
3GPP TS 32.601-3 V0.1.0 (2001-05)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

3G Configuration Management:

Basic Configuration Management IRP: CORBA Solution Set;
(Release 4)

[image: image1.png]K ey

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

Configuration management

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2001, 3GPP Organizational Partners (ARIB, CWTS, ETSI, T1, TTA, TTC).

All rights reserved.

Contents

4Foreword

Introduction
4
1
Scope
6
2
References
6
3
Definitions and abbreviations
6
3.1
Definitions
6
3.2
Abbreviations
6
4
IRP Solution Set version
7
5
Architectural features
7
5.1
Notifications
7
5.2
Filter language
7
5.3
Syntax for Distinguished Names and Versions
7
6
Mapping
7
6.1
General mappings
7
6.2
Operation and Notification mapping
8
6.3
Operation parameter mapping
8
6.4
Notification attribute mapping
9
7
Use of OMG Structured Event
11
Annex A (normative): CORBA IDL, Access Protocol
13
Annex B (normative): CORBA IDL, Notification Definitions
19
Annex C (informative): Change history
23

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

Configuration Management (CM), in general, provides the operator with the ability to assure correct and effective operation of the 3G network as it evolves. CM actions have the objective to control and monitor the actual configuration on the Network Elements (NEs) and Network Resources (NRs), and they may be initiated by the operator or by functions in the Operations Systems (OSs) or NEs.

CM actions may be requested as part of an implementation programme (e.g. additions and deletions), as part of an optimisation programme (e.g. modifications), and to maintain the overall Quality of Service (QOS). The CM actions are initiated either as single actions on single NEs of the 3G network, or as part of a complex procedure involving actions on many resources/objects in one or several NEs.
Due to the growing number of specifications to model new services and Resource Models for Configuration Management (CM), as well as the expected growth in size of each of them from 3GPP Release 4 onwards, a new structure of the specifications is already needed in Release 4. This structure is needed for several reasons, but mainly to enable more independent development and release for each part, as well as a simpler document identification and version handling. Another benefit would be that it becomes easier for bodies outside 3GPP, such as the ITU-T, to refer to telecom management specifications from 3GPP. The new structure of the specifications does not lose any information or functionality supported by the Release 1999.

In addition to the restructuring, the need to define some new IRPs for CM, compared to Release 1999, has also been identified. Firstly, a new IRP for the Bulk CM, and secondly, one for each of the NRM parts (Generic, Core Network, UTRAN and GERAN NRM).

Finally, the Notification IRP (in Release 1999: 32.106-1 to -4) and the Name convention for Managed Objects (in Release 1999: 32.106-8) have been moved to a separate number series used for specifications common between several management areas (e.g. CM, FM, PM).

Table: Mapping between Release '99 and the new specification numbering scheme

R99 Old no.
Old (R99) specification title
Rel-4 New no.
New (Rel-4) specification title

32.106-8
Name convention for Managed Objects
32.300
Name convention for Managed Objects

32.106-1
<Notification IRP requirements from 32.106-1 and 32.106-2>
32.301-1
Notification IRP: Requirements

32.106-2
Notification IRP: IS
32.301-2
Notification IRP: Information Service

32.106-3
Notification IRP: CORBA SS
32.301-3
Notification IRP: CORBA SS

32.106-4
Notification IRP: CMIP SS
32.301-4
Notification IRP: CMIP SS

32.106-1
3G Configuration Management: Concept and Requirements
32.600
3G Configuration Management: Concept and High-level Requirements

32.106-1
<Basic CM IRP IS requirements from 32.106-1 and 32.106-5>
32.601-1
Basic CM IRP: Requirements

32.106-5
Basic CM IRP IM (Intro & IS part)
32.601-2
Basic CM IRP: Information Service

32.106-6
Basic CM IRP (Intro & IS part) CORBA SS
32.601-3
Basic CM IRP: CORBA SS

32.106-7
Basic CM IRP (Intro & IS part) CMIP SS
32.601-4
Basic CM IRP: CMIP SS

-
-
32.602-1
Bulk CM IRP: Requirements

-
-
32.602-2
Bulk CM IRP: Information Service

-
-
32.602-3
Bulk CM IRP: CORBA SS

-
-
32.602-4
Bulk CM IRP: CMIP SS (not yet produced)

-
-
32.602-5
Bulk CM IRP: XML file format definition

32.106-1
<Basic CM IRP Generic NRM requirements from 32.106-1 and 32.106-5>
32.620-1
Generic Network Resources IRP: Requirements

32.106-5
Basic CM IRP IM (Generic NRM part)
32.620-2
Generic Network Resources IRP: NRM

32.106-6
Basic CM IRP (Generic NRM part) CORBA SS
32.620-3
Generic Network Resources IRP: CORBA SS

