or connect�

release or disconnect�

NMS do performance management functions�

