	3GPP TSG-SA5 (Telecom Management)

Meeting #19, Los Angeles, 2-6 April, 2001
	S5-010215

From:
BT, Geoffrey CARYER [mailto: Geoff.Caryer@btinternet.com]
To:
ITU-T SG4

cc:
3GPP2 TSG-S, T1M1

Title:
Progress on the use of CORBA in the TMN

Source:
3GPP SA5
SA5 Contact:
Michael TRUSS
Tel.:
+353 21 4511327
Email:
Michael.Truss@motorola.com

SA5 Chairman:
Albert YUHAN
Email:
albert.yuhan@voicestream.com

SA5 would like to thank ITU-T SG4 for its liaison entitled “Progress on the use of CORBA in the TMN” from the SG4 meeting on 19 January 2001. The attached final versions of the X.780, Q.816 and M.3120 recommendations as well as the current versions of the CORBA based Alarm Management and Performance Management have been made available to the SA5 Rapporteur groups which have contributed to the following comments.

1) SA5 would like to thank ITU-T SG4 for the changes made to the CORBA Framework Recommendation Q.816 to address requirements of the wireless industry.

Regarding the relationship between Q.816 conformance and 3GPP Notification Integration Reference Point (IRP): CORBA solution set, your liaison statement states:

“We have modified the conformance sections of Q.816 to allow the option of using your "Notification Integration Reference Point: CORBA solution set" service as an alternative to the OMG Notification service. We have allowed this service to be used as a normative alternative to the OMG service.”

We welcome and are encouraged regarding your decision to make such modification to Q.816 conformance section. However, the new Q.816 text regarding this point is ambiguous and does not reflect precisely your decision, as captured in your liaison statement.

The new but ambiguous Q.816 text in section 8.1.1 reads:

“An implementation claiming conformance to the Notification Service requirements must:

· Support either:

- the CORBA Notification Service version specified in Section 5.2., or,

- the 3gpp NotificationIRPOperations interface specified in reference [13].

· Support all of the Notification Service requirements specified in Section 6.2.”

To correctly reflect our understanding of the meeting results and your liaison statement, the above text should be replaced with the following text:

“An implementation claiming conformance to the Notification Service requirements must:

· Support either:

a) the CORBA Notification Service version specified in Section 5.2 and all of the Notification Service requirements specified in Section 6.2;

or

b) the 3GPP Notification Integration Reference Point : CORBA solution set [13].”

2) In order to understand better your liaison statement and the Q.816 changes we have the following questions:

a) In the view of SG4, are the 3GPP Notification IRP specifications 32.106-2 and 32.106-3, aligned with SG4’s current view of Q.816?

b) If not, what is SG4’s current view of what must be done to achieve alignment between the SG4 CORBA framework and both the information service (TS 32.106-2) and the CORBA Solution Set (TS 32.106-3)?

3) We note that you are working on amendments to X.780 and Q.816 for coarse-grained access and look forward to reviewing this material. We would like to inform you that 3GPP plans to document our solution for coarse-grain access used in 3GPP specifications and provide it to your July meeting. We would appreciate if you took our solution into consideration for your work to facilitate our common goal of standards alignment.

4) We note that you are working on the sub-setting of OMG notification service and we look forward to reviewing this material. We would like to inform you that our Notification IRP: CORBA solution set 32.106-3 does not expose all OMG Notification operations to the Manager (i.e., sub-setting decision made). In your sub-setting work, we would like you to take into consideration our sub-setting decision to facilitate the goal of standards alignment.

5) 3GPP SA5 has a Release 5 work item to conduct a feasibility study to align 3GPP SA5 CORBA network management solution with the ITU-T CORBA framework described in ITU-T X.780 and ITU-T Q.816. 3GPP SA5 Release 5 is currently scheduled for completion in March 2002. Your amendments to Q.816 and X.780 will likely have a major impact on this study. Attached to this liaison is one member company’s input to such a feasibility study.
6) We recognise that Q.816 supports the use of Typed Notification (re: your liaison statement bullet 4). In our Notification IRP Release 5 work, we will consider the use of Typed Notification as well.

7) We understand that SG 4 has agreed to progress new FM (Q.821-CORBA) and PM (Q.822-CORBA) recommendations (based on ITU-T Q.821 and ITU-T Q.822) which are compliant to the ITU-T CORBA framework. In your current work on the draft Q.821, we would like you to take into consideration our current standard 3GPP Alarm IRP: CORBA solution set 32.111-3 to facilitate the goal of standards alignment.

To be considered by 3GPP SA5 for its Release 5, the ITU-T Q.821 and ITU-T Q.822 documents, or any ITU-T CORBA solutions, would be required to be available in the September 2001 time frame.

The 3GPP SA5 FM RG currently has an active Release 5 work item to consider alignment of existing FM features with Q.821 and is willing to take in consideration Q.821 when introducing new features. This work item affects both CMIP and CORBA implementations. This alignment study has not yet been started.

Regarding 3GPP SA5 PM RG activities,

· the PM RG does not specify a PM IRP in Release 4 (June 2001), which implies that the PM group will not review, and provide comments to, the ITU-T specifications in the Release 4 timeframe; the work plan for a PM IRP in Release 5 is currently limited to threshold management and managing file transfer and contents.

· the PM RG expects to re-use existing material from SA5, thereby alignment of PM with the ITU-T CORBA framework would be determined by the outcome of the feasibility study mentioned in item 5 of this LS

· the next priority is to re-use existing specification from other groups outside of SA5 (e.g. for PM specific functions and/or interfaces), thereby minimising the reinvention factor;

8) Finally, you should note that we found the M.3010 TMN conformance and compliance text useful in creating a general requirement regarding UMTS TMN conformance which we added to 32.102. In this task, we identified the need for extending M.3010 to address CORBA conformance and ask that you address this issue and inform us of your conclusions.

3GPP SA5 wishes to continue monitoring these documents and plans to submit comments and concerns to you if appropriate.

Please contact 3GPP SA5 if you have any questions, comments or concerns.

Thank you,

Attachments:
S5C010013
Feasibility Study For 3GPP SA5 Implementing T1M1.5 / ITU-T CORBA Framework

[image: image1.wmf]S5C010013_S5F010005_feasibility.zip

_1048406714/S5C010013_S5F010005_feasibility.zip

S5C010013_S5F010005_feasibility.doc

			3GPP TSG-SA5 (Telecom Management)

Meeting #17, Sophia Antipolis, FRANCE, 22 ‑ 26 Jan 2001

			Tdoc S5C010013

S5F010005

			Source:

			Lucent Technologies, Randall J. SCHEER (rjscheer@lucent.com)

			

			

			Title:

			Feasibility Study For 3GPP SA5 Implementing T1M1.5 / ITU-T CORBA Framework

			

			

			Document for:

			Discussion

			

			

			Agenda Item:

			CM 9.3, FM 9.4

			

			

			

			

			Category:

			Contribution for 9.3 Configuration Management and 9.4 Fault Management

			

			

			Work Item ID:

			

			

			

			Doc Summary:

			This R5 contribution is a feasibility study for 3GPP SA5 to support the T1M1.5 / ITU-T CORBA framework. The intent of this document is to compare and contrast the Release 1999 3GPP SA5 CORBA interfaces and the same interfaces supported under the style of the T1M1.5 / ITU-T CORBA framework. This document is very detailed in its comparisons. This document is intended for informational use only and not intended as a request for 3GPP SA5 to support these changes.

			

			

			Specs involved:

			3GPP TS 32.106-2, 3GPP TS 32.106-3, 3GPP TS 32.106-5, 3GPP TS 32.106-6, 3GPP TS 32.111-2, 3GPP TS 32.111-3

1. REFERENCES

[1]. 3GPP, 3G Telecom Management: Principles And High Level Requirements (Release 1999), 3GPP TS 32.101, V3.3.0, December, 2000.

[2]. 3GPP, Part 2: Alarm Integration Reference Point: Information Service Version 1 (Release 1999), 3GPP TS 32.111-2, V3.3.0, December, 2000.

[3]. 3GPP, Part 3: Alarm Integration Reference Point: CORBA Solution Set Version 1:1 (Release 1999), 3GPP TS 32.111-3, V3.3.0, December, 2000.

[4]. 3GPP, Part 2: Notification Integration Reference Point: Information Service Version 1 (Release 1999), 3G TS 32.106-2, V3.2.0, December, 2000.

[5]. 3GPP, Part 3: Notification Integration Reference Point: CORBA Solution Set Version 1:1 (Release 1999), 3GPP TS 32.106-3, V3.2.0, December, 2000.

[6]. 3GPP, Part 5: Basic Configuration Management IRP: Information Model Version 1 (Release 1999), 3GPP TS 32.106-5, V3.0.0, December, 2000.

[7]. 3GPP, Part 6: Basic Configuration Management IRP: CORBA Solution Set Version 1:1 (Release 1999), 3GPP TS 32.106-6, V3.0.0, December, 2000.

[8]. 3GPP, Part 8: Name Convention For Managed Objects (Release 1999), 3G TS 32.106-8, V3.1.0, July, 2000.

[9]. 3GPP, Bulk CM Data Upload And Download Over Itf-N, Tdoc S5C000182, November, 2000.

[10]. 3GPP, Use Stringified IOR Instead Of Type Object, Tdoc S5C010001, January, 2001.

[11]. IEEE, Information Technology – Portable Operating System Interface (POSIX) Part 2: Shell And Utilities, IEEE / ANSI Standard 1003.2-1992, 1992.

[12]. ITU-T, M.3000 – Overview Of TMN Recommendations, draft, February, 2000.

[13]. ITU-T, M.3100 – Generic Network Information Model, July, 1995.

[14]. ITU-T, M.3120 – CORBA Generic Network and NE Level Information Model, draft, December, 2000.

[15]. ITU-T, Q.816 – CORBA Bases TMN Services, draft, December, 2000.

[16]. ITU-T, Q.821 – Alarm Surveillance, Draft, February, 2000.

[17]. ITU-T, Q.822 – Performance Management, April, 1994.

[18]. ITU-T, X.721 – Definition Of Management Information, 1992.

[19]. ITU-T, X.731 – State Management Function, 1992.

[20]. ITU-T, X.733 – Alarm Reporting Function, 1992.

[21]. ITU-T, X.735 – Log Control Function, September, 1992.

[22]. ITU-T, X.736 – Security Alarm Reporting Function, 1992.

[23]. ITU-T, X.738 – Summarization Function, November, 1993.

[24]. ITU-T, X.739 – Metric Objects And Attributes, November, 1993.

[25]. ITU-T, X.780 - TMN Guidelines for Defining CORBA Managed Objects, draft, December, 2000.

[26]. OMG, Event Service Specification, June, 2000.

[27]. OMG, Naming Service Specification, April, 2000.

[28]. OMG, Notification Service Specification, June, 2000.

[29]. OMG, Security Services Specification, May, 2000.

[30]. OMG, Telecom Log Service Specification, Version 1.0, January, 2000.

[31]. OMG, Trading Object Service Specification, June, 2000.

[32]. T1M1.5, Additional Comments On Q.816 (input to Study Group 4), B00-12-20, T1M1.5/2000-323, December, 2000.

[33]. T1M1.5, Additional Comments On X.780 (input to Study Group 4), B00-12-21, T1M1.5/2000-322, December, 2000.

[34]. T1M1.5, CORBA Alarm Management Model (input to Study Group 4), B00-12-08, T1M1.5/2000-217R3, December, 2000.

[35]. T1M1.5, CORBA PM Model (input to Study Group 4), B00-12-07, T1M1.5/2000-286R2, December, 2000.

[36]. T1M1.5, CORBA Trouble Administration Model (input to Study Group 4), B00-12-18, T1M1.5/2000-264R1, December, 2000.

[37]. T1M1.5, Editorial Changes To Q.816 (input to Study Group 4), B00-12-04, December, 2000.

[38]. T1M1.5, Editorial Changes To X.780 (input to Study Group 4), B00-12-03, December, 2000.

[39]. T1M1.5, Façade And Coarse Grain For CORBA Framework (input to Study Group 4), B00-12-09, T1M1.5/2000-263, December, 2000.

2. INTRODUCTION

This contribution is a feasibility study for 3GPP SA5 to support the T1M1.5 / ITU-T CORBA framework. The intent of this document is to compare and contrast the Release 1999 3GPP SA5 CORBA interfaces and the same interfaces supported under the style of the T1M1.5 / ITU-T CORBA framework. This document is very detailed in its comparisons. This document is intended for informational use only and not intended as a request for 3GPP SA5 to support these changes.

Readers are assumed to have a working knowledge of the following 3GPP SA5 specifications: 3GPP TS 32.111-2 [2], 3GPP TS 32.111-3 [3], 3GPP TS 32.106-2 [4], 3GPP TS 32.106-3 [5], 3GPP TS 32.106-5 [6], 3GPP TS 32.106-6 [7] and 3GPP TS 32.106-8 [8]. A working knowledge of the T1M1.5 / ITU-T documents is not assumed.

The goal of this document is to explain the T1M1.5 / ITU-T CORBA framework and how it could support 3GPP SA5 information models. However, only abbreviated explanations are given in this document. For full explanations of definitions and concepts, refer to references [15], [25], [32], [33], [37] and [38].

Note that while the 3GPP SA5 documents are still changing for Release 1999, R4 and R5, the T1M1.5 / ITU-T CORBA documents are also still changing. This document will need to be updated as the reference documents change.

The T1M1.5 / ITU-T CORBA framework documents are separated as follows:

1. ITU-T X.780 [25] – Defines object modelling guidelines, superclasses for all managed objects and managed object factories, and a standard set of notifications.

2. ITU-T Q.816 [15] – Defines a set of services that are required for CORBA-based interfaces.

3. ITU-T M.3120 [14] – Provides CORBA IDL versions of the generic network model, ITU-T M.3100 [13].

When referencing ITU-T X.780, it is assumed that the changes documented in references [33] and [38] have been applied to reference [25]. When referencing ITU-T Q.816, it is assumed that the changes documented in references [32] and [37] have been applied to reference [15].

The rest of this document is organized as follows:

· Background.

· Benefits Of Using The T1M1.5 / ITU-T CORBA Framework.

· Support For Basic CM IRP – Overview of the framework differences between the T1M1.5 / ITU-T CORBA framework and the Basic CM IRP portion of the 3GPP SA5 CORBA framework, plus itemized comparisons of operations, notifications and IDL updates.

· Support For Alarm IRP – Overview of the framework differences between the T1M1.5 / ITU-T CORBA framework and the Alarm IRP portion of the 3GPP SA5 CORBA framework, plus itemized comparisons of operations, notifications and IDL updates.

· Support For Notification IRP – Overview of the framework differences between the T1M1.5 / ITU-T CORBA framework and the Notification IRP portion of the 3GPP SA5 CORBA framework, plus itemized comparisons of operations, notifications and IDL updates.

· Overview Of Interfaces To Be Implemented – Summary of the IRPAgent manditory or optional implemented interfaces based on this feasibility study.

· Compliance To T1M1.5 / ITU-T Compliance Rules – Itemized listing of the ITU-T X.780 and ITU-T Q.816 compliance rules, along with evaluations of the level of compliance by this feasibility study.

· Compliance To 3GPP SA5 Information Model.

· Recommendations.

· Conclusions.

· Revised (or New) IDL Listings For BasicCmIRPSystem.idl, NRMDefinitions.idl, BasicCmCorbaObjects.idl, BasicCmUMTSCorbaObjects.idl, AlarmIRPConstDefs.idl, AlarmIRPSystem.idl, CommonIRPConstDefs.idl, NotificationIRPConstDefs.idl and NotificationIRPSystem.idl – This is a complete set of IDL for providing compliance to both T1M1.5 / ITU-T and 3GPP SA5.

· Annex A: The T1M1.5 / ITU-T Constraint Language BNF – BNF description of the T1M1.5 / ITU-T filter grammer.

· Unofficial IDL Listings for the ITU-T X.780 and ITU-T Q.816 itut_x780.idl, itut_x780Const.idl and itut_q816.idl.

3. BACKGROUND

Figure 3‑1 (from reference [32]) gives an overview of the T1M1.5 / ITU-T CORBA framework structure. Each of these items will be further discussed in this document.

[image: image1.wmf]Superclasses:

Managed

Object

Managed

Object

Factory

Std.

Data

Types

GDMO

to IDL

Con-

ven-

tions

Managed

Element

Connection

Network

Link

Inherit

…

Managed

Element

Factory

Link

Factory

Network

Factory

Connection

Factory

…

Application-

specific Objects

Notification

Service

Telecom

Log Service

Notification

Specifications

Terminator

Service

Multiple Object

Operation Service

Naming

Service

Channel

Finder

Factory

Finder

Names

CORBA 2.3.1 ORB

Heartbeat

Service

Figure 3‑1. Overview Of T1M1.5 / ITU-T CORBA Framework Structure

The terms “fine-grained” and “coarse-grained” in this document refer to the level of granularity of the CORBA interface. In fine-grained CORBA frameworks, each object is an instantiated CORBA object (i.e., each object has an Interoperable Object Reference (IOR)). In coarse-grained CORBA frameworks, only a small number of objects are instantiated CORBA objects. Of course, there is a continuum, CORBA implementations may not be totally fine-grained or coarse-grained, but somewhere in between. The T1M1.5 / ITU-T CORBA framework is a very fine-grained approach and the 3GPP SA5 CORBA framework is a very coarse-grained approach.

All IDL in this document has been verified using the Java 2 SDK, Standard Edition IDL compiler.

4. BENEFITS OF USING THE T1M1.5 / ITU-T CORBA FRAMEWORK

4.1. Full Set Of Managed Object Operations

ITU-T X.780 [25] supports a full set of manager-initiated managed object operations. The support for these operations is under management information model control (i.e., object model designers can design which operations are available on what managed objects and what attributes).

Managed objects can be created and deleted by managers. Managed object creation and deletion is based on pre-defined name binding rules, that are strictly enforced. Managers may get or set any attribute and add an item or remove an item from any set-based attribute. Actions may be defined on a managed object class basis. Managed object instances may emit notifications. Get, set and delete operations may be performed on an individual managed object instance basis or on a multiple managed object basis based on scoping and filtering.

Hierarchical managed object inheritance and naming is supported. Managed object instances may be individualized through the use of conditional packages.

4.2. TMN Compatible

CORBA is a valid Q interface protocol [12]. ITU-T X.780 [25] supports an environment compatible with the TMN set of standards. It also provides procedures and suggestions for converting existing GDMO / ASN.1 management information models to IDL in a manner compliant with ITU-T X.780.

4.3. TMN Capabilities Already Supported

1. State Management Support – Capabilities, analogous to the capabilities supported in ITU X.731 [19], are supported in ITU-T X.780 [25]. ITU-T X.731 state attributes may be allocated to managed objects.

2. Telecom Log Service – Capabilities, analogous to the capabilities supported in ITU X.735 [21], are supported in ITU-T Q.816 [15]. This support is based on the OMG Telecom Log Service [30].

3. Security Alarms – Capabilities, analogous to the capabilities supported in ITU X.736 [22], are supported in ITU-T X.780. Security alarms may be issued from managed objects.

4. Generic Network Information Model – Generic managed objects, derived from ITU-T M.3100 [13], are defined in ITU-T M.3120 [14].

4.4. Notification Extensions Allowed

New notifications may be defined and allocated to individual managed object classes. Notifications may be allocated to managed objects on a mandatory or a conditional basis. The use of the Additional Information attribute in notifications allows applications to make run-time selections of notification parameters.

4.5. CORBA Telecommunications Frameworks

Application interoperability can be improved by reducing the number of standardized CORBA telecommunications frameworks (just as application interoperability can be improved by developing standard CORBA frameworks). Network management systems have significantly more work required if they need to support both the 3GPP SA5 CORBA framework and the T1M1.5 / ITU-T CORBA framework in the same system. Reducing the number of CORBA frameworks, hopefully, will increase the probability of generally available third-party development tools.

4.6. Internationalization

ITU-T X.780 [25] and ITU-T Q.816 [15] support the use of characters from the Unicode character set (where appropriate). It is currently defined in parameters such as Additional Text and operation error responses.

4.7. New Capabilities

A number of new work areas are currently under progress. These work items are currently scheduled for completion in 2001.

1. Alarm management support based on ITU-T Q.821 [16] – This provides a new recommendation to supplement ITU-T Q.821 to supply an ITU-T Q.821-based Management Information Model to be used in telecommunications network management based on CORBA. For more information, see reference [34].

2. Performance management support based on ITU-T Q.822 [17], ITU-T X.738 [23] and ITU-T X.739 [24] – This defines an information model to be used in telecommunications Performance Management (PM) based on CORBA. This includes access to current data, history data and control of history data file transfers through CORBA. For more information, see reference [35].

3. Intermixed fine-grained and coarse-grain support (called façade) – The façade concept allows the use of more coarse-grained CORBA approaches. A Façade and a Façade Factory object can be defined to represent a whole collection of managed object instances (referred to as “light” objects) from one managed object class. These light objects would not be instantiated. There would be a Façade and Façade Factory for each managed object class that has light objects. A managed object class may have both light instances and instantiated instances. Multiple managed object operations (get, set and delete) will function seamlessly for light and instantiated managed object instances. For more information, see reference [39].

4. Trouble ticket support – This defines an interface for Trouble Administration (TA) and Service Test functions as defined in T1.227/228. For more information, see reference [36].

Also note, that the 3GPP SA5 “Bulk CM” work (reference [9]) may be able to use some of the same work used in reference [35], i.e., the wrapping of ftp or FTAM file transfers around CORBA-based operations.

5. SUPPORT FOR BASIC CM IRP

5.1. Framework Differences

5.1.1 CORBA Version

3GPP SA5 Release 1999 supports CORBA versions 2.1 and 2.3 (see 3GPP TS 32.101 [1]). T1M1.5 / ITU-T requires CORBA version 2.3.1 [25].

5.1.2 T1M1.5 / ITU-T Managed Objects

In the T1M1.5 / ITU-T CORBA framework, resources are modelled by what are called managed objects. Managed objects have or may have:

1. Names (see clause 5.1.3).

2. Attributes

3. Notifications

4. Operations

5. Conditional Packages

6. Attribute Valuetype

7. Factories (see clause 5.1.6).

This clause (or subsequent clauses) define each of these managed object capabilities.

Attributes are modelled in managed object class through attribute operations. Attribute operations are defined for each attribute as follows:

1. Each managed object attribute that can be accessed has a corresponding ‘<attribute name>Get’ operation.

2. Each managed object attribute that can be set has a corresponding ‘<attribute name>Set’ operation.

3. Each managed object set-based attribute that can have items added to the set has a corresponding ‘<attribute name>Add’ operation.