32.106-7
Basic CM IRP (Generic NRM part) CMIP SS
32.620-4
Generic Network Resources IRP: CMIP SS

32.106-1
<Basic CM IRP CN NRM requirements from 32.106-1 and 32.106-5>
32.621-1
Core Network Resources IRP: Requirements

32.106-5
Basic CM IRP IM (CN NRM part)
32.621-2
Core Network Resources IRP: NRM

32.106-6
Basic CM IRP (CN NRM part) CORBA SS
32.621-3
Core Network Resources IRP: CORBA SS

32.106-7
Basic CM IRP (CN NRM part) CMIP SS
32.621-4
Core Network Resources IRP: CMIP SS

32.106-1
<Basic CM IRP UTRAN NRM requirements from 32.106-1 and 32.106-5>
32.622-1
UTRAN Network Resources IRP: Requirements

32.106-5
Basic CM IRP IM (UTRAN NRM part)
32.622-2
UTRAN Network Resources IRP: NRM

32.106-6
Basic CM IRP (UTRAN NRM part) CORBA SS
32.622-3
UTRAN Network Resources IRP: CORBA SS

32.106-7
Basic CM IRP (UTRAN NRM part) CMIP SS
32.622-4
UTRAN Network Resources IRP: CMIP SS

-
-
32.623-1
GERAN Network Resources IRP: Requirements

-
-
32.623-2
GERAN Network Resources IRP: NRM

-
-
32.623-3
GERAN Network Resources IRP: CORBA SS

-
-
32.623-4
GERAN Network Resources IRP: CMIP SS

The present document is 3GPP TS 32.601-3: Basic CM IRP: CORBA Solution Set.

1
Scope

The purpose of this Basic Configuration Management (CM) IRP: Information Service CORBA Solution Set is to define the mapping of the IRP information model (see 3GPP TS 32.106-5 [4]) to the protocol specific details necessary for implementation of this IRP in a CORBA/IDL environment.

This document defines NRM independent data types, method definitions and notification definitions.

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TS 32.101: "3G Telecom Management principles and high level requirements".

[2]
3GPP TS 32.102: "3G Telecom Management architecture".

[3]
3GPP TS 32.106-1: “3G Configuration Management”.

[4]
3GPP TS 32.106-5: “Basic Configuration Management IRP: Information Model”.

[5]
3GPP TS 32.106-8: “Name Convention for Managed Objects”.
[6]
OMG Notification Service, Version 1.0.

[7]
OMG CORBA services: Common Object Services Specification, Update: November 22, 1996.

[8]
The Common Object Request Broker: Architecture and Specification (for specification of valid version, see [1]).

[9]
3GPP TS 32.106-3: “Notification IRP: CORBA Solution Set, Version 1:1”.

[10]
3GPP TS 32.111-3: “Alarm IRP: CORBA Solution Set, Version 1:1”.

3
Definitions and abbreviations

3.1
Definitions

For terms and definitions please refer to 3GPP TS 32.101 [1], 3GPP TS 32.102 [2], 3GPP TS 32.106-1 [3] and 3GPP TS 32.106-5 [4].
3.2
Abbreviations

For the purposes of the present document, the following abbreviations apply:

CORBA
Common Object Request Broker Architecture

DN
Distinguished Name

IS
Information Service

IDL
Interface Definition Language (OMG)

IRP
Integration Reference Point

MO
Managed Object

MOC
Managed Object Class

NRM
Network Resource Model

OMG
Object Management Group

SS
Solution Set

4
IRP Solution Set version

The version of this CORBA Solution Set (SS) is 1:1, where the first “1” means that it corresponds to the Information Model version 1, and the second “1” means that it is the first CORBA Solution Set corresponding to Information Model version 1.

5
Architectural features

The overall architectural feature of Basic Configuration Management IRP is specified in 3GPP TS 32.106-5 [4].
This clause specifies features that are specific to the CORBA SS.

5.1
Notifications

Notifications are sent according to the Notification IRP: CORBA SS (see 3GPP TS 32.106-3 [9]).

The contents of the Basic CM IRP notifications are defined in the present document.

5.2
Filter language

The filter language used in the SS is the Extended Trader Constraint Language (see OMG Notification Service [6]). IRPAgents may throw a FilterComplexityLimit exception when a given filter is too complex. However, for 3GPP Release 99 an “empty filter” shall be used i.e. a filter that satisfies all MOs of a scoped search (this does not affect the filter for notifications as defined in the Notification IRP – see 3GPP TS 32.106-3 [9]).

5.3
Syntax for Distinguished Names and Versions

The format of a Distinguished Name is defined in 3GPP TS 32.106-8 [5].

The Version of this IRP is represented as a string. The value of this version is defined by a constant in Annex A.

6
Mapping

6.1
General mappings

The IS parameter name managedObjectInstance is mapped into DN.

Attributes modelling associations as defined in the NRM (here also called “reference attributes”) are in this SS mapped to attributes. The names of the reference attributes in the NRM are mapped to the corresponding attribute names in the MOC. When the cardinality for an association is 0..1 or 1..1 the datatype for the reference attribute is defined as an MOReference. The value of an MO reference contains the distinguished name of the associated MO. When the cardinality for an association allows more than one referred MO, the reference attribute will be of type MOReferenceSet, which contains a sequence of MO references.

If a reference attribute is changed, an AttributeValueChange notification is emitted.

6.2
Operation and Notification mapping

The IS part of Basic CM IRP: IM (see 3GPP TS 32.106-5 [4]) defines semantics of operation and notification visible across the Basic Configuration Management IRP. Table 1 indicates mapping of these operations and notifications to their equivalents defined in this SS.

Table 1: Mapping from IS Notification/Operation to SS equivalents

IS Operation/ notification

(3GPP TS 32.106-5 [4])
SS Method
Qualifier

getMoAttributes
BasicCmIrpOperations::find_managed_objects

BasicCmInformationIterator::next_basicCmInformations

BasicCmInformationIterator::destroy
M

getContainment
BasicCmIrpOperations::find_managed_objects

BasicCmInformationIterator::next_basicCmInformations

BasicCmInformationIterator::destroy
O

getBasicCmIRPVersion
get_basicCm_IRP_version
M

notifyObjectCreation
(to convey of a new Managed Object created)
See Notification IRP: CORBA SS [9]
O

notifyObjectDeletion
(to convey of a new Managed Object deleted)
See Notification IRP: CORBA SS [9]
O

notifyAttributeValueChange
(to convey of a change of one or several attributes of a Managed Object)
See Notification IRP: CORBA SS [9]
O

6.3
Operation parameter mapping

The IS part of Basic CM IRP: IM (see 3GPP TS 32.106-5 [4]) defines semantics of parameters carried in operations across the Basic Configuration Management IRP. Tables 2, 3 and 4 indicate the mapping of these parameters, as per operation, to their equivalents defined in this SS.

The SS operation find_managed_objects is equivalent to the IS operation getMoAttributes when called with ResultContents set to NAMES_AND_ATTRIBUTES. Iterating the BasicCmInformationIterator is used to fetch the result.

Table 2: Mapping from IS getMoAttributes parameters to SS equivalents

IS Operation parameter
SS Method parameter
Qualifier

baseObjectInstance
in DN baseObject
M

scope
in searchControl (SearchControl.scope and SearchControl.level)
M

filter
in searchControl (SearchControl.filter)
M

attributeListIn
in requestedAttributes
M

managedObjectClass
managedObjectInstance
attributeListOut
parameter fetchedElements in the next_basicCmInformations in the BasicCmInformationIterator interface.

M

status
exception UndefinedMOException,
exception IllegalDNFormatException,
exception UndefinedScopeException,
exception IllegalScopeTypeException,
exception IllegalScopeLevelException,
exception IllegalFilterFormatException,
exception FilterComplexityLimit
M

The SS operation find_managed_objects is equivalent to the IS operation getContainment when called with ResultContents set to NAMES. Iterating the BasicCmInformationIterator is used to fetch the result.

Table 3: Mapping from IS getContainment parameters to SS equivalents

IS Operation parameter
SS Method parameter
Qualifier

baseObjectInstance
in DN baseObject
M

scope
in searchControl (SearchControl.scope and SearchControl.level)
O

Not specified in IS
in searchControl (SearchControl.filter)
M

containment
parameter fetchedElements in the next_basicCmInformations in the BasicCmInformationIterator interface.
M

status
exception UndefinedMOException,
exception IllegalDNFormatException,
exception UndefinedScopeException,
exception IllegalScopeTypeException,
exception IllegalScopeLevelException,
exception IllegalFilterFormatException,
exception FilterComplexityLimit
M

Table 4: Mapping from IS getBasicCmIRPVersion parameters to SS equivalents

IS Operation parameter
SS Method parameter
Qualifier

versionNumberList
Return value of type: CommonIRPConstDefs::VersionNumberSet
M

status
- (No failure conditions identified)
M

6.4
Notification attribute mapping

The IS part of Basic CM IRP: IM (see 3GPP TS 32.106-5 [4]) identifies and defines the semantics of attributes for notifyObjectCreation, notifyObjectDeletion and notifyAttributeValueChange for use for its IRP. Table 5 shows the mapping of the IS notifications to SS equivalents.