4. Each managed object set-based attribute that can have items removed from the set has a corresponding ‘<attribute name>Remove’ operation.

Attribute types may be defined from predefined IDL types and from extensions to predefined IDL types.

Each managed object class may also define non-attribute-based operations and which notifications may be emitted by that managed object class. Exceptions may be defined on individual attribute and non-attribute operations.

Managed objects may be subclassed from another managed object. Each managed object is directly or indirectly subclassed from the ManagedObject managed object. ManagedObject contains the following attributes (and each of the attributes are thus contained in each managed object):

1. name – The name of the managed object instance.

2. objectClass – Fully qualified name of the managed object class (i.e., “BasicCmCorbaObjects::ManagementNode”).

3. packages – List of what conditional packages are supported by this managed object instance.

4. creationSource – Whether the managed object instance was created by resource operation, management operation or unknown.

5. deletePolicy – In regards to managers, is this managed object instance notDeletable, deleteOnlyIfNoContainedObjects or deleteContainedObjects?

ManagedObject contains the following operations (and each of the operations are thus contained in each managed object):

1. attributesGet – Return all, or a selected subset, of attribute values. Attributes are returned using a valuetype defined for each managed object class.

2. destroy – Delete the managed object instance. Managers should use the Terminator Service (see clause 5.1.7) instead of calling this method directly.

Conditional packages allow different managed object instances of a managed object class to have selectability on attributes, notifications and operations. The packages attribute lists what conditional packages are supported by a managed object instance. Exceptions will be thrown when trying to access an attribute or trying to execute an operation when a conditional attribute or operation is not supported. Managed object instances will not emit conditional notifications that are not supported.

Currently, all managed objects must be represented as instantiated CORBA objects.

5.1.3 T1M1.5 / ITU-T Naming

The T1M1.5 / ITU-T CORBA framework has a different naming structure than what is used by 3GPP SA5 (see 3GPP TS 32.106-8 [8]). The T1M1.5 / ITU-T naming is defined in ITU-T X.780 [25] and based from the OMG Naming Service [27].

The T1M1.5 / ITU-T naming is based on the Name structure of CosNaming, which is defined as follows:

typedef string Istring;

struct NameComponent

{

Istring id; // Naming Attribute

Istring kind; // Class Name (see name binding module)

};

typedef sequence <NameComponent> Name;

The id attribute contains the naming attribute (e.g., managementNodeId) value and the kind attribute contains the name of the object class.

A straightforward set of conversion routines can be generated to convert names in 3GPP SA5 format back and forth to names in T1M1.5 / ITU-T format. As an example, given a 3GPP SA5 style name of:

"g3SubNetwork=Sweden, meContext=MEC-Gbg-1, g3ManagedElement=RNC-Gbg-1"

We could convert it into a T1M1.5 / ITU-T style name as follows (using set notation to show a sequence of NameComponent):

{{"Sweden", "g3SubNetwork"},

{"MEC-Gbg-1", "meContext"},

{"RNC-Gbg-1", "g3ManagedElement"}}

This algorithm is documented in reference [32].

The T1M1.5 / ITU-T root naming context is analogous to the 3GPP SA5 System DN. The root naming context is where the top-most managed objects on a system are bound, as well as names for service objects. A system may have more than one root naming context. The name of a root naming context will be in the CosNaming::Name format described above. The full name of a managed object will be its root naming context and name combined. Root naming contexts and managed object names form a containment tree of objects. A diagram on root naming contexts can be seen in Figure 5‑1.

[image: image2.wmf]A

B

C

Element1:Manag

edElement

Local Root = A

Object

Element1:Manag

edElement

Object

Element1:Manag

edElement

Object

Local Root = B

Local Root = C

Managed System X

Managed System Y

Managing System

Figure 5‑1. Root Naming Contexts

Each non-root managed object instance is linked to one and only one superior managed object instance through name binding rules established in IDL. These name binding rules are enforced on managed object creation and deletion. The following name binding rules define these managed object class to class relationships:

1. superiorClass – Fully qualified superior managed object class name.

2. superiorSubclassesAllowed – Are subclasses of the superior managed object class allowed?

3. subordinateClass – Fully qualified subordinate managed object class name

4. subordinateSubclassesAllowed – Are subclasses of the superior managed object class allowed?

5. managerCreatesAllowed – Can managers create subordinate managed object class instances?

6. deletePolicy – In regards to managers, is the subordinate managed object instance notDeletable, deleteOnlyIfNoContainedObjects or deleteContainedObjects?

7. kind – Subordinate managed object class name.

Managed object classes may have multiple name binding relationships.

The T1M1.5 / ITU-T CORBA framework requires the use of OMG Naming Service for manager access to instantiated CORBA objects.

5.1.4 Multiple-Object Operation (MOO) Service

ITU-T Q.816 [15] provides the Multiple-Object Operation (MOO) Service to support single method invocation operations that operate on multiple managed objects. The following multiple-object operations are supported:

1. Get – Access one or more attributes from multiple managed object instances based on a supplied filter and scope (see clause 5.1.5). This is different from the attributesGet method that returns one or more attributes from a single managed object instance.

2. Set – Replace one or more attributes from multiple managed object instances based on a supplied filter and scope.

3. Delete – Delete multiple managed object instances based on a supplied filter and scope. The deletion of a managed object instance must be allowed by the corresponding name binding rules (see clause 5.1.3).

To support a large number of return values, the results may be returned via an iterator.

5.1.5 Filter Grammar And Scoping

ITU-T Q.816 [15] uses an enhanced Enhanced TCL filter grammar (referred to as “MOO 1.0”) in its operations. The Enhanced TCL filter grammar, which is defined by the OMG Notification Service [28], is based from the OMG Trader Constraint Language (TCL) [31]). The “MOO 1.0” filter grammar is a superset of the Extended TCL filter grammar (i.e., Extended TCL filters will work with the “MOO 1.0” filter grammar).

Note that the filter grammar used by OMG Notification Service and OMG Telecom Log Service [30] remains the Extended TCL filter grammar.

The following additions to the Extended TCL have been defined for the “MOO 1.0” filter grammar:

1. Extended TCL ‘$’ operator also functions on managed objects (as an example, $.userLabel).

2. A new ‘A # B’ operator matches if regular expressions in A match B. Regular expression characters are defined in IEEE / ANSI Standard 1003.2-1992 [11].

3. Set and sequence literal values may be represented using ‘{‘ and ‘}’ notation (as an example, ‘{1,2,3}’ or ‘{}’).

4. The ‘A == B’ (match if A and B have the same values), ‘A != B’ (match if A and B have different values), ‘A < B’ (match if B has all A values plus others), ‘A <= B’ (match if B has all A values), ‘A > B’ (match if A has all B values plus others), ‘A >= B’ (match if A has all B values) and ‘A ^ B’ (match if any value in A is also in B) operators are extended to allow sets and sequences.

5. A new ‘MAX(A)’ built in function returns the highest value in a set or sequence.

6. A new ‘MIN(A)’ built in function returns the lowest value in a set or sequence.

7. A new ‘A % B’ operator matches if A and B have the same number of values and the order of values in A matches the order of values in B.

A BNF description of the “MOO 1.0” filter grammar (from reference [32]) is shown in Annex A.

ITU-T Q.816 supports the following levels of scoping search:

1. The base object alone (baseObjectOnly).

2. The nth level subordinates of the base object (individualLevel).

3. The base object and all of its subordinates down to and including the nth level (baseToLevel).

4. The base object and all of its subordinates (wholeSubtree).

This scoping matches what is supported in 3GPP TS 32.106-6 [7], but with different data types.

5.1.6 Managed Object Factories

Managed object factories must be created for each managed object class that can be created through the manager interface. Each managed object factory has a create method that gives the arguments required to create an instance of a managed object class. The creation of a managed object instance must also be allowed by the corresponding name binding rules (see clause 5.1.3).

ITU-T Q.816 [15] defines a Factory Finder Service that can help managers locate what managed object factories are defined. A Factory Finder object has methods to both find managed object factories and to list what managed object factories are supported.

5.1.7 Terminator Service

ITU-T Q.816 [15] defines a Terminator Service object that supports the deletion of managed object instances. The deletion of a managed object instance must also be allowed by the corresponding name binding rules (see clause 5.1.3). This must be used instead of the destroy method in every managed object.

5.1.8 Notifications

3GPP TS 32.106-5 [6] defines three notifications:

1. Object Creation

2. Object Deletion

3. Attribute Value Change

These three notifications are defined in the T1M1.5 / ITU-T CORBA framework in ITU-T X.780 [25]. Similar to 3GPP TS 32.106-6 [7], non-typed notifications are contained in OMG Notification Service [28] Structured Events.

The T1M1.5 / ITU-T CORBA framework supports both mandatory and conditional notifications in managed object classes. It is required to list, for each managed object class, what notifications may be issued from that managed object class.

In 3GPP TS 32.106-5, Object Creation, Object Deletion and Attribute Value Change notifications are optional. This means that they should be considered as conditional notifications.

The attribute by attribute comparison of the updates to the Object Creation, Object Deletion and Attribute Value Change notifications can be seen in Table 5‑1. The attribute type for each Filterable Body Field attribute is also listed.

			Fields

			3GPP SA5 Release 1999 Style

			T1M1.5 / ITU-T Style

			Comparison

			domain_type

			“1c1”

			“telecommunications”

			same type, different value

			type_name

			“x6” (object creation)

			“itut_x780::Notifications::objectCreation”

			same type, different value

			

			“x7” (object deletion)

			“itut_x780::Notifications::objectDeletion”

			same type, different value

			

			“x8” (attribute value change)

			“itut_x780::Notifications::attributeValueChange”

			same type, different value

			event_name

			“”

			“”

			same

			fbf1

			“f” (MO instance)

			string

			“eventTime”

			TimeBase::UtcT

			same

			fdf2

			“a” (notification id)

			unsigned long

			“source”

			CosNaming::Name

			different

			fbf3

			“c” (event time)

			TimeBase::UtcT

			“sourceClass”

			string

			new

			fbf4

			“d” (system DN) (O)

			string

			“notificationIdentifier”

			long

			different type

			fbf5

			“b” (correlated notifications) (O)

			Set of {string, Set of long}

			“correlatedNotifications” (O)

			Set of {CosNaming::Name, Set of long}

			different type

			fbf6

			“j” (additional text) (O)

			string

			“additionalText” (O)

			Istring

			different type

			fbf7

			“SOURCE” (source indicator) (O)

			string

			“additionalInfo” (O)

			systemDN

			different type

			fbf8

			<not provided>

			“sourceIndicator” (O)

			enum

			different type

			fbf9

			<not provided>

			“attributeList” (O) (object creation)

			Set of {string, any}

			same, different location

			

			

			“attributeList” (O) (object deletion)

			Set of {string, any}

			same, different location

			

			

			“attributeChanges” (O) (attribute value change)

			Set of {string, any, any}

			same, different location

			remainder of body

			Set of {string, any} (initial attribute values) (O) (object creation)

			<not provided>

			

			

			Set of {string, any} (attribute values) (O) (object deletion)

			

			

			

			Set of {string, any, any} (attribute values) (O) (attribute value change)

			

			

			Notes:

· (O) indicates an optional attribute

· Since the attribute ordering is different, the comparison is based on T1M1.5 / ITU-T Style attribute ordering

· 3GPP SA5 System DN attribute is encoded in the Additional Information attribute

· See clause 5.1.3 for managed object naming differences

· As with 3GPP SA5, optional attributes may be omitted from the Structured Event

· The Additional Information attribute may be omitted if the optional System DN attribute is not provided

· T1M1.5 / ITU-T managed objects have additional attributes and, thus, longer attribute lists (see clause 5.1.2)

Table 5‑1. Comparison of Object Creation, Object Deletion and Attribute Value Change Structured Events

ITU-T X.780 uses full Filterable Body Field name strings (e.g., “eventTime”) so that the strings will match the OMG Notification Service conversion of Typed Events to Structured Event formats. This allows the supplier of notifications to send different types of events than what the consumer desires to receive, see Table 5‑2.

			Notification Supplier Choice

			Notification Consumer Choice

			

			Structured Events

			Sequenced Events

			Typed Events

			Structured Events

			Yes

			Yes

			No

			Sequenced Events

			Yes

			Yes

			No

			Typed Events

			Yes

			Yes

			Yes

Table 5‑2. OMG Notification Service Supported Notification Conversions

5.1.9 Additional Information Attribute

The Additional Information attribute, as with Q / CMIP, allows managed object model-specific attribute values to be inserted into notifications. ITU-T X.780 [25] defines the Additional Information type as follows:

struct UIDType

{

string moduleName; // scoped module name where value is defined

short value; // constant within the module

};

struct ManagementExtensionType

{

UIDType id; // identifies the type of info

any info; // actual info, type will depend on id

};

typedef sequence <ManagementExtensionType> AdditionalInformationSetType;

To define managed object model-specific attribute values, applications must define an AdditionalInformationConst module in IDL that define each of the valid UIDType value constants. As an example, the following module is defined in clause 17 (AlarmIRPConstDefs.idl) to allow System DN, Alarm Id, Acknowledgement Time, Acknowledgement User Id, Acknowledgement System Id and Acknowledgement State to be inserted in the Additional Information parameter in alarm notifications:

module AdditionalInformationConst

{

const string moduleName =

"AlarmIRPConstDefs::AdditionalInformationConst";

/**

This constant is accompanied by a string value for the "any" field of the ManagementExtensionType to inficate a System DN value is provided. SystemDNType can be found in "CommonIRPConstDefs.idl"

*/

const short systemDNProvided = 1;

/**

This constant is accompanied by a string value for the "any" field of the ManagementExtensionType to inficate an Alarm Id value is provided. AlarmIdType can be found in this IDL file

*/

const short alarmIdProvided = 2;

/**

This constant is accompanied by a string value for the "any" field of the ManagementExtensionType to inficate an Acknowledgement Time value is provided. AckTimeType can be found in this IDL file

*/

const short ackTimeProvided = 3;

/**

This constant is accompanied by a string value for the "any" field of the ManagementExtensionType to inficate an Acknowledgement User Id value is provided. UserIdType can be found in this IDL file

*/

const short ackUserIdProvided = 4;

/**

This constant is accompanied by a string value for the "any" field of the ManagementExtensionType to inficate an Acknowledgement System Id value is provided. SystemIdType can be found in this IDL file

*/

const short ackSystemIdProvided = 5;

/**

This constant is accompanied by a string value for the "any" field of the ManagementExtensionType to inficate an Acknowledgement State is provided. AckStateType can be found in this IDL file

*/

const short ackStateProvided = 6;

}; // module AdditionalInformationConst

If an application using this module needed to send a System DN value of “system DN” (which has an UIDType value constant of 1) and an Alarm Id value of “123456” (which has an UIDType value constant of 2) in an alarm notification, it would send the following in the Additional Information parameter (using set notation to show a sequence of ManagementExtensionType):

{{{"AlarmIRPConstDefs::AdditionalInformationConst", 1}, "system DN"},

{{"AlarmIRPConstDefs::AdditionalInformationConst", 2}, "123456"}}

5.1.10 getMoAttributes Operation

3GPP TS 32.106-5 [6] defines semantics of parameters carried in operations across Basic CM IRP. Table 5‑3 indicates the mapping of these parameters, as per the getMoAttributes operation, to its equivalent defined in this solution set. The getMoAttributes operation is mapped to the scopedGet method defined in ITU-T Q.816 [15] itut_q816.idl shown in Annex D.

			IM Operation Parameter

			Solution Set Method Parameter

			Qualifier

			baseObjectInstance

			in NameType baseName

			M

			scope

			in ScopeType scope

			M

			filter

			in FilterType filter

			M

			Not specified in 3GPP TS 32.106-5 [6]

			in LanguageType language

			M

			attributeListIn

			in StringSetType attributes

			M

			Not specified in 3GPP TS 32.106-5 [6]

			in unsigned short howMany

			M

			managedObjectClass
managedObjectInstance
attributeListOut

			return GetResultsSetType or return GetResultsSetType in the getNext method in the GetResultsIterator interface

			M

			status

			exception InvalidParameter

exception InvalidFilter

exception FilterComplexityLimit

exception ApplicationError

			M

Table 5‑3. Mapping From Information Model getMoAttributes Parameters To Solution Set Equivalents

Differences To 3GPP TS 32.106-6 [7] find_managed_object:

1. This is an entirely new method. The find_managed_object method has been removed. scopedGet has different arguments, iterator, return type and exceptions from find_managed_object.

2. The ITU-T Q.816 filter, using the “MOO 1.0” filter grammar, is being used instead of the 3GPP TS 32.106-6 filter grammar. For more information, see clause 5.1.5.

5.1.11 getContainment Operation

3GPP TS 32.106-5 [6] defines semantics of parameters carried in operations across Basic CM IRP. Table 5‑4 indicates the mapping of these parameters, as per the getContainment operation, to its equivalent defined in this solution set. The getContainment operation is mapped to the getContainment method in the G3AdvancedMooService interface defined in BasicCmIRPSystem.idl shown in clause 13.

			IM Operation Parameter

			Solution Set Method Parameter

			Qualifier

			baseObjectInstance

			in itut_x780::NameType baseName

			M

			scope

			in itut_q816::ScopeType scope

			M

			Not specified in 3GPP TS 32.106-5 [6]

			in itut_q816::FilterType filter

			M

			Not specified in 3GPP TS 32.106-5 [6]

			in itut_q816::LanguageType language

			M

			Not specified in 3GPP TS 32.106-5 [6]

			in unsigned short howMany

			M

			containment

			return ContainmentResultsSetType or return ContainmentResultsSetType in the getNext method in the ContainmentResultsIterator interface

			M

			status

			exception itut_q816::InvalidParameter

exception itut_q816::InvalidFilter

exception itut_q816::FilterComplexityLimit

exception itut_q816::ApplicationError

exception OperationNotSupported

			M

Table 5‑4. Mapping From Information Model getContainment Parameters To Solution Set Equivalents

The G3AdvancedMooService interface subclasses the AdvancedMooService interface defined in ITU-T Q.816 [15]. Multiple Object Operation (MOO) Service is described in clause 5.1.4.

Support for the getContainment operation is optional (the OperationNotSupported exception is thrown when the operation is not supported). However, support for the ITU-T Q.816 AdvancedMooService interface is required.

Note that the getContainment method has the same basic arguments as scopedGet (except scopedGet has its own iterator and a selectable list of attributes). The main difference between getContainment and scopedGet is that executing scopedGet on the name attribute returns names in T1M1.5 / ITU-T name format and executing getContainment returns names in 3GPP SA5 name format.

Differences To 3GPP TS 32.106-6 [7] find_managed_object:

1. This is an entirely new method. The find_managed_object method has been removed. getContainment has different arguments, iterator, return type and exceptions from find_managed_object.

2. The ITU-T Q.816 filter, using the “MOO 1.0” filter grammar, is being used instead of the 3GPP TS 32.106-6 filter grammar. For more information, see clause 5.1.5.

5.1.12 getBasicCmIRPVersion Operation

3GPP TS 32.106-5 [6] defines semantics of parameters carried in operations across Basic CM IRP. Table 5‑5 indicates the mapping of these parameters, as per the getBasicCmIRPVersion operation, to its equivalent defined in this solution set. The getBasicCmIRPVersion operation is mapped to the get_basicCm_IRP_version method in the BasicCmIrpOperations interface defined in BasicCmIRPSystem.idl shown in clause 13.

			IM Operation Parameter

			Solution Set Method Parameter

			Qualifier

			versionNumberList

			return CommonIRPConstDefs::VersionNumberSet

			M

			status

			exception GetBasicCmIRPVersion

			M

Table 5‑5. Mapping From Information Model getBasicCmIRPVersion Parameters To Solution Set Equivalents

Differences To 3GPP TS 32.106-6 [7] get_basicCm_IRP_version:

1. The GetBasicCmIRPVersion exception has been added to make get_basicCm_IRP_version similar to get_notification_IRP_version and get_alarm_IRP_version.

5.2. IDL

Support for Basic CM IRP requires the following IDL files:

1. BasicCmIRPSystem.idl

2. NRMDefinitions.idl

3. BasicCmCorbaObjects.idl (new)

4. BasicCmUMTSCorbaObjects.idl (new)

5.2.1 BasicCmIRPSystem.idl Updates

The BasicCmIRPSystem.idl file basically needs to be re-written to use the T1M1.5 / ITU-T CORBA framework.

1. The GetResultsIterator in ITU-T X.780 [25] is used instead of Iterator. The existing iterator is removed.

2. scopedGet and getContainment are used instead of find_managed_object. The find_managed_object method is removed.

3. The getMOAttributes operation is mapped to the scopedGet method.

4. The getContainment operation has been created. This is created as part of 3GPP SA5-specific Multiple-Object Operation Services.

5. An iterator has been added to retrieve the getContainment results.

6. Removing the find_managed_object method also causes the defined exceptions only used by find_managed_object to be removed.

7. Removing the find_managed_object method causes a number of definitions that are no longer required and can be removed: ResultContents, ScopeType, SearchControl, MOAttribute, MOAttributeSet, Result, ResultSet and AttributeNameSet.

8. CommonIRPConstDefs.idl is no longer referenced.

9. itut_x780.idl and itut_q816.idl are now referenced.

10. Added AdditionalInformationConst module to define how System DN can be added in the Additional Information attribute.

An updated BasicCmIRPSystem.idl file can be found in clause 13.

5.2.2 NotificationDefs.idl Updates

The NotificationDefs.idl file is deleted, due to the following updates:

1. ITU-T X.780 [25] has its own constants for Structured Event type_name strings. “ET_” constants are removed.

2. ITU-T X.780 has its own constants for Structured Event filterable body field name strings. Name constants removed.

3. ITU-T X.780 defines SourceIndicator as an enum instead of a string. SourceIndicator constants removed.

4. With the above constants removed, NotificationCommon is no longer required.

5. ITU-T X.780 uses AttributeValueType and AttributeSetType, MOAttribute and MOAttributeSet can be removed.

6. ITU-T X.780 defines its own constants and types for Object Creation, Object Deletion and Attribute Value Change, MOcreation, MOdeletion and AttributeValueChange are removed.

5.2.3 NRMDefinitions.idl Updates

1. name, objectClass, packages, creationSource and deletePolicy attributes are new attributes in each managed object class. New constant definitions have been added for these attributes.

2. The #ifndef and #define clauses were updated to match the NRMDefinitions module name.

3. The CLASS constants were made fully qualified (as an example, “BasicCmUMTSCorbaObjects::G3SubNetwork”) because this is what is required by the objectClass attribute.

An updated NRMDefinitions.idl file can be found in clause 14.