Table 5: Mapping from IS notifications to SS equivalents

IS notifications in 3GPP TS 32.106-5 [4]
SS notifications
Qualifier

NotifyObjectCreation
push_structured_event
O

NotifyObjectDeletion
push_structured_event
O

NotifyAttributeValue Change
push_structured_event
O

The IS part of Basic CM IRP: IM (see 3GPP TS 32.106-5 [4]) also qualifies the attributes. Tables 6, 7, 8 and 9 show the mapping of these IS attributes to SS equivalents.

Table 6: Mapping from IS Notification Header attributes to SS equivalent

IS Attribute of Notification Header in 3GPP TS 32.106-5 [4]
SS Attribute
Qualifier

managedObjectClass
BasicCmNotifDefs::NotificationCommon::MANAGED_OBJECTCLASS
M

managedObjectInstance
BasicCmNotifDefs::NotificationCommon::MANAGED_OBJECT_INSTANCE
M

notificationId
BasicCmNotifDefs::NotificationCommon::NOTIFICATION_ID
O

eventTime
BasicCmNotifDefs::NotificationCommon::EVENT_TIME
M

systemDN
BasicCmNotifDefs::NotificationCommon::SYSTEM_DN
O

eventType
header.fixed_header.event_type.type_name
M

extendedEventType
header.fixed_header.event_name

- (always contains an empty string)
M

Table 7: Mapping from IS notifyObjectCreation attributes to SS equivalent OBJECT_CREATION

IS Attribute of notifyObjectCreation in 3GPP TS 32.106-5 [4]
SS Attribute
Qualifier

notificationHeader
See Table 6
M

correlatedNotifications
BasicCmNotifDefs::MOCreation::CORRELATED_NOTIFICATIONS
O

additionalText
BasicCmNotifDefs::MOCreation::ADDITIONAL_TEXT
O

sourceIndicator
BasicCmNotifDefs::MOCreation::SOURCE_INDICATOR
O

attributeList
remainder_of_body
O

Table 8: Mapping from IS notifyObjectDeletion attributes to SS equivalent OBJECT_DELETION

IS Attribute of notifyObjectDeletion in 3GPP TS 32.106-5 [4]
SS Attribute
Qualifier

notificationHeader
See Table 6
M

correlatedNotifications
BasicCmNotifDefs::MODeletion::CORRELATED_NOTIFICATIONS
O

additionalText
BasicCmNotifDefs::MODeletion::ADDITIONAL_ TEXT
O

sourceIndicator
BasicCmNotifDefs::MODeletion::SOURCE_INDICATOR
O

attributeList
remainder_of_body (a field of the StructuredEvent)
O

Table 9: Mapping from IS notifyAttributeValueChange attributes to SS equivalent ATTRIBUTE_VALUE_CHANGE

IS Attribute of notifyAttributeValueChange in 3GPP TS 32.106-5 [4]
SS Attribute
Qualifier

notificationHeader
See Table 6
M

correlatedNotifications
BasicCmNotifDefs::AttributeValueChange::CORRELATED_NOTIFICATIONS
O

additionalText
BasicCmNotifDefs::AttributeValueChange::ADDITIONAL_TEXT
M

sourceIndicator
BasicCmNotifDefs::AttributeValueChange::SOURCE_INDICATOR
O

attributeValueChangeDefinition
remainder_of_body
M

7
Use of OMG Structured Event

In CORBA SS, OMG defined StructuredEvent (see OMG Notification Service [6]) is used to carry notification. This clause identifies the OMG defined StructuredEvent attributes that carry the attributes of parameters defined in 3GPP TS 32.106-5 [4].

The composition of OMG Structured Event, as defined in OMG Notification Service [6], is:

Header

 Fixed Header

 domain_name

 type_name

 event_name

 Variable Header

Body

 filterable_body_fields

 remainder_of_body

Table 33 lists all OMG Structured Event attributes in its leftmost column. The second column identifies the SS attributes, if any, that shall be carried there.

Attributes that are denoted as ”optional” may be absent from the OMG Structured Event. As an example, if the optional additionalText attribute is not used for a particular notification, then the IRPAgent may exclude additionalText from the filterable body fields for that particular notification. Individual notifications from the same IRPAgent may include or exclude the same optional attribute.

Table 10: Use of OMG Structured Event

SS Attribute
OMG CORBA Structured Event attribute
Comment

There is no corresponding SS attribute
domain_name
It contains the version of the supported SS version. This version is defined by constant NotificationIRPConstDefs::CONFIGURATION_IRP_VERSION_1_1 defined in 3GPP TS 32.106-3 [9]

Event Type
type_name
It is an attribute of notificationHeader. It shall indicate one of the following ITU-T defined semantics: Object Creation, Object Deletion and Attribute Value Change. It is a string. Its value is either defined by BasicCmNotifDefs::MOCreation::EVENT_TYPE, BasicCmNotifDefs::MODeletion::EVENT_TYPE or BasicCmNotifDefs::AttributeValueChange::EVENT_TYPE

Extended Event Type
event_name
Shall be set to an empty string

There is no corresponding SS attribute
variable Header

Managed Object Class, Managed Object Instance
One NV pair of filterable_ body_fields
NV stands for name-value pair. Order arrangement of NV pairs is not significant. The name of NV-pair is always encoded in string. They are attributes of notificationHeader.

Name of NV pair is a string, BasicCmNotifDefs::<interface>::MANAGED_OBJECT_INSTANCE where <interface> is either MOCreation, MODeletion or AttributeValueChange.

Value of NV pair is a string. This string conveys the semantics of both the Managed Object Class and the Managed Object Instance. See corresponding table in Notification IRP: CORBA SS (3GPP TS 32.106-3 [9]).

Notification Id
One NV pair of filterable_ body_fields
It is an attribute of notificationHeader.

Name of NV pair is a string, BasicCmNotifDefs::<interface>::NOTIFICATION_ID where <interface> is either MOCreation, MODeletion or AttributeValueChange.

Value of NV pair is a long. See corresponding table in Notification IRP: CORBA SS (3GPP TS 32.106-3 [9]).

Event Time
One NV pair of filterable_ body_fields
It is an attribute of notificationHeader.

Name of NV pair is a string, BasicCmNotifDefs::<interface>::EVENT_TIME where <interface> is either MOCreation, MODeletion or AttributeValueChange.

Value of NV pair is a CommonIRPConstDefs::IRPTime defined in 3GPP TS 32.106-3 [9]. See corresponding table in Notification IRP: CORBA SS (3GPP TS 32.106-3 [9]).

System DN
One NV pair of filterable_ body_fields
It is an attribute of notificationHeader.

Name of NV pair is a string, BasicCmNotifDefs::<interface>::SYSTEM_DN where <interface> is either MOCreation, MODeletion or AttributeValueChange.

Value of NV pair is a string. See corresponding table in Notification IRP: CORBA SS [9].

Correlated Notifications
One NV pair of filterable_ body_fields
It is an attribute of the Object Creation, Object Deletion and Attribute Value Change notifications.

Name of NV pair is a string, BasicCmNotifDefs::<interface>::CORRELATED_NOTIFICATIONS where <interface> is either MOCreation, MODeletion or AttributeValueChange.

Value of NV pair is a NotificationIRPConstDefs::CorrelatedNotificationSetType defined in 3GPP TS 32.106-3 [9].

Additional Text
One NV pair of filterable_ body_fields
It is an attribute of the Object Creation, Object Deletion and Attribute Value Change notifications.

Name of NV pair is a string, BasicCmNotifDefs::<interface>::ADDITIONAL_TEXT where <interface> is either MOCreation, MODeletion or AttributeValueChange.

Value of NV pair is a string.

Source Indicator
One NV pair of filterable_ body_fields
It is an attribute of the Object Creation, Object Deletion and Attribute Value Change notifications.

Name of NV pair is a string, BasicCmNotifDefs::<interface>::SOURCE_INDICATOR where <interface> is either MOCreation, MODeletion or AttributeValueChange.

Value of NV pair is a string with values of either BasicCmNotifDefs::<interface>::RESOURCE_OPERATION, BasicCmNotifDefs::<interface>::MANAGEMENT_OPERATION or BasicCmNotifDefs::<interface>::UNKNOWN_OPERATION where <interface> is either MODeletion, MOCreation or AttributeValueChange.

There is no corresponding SS attribute

Is used to transport attribute information. For Object Creation notification, this is defined by BasicCmNotifDefs::MOCreation::InitialAttributeValues. For Object Deletion notification, this is defined by BasicCmNotifDefs::MODeletion::AttributeValues. For Attribute Value Change notification, this is defined by BasicCmNotifDefs::AttributeValueChange::ModifiedAttributeSet. The name component of InitialAttributeValues, AttributeValues and ModifiedAttributeSet will be set to attribute names defined in BasicCmNRMDefs.

Annex A (normative):
CORBA IDL, Access Protocol

#ifndef BasicCmIRPSystem_idl

#define BasicCmIRPSystem_idl

#pragma prefix "3gppsa5.org"

#include "CommonIRPConstDefs.idl"

module BasicCmIRPSystem

{

 /**

 * This constant defines the version of this IRP.

 */

 const string VERSION = "1c1";

 /**

 * The format of Distinguished Name (DN) is specified in "Name Conventions

 * for Managed Objects revision B".

 */

 typedef string DN;

 /**

 * This module adds datatype definitions for types

 * used in the NRM which are not basic datatypes defined

 * already in CORBA.

 */

 module AttributeTypes

 {

 /**

 * An MO reference referres to an MO instance.