5.2.4 BasicCmCorbaObjects.idl

BasicCmCorbaObjects.idl is a new IDL file that defines the Generic Network Resource Model (NRM) managed objects in the ITU-T X.780 [25] format. The following managed objects are defined:

1. AlarmIRP Managed Object

2. BasicCmIRP Managed Object

3. G3ManagedElement Managed Object

4. G3SubNetwork Managed Object

5. IRPAgent Managed Object

6. ManagedFunction Managed Object

7. ManagementNode Managed Object

8. MEContext Managed Object

9. NotificationIRP Managed Object

Attributes and notifications are defined for each managed object class. Factories are also defined for each managed object class that can be instantiated (see clause 5.1.6). BasicCmCorbaObjects.idl can be found in clause 15.

5.2.5 BasicCmUMTSCorbaObjects.idl

BasicCmUMTSCorbaObjects.idl is a new IDL file that defines the UMTS Network Resource Model (NRM) managed objects in the ITU-T X.780 [25] format. The following managed objects are defined:

1. AucFunction Managed Object

2. BgFunction Managed Object

3. EirFunction Managed Object

4. GgsnFunction Managed Object

5. GmscFunction Managed Object

6. HlrFunction Managed Object

7. IubLink Managed Object

8. MscFunction Managed Object

9. NodeBFunction Managed Object

10. RNCFunction Managed Object

11. SgsnFunction Managed Object

12. SmsGmscFunction Managed Object

13. SmsIwmscFunction Managed Object

14. UtranCell Managed Object

15. VlrFunction Managed Object

Attributes and notifications are defined for each managed object class. Factories are also defined for each managed object class that can be instantiated (see clause 5.1.6). BasicCmUMTSCorbaObjects.idl can be found in clause 16.

5.3. Open Items

1. Do we still need to maintain the id attributes (e.g., ManagementNodeId)? The T1M1.5 / ITU-T CORBA framework does not require them. The same information is accessible from the final name entry.

2. T1M1.5 / ITU-T CORBA framework automatically gives support for Set, Create, Delete and Action operations. Set, Create and Delete operations have been included in managed object definitions. 3GPP SA5 has not yet defined which attributes that can be set.

3. Should auto naming be allowed on manager creation of these network elements?

4. I assume the containment numbering and containment rules past R99.

5. NotificationIRP, AlarmIRP and BasicCmIRP managed objects don’t have notifications.

6. I assume the capability to limit the getMOAttributes attributes past R99.

7. How does 3GPP SA5 handle IDL versioning?

8. If the getContainment method returned names in T1M1.5 / ITU-T name format instead of 3GPP SA5 name format, scopedGet could be used and the new getContainment method would not be needed (by accessing the name attribute in every managed object.)

9. In NotificationDefs.idl, the ManagedFunction managed object class should not have any constants, since it can’t be instantiated.

10. BasicCmCorbaObjects.idl and BasicCmUMTSCorbaObjects.idl IDL files could be joined into a single IDL file.

11. The name binding rules in BasicCmCorbaObjects.idl and BasicCmUMTSCorbaObjects.idl need to be agreed upon. As an example: What managed objects can be created by managers? What are the managed object deletion policies?

12. All of the 3GPP SA5 IDL files were re-formatted to reflect the ITU-T X.780 IDL style guidelines.

13. Should 3GPP SA5 use Typed Events or optionally allow Typed Events?

14. Should the conditional package optionality of the Object Creation and Object Deletion notifications be together (i.e., either have both of them or neither of them) or separate (i.e., Object Creation independent of Object Deletion) in 3GPP SA5 defined managed objects?

15. The Alarm IRP notifications in the managed objects are conditionally included based on whether Alarm IRP is provided (using package AlarmIRPSupportedPackage). If Alarm IRP is first not supported and then later supported, the packages attribute for every managed object would need to be updated (to add support for the alarmIRPNotSupportedPackage package). Is this allowed?

16. The current 3GPP SA5 Probable Cause constants do not match the T1M1.5 / ITU-T Probable Cause constants. Is this OK?

17. Should the 3GPP SA5 Invalid Parameter exception be replaced by the itut_q816.idl Invalid Parameter exception?

18. Should the FactoryFinderComponent interface be supported, optionally supported or not supported? It is recommended that it be supported.

19. Should each managed object really have each of the notifications? As an example, will IRPAgent really be able to issue Quality Of Service alarms?

20. Should common 3GPP SA5 exceptions be declared in common IDL files instead of once for each file?

21. The CLASS constants in NRMDefinitions.idl probably can be deleted since they are also located in the subordinateClass constant in the NameBindings module.

22. Should ITU-T X.731 state attributes be added to 3GPP SA5-defined managed objects?

23. Should the FactoryFinderComponent interface be supported, optionally supported or not supported? It is recommended that it be supported.

6. SUPPORT FOR ALARM IRP

6.1. Framework Differences

6.1.1 Notifications

3GPP SA5 32.111-2 [2] defines the following notifications:

1. Communications Alarm

2. Environmental Alarm

3. Equipment Alarm

4. Notify Alarm List Rebuilt

5. Processing Error Alarm

6. Quality Of Service Alarm

Notify Alarm List Rebuilt is a new notification and is defined in AlarmIRPSystem.idl (see clause 18). The other notifications are defined in the T1M1.5 / ITU-T CORBA framework in ITU-T X.780 [25].

Since Alarm IRP is an optional package, all Alarm IRP notifications are considered as conditional notifications.

The attribute by attribute comparison of the updates to the alarm notifications can be seen in Table 6‑1. The attribute type for each Filterable Body Field attribute is also listed.

			Fields

			3GPP SA5 Release 1999 Style

			T1M1.5 / ITU-T Style

			Comparison

			domain_type

			“1f1”

			“telecommunications”

			same type, different value

			type_name

			“x1” (communications alarm)

			“itut_x780::Notifications::communicationsAlarm”

			same type, different value

			

			“x3” (environmental alarm)

			“itut_x780::Notifications::environmentalAlarm”

			same type, different value

			

			“x5” (equipment alarm)

			“itut_x780::Notifications::equipmentAlarm”

			same type, different value

			

			“x2” (processing error alarm)

			“itut_x780::Notifications::processingErrorAlarm”

			same type, different value

			

			“x4” (quality of service alarm)

			“itut_x780::Notifications::qualityOfServiceAlarm”

			same type, different value

			event_name

			“x1” (new alarm)

			“x1” (new alarm)

			same

			

			“x2” (changed alarm)

			“x2” (changed alarm)

			same

			

			“x3” (acknowledgement state changed)

			“x3” (acknowledgement state changed)

			same

			

			“x4” (cleared alarm)

			“x4” (cleared alarm)

			same

			fbf1

			“f” (MO instance)

			string

			“eventTime”

			TimeBase::UtcT

			same

			fdf2

			“a” (notification id)

			unsigned long

			“source”

			CosNaming::Name

			different

			fbf3

			“c” (event time)

			TimeBase::UtcT

			“sourceClass”

			string

			new

			fbf4

			“d” (system DN) (O)

			string

			“notificationIdentifier”

			long

			different type

			fbf5

			“g” (probable cause)

			short

			“correlatedNotifications” (O)

			Set of {CosNaming::Name, Set of long}

			different type

			fbf6

			“h” (perceived severity)

			short

			“additionalText” (O)

			Istring

			different type

			fbf7

			“i” (specific problem) (O)

			string

			“additionalInfo”

			System DN (O), Alarm Id, Acknowledgement Time, Acknowledgement User Id, Acknowledgement System Id, Acknowledgement State

			different type

			fbf8

			 “b” (correlated notifications) (O)

			Set of {string, Set of long}

			“probableCause”

			{string, short}

			different type, same meaning

			fbf9

			“p” (backed up status) (O)

			boolean

			“specificProblems” (O)

			Set of {string, short}

			different

			fbf10

			“q” (back up object) (O)

			string

			“perceivedSeverity”

			enum

			different type, same meaning

			fbf11

			“s” (trend indication) (O)

			enum

			“backedUpStatus” (O)

			boolean or NULL

			different type, same meaning

			fbf12

			“r” (threshold info) (O)

			enum

			“backUpObject” (O)

			CosNaming::Name

			different

			fbf13

			“t” (state change definition) (O)

			Set of {string, any, any}

			“trendIndication” (O)

			enum or NULL

			different type, same meeting

			fbf14

			“u” (monitored Attributes) (O)

			Set of {string, any}

			“thresholdInfo” (O)

			{string, float, enum or NULL, TimeBase::UtcT}

			different

			fbf15

			“v” (proposed repair actions) (O)

			string

			“stateChangeDefinition” (O)

			Set of {string, any, any}

			same

			fbf16

			“j” (additional text) (O)

			string

			“monitoredAttributes” (O)

			Set of {string, any}

			same

			fbf17

			“k” (alarm id)

			string

			“proposedRepairActions” (O)

			Set of {string, short}

			different

			fbf18

			“m” (acknowledgement time)

			TimeBase::UtcT

			“alarmEffectOnService” (O)

			boolean or NULL

			new

			fbf19

			“l” (acknowledgement user id)

			string

			“alarmingResumed” (O)

			boolean or NULL

			new

			fbf20

			“n” (acknowledgement system id)

			string

			“suspectObjectList” (O)

			Set of {string, Object, unsigned short or NULL}

			new

			fbf21

			“o” (acknowledgement state)

			short

			<not provided>

			

			remainder of body

			<not provided>

			<not provided>

			same

			Notes:

· (O) indicates an optional attribute

· Since the attribute ordering is different, the comparison is based on T1M1.5 / ITU-T Style attribute ordering

· Note that the event_name attributes strings are maintained

· 3GPP SA5 System DN, Alarm Id, Acknowledgement Time, Acknowledgement User Id, Acknowledgement System Id and Acknowledgement State attributes are encoded in the Additional Information attribute

· See clause 5.1.3 for managed object naming differences

· As with 3GPP SA5, optional attributes may be omitted from the Structured Event

· The Threshold Information parameter more closely matches ITU-T X.721 [18] specification

Table 6‑1. Comparison of Alarm Structured Events

ITU-T X.780 alarm notifications have the following new attributes (beyond what is defined in ITU-T X.733 [20]):

1. Alarm Effect On Service – Tells whether the alarm is service effecting. The value may be TRUE, FALSE or not defined.

2. Alarming Resumed – Tells whether alarming has just resumed, possibly resulting in delayed reporting of an alarm. Associated with the Alarm Reporting Control capability proposed for ITU-T M.3100 [13]. The value may be TRUE, FALSE or not defined.

3. Suspect Object List – This identifies managed objects that may be responsible for an alarm condition. Each listed managed object instance may optionally have a failure responsibility probability associated with it. Suspect Object List was originally defined in ITU-T Q.821 [16].

The attribute by attribute comparison of the Notify Alarm List Rebuilt notification can be seen in Table 6‑2. The attribute type for each Filterable Body Field attribute is also listed.

			Fields

			3GPP SA5 Release 1999 Style

			T1M1.5 / ITU-T Style

			Comparison

			domain_type

			“1f1”

			“telecommunications”

			same type, different value

			type_name

			“”

			“AlarmIRPSystem::Notifications::notifyAlarmListRebuilt”

			same type, different value

			event_name

			“x5” (notify alarm list rebuilt)

			“”

			same type, different value

			fbf1

			“f” (MO instance)

			string

			“eventTime”

			TimeBase::UtcT

			same

			fdf2

			“a” (notification id)

			unsigned long

			“source”

			CosNaming::Name

			different

			fbf3

			“c” (event time)

			TimeBase::UtcT

			“sourceClass”

			string

			new

			fbf4

			“d” (system DN) (O)

			string

			“notificationIdentifier”

			long

			different type

			fbf5

			“?” (reason)

			string

			“systemDN” (O)

			string or NULL

			different type

			fbf6

			<not provided>

			“reason”

			string

			same

			remainder of body

			<not provided>

			<not provided>

			same

			Notes:

· (O) indicates an optional attribute

· Since the attribute ordering is different, the comparison is based on T1M1.5 / ITU-T Style attribute ordering

· 3GPP SA5 System DN attribute is an attribute and is not encoded in the Additional Information attribute

· See clause 5.1.3 for managed object naming differences

· As with 3GPP SA5, optional attributes may be omitted from the Structured Event

· The name for the reason attribute in 3GPP SA5 is currently not defined

Table 6‑2. Comparison of Notify Alarm List Rebuilt Structured Events

6.1.2 Telecom Log

As defined in ITU-T Q.816 [15], the OMG Telecom Log Service [30] can optionally be used to provide notification logs. Figure 6‑1 gives a graphical representation of the OMG Telecom Log Service log.

[image: image3.wmf]OMG Notification

Service Event Channel

Filter

Filter

Filter

Filter

Filter

Filter

Log Filter

Supplier

Quality Of

Service

Consumer

Quality Of

Service

Log

Persistent Store

Supplier

Quality Of

Service

Supplier

Quality Of

Service

Consumer

Quality Of

Service

Consumer

Quality Of

Service

Figure 6‑1. OMG Telecom Log Service

With the OMG Telecom Log Service, logs are implemented as OMG Notification Service [28] Event Channels. Notifications supplied to the log are stored as Log Records. Notifications supplied to a log may also be forwarded to other logs or to other applications. Logs may also generate their own notifications (as an example, log is full). Managers may create their own logs and supply a notification filter to filter which notifications are logged. The Extended TCL filter grammar is used. Notifications of type Structured Event, Sequence Event or Typed Event may be stored in a Notify Log. Notifications of type Typed Event may be stored in a Typed Notify Log.

ITU-T Q.816 requires that all OMG Telecom Log Service Event Channels be registered with the Channel Finder interface (see clause 7.1.1). In the ITU-T Q.816 OMG Telecom Log Service model, logs may be created and changed by managers without the direct involvement of agent systems.

For the same reason that the attach_push, attach_push_b and attach_pull methods were created, 3GPP SA5 may want to put method wrappers around Notify Log access and creation.

It appears that Telecom Log support may be too much for network elements using System Context B. At best, Telecom Log support should be an optional 3GPP SA5 item.

6.1.3 Defining New Notifications

ITU-T X.780 [25] allows applications to define their own notifications. 3GPP SA5 defines one notification, Notify Alarm List Rebuilt, that has not already been defined in ITU-T X.780. This notification has been defined in AlarmIRPSystem.idl in clause 18.

The basic format for defining new notifications is as follows:

interface Notifications

{

void <notification name> (in <first parameter>, …);

}; // interface Notifications

More than one notification may be defined in a Notifications interface. This format was chosen because it allows the use of any notification as a Typed Event. Manager applications are not permitted to execute methods in the Notifications interface.

6.1.4 acknowledgeAlarms Operation

3GPP TS 32.111-2 [2] defines semantics of parameters carried in operations across Alarm IRP. Table 6‑3 indicates the mapping of these parameters, as per the acknowledgeAlarms operation, to its equivalent defined in this solution set. The acknowledgeAlarms operation is mapped to the acknowledge_alarms method in the AlarmIRPOperations interface defined in AlarmIRPSystem.idl shown in clause 18.

			IM Operation Parameter

			Solution Set Method Parameter

			Qualifier

			alarmInformationReferenceList

			in AlarmIRPConstDefs::AlarmInformationIdSeq alarm_information_id_list

			M

			AckUserId

			in AlarmIRPConstDefs::UserIdType ack_user_id

			M

			ackSystemId

			in AlarmIRPConstDefs::SystemIdType ack_system_id

			O

			badAlarmInformation ReferenceList

			out AlarmIRPConstDefs::AlarmInformationIdSeq bad_alarm_information_id_list

			M

			status

			return CommonIRPConstDefs::Signal

exception AcknowledgeAlarms

exception ParameterNotSupported

exception InvalidParameter

			M

Table 6‑3. Mapping From Information Model acknowledgeAlarms Parameters To Solution Set Equivalents

Differences To 3GPP TS 32.111-3 [3] acknowledge_alarms:

1. UserIdType and SystemIdType have been created since the Acknowledgement User Id and Acknowledgement System Id types now need to be defined (since they are now inserted in the Additional Information parameter). ack_user_id and ack_system_id have been defined as these types.

6.1.5 unacknowledgeAlarms Operation

3GPP TS 32.111-2 [2] defines semantics of parameters carried in operations across Alarm IRP. Table 6‑4 indicates the mapping of these parameters, as per the unacknowledgeAlarms operation, to its equivalent defined in this solution set. The unacknowledgeAlarms operation is mapped to the unacknowledge_alarms method in the AlarmIRPOperations interface defined in AlarmIRPSystem.idl shown in clause 18.

			IM Operation Parameter

			Solution Set Method Parameter

			Qualifier

			alarmInformationReferenceList

			in AlarmIRPConstDefs::AlarmInformationIdSeq alarm_information_id_list

			M

			ackUserId

			in AlarmIRPConstDefs::UserIdType ack_user_id

			M

			ackSystemId

			in AlarmIRPConstDefs::SystemIdType ack_system_id

			O

			badAlarmInformation ReferenceList

			out AlarmIRPConstDefs::AlarmInformationIdSeq bad_alarm_information_id_list

			M

			status

			return CommonIRPConstDefs::Signal

exception UnacknowledgeAlarms

exception OperationNotSupported

exception ParameterNotSupported

exception InvalidParameter

			M

Table 6‑4. Mapping From Information Model unacknowledgeAlarms Parameters To Solution Set Equivalents

Differences To 3GPP TS 32.111-3 [3] unacknowledge_alarms:

1. UserIdType and SystemIdType have been created since the Acknowledgement User Id and Acknowledgement System Id types now need to be defined (since they are now inserted in the Additional Information parameter). ack_user_id and ack_system_id have been defined as these types.

6.1.6 getAlarmList Operation

3GPP TS 32.111-2 [2] defines semantics of parameters carried in operations across Alarm IRP. Table 6‑5 indicates the mapping of these parameters, as per the getAlarmList operation, to its equivalent defined in this solution set. The getAlarmList operation is mapped to the get_alarm_list method in the AlarmIRPOperations interface defined in AlarmIRPSystem.idl shown in clause 18.

			IM Operation Parameter

			Solution Set Method Parameter

			Qualifier

			alarmInformationList

			return AlarmIRPConstDefs::AlarmInformationSeq

			M

			alarmAckState

			in AlarmIRPConstDefs::AckStateType alarmAckState

			O

			filter

			in itut_q816::FilterType filter

			O

			Not specified in 3GPP TS 32.111-2 [2]

			out boolean flag

			M

			Not specified in 3GPP TS 32.111-2 [2]

			out AlarmInformationIterator iter

			O

			status

			exception GetAlarmList

exception ParameterNotSupported

exception InvalidParameter

			M

Table 6‑5. Mapping From Information Model getAlarmList Parameters To Solution Set Equivalents

Differences To 3GPP TS 32.111-3 [3] get_alarm_list:

1. The ITU-T Q.816 [15] filter, using the “MOO 1.0” filter grammar, is being used instead of the 3GPP TS 32.111-3 Enhanced TCL filter grammar. For more information, see clause 5.1.5.

2. Moving Acknowledgement State to Additional Information makes creating a filter referencing Acknowledgement State more difficult. Alarm Acknowledgement State has been added back as an argument separate from the filter.

3. The alarm format in the Alarm List has changed. For more information, see Table 6‑1.

4. A value of alarmAckState other than ACK_STATE_ACKNOWLEDGED and ACK_STATE_UNACKNOWLEDGED indicates that there is no alarmAckState constraint to be applied.

6.1.7 getAlarmCount Operation

3GPP TS 32.111-2 [2] defines semantics of parameters carried in operations across Alarm IRP. Table 6‑6 indicates the mapping of these parameters, as per the getAlarmCount operation, to its equivalent defined in this solution set. The getAlarmCount operation is mapped to the get_alarm_count method in the AlarmIRPOperations interface defined in AlarmIRPSystem.idl shown in clause 18.

			IM Operation Parameter

			Solution Set Method Parameter

			Qualifier

			alarmAckState

			in AlarmIRPConstDefs::AckStateType alarmAckState

			O

			filter

			in itut_q816::FilterType filter

			O

			criticalCount

			out long critical_count

			M

			majorCount

			out long major_count

			M

			minorCount

			out long minor_count

			M

			warningCount

			out long warning_count

			M

			indeterminateCount

			out long indeterminate_count

			M

			clearedCount

			out long cleared_count

			M

			status

			return (none)

exception GetAlarmCount

exception OperationNotSupported

exception ParameterNotSupported

exception InvalidParameter

			M

Table 6‑6. Mapping From Information Model getAlarmCount Parameters To Solution Set Equivalents

Differences To 3GPP TS 32.111-3 [3] get_alarm_count:

1. The ITU-T Q.816 [15] filter, using the “MOO 1.0” filter grammar, is being used instead of the 3GPP TS 32.111-3 Enhanced TCL filter grammar. For more information, see clause 5.1.5.

2. Moving Acknowledgement State to Additional Information makes creating a filter referencing Acknowledgement State more difficult. Alarm Acknowledgement State has been added back as an argument separate from the filter.

3. A value of alarmAckState other than ACK_STATE_ACKNOWLEDGED and ACK_STATE_UNACKNOWLEDGED indicates that there is no alarmAckState constraint to be applied.

6.1.8 getAlarmIRPVersion Operation

3GPP TS 32.111-2 [2] defines semantics of parameters carried in operations across Alarm IRP. Table 6‑7 indicates the mapping of these parameters, as per the getAlarmIRPVersion operation, to its equivalent defined in this solution set. The getAlarmIRPVersion operation is mapped to the get_alarm_IRP_version method in the AlarmIRPOperations interface defined in AlarmIRPSystem.idl shown in clause 18.

			IM Operation Parameter

			Solution Set Method Parameter

			Qualifier

			versionNumberList

			return CommonIRPConstDefs::VersionNumberSet

			M

			status

			exception GetAlarmIRPVersion

			M

Table 6‑7. Mapping From Information Model getAlarmIRPVersion Parameters To Solution Set Equivalents

The get_alarm_IRP_version method is the same as defined in 3GPP TS 32.111-3 [3].

6.2. IDL

Support for Alarm IRP requires the following IDL files:

1. AlarmIRPConstDefs.idl

2. AlarmIRPSystem.idl

6.2.1 AlarmIRPConstDefs.idl Updates

1. ITU-T X.780 [25] has its own constants for Structured Event type_name strings. “ET_” constants are removed.

2. ITU-T X.780 defines the attribute types and constants for alarm parameters. BackedUpStatusType, ThresholdIndicationType, TrendIndicationType, AttributeValueChangeType, AttributeChangeSetType, AttributeValueType, AttributeSetType and Perceived Severity constants are removed.