 * "otherMO" contains the distinguished name of the referred MO.

 * A conceptual "null" reference (meaning no MO is referenced)

 * is represented as an empty string ("").

 *

 */

 struct MOReference

 {

 DN otherMO;

 };

 /**

 * MOReferenceSet represents a set of MO references.

 * This type is used to hold 0..n MO references.

 * A referred MO is not allowed to be repeated (therefore

 * it is denoted as a "Set")

 */

 typedef sequence<MOReference> MOReferenceSet;

 /**

 * A set of strings.

 */

 typedef sequence<string> StringSet;

 };

 exception IllegalFilterFormatException {

 string reason;

 };

 exception IllegalDNFormatException {

 string reason;

 };

 exception IllegalScopeTypeException {

 string reason;

 };

 exception IllegalScopeLevelException {

 string reason;

 };

 exception UndefinedMOException {

 string reason;

 };

 exception UndefinedScopeException {

 string reason;

 };

 exception FilterComplexityLimit {

 string reason;

 };

 exception FilterComplexityLimit {

 string reason;

 };

 exception NextBasicCmInformations {

 string reason;

 };

 exception InvalidParameter {

 string parameter;

 };

 exception GetBasicCmIRPVersion {

 string reason;

 };

 /**

 *

 * In R99 the only allowed filter value is "TRUE" i.e. a filter that

 * matches everything.

 */

 typedef string FilterType;

 /**

 * ResultContents is used to tell how much information to get back

 * from the find_managed_objects operation.

 *

 * NAMES: Used to get only Distinguished Name

 * for MOs.

 * The name contains both the MO class

 * and the names of all superior objects in the naming

 * tree.

 *

 * NAMES_AND_ATTRIBUTES: Used to get both NAMES plus

 * MO attributes (all or selected).

 */

 enum ResultContents

 {

 NAMES,

 NAMES_AND_ATTRIBUTES

 };

 /**

 * ScopeType defines the kind of scope to use in a search

 * together with SearchControl.level, in a SearchControl value.

 *

 * SearchControl.level is always >= 0. If a level is bigger than the

 * depth of the tree there will be no exceptions thrown.

 * BASE_ONLY: level ignored, just return the base object.

 * BASE_NTH_LEVEL: return all subordinate objects that are on "level"

 * distance from the base object, where 0 is the base object.

 * BASE_SUBTREE: return the base object and all of its subordinates

 * down to and including the nth level.

 * BASE_ALL: level ignored, return the base object and all of it's

 * subordinates.

 */

 enum ScopeType

 {

 BASE_ONLY,

 BASE_NTH_LEVEL,

 BASE_SUBTREE,

 BASE_ALL

 };

 /**

 * SearchControl controls the find_managed_object search,

 * and contains:

 * the type of scope ("type" field),

 * the level of scope ("level" field), level 0 means the "baseObject",

 * level 1 means baseobject including its sub-ordinates etc..

 * the filter ("filter" field),

 * the result type ("contents" field).

 * The type, level and contents fields are all mandatory.

 * The filter field contains the filter expression.

 * The string "TRUE" indicates "no filter",

 * i.e. a filter that matches everything.

 */

 struct SearchControl

 {

 ScopeType type;

 unsigned long level;

 FilterType filter;

 ResultContents contents;

 };

 /**

 * Represents an attribute: "name" is the attribute name

 * and "value" is the attribute value in form of a CORBA Any.

 * The allowed attribute value types are defined in the

 * AttributeTypes module.

 */

 struct MOAttribute

 {

 string name;

 any value;

 };

 typedef sequence<MOAttribute> MOAttributeSet;

 struct Result

 {

 DN mo;

 MOAttributeSet attributes;

 };

 typedef sequence<Result> ResultSet;

 /**

 The BasicCmInformationIterator is used to iterate through a snapshot of

 Managed Object Information when IRPManager invokes find_managed_objects.

 IRPManager uses it to pace the return of Managed Object Information.

 IRPAgent controls the life-cycle of the iterator. However, a destroy

 operation is provided to handle the case where IRPManager wants to stop

 the iteration procedure before reaching the last iteration.

 */

 interface BasicCmInformationIterator

 {

 /**

 This method returns between 1 and “how_many” Managed Object information.

 The IRPAgent may return less than “how_many” items even if there are

 more items to return. “how_many” must be non-zero. Return TRUE if there

 may be more Managed Object information to return. Return FALSE if there

 are no more Managed Object information to be returned.

 If FALSE is returned, the IRPAgent will automatically destroy the

 iterator.

 @parm how_many how many elements to return in the "fetchedElements" out

 parameter.

 @parm fetchedElements the elements.

 @returns A boolean indicating if any elements are returned.

 "fetchedElements" is empty when the BasicCmInformationIterator is

 empty.

 */

 boolean next_basicCmInformations (

 in unsigned short how_many,

 out ResultSet fetchedElements

)

 raises (NextBasicCmInformations,InvalidParameter);

 /**

 This method destroys the iterator.

 */

 void destroy ();

 }; // end of BasicCmInformationIterator

 typedef sequence<string> AttributeNameSet;

 /**

 * The BasicCmIrpOperations interface.

 * Supports a number of Resource Model versions.

 */

 interface BasicCmIrpOperations

 {

 /**

 * Get the version of the interface and all supported resource

 * model versions.

 *

 * @returns all supported versions.

 */

 CommonIRPConstDefs::VersionNumberSet get_basicCm_IRP_version();

 /**

 * Performs a containment search, using a SearchControl to

 * control the search and the returned results.

 *

 * All MOs in the scope constitute a set that the filter works on.

 * The result BasicCmInformationIterator contains all matched MOs,

 * with the amount of detail specified in the SearchControl.

 * For the special case when no managed objects are matched in

 * find_managed_objects, the BasicCmInformationIterator will be returned.

 * Executing the next_basicCmInformations in the

 * BasicCmInformationIterator will return FALSE for

 * completion.

 *

 * @parm baseObject The start MO in the containment tree.

 * @parm searchControl the SearchControl to use.

 * @parm requestedAttributes defines which attributes to get.

 * If this parameter is empty (""), all attributes shall

 * be returned. Note: In R99 this is the only supported semantics.

 * Note that this argument is only

 * relevant if ResultContents in the search control is

 * specifed to NAMES_AND_ATTRIBUTES.

 *

 *

 * @raises UndefinedMOException The MO does not exist.

 * @raises IllegalDNFormatException The dn syntax string is

 * malformed.

 * @raises IllegalScopeTypeException The ScopeType in scope contains

 * an illegal value.

 * @raises IllegalScopeLevelException The scope level is negative

 * (<0).

 * @raises IllegalFilterFormatException The filter string is

 * malformed.

 * @raises FilterComplexityLimit if the filter syntax is correct,

 * but the filter is too complex to be processed by the IRP agent.

 * @see SearchControl

 * @see BasicCmInformationIterator

 */

 BasicCmInformationIterator find_managed_objects(in DN baseObject,

 in SearchControl searchControl,

 in AttributeNameSet requestedAttributes)

 raises (UndefinedMOException,

 IllegalDNFormatException,

 UndefinedScopeException,

 IllegalScopeTypeException,

 IllegalScopeLevelException,

 IllegalFilterFormatException,

 FilterComplexityLimit);

 };

};

#endif

Annex B (normative):
CORBA IDL, Notification Definitions

#ifndef BasicCmNotifDefs_idl

#define BasicCmNotifDefs_idl

#pragma prefix "3gppsa5.org"

#include <TimeBase.idl> // CORBA Time Service

#include <NotificationIRPConstDefs.idl>

module BasicCmNotifDefs
{

 /**

 * Definition of ITU-T defined semantics.

 * These constants are used in the type_name

 * (header.fixed_header.event_type.type_name)

 * field to denote the notification type

 * Note all values are unique among themselves. Other IRP documents

 * cannot use the same values.

 */

 const string ET_OBJECT_CREATION = "x6";

 const string ET_OBJECT_DELETION = "x7";

 const string ET_ATTRIBUTE_VALUE_CHANGE = "x8";

 /**

 * Information about one attribute

 * - name defines the name of the attribute

 * - value defines the value of the attribute

 *

 */

 struct MOAttribute

 {

 string name;

 any value;

 };

 /**

 * A set of attribute names and values

 */

 typedef sequence<MOAttribute> MOAttributeSet;

 /**

 * This interface defines fields that are common for all

 * notification types.

 * All constants in the scope of this interface will be

 * visible in the interfaces that inherits this.

 * For instance constant

 * NotificationCommon::MANAGED_OBJECT_CLASS

 * can be addressed by MODeletion::MANAGED_OBJECT_CLASS

 */

 interface NotificationCommon

 {

 /**

 * This constant defines a field in the filterable

 * information in a StructuredEvent.

 * This string is mapped to the name part of a

 * Property in the event and the value part will

 * carry the MO class name represented

 * as a string.

 */

 const string MANAGED_OBJECT_CLASS =

 NotificationIRPConstDefs::NV_MANAGED_OBJECT_CLASS;

 /**

 * This constant defines a field in the filterable

 * information in a StructuredEvent.

 * This string is mapped to the name part of a

 * Property in the event and the value part will

 * carry the MO distinguished name represented

 * as a string.