3. Constants associated with the Notify Alarm List Rebuilt notification have been added.

4. New types needed for the Notify Alarm List Rebuilt notification have been added.

5. CommonIRPConstDefs.idl has been referenced.

6. The Probable Cause constants have been put into a module. The constants now are UID values (but they still remain the same).

7. Added AdditionalInformationConst module to define how System DN, Alarm Id, Acknowledgement Time, Acknowledgement User Id, Acknowledgement System Id and Acknowledgement State can be added in the Additional Information attribute.

8. Added typedefs for Alarm Id, Acknowledgement Time, Acknowledgement User Id, Acknowledgement System Id and Acknowledgement State.

An updated AlarmIRPConstDefs.idl file can be found in clause 17.

6.2.2 AlarmIRPSystem.idl Updates

1. In ITU-T X.780 [25], the filter type is defined as FilterType. The type of the filter has been updated in operations.

2. itut_x780.idl has been referenced.

3. A new Notifications interface has been defined and includes the Notify Alarm List Rebuilt notification definition.

4. Used the Acknowledgement User Id and Acknowledgement System Id typedefs in operations.

An updated AlarmIRPSystem.idl file can be found in clause 18.

6.3. Open Items

1. In 3GPP TS 32.106-3 [5], the string name for reason in Notify Alarm List Rebuilt is not defined.

2. In 3GPP TS 32.111-3 [3], how the Notify Alarm List Rebuilt reason is put into the Structured Event is not defined.

3. In Notify Alarm List Rebuilt, we could put System DN into the Additional Information attribute (instead of as a regular argument), so it would match what we do with the other notifications.

4. In Notify Alarm List Rebuilt, should the reason type be changed to Istring type to allow for international characters?

5. Should the reason type in exceptions be changed to Istring type to allow for international characters?

6. The 3GPP SA5 get_alarm_list and get_alarm_count methods using filters assume the “MOO 1.0” filter language. As with the getContainment, scopedGet, scopedUpdate and scopedDelete methods, the ability to select the filter grammar can be added by adding the language parameter to the methods.

7. SUPPORT FOR NOTIFICATION IRP

7.1. Framework Differences

7.1.1 Channel Finder

The ITU-T Q.816 [15] Channel Finder Service provides a list method for managers to identify the notification channels present on an agent, and the notifications each is handling. Notification channels and their associated notifications may be described based on:

1. Base managed object instances (which may be further qualified based on scoping rules).

2. Notification types.

3. Supported managed object classes (individual managed object instances may be excluded).

ITU-T Q.816 typically expects that OMG Notification Service [28] Event Channels will be used as notification channels. However, it does allow the specification of other types of notification channels.

In 3GPP SA5, IRPManagers that use the attach_push method do not interface with OMG Notification Service Event Channels, but have IRPAgents directly execute CosNotifyComm::SequencePushConsumer push_structured_events methods. For this reason, 3GPP SA5 will need to define alternative notification channels.

A Channel Finder entry like the following would need to be defined for attach_push users:

1. channelID – A string identifier for the channel. (This should not be a Manager Reference, since all managers can access this.)

2. channelClass – The channel’s scoped class name – Value of “NotificationIRPSystem::NotificationIRPOperations”.

3. baseAndScopes – The objects and the scopes of managed objects below them sending events to this channel. A null list indicates that all base managed objects on the system are covered by this channel – Value of empty list.

4. eventTypes – The list of event types handled by this channel. A null list indicates all event types are handled by this channel – Value of null.

5. excludedEventTypes – If the eventTypes parameter is null, this can be used to exclude event types. If eventTypes is not null, this should be null and is ignored – Value of null.

6. sourceClasses – The list of types of objects that send events to this channel. A null list indicates all types of managed objects send events to this channel – Value of null.

7. excludedSourceClasses – If the sourceClasses parameter is null, this can be used to exclude source classes. If sourceClasses is not null, this should be null and is ignored – Value of null.

8. channel – A reference to the channel – Value of NotificationIRPSystem::NotificationIRPOperations object.

If the attach_push_b and/or attach_pull methods are supported, there would be one or more additional Channel Finder entries for OMG Notification Event Channels.

7.1.2 Heartbeat Service

The Heartbeat Service, defined in ITU-T Q.816 [15], is optionally used to verify the operations of the communications network between managers and an agent. It periodically sends a small notification to a manager interested in receiving it that identifies the system that emitted the heartbeat, as well as the notification channel through which it was emitted. After configuring this service, a manager can then set a filter for heartbeat notifications on any of the channels it is interested in assuring are functioning. Since these notifications flow through the same channels, software and networks as notifications from other resources, they periodically verify the operation of these resources. Managers can set the periodic interval used by the heartbeat.

7.1.3 subscribe Operation

3GPP TS 32.106-2 [4] defines semantics of parameters carried in operations across Notification IRP. Table 7‑1, Table 7‑2 and Table 7‑3 indicate the mapping of these parameters, as per the subscribe operation, to its equivalents defined in this solution set. The subscribe operation is mapped to the attach_push, attach_push_b and attach_pull methods in the NotificationIRPOperations interface defined in NotificationIRPSystem.idl shown in clause 21.

			IM Operation Parameter

			Solution Set Method Parameter

			Qualifier

			managerReference

			in Object manager_reference

			M

			timeTick

			in long time_tick

			O

			notificationCategories

			in NotificationIRPConstDefs::NotificationCategorySet notification_category_set

			O

			filter

			in string filter

			O

			subscriptionId

			return NotificationIRPConstDefs::SubscriptionId

			M

			status

			exception Attach

exception ParameterNotSupported

exception InvalidParameter

exception AlreadySubscribed

exception AtLeastOneNotificationCategoryNotSupported

			M

Table 7‑1. Mapping From Information Model subscribe Parameters To attach_push Solution Set Equivalent

Differences To 3GPP TS 32.106-3 [5] attach_push:

1. The OMG Notification Service [28] filter, using the Extended TCL filter grammar, is being used instead of the 3GPP TS 32.106-3 filter grammar. For more information, see clause 5.1.5.

2. The IRPAgent must define at least one Channel Finder entry for attach_push users.

3. Note that Heartbeat notifications also need to be sent when using attach_push.

			IM Operation Parameter

			Solution Set Method Parameter

			Qualifier

			managerReference

			in Object manager_reference

			M

			timeTick

			in long time_tick

			O

			notificationCategories

			in NotificationIRPConstDefs::NotificationCategorySet notification_category_set

			O

			filter

			in string filter

			O

			subscriptionId

			return NotificationIRPConstDefs::SubscriptionId

			M

			Not specified in 3GPP TS 32.106-2 [4]

			out CosNotifyChannelAdmin::SequenceProxyPushSupplier system_reference

			M

			status

			exception Attach

exception OperationNotSupported

exception ParameterNotSupported

exception InvalidParameter

exception AlreadySubscribed

exception AtLeastOneNotificationCategoryNotSupported

			M

Table 7‑2. Mapping From Information Model subscribe Parameters To attach_push_b Solution Set Equivalent

Differences To 3GPP TS 32.106-3 attach_push_b:

1. The OMG Notification Service filter, using the Extended TCL filter grammar, is being used instead of the 3GPP TS 32.106-3 filter grammar. For more information, see clause 5.1.5.

2. The IRPAgent must define at least one Channel Finder Event Channel entry.

3. Must use the OMG Notification Service push supplier model.

			IM Operation Parameter

			Solution Set Method Parameter

			Qualifier

			managerReference

			in Object manager_reference

			M

			timeTick

			in long time_tick

			O

			notificationCategories

			in NotificationIRPConstDefs::NotificationCategorySet notification_category_set

			O

			filter

			in string filter

			O

			Not specified in 3GPP TS 32.106-2 [4]

			out CosNotifyChannelAdmin::SequenceProxyPullSupplier system_reference

			M

			subscriptionId

			return NotificationIRPConstDefs::SubscriptionId

			M

			status

			exception Attach

exception OperationNotSupported

exception ParameterNotSupported

exception InvalidParameter

exception AlreadySubscribed

exception AtLeastOneNotificationCategoryNotSupported

			M

Table 7‑3. Mapping From Information Model subscribe Parameters To attach_pull Solution Set Equivalent

Differences To 3GPP TS 32.106-3 attach_pull:

1. The OMG Notification Service filter, using the Extended TCL filter grammar, is being used instead of the 3GPP TS 32.106-3 filter grammar. For more information, see clause 5.1.5.

2. The IRPAgent must define at least one Channel Finder Event Channel entry.

3. Must use the OMG Notification Service push supplier model.

7.1.4 unsubscribe Operation

3GPP TS 32.106-2 [4] defines semantics of parameters carried in operations across Notification IRP. Table 7‑4 indicates the mapping of these parameters, as per the unsubscribe operation, to its equivalent defined in this solution set. The unsubscribe operation is mapped to the detach method in the NotificationIRPOperations interface defined in NotificationIRPSystem.idl shown in clause 21.

			IM Operation Parameter

			Solution Set Method Parameter

			Qualifier

			managerReference

			in Object manager_reference

			M

			subscriptionId

			in string subscription_id

			O

			status

			return (none)

exception DetachException

exception InvalidParameter

			M

Table 7‑4. Mapping From Information Model unsubscribe Parameters To Solution Set Equivalents

The detach method is the same as defined in 3GPP TS 32.106-3 [5].

7.1.5 getNotificationIRPVersion Operation

3GPP TS 32.106-2 [4] defines semantics of parameters carried in operations across Notification IRP. Table 7‑5 indicates the mapping of these parameters, as per the getNotificationIRPVersion operation, to its equivalent defined in this solution set. The getNotificationIRPVersion operation is mapped to the get_notification_IRP_version method in the NotificationIRPOperations interface defined in NotificationIRPSystem.idl shown in clause 21.

			IM Operation Parameter

			Solution Set Method Parameter

			Qualifier

			versionNumberList

			return CommonIRPConstDefs::VersionNumberSet

			M

			status

			exception GetNotificationIRPVersion

			M

Table 7‑5. Mapping From Information Model getNotificationIRPVersion Parameters To Solution Set Equivalents

The get_notification_IRP_version method is the same as defined in 3GPP TS 32.106-3 [5].

7.1.6 getSubscriptionStatus Operation

3GPP TS 32.106-2 [4] defines semantics of parameters carried in operations across Notification IRP. Table 7‑6 indicates the mapping of these parameters, as per the getSubscriptionStatus operation, to its equivalent defined in this solution set. The getSubscriptionStatus operation is mapped to the get_subscription_status method in the NotificationIRPOperations interface defined in NotificationIRPSystem.idl shown in clause 21.

			IM Operation Parameter

			Solution Set Method Parameter

			Qualifier

			subscriptionId

			in string subscription_id

			M

			notificationCategoryList

			return NotificationIRPConstDefs::NotificationCategorySet

			M

			filterInEffect

			out string filter_in_effect

			O

			subscriptionState

			out NotificationIRPConstDefs::SubscriptionState subscription_state

			O

			timeTick

			out long time_tick

			O

			status

			exception GetSubscriptionStatus

exception OperationNotSupported

exception InvalidParameter

			M

Table 7‑6. Mapping From Information Model getSubscriptionStatus Parameters To Solution Set Equivalents

Differences To 3GPP TS 32.106-3 [5] get_subscription_status:

1. The OMG Notification Service [28] filter, using the Extended TCL filter grammar, is being used instead of the 3GPP TS 32.106-3 filter grammar. For more information, see clause 5.1.5.

7.1.7 getSubscriptionIds Operation

3GPP TS 32.106-2 [4] defines semantics of parameters carried in operations across Notification IRP. Table 7‑7 indicates the mapping of these parameters, as per the getSubscriptionIds operation, to its equivalent defined in this solution set. The getSubscriptionIds operation is mapped to the get_subscription_ids method in the NotificationIRPOperations interface defined in NotificationIRPSystem.idl shown in clause 21.

			IM Operation Parameter

			Solution Set Method Parameter

			Qualifier

			managerReference

			in Object manager_reference

			M

			subscriptionIdList

			return NotificationIRPConstDefs::SubscriptionIdSet

			M

			status

			exception GetSubscriptionIds

exception OperationNotSupported

exception InvalidParameter

			M

Table 7‑7. Mapping From Information Model getSubscriptionIds Parameters To Solution Set Equivalents

The get_subscription_ids method is the same as defined in 3GPP TS 32.106-3 [5].

7.1.8 changeSubscriptionFilter Operation

3GPP TS 32.106-2 [4] defines semantics of parameters carried in operations across Notification IRP. Table 7‑8 indicates the mapping of these parameters, as per the changeSubscriptionFilter operation, to its equivalent defined in this solution set. The changeSubscriptionFilter operation is mapped to the change_subscription_filter method in the NotificationIRPOperations interface defined in NotificationIRPSystem.idl shown in clause 21.

			IM Operation Parameter

			Solution Set Method Parameter

			Qualifier

			subscriptionId

			in string subscription_id

			M

			filter

			in string filter

			M

			status

			return (none)

exception ChangeSubscriptionFilter

exception OperationNotSupported

exception InvalidParameter

			M

Table 7‑8. Mapping From Information Model changeSubscriptionFilter Parameters To Solution Set Equivalents

Differences To 3GPP TS 32.106-3 [5] change_subscription_filter:

1. The OMG Notification Service [28] filter, using the Extended TCL filter grammar, is being used instead of the 3GPP TS 32.106-3 filter grammar. For more information, see clause 5.1.5.

7.1.9 getNotificationCategories Operation

3GPP TS 32.106-2 [4] defines semantics of parameters carried in operations across Notification IRP. Table 7‑9 indicates the mapping of these parameters, as per the getNotificationCategories operation, to its equivalent defined in this solution set. The getNotificationCategories operation is mapped to the get_notification_categories method in the NotificationIRPOperations interface defined in NotificationIRPSystem.idl shown in clause 21.

			IM Operation Parameter

			Solution Set Method Parameter

			Qualifier

			notificationCategoryList

			return NotificationIRPConstDefs::NotificationCategorySet

			M

			eventTypeList

			out NotificationIRPConstDefs::EventTypesSet event_type_list

			O

			extendedEventTypeList

			out NotificationIRPConstDefs::ExtendedEventTypesSet extended_event_type_list

			O

			status

			exception GetNotificationCategories

exception OperationNotSupported

			M

Table 7‑9. Mapping From Information Model getNotificationCategories Parameters To Solution Set Equivalents

The get_notification_categories method is the same as defined in 3GPP TS 32.106-3 [5].

7.2. IDL

Support for Notification IRP requires the following IDL files:

1. CommonIRPConstDefs.idl

2. NotificationIRPConstDefs.idl

3. NotificationIRPSystem.idl

7.2.1 CommonIRPConstDefs.idl Updates

1. Added a typedef for the System DN type.

An updated CommonIRPConstDefs.idl file can be found in clause 19.

7.2.2 NotificationIRPConstDefs.idl Updates

1. ITU-T X.780 [25] defines its own notification name constants. The notification name constants were removed.

2. ITU-T X.780 defines the attribute types and constants for alarm parameters. CorrelatedNotifications, CorrelatedNotificationsSetType and NotifIDSet constants are removed.

An updated NotificationIRPConstDefs.idl file can be found in clause 20.

7.2.3 NotificationIRPSystem.idl

The NotificationIRPSystem.idl file can be found in clause 21.

7.3. Open Items

1. The Extended Event Type concept should no longer be maintained. Removing this will cause changes to the getNotificationCategories operation.

2. The attach_push, attach_push_b, attach_pull and get_subscription_ids methods return Subscription Id as type NotificationIRPConstDefs::SubscriptionId. However, detach, get_subscription_status and change_subscription_filter refer to Subscription Id as type string. These need to be consistent.

3. Should the ChannelFinderComponent interface be supported, optionally supported or not supported? It is recommended that it be supported.

4. Should the Heartbeat Service be mandatory for 3GPP SA5? This support is recommended.

5. Should there be a single attach_push Channel Finder entry or an entry for each current attach_push Subscription Id?

8. OVERVIEW OF INTERFACES TO BE IMPLEMENTED

This clause lists the CORBA interfaces that need (or may need) to be implemented by an IRPAgent if implementing the capabilities outlined in this document. The interfaces are listed as either mandatory or optional.

1. itut_q816.idl:

· interface AdvancedMooService (M)

· interface BasicMooService (M)

· interface ChannelFinder (M)

· interface ChannelFinderComponent (O) (Could be chosen to be manditory.)

· interface DeleteResultsIterator (M)

· interface FactoryFinder (M)

· interface FactoryFinderComponent (O) (Could be chosen to be manditory.)

· interface GetResultsIterator (M)

· interface Heartbeat (O) (Could be chosen to be manditory.)

· interface Notifications (O) (The channel change notification support is manditory [heartbeat is optional], the implementation of this interface depends on whether Typed Events are supported.)

· interface TerminatorService (M)

· interface UpdateResultsIterator (M)

2. itut_x780.idl:

· interface ManagedObject (M)

· interface ManagedObjectFactory (M) (null interface)

· interface Notifications (O) (The alarm notification support is manditory, the implementation of this interface depends on whether Typed Events are supported.)

3. BasicCmIRPSystem.idl:

· interface BasicCmIrpOperations (M)

· interface ContainmentResultsIterator (M)

· interface G3AdvancedMooService (M)

4. NRMDefinitions.idl (none)

5. BasicCmCorbaObjects.idl – Implementation depends on whether particular managed objects are supported in the management information model:

· interface AlarmIRP (O)

· interface AlarmIRPFactory (O)

· interface BasicCmIRP (O)

· interface BasicCmIRPFactory (O)

· interface G3ManagedElement (O)

· interface G3ManagedElementFactory (O)

· interface G3SubNetwork (O)

· interface G3SubNetworkFactory (O)

· interface IRPAgent (O)

· interface IRPAgentFactory (O)

· interface ManagedFunction (O) (abstract only)

· interface ManagementNode (O)

· interface ManagementNodeFactory (O)

· interface MEContext (O)

· interface MEContextFactory (O)

· interface NotificationIRP (O)

· interface NotificationIRPFactory (O)

6. BasicCmUMTSCorbaObjects.idl – Implementation depends on whether particular managed objects are supported in the management information model:

· interface AucFunction (O)

· interface AucFunctionFactory (O)

· interface BgFunction (O)

· interface BgFunctionFactory (O)

· interface EirFunction (O)

· interface EirFunctionFactory (O)

· interface GgsnFunction (O)

· interface GgsnFunctionFactory (O)

· interface GmscFunction (O)

· interface GmscFunctionFactory (O)

· interface HlrFunction (O)

· interface HlrFunctionFactory (O)

· interface IubLink (O)

· interface IubLinkFactory (O)

· interface MscFunction (O)

· interface MscFunctionFactory (O)

· interface NodeBFunction (O)

· interface NodeBFunctionFactor (O)

· interface RNCFunction (O)

· interface RNCFunctionFactory (O)

· interface SgsnFunction (O)

· interface SgsnFunctionFactory (O)

· interface SmsGmscFunction (O)

· interface SmsGmscFunctionFactory (O)

· interface SmsIwmscFunction (O)

· interface SmsIwmscFunctionFactory (O)

· interface UtranCell (O)

· interface UtranCellFactory (O)

· interface VlrFunction (O)

· interface VlrFunctionFactory (O)

7. AlarmIRPConstDefs.idl (none)

8. AlarmIRPSystem.idl:

· interface AlarmInformationIterator (M)

· interface AlarmIRPOperations (M)

· interface Notifications (O) (The Notify Alarm List Rebuilt notification support is manditory, the implementation of this interface depends on whether Typed Events are supported.)

9. CommonIRPConstDefs.idl (none)

10. NotificationIRPConstDefs.idl (none)

11. NotificationIRPSystem.idl:

· interface NotificationIRPOperations (M)

9. COMPLIANCE TO T1M1.5 / ITU-T COMPLIANCE RULES

This clause lists the compliance of the capabilities featured in this document in terms expressed in ITU-T X.780 [25] and ITU-T Q.816 [15]. The ITU-T X.780 compliance matrix is shown in Table 9‑1 and the ITU-T Q.816 compliance matrix is shown in Table 9‑2. Note that clause and Annex references under the Compliance Rule column refer to ITU-T X.780 or ITU-T Q.816 and not this document.

The compliance is documented in the following terms:

1. Met – The compliance item will be fully met (assuming the IDL specified in this document).

2. Possibly Met – 3GPP SA5 could choose to make compliance to this item as either fully met, optionally met or not met.

3. Not Met – There is some part of the compliance rule that will not be met. This is used instead of “Met” when there are any questions of compliance.

4. Partially Met – Some compliance rule of a multiple ruled item is listed as “Not Met”.

			Compliance Rule

			Compliance

			Notes

			1. Derive (directly or indirectly) all interfaces that model resources from the ManagedObject interface described in clause “The Base (Top) Managed Object Interface” and defined in the CORBA IDL in Annex A (OBJECT-1)

			Met

			See BasicCmCorbaObjects.idl (clause 15) and BasicCmUMTSCorbaObjects.idl (clause 16)

			2. Define, for each managed object class that can be instantiated, a factory interface derived (directly or indirectly) from the ManagedObjectFactory interface described in clause “The Managed Object Factory” and defined in the CORBA IDL in Annex A (FACTORY-1)

			Met

			See BasicCmCorbaObjects.idl (clause 15) and BasicCmUMTSCorbaObjects.idl (clause 16)

			3. Use the constants defined in the CORBA IDL in Annex B whenever appropriate

			Met

			3GPP SA5 has its own set of Probable Cause constants defined in AlarmIRPConstDefs.idl (clause 17)

			4. Use the notifications described in clause “The Notifications Interface” and defined in the CORBA IDL in Annex A whenever appropriate

			Met

			attributeValueChange, communicationsAlarm, environmentalAlarm, equipmentAlarm, objectCreation, objectDeletion, processingErrorAlarm and qualityOfServiceAlarm are used from ITU-T X.780

			5. Adhere to the conventions for defining CORBA TMN managed objects specified in clause “Information Modelling Guidelines”

			Met

			

			6. Adhere to the IDL conventions specified in clause “Style Idioms for CORBA IDL Specifications”

			Met

			

			7. Specify notifications as methods on a “Notifications” interface if none of the notifications defined in this document are applicable

			Met

			notifyAlarmListRebuilt is defined in AlarmIRPSystem.idl (clause 18)

			8. Define and use a NO<package name> exception for identifying the attributes and actions that are parts of a conditional package

			Met

			Conditional packages are used, see BasicCmUMTSCorbaObjects.idl (clause 16)

			9. Use the macros defined in this document for identifying the notifications that are to be supported by a managed object

			Met

			

			10. Use the definitions for generic attribute types found in clause “Standard Attributes” wherever applicable

			Met

			These attributes are currently not used in 3GPP SA5 managed objects

			11. Define IDL name binding modules to identify allowable containment relationships

			Met

			See BasicCmCorbaObjects.idl (clause 15) and BasicCmUMTSCorbaObjects.idl (clause 16)

			12. State in its compliance clause a reference to the module(s) from which other generic attributes are used

			Met

			

			13. Follow the GDMO to IDL mapping rules defined in clause “GDMO Translation” the IDL model is a translation from GDMO

			Met

			GDMO translation not yet needed

			14. All factories shall be registered in the Factory Finder object(s) instantiated on that system (FACTORY-2)

			Met

			

Table 9‑1. Compliance Matrix For ITU-T X.780

ITU-T Q.816 defines a Basic Conformance Profile that a system claiming conformance to the ITU-T Q.816 basic profile shall support. This is indicated with an ‘X’ in Table 9‑2.