 */

 const string MANAGED_OBJECT_INSTANCE =

 NotificationIRPConstDefs::NV_MANAGED_OBJECT_INSTANCE;

 /**

 * This constant defines the name of the notification

 * ID property, which is transported in the

 * filterable_body_fields

 */

 const string NOTIFICATION_ID =

 NotificationIRPConstDefs::NV_NOTIFICATION_ID;

 /**

 * This constant defines the name of the

 * event time property, which is transported in the

 * filterable_body_fields.

 * The data type for the value of this property

 * is defined by datatype CommonIRPConstDefs::IRPTime

 */

 const string EVENT_TIME =

 NotificationIRPConstDefs::NV_EVENT_TIME;

 /**

 * This constant defines the name of the

 * system name property, which is transported in the

 * filterable_body_fields

 */

 const string SYSTEM_DN =

 NotificationIRPConstDefs::NV_SYSTEM_DN;

 /**

 * This constant defines the name of the

 * source indicator property, which is transported in the

 * filterable_body_fields

 */

 const string SOURCE_INDICATOR = "SOURCE";

 /**

 * Valid values for the SOURCE_INDICATOR

 * property

 */

 const string RESOURCE_OPERATION = "RESOURCE OPERATION";

 const string MANAGEMENT_OPERATION = "MANAGEMENT OPERATION";

 const string UNKNOWN_OPERATION = "UNKNOWN";

 /**

 * This constant defines the name of the

 * additional text property,

 * which is transported in the filterable_body

 * fields.

 * The data type for the value of this property

 * is a string.

 */

 const string ADDITIONAL_TEXT =

 NotificationIRPConstDefs::NV_ADDITIONAL_TEXT;

 /**

 * This constant defines the name of the

 * correlated notifications property,

 * which is transported in the

 * filterable_body_fields

 * The value part of the property is defined

 * in the NotificationIRP;

 * NotificationIRPConstDefs::CorrelatedNotificationSetType

 */

 const string CORRELATED_NOTIFICATIONS =

 NotificationIRPConstDefs::NV_CORRELATED_NOTIFICATIONS;

 };

 /**

 * Constant definitions for the MO deleted notification

 */

 interface MODeletion : NotificationCommon

 {

 const string EVENT_TYPE = ET_OBJECT_DELETION;

 /**

 * This information mapped into the remainder_of_body

 * in the StructuredEvent

 */

 typedef MOAttributeSet AttributeValues;

 };

 /**

 * Constant definitions for the MO created notification

 */

 interface MOCreation : NotificationCommon

 {

 const string EVENT_TYPE = ET_OBJECT_CREATION;

 /**

 * This information mapped into the remainder_of_body

 * in the StructuredEvent

 */

 typedef MOAttributeSet InitialAttributeValues;

 };

 /**

 * Constant definitions for the Attribute Value Change

 * notification

 */

 interface AttributeValueChange : NotificationCommon

 {

 const string EVENT_TYPE = ET_ATTRIBUTE_VALUE_CHANGE;

 /**

 * Information about modidified attributes for

 * one MO instance.

 * - name defines the name of the attribute

 * - newValue defines the new value of the attribute

 * - oldValue defines the previous value of the attribute

 * The value is optional, which means that it may contain

 * an empty any (null inserted in the any).

 *

 */

 struct ModifiedAttribute

 {

 string name;

 any newValue;

 any oldValue;

 };

 /**

 * This information mapped into the remainder_of_body

 * in the StructuredEvent.

 */

 typedef sequence<ModifiedAttribute> ModifiedAttributeSet;

 };

};

#endif

Annex C (informative):
Change history

Change history

Date
TSG #
TSG Doc.
CR
Rev
Subject/Comment
Old
New

Dec 2000
S_10
SP-000514
-

Approved at TSG SA #10 and placed under Change Control.
1.0.0
3.0.0

Mar 2001
S_11
SP-010030
001

Remove TimeBase.idl not used in the module NotificationDefs
3.0.0
3.1.0

Mar 2001
S_11
SP-010030
002

Update get_basicCm_IRP_version to be consistent with Alarm IRP and Notification IRP
3.0.0
3.1.0

Mar 2001
S_11
SP-010030
003

Mismatched irpVersion types
3.0.0
3.1.0

Mar 2001
S_11
SP-010030
004

Update Basic CM IRP Iterator to be consistent with Alarm IRP Iterator
3.0.0
3.1.0

Mar 2001
S_11
SP-010030
005

Removing nested IDL modules
3.0.0
3.1.0

Mar 2001
S_11
SP-010030
006

Update Structured Event table to be consistent with Alarm IRP
3.0.0
3.1.0

Mar 2001
S_11
SP-010030
007

UMTS Network Resource Model alignment with TSG RAN specifications
3.0.0
3.1.0

May 2001

Removed everything NRM specific (to be placed in other documents) including "Rules for managed information extentions"