			Compliance Rule

			Compliance

			Basic Conformance Profile

			Notes

			1. An implementation claiming conformance to the Naming Service requirements must support the CORBA Naming Service version 1.0

			Met

			X

			

			2. An implementation claiming conformance to the Naming Service requirements must support all of the Naming Service requirements specified in clause “The Naming Service”:

			Met

			X

			

			· Every managed object shall have one and only one name (DN). The components of the name may be obtained from multiple federated servers. Although the OMG Naming service supports multiple names per object, this framework restricts a managed object to using a single name. Support for multiple names is outside the scope of the framework (NAME-1)

			Met

			X

			Matches 3GPP TS 32.106-8 [8]

			· Since a simple name binding cannot identify an object and also contained objects, each managed object must actually have a corresponding Naming Context. A specially-named binding in each such context will bind the ID value “Object” with a reference to the actual managed object. (The kind field of this binding will be null.) Other naming contexts, representing contained managed objects, may also be bound to names in this context (NAME-2)

			Met

			X

			

			· The ID field of a name binding for a naming context representing a managed object will be application-dependent, and it may actually have semantic value beyond uniquely identifying a managed object, for a particular class of objects. For example, an ID value of “7” for an equipment holder object representing a slot in a shelf may indicate that this object represents the 7th slot in the shelf. Special semantic value attached to IDs will be documented for each class of managed objects as part of the managed object interface specification. Note that the ID field is a string (NAME-3)

			Met

			X

			

			· The kind field of a name binding for a naming context representing a managed object shall be determined by managed object name binding information. This is information defined as constants in IDL modules specifically for the purpose of representing possible containment relationships. See ITU-T X.780 for details on the representation of managed object name binding information. In short, however, a name binding module will contain a constant string named “kind” that will be used as the value for the kind field in CORBA name bindings. The value of this string will usually be the unscoped class name of the managed object. This adds value by making it easier to identify the type of an object and by reducing the likelihood of name collisions. One factor complicating this is the release of new versions of an object, for example, an equipmentR1 that extends an equipment object. When the new class merely extends the capabilities of an existing class without changing its purpose (that is, it still represents the same managed resource), the kind field will usually be the original base class name. This, however is ultimately up to the object modeller who defines the name binding IDL module. Using the original value will enable existing applications to continue to use the new class as if it was the old version (NAME-4)

			Met

			X

			

			· Each managed system shall provide at least one local root naming context. Note that the top-most naming context is referred to as a “local root” naming context. This is the naming context in which names for the top-most managed objects on the system will be bound, as well as names for certain support service objects (NAME-5)

			Met

			X

			

			· A managed system shall provide a local administrative procedure for assigning a CORBA name to each local root naming context on the system. All names exchanged across the managed interface will include the local root context name unless otherwise noted. This includes operation parameters and notifications (NAME-6)

			Met

			X

			

			3. An implementation claiming conformance to the Notification Service requirements must support the CORBA Notification Service version 1.0

			Met

			X

			

			4. An implementation claiming conformance to the Notification Service requirements must support all of the Notification Service requirements specified in clause “Notification Service”:

			Partially Met

			X

			

			· The Notification Service shall support the push interface model. The managed object interface to the event channel shall be a push supplier (NOTIF-1)

			Met

			X

			To meet this, 3GPP SA5 will need to impose that attach_push_b and attach_pull use the push supplier model

			· The managed system shall instantiate the Notification Service event channel object(s) that it will use. A managed system must instantiate at least one channel and may instantiate more than one. (These channels may either be Notification event channels or Telecom Log event channels. See clause “Telecom Log Service”). The framework does not support the creation or deletion of event channels across the management interface. Local administrative procedures may be provided for this purpose. (Event channels do, however, support the creation and deletion of filters across the management interface.) (NOTIF-2)

			Met

			X

			If attach_push is the only interface supported in Notification IRP, an Event Channel will be created but no notifications will be sent to it

			· Each event channel shall be registered with the Channel Finder service. The Channel Finder service is a support service defined by this framework in clause “The Channel Finder Service”. During registration the channel shall be associated with one or more managed objects that each forms the base of a scope of managed objects that send their events to the channel. Multiple channels may be associated with the same base managed object. A likely use of this is to have different channels for different types of events. For example, one channel might handle performance management events while another handles alarms. When the channel is registered with the Channel Finder service it is also tied with a set of event types it handles and a set of managed object types that send their events to it. Every notification from every managed object must go to at least one channel (NOTIF-3)

			Met

			X

			3GPP SA5 can’t use the scope capabilities, since there is a single subscribe per IRP. As an example, there is a maximum of one Event Channel per Manager Reference for Alarm IRP

			· The Notification Service shall support structured events (NOTIF-4)

			Not Met

			X

			Structured events are not currently supported. The use of attach_push_b does not allow the use of OMG Notification Service automatic conversion of sequence events to structured events

			· The use of sequences of structured events is optional. Sequences of structured events are defined in [28] and are used to send multiple events in one message (NOTIF-5) (O)

			Met

			

			

			· The use of typed events is optional (NOTIF-6) (O)

			Not Met

			

			Typed events are not currently supported

			· The suppliers and consumers of structured events shall follow these rules for constructing and receiving the structured events:

1. The domain_type string in the fixed header of the structured event shall be set to "telecommunications"

2. The type_name string in the fixed header of the structured event shall be set to the scoped name of the operation defining the notification in IDL, for example, "itut_x780::Notifications::attributeValueChange"

3. The event_name string in the fixed header of the structured event is not used by this framework

4. Optional header fields may be included to support features like Quality of Service as appropriate

5. Each parameter in the operation shall be placed in a name-value pair in the filterable body portion of the structured event. The fd_name string of this pair shall be set to the name of the parameter and the type placed in the associated fd_value will be the type specified for the parameter. Using as an example the equipmentAlarm notification from the IDL presented later in this document, the first fd_name string would be set to "eventTime" and the first fd_value would contain an ExternalTimeType data type. Although all notification parameters go in the filterable body of the notification structure, depending on the data type of the parameter it may be difficult or even impossible to create a useful filter utilizing that parameter. Filter “matching rules” are based on the capabilities of the channel

6. Parameters that are denoted “optional” may optionally be excluded from the notification structure. If typed notifications are used, these parameters are included, but will usually have a special null value if not supported. For types for which there is no special null value (such as integers) a special type consisting of a union between the base type (such as integer) and the null type is usually defined. These union types may be excluded from structured notifications when they have a null value, but if they are included, the union type must be used. This is to enable the same filters to be used for both structured and typed notifications

7. The remainder of the body of the structured event (the non-filterable part) shall be null

8. Parameters named “operation” shall be avoided in notification operations to potentially support the use of typed notifications. (When converting typed notifications to structured notifications, the parameters of an operation are automatically placed into a notification structure by the event channel. Unfortunately, the rules developed for doing this state that the name of the operation used to issue the notification goes not in the header of the event, but in the body of the of the structure as the first name-value pair. The fd_name string is set to “operation” and the fd_value is set to a string containing the name of the operation. Using a parameter named “operation” would then result in a second name-value pair with the name “operation,” and the two could be confused.) (NOTIF-7)

			Met

			X

			3GPP SA5 will use the event_name field

			· The Notification Service specification supports filter expressions that are used to determine if the event is to be forwarded. It also supports filter expressions that “map” values in the notification to parameters used to impact the operation of the event channel, such as the QoS used in delivering the event. For example, a mapping filter might be used to map a “severity=major” field from an event (which means nothing to an event channel) to a QoS parameter “priority=1” (which does mean something to the channel). The Notification Service shall support event filtering with filter objects that support constraints expressed in the default constraint grammar specified by the OMG. The Notification Service shall also support mapping filters (NOTIF-8)

			Not Met

			X

			3GPP SA5 does not support manager adjustment of mapping filters and QOS parameters

			· The Notification Service reliability QoS shall support EventReliability = Persistent & ConnectionReliability = Persistent. Each event is guaranteed to be delivered to all consumers registered to receive it at the time the event was delivered to the channel, within expiry limits. If the connection between the channel and a consumer is lost for any reason, the channel will persistently store any events destined for that consumer until each event time out due to expiry limits, or the consumer once again becomes available and the channel is subsequently able to deliver the events to all registered consumers. In addition, upon start from a failure the notification channel will automatically re-establish connections to all clients that were connected to it at the time the failure occurred [28] (NOTIF-9)

			Not Met

			X

			3GPP SA5 does not guarantee delivery of notifications in either attach_push, attach_push_b or attach_pull

			· The Notification Service order policy QoS shall allow the events to be delivered in the order of their arrival, i.e. FIFO. The Notification Service may also optionally support a priority-order QoS in which events could be buffered in priority order, such that higher priority events will be delivered before lower priority events (NOTIF-10)

			Not Met

			X

			3GPP SA5 does not support adjusting the priority order

			· The Notification Service implementation deployed shall be compliant to the conformance statements of the OMG Notification Service specification with the exception of the pull interface model (NOTIF-11)

			Met

			X

			

			5. An implementation claiming conformance to the Telecom Logging Service requirements must support the CORBA Telecom Logging Service version 1.0

			Possibly Met

			

			

			6. An implementation claiming conformance to the Telecom Logging Service requirements must support all of the Logging Service requirements specified in clause “Telecom Log Service”:

			Possibly Met

			

			

			· The Log Service shall support all the Notification Service requirements. Log Event Channels must be registered with the Channel Finder service (LOG-1)

			Possibly Met

			

			

			· The Log Record supported by the Log Service shall be the normal struct LogRecord. The support of struct TypedLogRecord is optional (LOG-2)

			Possibly Met

			

			

			· The Log Service implementation shall be compliant with the conformance statement in the OMG Telecom Log Service specification with the exception of the pull interface model (LOG-3)

			Possibly Met

			

			

			7. An implementation claiming conformance to the Security Service requirements must support the Security Service version specified in clause “Framework Protocol Requirements”

			Possibly Met

			

			

			8. An implementation claiming conformance to the Security Service requirements must support all of the Security Service requirements specified in clause “Security Service”:

			Possibly Met

			

			

			· The CORBA interface may optionally support either the “Secure IOP protocol,” or “CORBA Security SSL Interoperability,” as defined in the CORBA Security Service Specification [29] (SEC-1) (O)

			Possibly Met

			

			

			· The CORBA Security Service may be used to support its wide range of capabilities (SEC-2) (O)

			Possibly Met

			

			

			· Support for the exchange of authentication certificates shall be an option left up to the administration (SEC-3) (O)

			Possibly Met

			

			

			9. An implementation claiming conformance to the Transaction Service requirements must support the CORBA Transaction Service version 1.0

			Possibly Met

			

			

			10. An implementation claiming conformance to the Transaction Service requirements must support the Transaction Service requirements specified in clause “Transaction Service”:

			Possibly Met

			

			

			· The CORBA interface may optionally support the OMG Transaction Service to guarantee data consistency (TRANS-1) (O)

			Possibly Met

			

			

			11. An implementation claiming conformance to the Factory Finder Service must support the Factory Finder service interface described in clause “The Factory Finder Service” and defined in the CORBA IDL in Annex A:

			Met

			X

			

			· A managed system shall instantiate at least one Factory Finder Service object. Also, each local root naming context on a system shall have at least one name binding for a Factory Finder Server Object. The value of the ID string in this binding shall simply identify the server, perhaps with a value similar to “FactoryFinder1”. The kind string in the binding shall identify the class of the object (“itut_q816::FactoryFinder”) (FACTORY_FINDER-1)

			Met

			X

			

			· The Factory Finder server object(s) shall support the Factory Finder interface described in clause “The Factory Finder Service” and defined in the CORBA IDL in Annex A. The Factory Finder server object(s) may support the Factory Finder Component interfaces. The functionality described above shall be supported (FACTORY_FINDER-2)

			Met

			X

			

			12. An implementation claiming conformance to the Channel Finder Service must support the Channel Finder service interface described in clause “The Channel Finder Service” and defined in the CORBA IDL in Annex A:

			Partially Met

			X

			

			· A managed system shall instantiate at least one Channel Finder Service object. Also, each local root naming context on a system shall have at least one name binding for a Channel Finder Service object. The value of the ID string in this binding shall simply identify the server, perhaps with a value similar to “ChannelFinder1”. The kind string in the binding shall identify the class of the object (“itut_q816::ChannelFinder”) (CHANNEL_FINDER-1)

			Met

			X

			

			· The Channel Finder server object(s) shall support the Channel Finder interface described in clause “The Channel Finder Service” and defined in the CORBA IDL in Annex A. The Channel Finder server object(s) may support the Channel Finder Component interfaces. The functionality described above shall be supported (CHANNEL_FINDER-2)

			Met

			X

			

			· Whenever a change to the channel registrations is made, the Channel Finder shall send a channel change notification on all channels registered immediately before the change (CHANNEL_FINDER-3)

			Met

			X

			

			· The network of event channels reported by a managed system shall handle all alarms from all managed objects on the system. A system that lists a set of channels that does not cover all events from all managed objects on the system does not comply with this framework (CHANNEL_FINDER-4)

			Not Met

			X

			With attach_push, managed object events may not go to an Event Channel

			13. An implementation claiming conformance to the Terminator Service must support the Terminator Service interface described in clause “The Terminator Service” and defined by the CORBA IDL in Annex A:

			Met

			X

			

			· A managed system shall instantiate at least one Terminator Service object. Also, each local root naming context on a system shall have at least one name binding for a Terminator Service object. The value of the ID string in this binding shall simply identify the server, perhaps with a value similar to “Terminator1”. The kind string in the binding shall identify the class of the object (“itut_q816::TerminatorService”) (TERM-1)

			Met

			X

			

			· The interface supported by the Terminator Server object(s) shall be the Terminator interface described in clause “The Terminator Service” and defined in the CORBA IDL in Annex A. The functionality described above must be supported (TERM-2)

			Met

			X

			

			· The Terminator Service shall delete objects according to the objects’ delete policy attribute, which is set at creation and cannot be changed. Note that the Terminator Service is not a scoped service. The Terminator Service may actually delete multiple objects in response to a single request, but its focus is on the single object requested to be deleted. The Terminator Service shall implement the following rules when deleting an object:

1. No object shall ever be “orphaned.” That is, no object may be deleted without deleting its subordinates

2. If the object has a delete policy of notDeletable, the object shall not be deleted, nor are any of its subordinates if it has any. The DeleteError exception shall be raised with the error identifier set to the value notDeletable

3. If the object has a delete policy of deleteOnlyIfNoContainedObjects, and it does not have any subordinates, the object shall be deleted. If the object has subordinates, regardless of their delete policies, it shall not be deleted nor shall any of its subordinates. The DeleteError exception shall be raised with the error identifier set to the value containsObjects

4. If the object has a delete policy of deleteContainedObjects, and it does not have any subordinates, the object shall be deleted. If the object has subordinates, the Terminator Service shall check the delete policies of all the subordinates. If any are notDeletable, no objects are deleted. If any are deleteOnlyIfNoContained and they contain subordinates, no objects are deleted. Otherwise, the object and its subordinates are deleted

5. The Terminator Service shall delete contained objects from the bottom up. If any contained object raises an exception during deletion, the Terminator Service shall not remove that object’s name and shall not delete any of its superiors. The Terminator Service shall, however, continue trying to delete other contained objects. When all objects that can be deleted are deleted, the Terminator Service shall raise a DeleteError exception with the error identifier set to the value undeletableContainedObject. This best-effort approach to deleting contained objects is required to make the results deterministic. The client can identify the undeletable objects because they will be at the leaves of the tree remaining beneath the target object

6. If the base object raises a DeleteError exception, the Terminator Service shall return the same exception (and included data). The object is not deleted and the object’s name is not removed from the naming tree (TERM-3)

			Met

			X

			

			14. An implementation claiming conformance to the Basic MOO Service must support the mandatory MOO service requirements described in clause “MOO Service Requirements”:

			Met

			X

			

			· A managed system shall instantiate at least one MOO Server object. Also, each local root naming context on a system shall have at least one name binding for a MOO Service object. The value of the ID string in this binding shall simply identify the server, perhaps with a value similar to “MOO1”. The kind string in the binding shall identify the class of the object (“itut_q816::BasicMooService” or a sub-class) (MOO-1)

			Met

			X

			

			· The interface supported by the MOO Server object(s) shall be the “Basic” MOO Service interface described in clause “The Multiple-Object Operation Service” and defined in the CORBA IDL in Annex A (MOO-2)

			Met

			X

			

			· The MOO Server object(s) shall at least support the default constraint language defined in clause “The Default Filter Language” for the specification of filters, and may support other grammars. The default constraint language, identified as “MOO 1.0”, is the default constraint language defined by the CORBA Notification Service but extended to support: Filtering on object attribute values rather than notification structure member values, Regular expression matching and Filtering on attributes containing sets or sequences of values (MOO-4)

			Met

			X

			

			15. An implementation claiming conformance to the Advanced MOO Service must support the mandatory and optional MOO service requirements described in clause “MOO Service Requirements”:

			Met

			

			

			· Optionally, the interface supported by the MOO Server object(s) may be the “Advanced” MOO Service interface described in clause “The Multiple-Object Operation Service” and defined in the CORBA IDL in Annex A (MOO-3) (O)

			Met

			

			The “Advanced” MOO Service has been enhanced to include the getContainment method

			16. An implementation claiming conformance to the Heartbeat Service must support the Heartbeat Service interface described in clause “The Heartbeat Service” and defined in the CORBA IDL in Annex A:

			Possibly Met

			

			

			· A managed system may instantiate at least one Heartbeat Service object. If the Heartbeat Service is supported, each local root naming context on a system shall have at least one name binding for a Heartbeat Service Object. The value of the ID string in this binding shall simply identify the server, with a value similar to “Heartbeat1”. The kind string in the binding shall identify the class of the object (“itut_q816::Heartbeat”) (HEARTBEAT-1)

			Possibly Met

			

			

			· The Heartbeat server object(s) shall support the Heartbeat interface described in clause “The Heartbeat Service” and defined in the CORBA IDL in Annex A. The functionality shall be supported (HEARTBEAT-2)

			Possibly Met

			

			

			· Updating of the period shall cause the service to deliver a notification to all channels with the new period value and then begin a new period. Setting the period to zero shall cause the service to emit one final notification with a period value of zero, then no more (until the period is reset) (HEARTBEAT-3)

			Possibly Met

			

			If the Heartbeat Service is supported, attach_push should emit this notification (even though it isn’t associated with an Event Channel)

			· Until the period is changed, the heartbeat notifications shall be sent to all the channels once within each period. The time between heartbeat notifications being sent to a channel shall never be greater than twice the period (HEARTBEAT-4)

			Possibly Met

			

			

			17. CORBA version 2.3.1

			Met

			X

			

			18. Messaging Service:

			Possibly Met

			

			

			· The AMI-aware CORBA implementation shall at least support the callback programming model (AMI-1) (O)

			Possibly Met

			

			

			· For each operation in an IDL interface, the AMI-aware CORBA implementation shall generate corresponding asynchronous callback method signatures. These signatures are described in implied-IDL which is used to generate language-specific operation signatures (AMI-2) (O)

			Possibly Met

			

			

			· The AMI-aware CORBA ORB shall pass a type-specific ExceptionHolder value instance that contains the marshaled exceptions as its state to the ReplyHandler when exception replies are returned from the CORBA object. The AMI-aware IDL compiler would generate a type-specific ExceptionHolder for each IDL interface (AMI-3) (O)

			Possibly Met

			

			

			· The AMI-aware IDL compiler shall generate a type-specific reply handler for each IDL interface. The client will implement and register a reply handler with each asynchronous request and receive a callback when the reply is returned for that request. This reply handler is derived from the generic Messaging::ReplyHandler (AMI-4) (O)

			Possibly Met

			

			

Table 9‑2. Compliance Matrix For ITU-T Q.816

10. COMPLIANCE TO 3GPP SA5 INFORMATION MODELS

The 3GPP SA5 Information Models are defined in 3GPP TS 32.111-2 [2], 3GPP TS 32.106-2 [4] and 3GPP TS 32.106-5 [6]. In this document, per notification and per operation compliance matrixes, similar to those provided in 3GPP TS 32.111-3 [3], 3GPP TS 32.106-3 [5] and 3GPP TS 32.106-6 [7], have been provided. Full compliance to 3GPP SA5 Information Models is expected.

11. RECOMMENDATIONS

The façade capability, i.e., allowing façade objects and façade factories to represent many managed objects without requiring the managed objects to be instantiated, is required for 3GPP SA5.

Further study is required to identify a minimum subset of Notification Service capabilities that must be supported for compliance to the T1M1.5 / ITU-T CORBA framework.

There are a number of compliance items (NOTIF-2, CHANNEL_FINDER-4, HEARTBEAT-3, HEARTBEAT-4, etc.) in Table 9‑2 that directly refer to Event Channels. While the Channel Finder interface has been changed to allow other interfaces than Event Channels, the compliance items still directly refer to Event Channels. The use of Event Channels should now be optional in the T1M1.5 / ITU-T CORBA framework.

3GPP SA5 should define method(s) for managers to adjust OMG Notification Service mapping filters and Quality Of Service parameters (or have a generic way of doing this so attach_push can also meet this) (see NOTIF-8 in Table 9‑2).

3GPP SA5 could easily support Structured Events (see NOTIF-4 in Table 9‑2) by adding a new method (let’s call it attach_push_c). The attach_push_c method would match the attach_push_b method except a CosNotifyChannelAdmin::StructuredProxyPushSupplier would be returned instead of a CosNotifyChannelAdmin::SequenceProxyPushSupplier. The IRPAgent suppliers of notifications could still use Sequence Events (as with attach_push_b), but could rely on the OMG Notification Service to automatically convert Sequence Events into Structured Events for the IRPManager consumer.

3GPP SA5 must allow the definition of IRPAgent-specific notification categories and which notifications are assigned to the new notification categories. This is needed to allow the support of non-3GPP SA5 defined notifications.

It appears that the use of persistent notification reliability may be too much for network elements using System Context B (i.e., direct network management interface to a network element). 3GPP SA5 should recommend that NOTIF-9 in Table 9‑2 be made optional.

3GPP SA5 does not support the adjusting of notification priority order. (TMN assumes that alarms from a managed object instance are received by a manager in the order an agent sent them. As an example, the original alarm must arrive before a clear of the same alarm.) 3GPP SA5 should recommend that NOTIF-10 in Table 9‑2 be adjusted to remove the setting of notification priority orders.

3GPP SA5 should not recommend shorter Filterable Body Field name strings in notifications. Using the longer T1M1.5 / ITU-T name strings allows the support of Typed Events by 3GPP SA5 in the future (OMG Notification Service Typed Event conversion uses each attribute name as the Filterable Body Field name).

3GPP SA5 may want to suggest its method of defining attribute name constants to T1M1.5 / ITU-T. Attribute name constants are visible through methods, such as scopedGet and scopedUpdate, and notifications, such as Object Creation, Object Deletion and Attribute Value Change notifications. Attribute name constants need to be agreed upon between agent and manager.

3GPP SA5 may want to suggest its method of defining package constants used in this document. Package constants appear in the packages attribute in each managed object instance. Package constants need to be agreed upon between agent and manager.

It is possible that more convergence can take place with subscriptions. The T1M1.5 / ITU-T CORBA framework probably needs the increased security offered by the attach_push method and for notification support independent of OMG Notification Service. 3GPP SA5 probably needs to offer more options between Sequence Events, Structured Events and Typed Events (see Table 5‑2) and more visibility to Event Channel mapping filters and Quality Of Service parameters. 3GPP SA5 may want to suggest a combined solution, somewhere in the middle.

12. CONCLUSIONS

There does not seem to be a technically unsolvable issue for 3GPP SA5 to standardize to the T1M1.5 / ITU-T CORBA framework. Non-technical issues may abound.

13. BASIC CM BasicCmIRPSystem CORBA IDL

/* ## Module: BasicCmIRPSystem

This module defines IDL for Basic CM types, notifications and methods

*/

#ifndef BasicCmIRPSystem_idl

#define BasicCmIRPSystem_idl

/**

This IDL code is intended to be stored in a file named "BasicCmIRPSystem.idl" located in the search path used by the IDL compiler on your system

*/

#include "CommonIRPConstDefs.idl"

#include "itut_x780.idl"

#include "itut_q816.idl"

#pragma prefix "3gppsa5.org"

module BasicCmIRPSystem

{

/**

13.1. Exceptions

*/

exception GetBasicCmIRPVersion

{

string reason;

};

exception NextContainmentResults

{

string reason;

};

exception InvalidParameter

{

string parameter;

};

exception OperationNotSupported {};

/**

13.2. Structures And Typedefs

*/

/**

The format of Distinguished Name (DN) is specified in "Name Conventions for Managed Objects revision B".

*/

typedef string DN;

/**

An MO reference referres to an MO instance. "otherMO" contains the distinguished name of the referred MO. A conceptual "null" reference (meaning no MO is referenced) is represented as an empty string ("").

*/

struct MOReference

{

DN otherMO;

};

/**

MOReferenceSet represents a set of MO references. This type is used to hold 0..n MO references. A referred MO is not allowed to be repeated (therefore it is denoted as a "Set")

*/

typedef sequence<MOReference> MOReferenceSet;

/**

Containment Results structure hold a list of DN values per managed object.

@member name

The distinguished name of the managed object

@member notFilterable
This flag will be true if the service could not interact with the managed object to see if it even passed the filter.

*/

struct ContainmentResultsType

{

DN name;

boolean notFilterable;

};

/**

The Containment Results Set is a set of results returned by a scoped getContainment operation.

*/

typedef sequence <ContainmentResultsType> ContainmentResultsSetType;

/**

This module contains constant values identifying information elements included in the Additional Information parameters of object creation, object deletion and attribute value change notifications.

*/

module AdditionalInformationConst

{

const string moduleName =

"BasicCmIRPSystem::AdditionalInformationConst";

/**

This constant is accompanied by a string value for the "any" field of the ManagementExtensionType to inficate a System DN value is provided. SystemDNType can be found in "CommonIRPConstDefs.idl"

*/

const short systemDNProvided = 1;

}; // module AdditionalInformationConst

/**

13.3. Interface ContainmentResultsIterator

*/

/**

The ContainmentResultsIterator is used to iterate through a snapshot of

containment results taken from the getContainment operation. IRPManager uses it to pace the return of containment results.

IRPAgent controls the life-cycle of the iterator. However, a destroy operation is provided to handle the case where IRPManager wants to stop the iteration procedure before reaching the last iteration.

*/

interface ContainmentResultsIterator

{

/**

This method returns between 1 and "how_many" containment results. The IRPAgent may return less than "how_many" items even if there are more items to return. "how_many" must be non-zero.

If FALSE is returned, the IRPAgent will automatically destroy the iterator

@param how_many
The maximum number of items to be returned in the results

@param containmentResults
The next batch of results

@return
Return TRUE if there may be more containment results to return. Return FALSE if there are no more containment results to be returned

*/

boolean next_containmentResults (

in unsigned short how_many,

out ContainmentResultsSetType containmentResults)

raises (NextContainmentResults,

InvalidParameter);

/**

This method destroys the iterator.

*/

void destroy ();

}; // interface ContainmentResultsIterator

/**

13.4. Interface BasicCmIrpOperations

*/

/**

The BasicCmIrpOperations interface. Supports a number of Resource Model versions.

*/

interface BasicCmIrpOperations

{

/**

Get the version of the interface and all supported resource model versions.

@return
The list of Basic CM IRP versions currently supported

*/

CommonIRPConstDefs::VersionNumberSet get_basicCm_IRP_version()

raises(GetBasicCmIRPVersion);

}; // interface BasicCmIrpOperations

/**

13.5. Interface G3AdvancedMooService

*/

/**

This interface enhances the ITU-T Q.816 MOO Services. It defines the getContainment operation that returns Naming information in 3GPP SA5 naming format

*/

interface G3AdvancedMooService : itut_q816::AdvancedMooService

{

/**

This operation is used to retrieve DNs from multiple objects using a small number of method invocations. The method returns the first batch of results, one per object. Each result has the name of the object and a list of name-value pairs indicating the attributes that could be retrieved with their values.

The differences between getContainment and scopedGet are:

attributeListIn is not used (only DNs are returned)

scopedGet returns naming information in T1M1.5 / ITU-T format, getContainment returns naming information in 3GPP SA5 format (DNs)

scopedGet returns results in a GetResultsSetType, getContainment returns results in a ContainmentResultsSetType (i.e., DNs only)

scopedGet uses GetResultsIterator, getContainment uses ContainmentResultsIterator

@param baseName
The name of the object at the base of the scope tree.

@param scope
A value indicating the contained objects to include in the scope of the operations. See ScopeType for details.

@param filter
A string containing an expression to be evaluated with attribute values from each object in the scope. Attribute values are returned only for those objects for which the expression evaluates to true.

@param language
A string identifying the language in which the filter expression is written.

@param howMany
The maximum number of objects for which results should be returned in the first batch.

@param resultsIterator
A reference to an iterator that can be used to retrieve the rest of the results. This reference will be null if all results were returned in the first batch.

@return
The first batch of results

*/

ContainmentResultsSetType getContainment (

in itut_x780::NameType baseName,

in itut_q816::ScopeType scope,

in itut_q816::FilterType filter,

in itut_q816::LanguageType language,

in unsigned short howMany,

out ContainmentResultsIterator resultsIterator)

raises (itut_q816::InvalidParameter,

itut_q816::InvalidFilter,

itut_q816::FilterComplexityLimit,

itut_x780::ApplicationError);

}; // interface G3AdvancedMooService

}; // module BasicCmIRPSystem

#endif

14. BASIC CM NRMDefinitions CORBA IDL

/* ## Module: NRMDefinitions

This module defines IDL for Basic CM class and attribute names

*/

#ifndef NRMDefinitions_idl

#define NRMDefinitions_idl

/**

This IDL code is intended to be stored in a file named "NRMDefinitions.idl" located in the search path used by the IDL compiler on your system

*/

#pragma prefix "3gppsa5.org"

/**

This module defines constants for each MO class name and the attribute names for each defined MO class. Note that these interfaces are not to be instantiated.

*/

module NRMDefinitions

{

/**

Definitions for MO class G3SubNetwork

*/

interface G3SubNetwork

{

const string CLASS = "BasicCmCorbaObjects::G3SubNetwork";

// Attribute Names

const string name = "name";

const string objectClass = "objectClass";

const string packages = "packages";

const string creationSource = "creationSource";

const string deletePolicy = "deletePolicy";

const string g3SubNetworkId = "g3SubNetworkId";

const string dnPrefix = "dnPrefix";

const string userLabel = "userLabel";

}; // interface G3SubNetwork

/**

Definitions for MO class G3ManagedElement

*/

interface G3ManagedElement

{

const string CLASS = "BasicCmCorbaObjects::G3ManagedElement";

// Attribute Names

const string name = "name";

const string objectClass = "objectClass";

const string packages = "packages";

const string creationSource = "creationSource";

const string deletePolicy = "deletePolicy";

const string g3ManagedElementId = "g3ManagedElementId";

const string dnPrefix = "dnPrefix";

const string managedElementType = "managedElementType";

const string userLabel = "userLabel";

const string vendorName = "vendorName";

const string userDefinedState ="userDefinedState";

const string locationName ="locationName";

const string managedBy = "managedBy";

}; // interface G3ManagedElement

/**

Definitions for MO class MeContext

*/

interface MeContext

{

const string CLASS = "BasicCmCorbaObjects::MeContext";

// Attribute Names

const string name = "name";

const string objectClass = "objectClass";

const string packages = "packages";

const string creationSource = "creationSource";

const string deletePolicy = "deletePolicy";

const string meContextId = "meContextId";

const string dnPrefix = "dnPrefix";

}; // interface MeContext

/**

Definitions for MO class ManagementNode

*/

interface ManagementNode

{

const string CLASS = "BasicCmCorbaObjects::ManagementNode";

// Attribute Names

const string name = "name";

const string objectClass = "objectClass";

const string packages = "packages";

const string creationSource = "creationSource";

const string deletePolicy = "deletePolicy";

const string managementNodeId = "managementNodeId";

const string userLabel = "userLabel";

const string vendorName = "vendorName";

const string userDefinedState = "userDefinedState";

const string locationName = "locationName";

const string manages = "manages";

}; // interface ManagementNode

/**

Definitions for abstract MO class ManagedFunction

*/

interface ManagedFunction

{

const string CLASS = "BasicCmCorbaObjects::ManagedFunction";

// Attribute Names

const string name = "name";

const string objectClass = "objectClass";

const string packages = "packages";

const string creationSource = "creationSource";

const string deletePolicy = "deletePolicy";

const string userLabel = "userLabel";

}; // interface ManagedFunction

/**

Definitions for MO class RncFunction

*/

interface IRPAgent

{

const string CLASS = "BasicCmCorbaObjects::IRPAgent";

// Attribute Names

const string name = "name";

const string objectClass = "objectClass";

const string packages = "packages";

const string creationSource = "creationSource";

const string deletePolicy = "deletePolicy";

const string irpAgentId = "irpAgentId";

const string systemDN = "systemDN";

}; // interface IRPAgent

/**

Definitions for MO class NotificationIRP

*/

interface NotificationIRP

{

const string CLASS = "BasicCmCorbaObjects::NotificationIRP";

// Attribute Names

const string name = "name";

const string objectClass = "objectClass";

const string packages = "packages";

const string creationSource = "creationSource";

const string deletePolicy = "deletePolicy";

const string notificationIRPId = "notificationIRPId";

const string irpVersion = "irpVersion";

}; // interface NotificationIRP

/**

Definitions for MO class AlarmIRP

*/

interface AlarmIRP

{

const string CLASS = "BasicCmCorbaObjects::AlarmIRP";

// Attribute Names

const string name = "name";

const string objectClass = "objectClass";

const string packages = "packages";

const string creationSource = "creationSource";

const string deletePolicy = "deletePolicy";

const string alarmIRPId = "alarmIRPId";

const string irpVersion = "irpVersion";

}; // interface AlarmIRP

/**

Definitions for MO class BasicCmIRP

*/

interface BasicCmIRP

{

const string CLASS = "BasicCmCorbaObjects::BasicCmIRP";

// Attribute Names

const string name = "name";

const string objectClass = "objectClass";

const string packages = "packages";

const string creationSource = "creationSource";

const string deletePolicy = "deletePolicy";

const string basicCmIRPId = "basicCmIRPId";

const string irpVersion = "irpVersion";

}; // interface BasicCmIRP

/**

Definitions for MO class RncFunction

*/

interface RncFunction

{

const string CLASS = "BasicCmUMTSCorbaObjects::RncFunction";

// Attribute Names

const string name = "name";

const string objectClass = "objectClass";

const string packages = "packages";

const string creationSource = "creationSource";

const string deletePolicy = "deletePolicy";

const string rncFunctionId = "rncFunctionId";

const string userLabel = "userLabel";

}; // interface RncFunction

/**

Definitions for MO class UtranCell

*/

interface UtranCell

{

const string CLASS = "BasicCmUMTSCorbaObjects::UtranCell";

// Attribute Names

const string name = "name";

const string objectClass = "objectClass";

const string packages = "packages";

const string creationSource = "creationSource";

const string deletePolicy = "deletePolicy";

const string utranCellId = "utranCellId";

const string userLabel = "userLabel";

const string utranCellNodeBFunction = "utranCellNodeBFunction";

const string utranCellIubLink = "utranCellIubLink";

}; // interface UtranCell

/**

Definitions for MO class NodeBFunction

*/

interface NodeBFunction

{

const string CLASS = "BasicCmUMTSCorbaObjects::NodeBFunction";

// Attribute Names

const string name = "name";

const string objectClass = "objectClass";

const string packages = "packages";

const string creationSource = "creationSource";

const string deletePolicy = "deletePolicy";

const string nodeBFunctionId = "nodeBFunctionId";

const string userLabel = "userLabel";

const string nodeBFunctionIubLink = "nodeBFunctionIubLink";

const string nodeBFunctionUtranCell = "nodeBFunctionUtranCell";

}; // interface NodeBFunction

/**

Definitions for MO class IubLink

*/

interface IubLink

{

const string CLASS = "BasicCmUMTSCorbaObjects::IubLink";

// Attribute Names

const string name = "name";

const string objectClass = "objectClass";

const string packages = "packages";

const string creationSource = "creationSource";

const string deletePolicy = "deletePolicy";

const string iubLinkId = "iubLinkId";

const string userLabel = "userLabel";

const string iubLinkNodeBFunction = "iubLinkNodeBFunction";

const string iubLinkUtranCell = "iubLinkUtranCell";

}; // interface IubLink

/**

Definitions for MO class MscFunction

*/

interface MscFunction

{

const string CLASS = "BasicCmUMTSCorbaObjects::MscFunction";

// Attribute Names

const string name = "name";

const string objectClass = "objectClass";

const string packages = "packages";

const string creationSource = "creationSource";

const string deletePolicy = "deletePolicy";

const string mscFunctionId = "mscFunctionId";

const string userLabel = "userLabel";

}; // interface MscFunction

/**

Definitions for MO class HlrFunction

*/

interface HlrFunction

{

const string CLASS = "BasicCmUMTSCorbaObjects::HlrFunction";

// Attribute Names

const string name = "name";

const string objectClass = "objectClass";

const string packages = "packages";

const string creationSource = "creationSource";

const string deletePolicy = "deletePolicy";

const string hlrFunctionId = "hlrFunctionId";

const string userLabel = "userLabel";

}; // interface HlrFunction

/**

Definitions for MO class VlrFunction

*/

interface VlrFunction

{

const string CLASS = "BasicCmUMTSCorbaObjects::VlrFunction";

// Attribute Names

const string name = "name";

const string objectClass = "objectClass";

const string packages = "packages";

const string creationSource = "creationSource";

const string deletePolicy = "deletePolicy";

const string vlrFunctionId = "vlrFunctionId";

const string userLabel = "userLabel";

}; // interface VlrFunction

/**

Definitions for MO class AucFunction

*/

interface AucFunction

{

const string CLASS = "BasicCmUMTSCorbaObjects::AucFunction";

// Attribute Names

const string name = "name";

const string objectClass = "objectClass";

const string packages = "packages";

const string creationSource = "creationSource";

const string deletePolicy = "deletePolicy";

const string aucFunctionId = "aucFunctionId";

const string userLabel = "userLabel";

}; // interface AucFunction

/**

Definitions for MO class EirFunction

*/

interface EirFunction

{

const string CLASS = "BasicCmUMTSCorbaObjects::EirFunction";

// Attribute Names

const string name = "name";

const string objectClass = "objectClass";

const string packages = "packages";

const string creationSource = "creationSource";

const string deletePolicy = "deletePolicy";

const string eirFunctionId = "eirFunctionId";

const string userLabel = "userLabel";

}; // interface EirFunction

/**

Definitions for MO class SmsIwmscFunction

*/

interface SmsIwmscFunction

{

const string CLASS = "BasicCmUMTSCorbaObjects::SmsIwmscFunction";

// Attribute Names

const string name = "name";

const string objectClass = "objectClass";

const string packages = "packages";

const string creationSource = "creationSource";

const string deletePolicy = "deletePolicy";

const string smsIwmscFunctionId = "smsIwmscFunctionId";

const string userLabel = "userLabel";

}; // interface SmsIwmscFunction

/**

Definitions for MO class SmsGmscFunction

*/

interface SmsGmscFunction

{

const string CLASS = "BasicCmUMTSCorbaObjects::SmsGmscFunction";

// Attribute Names

const string name = "name";

const string objectClass = "objectClass";

const string packages = "packages";

const string creationSource = "creationSource";

const string deletePolicy = "deletePolicy";

const string smsGmscFunctionId = "smsGmscFunctionId";

const string userLabel = "userLabel";

}; // interface SmsGmscFunction

/**

Definitions for MO class SgsnFunction

*/

interface SgsnFunction

{

const string CLASS = "BasicCmUMTSCorbaObjects::SgsnFunction";

// Attribute Names

const string name = "name";

const string objectClass = "objectClass";

const string packages = "packages";

const string creationSource = "creationSource";

const string deletePolicy = "deletePolicy";

const string sgsnFunctionId = "sgsnFunctionId";

const string userLabel = "userLabel";

}; // interface SgsnFunction

/**

Definitions for MO class GgsnFunction

*/

interface GgsnFunction

{

const string CLASS = "BasicCmUMTSCorbaObjects::GgsnFunction";

// Attribute Names

const string name = "name";

const string objectClass = "objectClass";

const string packages = "packages";

const string creationSource = "creationSource";

const string deletePolicy = "deletePolicy";

const string ggsnFunctionId = "ggsnFunctionId";

const string userLabel = "userLabel";

}; // interface GgsnFunction

/**

Definitions for MO class BgFunction

*/

interface BgFunction

{

const string CLASS = "BasicCmUMTSCorbaObjects::BgFunction";

// Attribute Names

const string name = "name";

const string objectClass = "objectClass";

const string packages = "packages";

const string creationSource = "creationSource";

const string deletePolicy = "deletePolicy";

const string bgFunctionId = "bgFunctionId";

const string userLabel = "userLabel";

}; // interface BgFunction

/**

Definitions for MO class GmscFunction

*/

interface GmscFunction

{

const string CLASS = "BasicCmUMTSCorbaObjects::GmscFunction";

// Attribute Names

const string name = "name";

const string objectClass = "objectClass";

const string packages = "packages";

const string creationSource = "creationSource";

const string deletePolicy = "deletePolicy";

const string gmscFunctionId = "gmscFunctionId";

const string userLabel = "userLabel";

}; // interface GmscFunction

}; // module NRMDefinitions

#endif

15. BASIC CM BasicCmCorbaObjects CORBA IDL

/* ## Module: BasicCmCorbaObjects

This module defines IDL for 3GPP SA5 defined managed objects.

*/

#ifndef BasicCmCorbaObjects_idl

#define BasicCmCorbaObjects_idl

/**

This IDL code is intended to be stored in a file named "BasicCmCorbaObjects.idl" located in the search path used by the IDL compiler on your system

*/

#include "itut_x780.idl"

#include "CommonIRPConstDefs.idl"

#include "BasicCmIRPSystem.idl"

#pragma prefix "3gppsa5.org"

module BasicCmCorbaObjects

{

/**

15.1. Imports

*/

/**

Types imported from Recommendation X.780

*/

typedef itut_x780::NameBindingType NameBindingType;

typedef itut_x780::StringSetType StringSetType;

/**

Types imported from BasicCmIRPSystem.idl

*/

typedef BasicCmIRPSystem::MOReferenceSet MOReferenceSet;

/**

Types imported from CommonIRPConstDefs.idl

*/

typedef CommonIRPConstDefs::VersionNumberSet VersionNumberSet;

typedef CommonIRPConstDefs::SystemDNType SystemDNType;

/**

15.2. Forward Declarations

*/

/**

Interface Forward Declarations

*/

interface AlarmIRP;

interface AlarmIRPFactory;

interface BasicCmIRP;

interface BasicCmIRPFactory;

interface G3ManagedElement;

interface G3ManagedElementFactory;

interface G3SubNetwork;

interface G3SubNetworkFactory;

interface IRPAgent;

interface IRPAgentFactory;

interface ManagedFunction;

interface ManagementNode;

interface ManagementNodeFactory;

interface MEContext;

interface MEContextFactory;

interface NotificationIRP;

interface NotificationIRPFactory;

/**

valuetype Forward Declarations

*/

valuetype AlarmIRPValueType;

valuetype BasicCmIRPValueType;

valuetype G3ManagedElementValueType;

valuetype G3SubNetworkValueType;

valuetype IRPAgentValueType;

valuetype ManagedFunctionValueType;

valuetype ManagementNodeValueType;

valuetype MEContextValueType;

valuetype NotificationIRPValueType;

/**

15.3. Structures And Typedefs

*/

typedef string AlarmIRPIdType;

typedef string BasicCmIRPIdType;

typedef string DnPrefixType;

typedef string G3ManagedElementIdType;

typedef string G3SubNetworkIdType;

typedef string IrpAgentIdType;

typedef VersionNumberSet IrpVersionType;

typedef string LocationNameType;

typedef MOReferenceSet ManagedBySetType;

typedef string ManagedElementTypeType;

typedef string ManagementNodeIdType;

typedef MOReferenceSet ManagesSetType;

typedef string MeContextIdType;

typedef string NotificationIRPIdType;

typedef string ObjectClassType;

typedef string UserDefinedStateType;

typedef string UserLabelType;

typedef string VendorNameType;

/**

Constants for the conditional packages. These will appear in the packages attribute

*/

const string AttributeValueChangeNotificationPackage =

"AttributeValueChangeNotificationPackage";

const string CreateDeleteNotificationsPackage =

"CreateDeleteNotificationsPackage";

const string AlarmIRPSupportedPackage = "AlarmIRPSupportedPackage";

/**

15.4. Exceptions

*/

/**

Used when an operation requires a G3ManagedElement and the specified item does not match a valid G3ManagedElement managed object instance

*/

exception G3ManagedElementNotFound

{

MOReferenceSet items;

};

/**

Used when asked to add a G3ManagedElement to a set already containing the specified G3ManagedElement(s)

*/

exception G3ManagedElementDuplicate

{

MOReferenceSet items;

};

/**

Used when an operation requires a ManagementNode and the specified item does not match a valid ManagementNode managed object instance

*/

exception ManagementNodeNotFound

{

MOReferenceSet items;

};

/**

Used when asked to add a ManagementNode to a set already containing the specified ManagementNode(s)

*/

exception ManagementNodeDuplicate

{

MOReferenceSet items;

};

/**

15.5. G3SubNetwork Managed Object

*/

/**

This valuetype is used to retrieve all attributes

*/

valuetype G3SubNetworkValueType : itut_x780::ManagedObjectValueType

{

public G3SubNetworkIdType g3SubNetworkId;

// GET

public DnPrefixType dnPrefix;

// GET

public UserLabelType userLabel;

// GET, REPLACE

}; // valuetype G3SubNetworkValueType

interface G3SubNetwork : itut_x780::ManagedObject

{

/**

g3SubNetworkId GET

*/

G3SubNetworkIdType g3SubNetworkIdGet ()

raises (itut_x780::ApplicationError);

/**

dnPrefix GET

*/

DnPrefixType dnPrefixGet ()

raises (itut_x780::ApplicationError);

/**

userLabel GET, REPLACE

*/

UserLabelType userLabelGet ()

raises (itut_x780::ApplicationError);

void userLabelSet (

in UserLabelType userLabel)

raises (itut_x780::ApplicationError);

/**

List notifications

*/

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, attributeValueChange,

AttributeValueChangeNotificationPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, communicationsAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, environmentalAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, equipmentAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, objectCreation,

CreateDeleteNotificationsPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, objectDeletion,

CreateDeleteNotificationsPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, processingErrorAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, qualityOfServiceAlarm,

AlarmIRPSupportedPackage)

}; // interface G3SubNetwork

/**

Creation and Deletion for G3SubNetwork

*/

interface G3SubNetworkFactory : itut_x780::ManagedObjectFactory

{

G3SubNetwork create (

in NameBindingType nameBinding,

in itut_x780::ManagedObject superior,

in string name, // no auto-naming, cannot be null

in StringSetType packages,

in G3SubNetworkIdType g3SubNetworkId,

in DnPrefixType dnPrefix,

in UserLabelType userLabel)

raises (itut_x780::ApplicationError,

itut_x780::CreateError);

}; // interface G3SubNetworkFactory

/**

15.6. G3ManagedElement Managed Object

*/

/**

This valuetype is used to retrieve all attributes

*/

valuetype G3ManagedElementValueType : itut_x780::ManagedObjectValueType

{

public G3ManagedElementIdType g3ManagedElementId;

// GET

public DnPrefixType dnPrefix;

// GET

public ManagedElementTypeType managedElementType;

// GET, REPLACE

public UserLabelType userLabel;

// GET, REPLACE

public VendorNameType vendorName;

// GET, REPLACE

public UserDefinedStateType userDefinedState;

// GET, REPLACE

public LocationNameType locationName;

// GET, REPLACE

public ManagedBySetType managedBy;

// GET, REPLACE, ADD, REMOVE

}; // valuetype G3ManagedElementValueType

interface G3ManagedElement : itut_x780::ManagedObject

{

/**

g3ManagedElementId GET

*/

G3ManagedElementIdType g3ManagedElementIdGet ()

raises (itut_x780::ApplicationError);

/**

dnPrefix GET

*/

DnPrefixType dnPrefixGet ()

raises (itut_x780::ApplicationError);

/**

managedElementType GET, REPLACE

*/

ManagedElementTypeType managedElementTypeGet ()

raises (itut_x780::ApplicationError);

void managedElementTypeSet (

in ManagedElementTypeType managedElementType)

raises (itut_x780::ApplicationError);

/**

userLabel GET, REPLACE

*/

UserLabelType userLabelGet ()

raises (itut_x780::ApplicationError);

void userLabelSet (

in UserLabelType userLabel)

raises (itut_x780::ApplicationError);

/**

vendorName GET, REPLACE

*/

VendorNameType vendorNameGet ()

raises (itut_x780::ApplicationError);

void vendorNameSet (

in VendorNameType vendorName)

raises (itut_x780::ApplicationError);

/**

userDefinedState GET, REPLACE

*/

UserDefinedStateType userDefinedStateGet ()

raises (itut_x780::ApplicationError);

void userDefinedStateSet (

in UserDefinedStateType userDefinedState)

raises (itut_x780::ApplicationError);

/**

locationName GET, REPLACE

*/

LocationNameType locationNameGet ()

raises (itut_x780::ApplicationError);

void locationNameSet (

in LocationNameType locationName)

raises (itut_x780::ApplicationError);

/**

managedBy GET, REPLACE, ADD, REMOVE – This contains the distinguished names of the ManagementNode managed objects that manage this managed object

*/

ManagedBySetType managedByGet ()

raises (itut_x780::ApplicationError);

void managedBySet (

in ManagedBySetType managedBy)

raises (itut_x780::ApplicationError,

ManagementNodeNotFound);

void managedByAdd (

in ManagedBySetType managedBy)

raises (itut_x780::ApplicationError,

ManagementNodeNotFound,

ManagementNodeDuplicate);

void managedByRemove (

in ManagedBySetType managedBy)

raises (itut_x780::ApplicationError,

ManagementNodeNotFound);

/**

List notifications

*/

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, attributeValueChange,

AttributeValueChangeNotificationPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, communicationsAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, environmentalAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, equipmentAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, objectCreation,

CreateDeleteNotificationsPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, objectDeletion,

CreateDeleteNotificationsPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, processingErrorAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, qualityOfServiceAlarm,

AlarmIRPSupportedPackage)

}; // interface G3ManagedElement

/**

Creation and Deletion for G3ManagedElement

*/

interface G3ManagedElementFactory : itut_x780::ManagedObjectFactory

{

G3ManagedElement create (

in NameBindingType nameBinding,

in itut_x780::ManagedObject superior,

in string name, // no auto-naming, cannot be null

in StringSetType packages,

in G3ManagedElementIdType g3ManagedElementId,

in DnPrefixType dnPrefix,

in ManagedElementTypeType managedElementType,

in UserLabelType userLabel,

in VendorNameType vendorName,

in UserDefinedStateType userDefinedState,

in LocationNameType locationName,

in ManagedBySetType managedBy)

raises (itut_x780::ApplicationError,

itut_x780::CreateError);

}; // interface G3ManagedElementFactory

/**

15.7. MEContext Managed Object

*/

/**

This valuetype is used to retrieve all attributes

*/

valuetype MEContextValueType : itut_x780::ManagedObjectValueType

{

public MeContextIdType meContextId;

// GET

public DnPrefixType dnPrefix;

// GET

}; // valuetype MEContextValueType

interface MEContext : itut_x780::ManagedObject

{

/**

meContextId GET

*/

MeContextIdType meContextIdGet ()

raises (itut_x780::ApplicationError);

/**

dnPrefix GET

*/

DnPrefixType dnPrefixGet ()

raises (itut_x780::ApplicationError);

/**

List notifications

*/

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, attributeValueChange,

AttributeValueChangeNotificationPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, communicationsAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, environmentalAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, equipmentAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, objectCreation,

CreateDeleteNotificationsPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, objectDeletion,

CreateDeleteNotificationsPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, processingErrorAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, qualityOfServiceAlarm,

AlarmIRPSupportedPackage)

}; // interface MEContext

/**

Creation and Deletion for MEContext

*/

interface MEContextFactory : itut_x780::ManagedObjectFactory

{

MEContext create (

in NameBindingType nameBinding,

in itut_x780::ManagedObject superior,

in string name, // no auto-naming, cannot be null

in StringSetType packages,

in G3SubNetworkIdType g3SubNetworkId,

in DnPrefixType dnPrefix)

raises (itut_x780::ApplicationError,

itut_x780::CreateError);

}; // interface MEContextFactory

/**

15.8. ManagementNode Managed Object

*/

/**

This valuetype is used to retrieve all attributes

*/

valuetype ManagementNodeValueType : itut_x780::ManagedObjectValueType

{

public ManagementNodeIdType managementNodeId;

// GET

public UserLabelType userLabel;

// GET, REPLACE

public VendorNameType vendorName;

// GET, REPLACE

public UserDefinedStateType userDefinedState;

// GET, REPLACE

public LocationNameType locationName;

// GET, REPLACE

public ManagesSetType manages;

// GET, REPLACE, ADD, REMOVE

}; // valuetype ManagementNodeValueType

interface ManagementNode : itut_x780::ManagedObject

{

/**

managementNodeId GET

*/

ManagementNodeIdType managementNodeIdGet ()

raises (itut_x780::ApplicationError);

/**

userLabel GET, REPLACE

*/

UserLabelType userLabelGet ()

raises (itut_x780::ApplicationError);

void userLabelSet (

in UserLabelType userLabel)

raises (itut_x780::ApplicationError);

/**

vendorName GET, REPLACE

*/

VendorNameType vendorNameGet ()

raises (itut_x780::ApplicationError);

void vendorNameSet (

in VendorNameType vendorName)

raises (itut_x780::ApplicationError);

/**

userDefinedState GET, REPLACE

*/

UserDefinedStateType userDefinedStateGet ()

raises (itut_x780::ApplicationError);

void userDefinedStateSet (

in UserDefinedStateType userDefinedState)

raises (itut_x780::ApplicationError);

/**

locationName GET, REPLACE

*/

LocationNameType locationNameGet ()

raises (itut_x780::ApplicationError);

void locationNameSet (

in LocationNameType locationName)

raises (itut_x780::ApplicationError);

/**

manages GET, REPLACE, ADD, REMOVE – This contains the distinguished names of the G3ManagedElement managed objects that are managed by this managed object

*/

ManagesSetType managesGet ()

raises (itut_x780::ApplicationError);

void managesSet (

in ManagesSetType manages)

raises (itut_x780::ApplicationError,

G3ManagedElementNotFound);

void managesAdd (

in ManagesSetType manages)

raises (itut_x780::ApplicationError,

G3ManagedElementNotFound,

G3ManagedElementDuplicate);

void managesRemove (

in ManagesSetType manages)

raises (itut_x780::ApplicationError,

G3ManagedElementNotFound);

/**

List notifications

*/

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, attributeValueChange,

AttributeValueChangeNotificationPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, communicationsAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, environmentalAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, equipmentAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, objectCreation,

CreateDeleteNotificationsPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, objectDeletion,

CreateDeleteNotificationsPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, processingErrorAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, qualityOfServiceAlarm,

AlarmIRPSupportedPackage)

}; // interface ManagementNode

/**

Creation and Deletion for ManagementNode

*/

interface ManagementNodeFactory : itut_x780::ManagedObjectFactory

{

ManagementNode create (

in NameBindingType nameBinding,

in itut_x780::ManagedObject superior,

in string name, // no auto-naming, cannot be null

in StringSetType packages,

in ManagementNodeIdType managementNodeId,

in UserLabelType userLabel,

in VendorNameType vendorName,

in UserDefinedStateType userDefinedState,

in LocationNameType locationName,

in ManagesSetType manages)

raises (itut_x780::ApplicationError,

itut_x780::CreateError);

}; // interface ManagementNodeFactory

/**

15.9. ManagedFunction Managed Object (Abstract Only)

*/

/**

This valuetype is used to retrieve all attributes

*/

valuetype ManagedFunctionValueType : itut_x780::ManagedObjectValueType

{

public UserLabelType userLabel;

// GET, REPLACE

}; // valuetype ManagedFunctionValueType

interface ManagedFunction : itut_x780::ManagedObject

{

/**

userLabel GET, REPLACE

*/

UserLabelType userLabelGet ()

raises (itut_x780::ApplicationError);

void userLabelSet (

in UserLabelType userLabel)

raises (itut_x780::ApplicationError);

}; // interface ManagedFunction

/**

15.10. IRPAgent Managed Object

*/

/**

This valuetype is used to retrieve all attributes

*/

valuetype IRPAgentValueType : itut_x780::ManagedObjectValueType

{

public IrpAgentIdType irpAgentId;

// GET

public SystemDNType systemDN;

// GET

}; // valuetype IRPAgentValueType

interface IRPAgent : itut_x780::ManagedObject

{

/**

irpAgentId GET

*/

IrpAgentIdType irpAgentIdGet ()

raises (itut_x780::ApplicationError);

/**

systemDN GET

*/

SystemDNType systemDNGet ()

raises (itut_x780::ApplicationError);

/**

List notifications

*/

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, attributeValueChange,

AttributeValueChangeNotificationPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, communicationsAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, environmentalAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, equipmentAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, objectCreation,

CreateDeleteNotificationsPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, objectDeletion,

CreateDeleteNotificationsPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, processingErrorAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, qualityOfServiceAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(AlarmIRPSystem::Notifications, notifyAlarmListRebuilt,

AlarmIRPSupportedPackage)

}; // interface IRPAgent

/**

Creation and Deletion for IRPAgent

*/

interface IRPAgentFactory : itut_x780::ManagedObjectFactory

{

IRPAgent create (

in NameBindingType nameBinding,

in itut_x780::ManagedObject superior,

in string name, // no auto-naming, cannot be null

in StringSetType packages,

in IrpAgentIdType irpAgentId,

in SystemDNType systemDN)

raises (itut_x780::ApplicationError,

itut_x780::CreateError);

}; // interface IRPAgentFactory

/**

15.11. NotificationIRP Managed Object

*/

/**

This valuetype is used to retrieve all attributes

*/

valuetype NotificationIRPValueType : itut_x780::ManagedObjectValueType

{

public NotificationIRPIdType notificationIRPId;

// GET

public IrpVersionType irpVersion;

// GET

}; // valuetype NotificationIRPValueType

interface NotificationIRP : itut_x780::ManagedObject

{

/**

notificationIRPId GET

*/

NotificationIRPIdType notificationIRPIdGet ()

raises (itut_x780::ApplicationError);

/**

irpVersion GET

*/

IrpVersionType irpVersionGet ()

raises (itut_x780::ApplicationError);

}; // interface NotificationIRP

/**

Creation and Deletion for NotificationIRP

*/

interface NotificationIRPFactory : itut_x780::ManagedObjectFactory

{

NotificationIRP create (

in NameBindingType nameBinding,

in itut_x780::ManagedObject superior,

in string name, // no auto-naming, cannot be null

in StringSetType packages,

in NotificationIRPIdType notificationIRPId,

in IrpVersionType irpVersion)

raises (itut_x780::ApplicationError,

itut_x780::CreateError);

}; // interface NotificationIRPFactory

/**

15.12. AlarmIRP Managed Object

*/

/**

This valuetype is used to retrieve all attributes

*/

valuetype AlarmIRPValueType : itut_x780::ManagedObjectValueType

{

public AlarmIRPIdType alarmIRPId;

// GET

public IrpVersionType irpVersion;

// GET

}; // valuetype AlarmIRPValueType

interface AlarmIRP : itut_x780::ManagedObject

{

/**

alarmIRPId GET

*/

AlarmIRPIdType alarmIRPIdGet ()

raises (itut_x780::ApplicationError);

/**

irpVersion GET

*/

IrpVersionType irpVersionGet ()

raises (itut_x780::ApplicationError);

}; // interface AlarmIRP

/**

Creation and Deletion for AlarmIRP

*/

interface AlarmIRPFactory : itut_x780::ManagedObjectFactory

{

AlarmIRP create (

in NameBindingType nameBinding,

in itut_x780::ManagedObject superior,

in string name, // no auto-naming, cannot be null

in StringSetType packages,

in AlarmIRPIdType alarmIRPId,

in IrpVersionType irpVersion)

raises (itut_x780::ApplicationError,

itut_x780::CreateError);

}; // interface AlarmIRPFactory

/**

15.13. BasicCmIRP Managed Object

*/

/**

This valuetype is used to retrieve all attributes

*/

valuetype BasicCmIRPValueType : itut_x780::ManagedObjectValueType

{

public BasicCmIRPIdType basicCmIRPId;

// GET

public IrpVersionType irpVersion;

// GET

}; // valuetype BasicCmIRPValueType

interface BasicCmIRP : itut_x780::ManagedObject

{

/**

basicCmIRPId GET

*/

BasicCmIRPIdType basicCmIRPIdGet ()

raises (itut_x780::ApplicationError);

/**

irpVersion GET

*/

IrpVersionType irpVersionGet ()

raises (itut_x780::ApplicationError);

}; // interface BasicCmIRP

/**

Creation and Deletion for BasicCmIRP

*/

interface BasicCmIRPFactory : itut_x780::ManagedObjectFactory

{

BasicCmIRP create (

in NameBindingType nameBinding,

in itut_x780::ManagedObject superior,

in string name, // no auto-naming, cannot be null

in StringSetType packages,

in BasicCmIRPIdType basicCmIRPId,

in IrpVersionType irpVersion)

raises (itut_x780::ApplicationError,

itut_x780::CreateError);

}; // interface BasicCmIRPFactory

/**

15.14. Name Binding

*/

module NameBindings

{

/**

This name binding is used to name the AlarmIRP object to an IRPAgent object.

*/

module AlarmIRP_IRPAgent

{

const string superiorClass =

"BasicCmCorbaObjects::IRPAgent";

const boolean superiorSubclassesAllowed = TRUE;

const string subordinateClass =

"BasicCmCorbaObjects::AlarmIRP";

const boolean subordinateSubclassesAllowed = TRUE;

const boolean managerCreatesAllowed = FALSE;

const DeletePolicyType deletePolicy = itu_x780::notDeletable;

const string kind = "AlarmIRP";

}; // module AlarmIRP_IRPAgent

/**

This name binding is used to name the BasicCmIRP object to an IRPAgent object.

*/

module BasicCmIRP_IRPAgent

{

const string superiorClass =

"BasicCmCorbaObjects::IRPAgent";

const boolean superiorSubclassesAllowed = TRUE;

const string subordinateClass =

"BasicCmCorbaObjects::BasicCmIRP";

const boolean subordinateSubclassesAllowed = TRUE;

const boolean managerCreatesAllowed = FALSE;

const DeletePolicyType deletePolicy = itu_x780::notDeletable;

const string kind = "BasicCmIRP";

}; // module BasicCmIRP_IRPAgent

/**

This name binding is used to name the G3ManagedElement object to a G3SubNetwork object.

*/

module G3ManagedElement_G3SubNetwork

{

const string superiorClass =

"BasicCmCorbaObjects::G3SubNetwork";

const boolean superiorSubclassesAllowed = TRUE;

const string subordinateClass =

"BasicCmCorbaObjects::G3ManagedElement";

const boolean subordinateSubclassesAllowed = TRUE;

const boolean managerCreatesAllowed = TRUE;

const DeletePolicyType deletePolicy =

itu_x780::deleteOnlyIfNoContainedObjects;

const string kind = "G3ManagedElement";

}; // module G3ManagedElement_G3SubNetwork

/**

This name binding is used to name the G3ManagedElement object to a MEContext object.

*/

module G3ManagedElement_MEContext

{

const string superiorClass =

"BasicCmCorbaObjects::MEContext";

const boolean superiorSubclassesAllowed = TRUE;

const string subordinateClass =

"BasicCmCorbaObjects::G3ManagedElement";

const boolean subordinateSubclassesAllowed = TRUE;

const boolean managerCreatesAllowed = TRUE;

const DeletePolicyType deletePolicy =

itu_x780::deleteOnlyIfNoContainedObjects;

const string kind = "G3ManagedElement";

}; // module G3ManagedElement_MEContext

/**

This name binding is used to name the G3SubNetwork object to a G3SubNetwork object.

*/

module G3SubNetwork_G3SubNetwork

{

const string superiorClass =

"BasicCmCorbaObjects::G3SubNetwork";

const boolean superiorSubclassesAllowed = TRUE;

const string subordinateClass =

"BasicCmCorbaObjects::G3SubNetwork";

const boolean subordinateSubclassesAllowed = TRUE;

const boolean managerCreatesAllowed = FALSE;

const DeletePolicyType deletePolicy = itu_x780::notDeletable;

const string kind = "G3SubNetwork";

}; // module G3SubNetwork_G3SubNetwork

/**

This name binding is used to name the IRPAgent object to a G3SubNetwork object.

*/

module IRPAgent_G3SubNetwork

{

const string superiorClass =

"BasicCmCorbaObjects::G3SubNetwork";

const boolean superiorSubclassesAllowed = TRUE;

const string subordinateClass =

"BasicCmCorbaObjects::IRPAgent";

const boolean subordinateSubclassesAllowed = TRUE;

const boolean managerCreatesAllowed = FALSE;

const DeletePolicyType deletePolicy = itu_x780::notDeletable;

const string kind = "IRPAgent";

}; // module IRPAgent_G3SubNetwork

/**

This name binding is used to name the IRPAgent object to a ManagementNode object.

*/

module IRPAgent_ManagementNode

{

const string superiorClass =

"BasicCmCorbaObjects::ManagementNode";

const boolean superiorSubclassesAllowed = TRUE;

const string subordinateClass =

"BasicCmCorbaObjects::IRPAgent";

const boolean subordinateSubclassesAllowed = TRUE;

const boolean managerCreatesAllowed = FALSE;

const DeletePolicyType deletePolicy = itu_x780::notDeletable;

const string kind = "IRPAgent";

}; // module IRPAgent_ManagementNode

/**

This name binding is used to name the IRPAgent object to a G3ManagedElement object.

*/

module IRPAgent_G3ManagedElement

{

const string superiorClass =

"BasicCmCorbaObjects::G3ManagedElement";

const boolean superiorSubclassesAllowed = TRUE;

const string subordinateClass =

"BasicCmCorbaObjects::IRPAgent";

const boolean subordinateSubclassesAllowed = TRUE;

const boolean managerCreatesAllowed = FALSE;

const DeletePolicyType deletePolicy = itu_x780::notDeletable;

const string kind = "IRPAgent";

}; // module IRPAgent_G3ManagedElement

/**

This name binding is used to name the ManagementNode object to a G3SubNetwork object.

*/

module ManagementNode_G3SubNetwork

{

const string superiorClass =

"BasicCmCorbaObjects::G3SubNetwork";

const boolean superiorSubclassesAllowed = TRUE;

const string subordinateClass =

"BasicCmCorbaObjects::ManagementNode";

const boolean subordinateSubclassesAllowed = TRUE;

const boolean managerCreatesAllowed = TRUE;

const DeletePolicyType deletePolicy =

itu_x780::deleteOnlyIfNoContainedObjects;

const string kind = "ManagementNode";

}; // module ManagementNode_G3SubNetwork

/**

This name binding is used to name the MEContext object to a G3SubNetwork object.

*/

module MEContext_G3SubNetwork

{

const string superiorClass =

"BasicCmCorbaObjects::G3SubNetwork";

const boolean superiorSubclassesAllowed = TRUE;

const string subordinateClass =

"BasicCmCorbaObjects::MEContext";

const boolean subordinateSubclassesAllowed = TRUE;

const boolean managerCreatesAllowed = TRUE;

const DeletePolicyType deletePolicy =

itu_x780::deleteOnlyIfNoContainedObjects;

const string kind = "MEContext";

}; // module MEContext_G3SubNetwork

/**

This name binding is used to name the NotificationIRP object to an IRPAgent object.

*/

module NotificationIRP_IRPAgent

{

const string superiorClass =

"BasicCmCorbaObjects::IRPAgent";

const boolean superiorSubclassesAllowed = TRUE;

const string subordinateClass =

"BasicCmCorbaObjects::NotificationIRP";

const boolean subordinateSubclassesAllowed = TRUE;

const boolean managerCreatesAllowed = FALSE;

const DeletePolicyType deletePolicy = itu_x780::notDeletable;

const string kind = "NotificationIRP";

}; // module NotificationIRP_IRPAgent

}; // module NameBindings

}; // module BasicCmCorbaObjects

#endif

16. BASIC CM BasicCmUMTSCorbaObjects CORBA IDL

/* ## Module: BasicCmUMTSCorbaObjects

This module defines IDL for 3GPP SA5 defined UMTS NRM managed objects. It is only to be used when the instantiation of UMTS NRM CORBA objects is needed. The instantiation of UMTS NRM CORBA objects is not required in the Basic CM model.

===

*/

#ifndef BasicCmUMTSCorbaObjects_idl

#define BasicCmUMTSCorbaObjects_idl

/**

This IDL code is intended to be stored in a file named

"BasicCmUMTSCorbaObjects.idl" located in the search path used by the IDL

compiler on your system

*/

#include "BasicCmCorbaObjects.idl"

#include "BasicCmIRPSystem.idl"

#include "itut_x780.idl"

#pragma prefix "3gppsa5.org"

module BasicCmUMTSCorbaObjects

{

/**

16.1. Imports

*/

/**

Types imported from Recommendation X.780

*/

typedef itut_x780::NameBindingType NameBindingType;

typedef itut_x780::StringSetType StringSetType;

/**

Types imported from BasicCmIRPSystem.idl

*/

typedef BasicCmIRPSystem::MOReference MOReference;

typedef BasicCmIRPSystem::MOReferenceSet MOReferenceSet;

/**

Types imported from BasicCmCorbaObjects.idl

*/

typedef BasicCmCorbaObjects::UserLabelType UserLabelType;

/**

16.2. Forward Declarations

*/

/**

Interface Forward Declarations

*/

interface AucFunction;

interface AucFunctionFactory;

interface BgFunction;

interface BgFunctionFactory;

interface EirFunction;

interface EirFunctionFactory;

interface GgsnFunction;

interface GgsnFunctionFactory;

interface GmscFunction;

interface GmscFunctionFactory;

interface HlrFunction;

interface HlrFunctionFactory;

interface IubLink;

interface IubLinkFactory;

interface MscFunction;

interface MscFunctionFactory;

interface NodeBFunction;

interface NodeBFunctionFactory;

interface RNCFunction;

interface RNCFunctionFactory;

interface SgsnFunction;

interface SgsnFunctionFactory;

interface SmsGmscFunction;

interface SmsGmscFunctionFactory;

interface SmsIwmscFunction;

interface SmsIwmscFunctionFactory;

interface UtranCell;

interface UtranCellFactory;

interface VlrFunction;

interface VlrFunctionFactory;

/**

valuetype Forward Declarations

*/

valuetype AucFunctionValueType;

valuetype BgFunctionValueType;

valuetype EirFunctionValueType;

valuetype GgsnFunctionValueType;

valuetype GmscFunctionValueType;

valuetype HlrFunctionValueType;

valuetype IubLinkValueType;

valuetype MscFunctionValueType;

valuetype NodeBFunctionValueType;

valuetype RNCFunctionValueType;

valuetype SgsnFunctionValueType;

valuetype SmsGmscFunctionValueType;

valuetype SmsIwmscFunctionValueType;

valuetype UtranCellValueType;

valuetype VlrFunctionValueType;

/**

16.3. Structures And Typedefs

*/

/**

MOReferenceSetOpt is an optional type. If the discriminator is true the value is present, otherwise the value is null.

*/

union MOReferenceSetOpt switch (boolean)

{

case TRUE:

MOReferenceSet value;

};

/**

MOReferenceOpt is an optional type. If the discriminator is true the value is present, otherwise the value is null.

*/

union MOReferenceOpt switch (boolean)

{

case TRUE:

MOReference value;

};

typedef string AucFunctionIdType;

typedef string BgFunctionIdType;

typedef string EirFunctionIdType;

typedef string GgsnFunctionIdType;

typedef string GmscFunctionIdType;

typedef string HlrFunctionIdType;

typedef string IubLinkIdType;

typedef MOReference IubLinkNodeBFunctionType;

typedef MOReferenceSetOpt IubLinkUtranCellSetType;

typedef string MscFunctionIdType;

typedef string NodeBFunctionIdType;

typedef MOReference NodeBFunctionIubLinkType;

typedef MOReferenceSetOpt NodeBFunctionUtranCellSetType;

typedef string RncFunctionIdType;

typedef string SgsnFunctionIdType;

typedef string SmsGmscFunctionIdType;

typedef string SmsIwmscFunctionIdType;

typedef string UtranCellIdType;

typedef MOReferenceOpt UtranCellIubLinkType;

typedef MOReferenceOpt UtranCellNodeBFunctionType;

typedef string VlrFunctionIdType;

/**

Constants for the conditional packages. These will appear in the packages attribute

*/

const string AttributeValueChangeNotificationPackage =

"AttributeValueChangeNotificationPackage";

const string CreateDeleteNotificationsPackage =

"CreateDeleteNotificationsPackage";

const string AlarmIRPSupportedPackage = "AlarmIRPSupportedPackage";

const string AssociatedWith1Package = "AssociatedWith1Package";

const string AssociatedWith2Package = "AssociatedWith2Package";

/**

16.4. Exceptions

*/

/**

Used when an operation requires an IubLink and the specified item does not match a valid IubLink managed object instance

*/

exception IubLinkNotFound

{

MOReference items;

};

/**

Used when an operation requires a UtranCell and the specified item(s) do not match a valid UtranCell managed object instance

*/

exception UtranCellNotFound

{

MOReferenceSet items;

};

/**

Used when an operation requires a NodeBFunction and the specified item does not match a valid NodeBFunction managed object instance

*/

exception NodeBFunctionNotFound

{

MOReference items;

};

/**

Used when asked to add a UtranCell to a set already containing the specified UtranCell(s)

*/

exception UtranCellDuplicate

{

MOReferenceSet items;

};

/**

Either AssociatedWith1Package or AssociatedWith2Package must be supported for a particular UtranCell (and possibly both). If AssociatedWith1Package is supported for a particular UtranCell then it must also be supported in its associated IubLink. If AssociatedWith2Package is supported for a particular UtranCell then it must also be supported in its associated NodeBFunction. Note that different UtranCells may support different arrangements of the AssociatedWith1Package and AssociatedWith2Package

*/

exception NOAssociatedWith1Package {};

exception NOAssociatedWith2Package {};

/**

16.5. RNCFunction Managed Object

*/

/**

This valuetype is used to retrieve all attributes

*/

valuetype RNCFunctionValueType :

BasicCmCorbaObjects::ManagedFunctionValueType

{

public RncFunctionIdType rncFunctionId;

// GET

}; // valuetype RNCFunctionValueType

interface RNCFunction : BasicCmCorbaObjects::ManagedFunction

{

/**

rncFunctionId GET

*/

RncFunctionIdType rncFunctionIdGet ()

raises (itut_x780::ApplicationError);

/**

List notifications

*/

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, attributeValueChange,

AttributeValueChangeNotificationPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, communicationsAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, environmentalAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, equipmentAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, objectCreation,

CreateDeleteNotificationsPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, objectDeletion,

CreateDeleteNotificationsPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, processingErrorAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, qualityOfServiceAlarm,

AlarmIRPSupportedPackage)

}; // interface RNCFunction

/**

Creation and Deletion for RNCFunction

*/

interface RNCFunctionFactory : itut_x780::ManagedObjectFactory

{

RNCFunction create (

in NameBindingType nameBinding,

in itut_x780::ManagedObject superior,

in string name, // no auto-naming, cannot be null

in StringSetType packages,

in RncFunctionIdType rncFunctionId,

/**

UserLabel imported from ManagedFunction

*/

in UserLabelType userLabel)

raises (itut_x780::ApplicationError,

itut_x780::CreateError);

}; // interface RNCFunctionFactory

/**

16.6. NodeBFunction Managed Object

*/

/**

This valuetype is used to retrieve all attributes

*/

valuetype NodeBFunctionValueType :

BasicCmCorbaObjects::ManagedFunctionValueType

{

public NodeBFunctionIdType nodeBFunctionId;

// GET

public NodeBFunctionIubLinkType nodeBFunctionIubLink;

// GET, REPLACE

public NodeBFunctionUtranCellSetType nodeBFunctionUtranCell;

// GET, REPLACE, ADD, REMOVE, AssociatedWith2Package

}; // valuetype NodeBFunctionValueType

interface NodeBFunction : BasicCmCorbaObjects::ManagedFunction

{

/**

nodeBFunctionId GET

*/

NodeBFunctionIdType nodeBFunctionIdGet ()

raises (itut_x780::ApplicationError);

/**

nodeBFunctionIubLink GET, REPLACE – This contains the distinguished name of the IubLink managed object that is associated with this managed object

*/

NodeBFunctionIubLinkType nodeBFunctionIubLinkGet ()

raises (itut_x780::ApplicationError);

void nodeBFunctionIubLinkSet (

in NodeBFunctionIubLinkType nodeBFunctionIubLink)

raises (itut_x780::ApplicationError,

IubLinkNotFound);

/**

nodeBFunctionUtranCell GET, REPLACE, ADD, REMOVE – This optionally contains the distinguished names of the UtranCell managed objects that are associated with this managed object

*/

NodeBFunctionUtranCellSetType nodeBFunctionUtranCellGet ()

raises (itut_x780::ApplicationError,

NOAssociatedWith2Package);

void nodeBFunctionUtranCellSet (

in NodeBFunctionUtranCellSetType nodeBFunctionUtranCell)

raises (itut_x780::ApplicationError,

UtranCellNotFound,

NOAssociatedWith2Package);

void nodeBFunctionUtranCellAdd (

in NodeBFunctionUtranCellSetType nodeBFunctionUtranCell)

raises (itut_x780::ApplicationError,

UtranCellNotFound,

UtranCellDuplicate,

NOAssociatedWith2Package);

void nodeBFunctionUtranCellRemove (

in NodeBFunctionUtranCellSetType nodeBFunctionUtranCell)

raises (itut_x780::ApplicationError,

UtranCellNotFound,

NOAssociatedWith2Package);

/**

List notifications

*/

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, attributeValueChange,

AttributeValueChangeNotificationPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, communicationsAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, environmentalAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, equipmentAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, objectCreation,

CreateDeleteNotificationsPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, objectDeletion,

CreateDeleteNotificationsPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, processingErrorAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, qualityOfServiceAlarm,

AlarmIRPSupportedPackage)

}; // interface NodeBFunction

/**

Creation and Deletion for NodeBFunction

*/

interface NodeBFunctionFactory : itut_x780::ManagedObjectFactory

{

NodeBFunction create (

in NameBindingType nameBinding,

in itut_x780::ManagedObject superior,

in string name, // no auto-naming, cannot be null

in StringSetType packages,

in NodeBFunctionIdType nodeBFunctionId,

/**

UserLabel imported from ManagedFunction

*/

in UserLabelType userLabel,

in NodeBFunctionIubLinkType nodeBFunctionIubLink,

in NodeBFunctionUtranCellSetType nodeBFunctionUtranCell)

raises (itut_x780::ApplicationError,

itut_x780::CreateError);

}; // interface NodeBFunctionFactory

/**

16.7. UtranCell Managed Object

*/

/**

This valuetype is used to retrieve all attributes

*/

valuetype UtranCellValueType :

BasicCmCorbaObjects::ManagedFunctionValueType

{

public UtranCellIdType utranCellId;

// GET

public UtranCellIubLinkType utranCellIubLink;

// GET, REPLACE, AssociatedWith1Package

public UtranCellNodeBFunctionType utranCellNodeBFunction;

// GET, REPLACE, AssociatedWith2Package

}; // valuetype UtranCellValueType

interface UtranCell : BasicCmCorbaObjects::ManagedFunction

{

/**

utranCellId GET

*/

UtranCellIdType utranCellIdGet ()

raises (itut_x780::ApplicationError);

/**

utranCellIubLink GET, REPLACE – This optionally contains the distinguished name of the IubLink managed object that is associated with this managed object

*/

UtranCellIubLinkType utranCellIubLinkGet ()

raises (itut_x780::ApplicationError,

NOAssociatedWith1Package);

void utranCellIubLinkSet (

in UtranCellIubLinkType utranCellIubLink)

raises (itut_x780::ApplicationError,

IubLinkNotFound,

NOAssociatedWith1Package);

/**

utranCellNodeBFunction GET, REPLACE – This optionally contains the distinguished name of the NodeBFunction managed object that is associated with this managed object

*/

UtranCellNodeBFunctionType utranCellNodeBFunctionGet ()

raises (itut_x780::ApplicationError,

NOAssociatedWith2Package);

void utranCellNodeBFunctionSet (

in UtranCellNodeBFunctionType utranCellNodeBFunction)

raises (itut_x780::ApplicationError,

NodeBFunctionNotFound,

NOAssociatedWith2Package);

/**

List notifications

*/

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, attributeValueChange,

AttributeValueChangeNotificationPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, communicationsAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, environmentalAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, equipmentAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, objectCreation,

CreateDeleteNotificationsPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, objectDeletion,

CreateDeleteNotificationsPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, processingErrorAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, qualityOfServiceAlarm,

AlarmIRPSupportedPackage)

}; // interface UtranCell

/**

Creation and Deletion for UtranCell

*/

interface UtranCellFactory : itut_x780::ManagedObjectFactory

{

UtranCell create (

in NameBindingType nameBinding,

in itut_x780::ManagedObject superior,

in string name, // no auto-naming, cannot be null

/**

Must at least have AssociatedWith1Package or AssociatedWith1Package

*/

in StringSetType packages,

in UtranCellIdType utranCellId,

/**

UserLabel imported from ManagedFunction

*/

in UserLabelType userLabel,

in UtranCellIubLinkType utranCellIubLink,

in UtranCellNodeBFunctionType utranCellNodeBFunction)

raises (itut_x780::ApplicationError,

itut_x780::CreateError);

}; // interface UtranCellFactory

/**

16.8. IubLink Managed Object

*/

/**

This valuetype is used to retrieve all attributes

*/

valuetype IubLinkValueType :

BasicCmCorbaObjects::ManagedFunctionValueType

{

public IubLinkIdType iubLinkId;

// GET

public IubLinkUtranCellSetType iubLinkUtranCell;

// GET, REPLACE, ADD, REMOVE, AssociatedWith1Package

public IubLinkNodeBFunctionType iubLinkNodeBFunction;

// GET, REPLACE

}; // valuetype IubLinkValueType

interface IubLink : BasicCmCorbaObjects::ManagedFunction

{

/**

iubLinkId GET

*/

IubLinkIdType iubLinkIdGet ()

raises (itut_x780::ApplicationError);

/**

iubLinkUtranCell GET, REPLACE, ADD, REMOVE – This optionally contains the distinguished names of the UtranCell managed objects that are associated with this managed object

*/

IubLinkUtranCellSetType iubLinkUtranCellGet ()

raises (itut_x780::ApplicationError,

NOAssociatedWith1Package);

void iubLinkUtranCellSet (

in IubLinkUtranCellSetType iubLinkUtranCell)

raises (itut_x780::ApplicationError,

UtranCellNotFound,

NOAssociatedWith1Package);

void iubLinkUtranCellAdd (

in IubLinkUtranCellSetType iubLinkUtranCell)

raises (itut_x780::ApplicationError,

UtranCellNotFound,

UtranCellDuplicate,

NOAssociatedWith1Package);

void iubLinkUtranCellRemove (

in IubLinkUtranCellSetType iubLinkUtranCell)

raises (itut_x780::ApplicationError,

UtranCellNotFound,

NOAssociatedWith1Package);

/**

iubLinkNodeBFunction GET, REPLACE – This contains the distinguished name of the NodeBFunction managed object that is associated with this managed object

*/

IubLinkNodeBFunctionType iubLinkNodeBFunctionGet ()

raises (itut_x780::ApplicationError);

void iubLinkNodeBFunctionSet (

in IubLinkNodeBFunctionType iubLinkNodeBFunction)

raises (itut_x780::ApplicationError,

NodeBFunctionNotFound);

/**

List notifications

*/

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, attributeValueChange,

AttributeValueChangeNotificationPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, communicationsAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, environmentalAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, equipmentAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, objectCreation,

CreateDeleteNotificationsPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, objectDeletion,

CreateDeleteNotificationsPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, processingErrorAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, qualityOfServiceAlarm,

AlarmIRPSupportedPackage)

}; // interface IubLink

/**

Creation and Deletion for IubLink

*/

interface IubLinkFactory : itut_x780::ManagedObjectFactory

{

IubLink create (

in NameBindingType nameBinding,

in itut_x780::ManagedObject superior,

in string name, // no auto-naming, cannot be null

in StringSetType packages,

in IubLinkIdType iubLinkId,

/**

UserLabel imported from ManagedFunction

*/

in UserLabelType userLabel,

in IubLinkUtranCellSetType iubLinkUtranCell,

in IubLinkNodeBFunctionType iubLinkNodeBFunction)

raises (itut_x780::ApplicationError,

itut_x780::CreateError);

}; // interface IubLinkFactory

/**

16.9. MscFunction Managed Object

*/

/**

This valuetype is used to retrieve all attributes

*/

valuetype MscFunctionValueType :

BasicCmCorbaObjects::ManagedFunctionValueType

{

public MscFunctionIdType mscFunctionId;

// GET

}; // valuetype MscFunctionValueType

interface MscFunction : BasicCmCorbaObjects::ManagedFunction

{

/**

mscFunctionId GET

*/

MscFunctionIdType mscFunctionIdGet ()

raises (itut_x780::ApplicationError);

/**

List notifications

*/

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, attributeValueChange,

AttributeValueChangeNotificationPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, communicationsAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, environmentalAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, equipmentAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, objectCreation,

CreateDeleteNotificationsPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, objectDeletion,

CreateDeleteNotificationsPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, processingErrorAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, qualityOfServiceAlarm,

AlarmIRPSupportedPackage)

}; // interface MscFunction

/**

Creation and Deletion for MscFunction

*/

interface MscFunctionFactory : itut_x780::ManagedObjectFactory

{

MscFunction create (

in NameBindingType nameBinding,

in itut_x780::ManagedObject superior,

in string name, // no auto-naming, cannot be null

in StringSetType packages,

in MscFunctionIdType mscFunctionId,

/**

UserLabel imported from ManagedFunction

*/

in UserLabelType userLabel)

raises (itut_x780::ApplicationError,

itut_x780::CreateError);

}; // interface MscFunctionFactory

/**

16.10. HlrFunction Managed Object

*/

/**

This valuetype is used to retrieve all attributes

*/

valuetype HlrFunctionValueType :

BasicCmCorbaObjects::ManagedFunctionValueType

{

public HlrFunctionIdType hlrFunctionId;

// GET

}; // valuetype HlrFunctionValueType

interface HlrFunction : BasicCmCorbaObjects::ManagedFunction

{

/**

hlrFunctionId GET

*/

HlrFunctionIdType hlrFunctionIdGet ()

raises (itut_x780::ApplicationError);

/**

List notifications

*/

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, attributeValueChange,

AttributeValueChangeNotificationPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, communicationsAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, environmentalAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, equipmentAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, objectCreation,

CreateDeleteNotificationsPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, objectDeletion,

CreateDeleteNotificationsPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, processingErrorAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, qualityOfServiceAlarm,

AlarmIRPSupportedPackage)

}; // interface HlrFunction

/**

Creation and Deletion for HlrFunction

*/

interface HlrFunctionFactory : itut_x780::ManagedObjectFactory

{

HlrFunction create (

in NameBindingType nameBinding,

in itut_x780::ManagedObject superior,

in string name, // no auto-naming, cannot be null

in StringSetType packages,

in HlrFunctionIdType hlrFunctionId,

/**

UserLabel imported from ManagedFunction

*/

in UserLabelType userLabel)

raises (itut_x780::ApplicationError,

itut_x780::CreateError);

}; // interface HlrFunctionFactory

/**

16.11. VlrFunction Managed Object

*/

/**

This valuetype is used to retrieve all attributes

*/

valuetype VlrFunctionValueType :

BasicCmCorbaObjects::ManagedFunctionValueType

{

public VlrFunctionIdType vlrFunctionId;

// GET

}; // valuetype VlrFunctionValueType

interface VlrFunction : BasicCmCorbaObjects::ManagedFunction

{

/**

vlrFunctionId GET

*/

VlrFunctionIdType vlrFunctionIdGet ()

raises (itut_x780::ApplicationError);

/**

List notifications

*/

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, attributeValueChange,

AttributeValueChangeNotificationPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, communicationsAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, environmentalAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, equipmentAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, objectCreation,

CreateDeleteNotificationsPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, objectDeletion,

CreateDeleteNotificationsPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, processingErrorAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, qualityOfServiceAlarm,

AlarmIRPSupportedPackage)

}; // interface VlrFunction

/**

Creation and Deletion for VlrFunction

*/

interface VlrFunctionFactory : itut_x780::ManagedObjectFactory

{

VlrFunction create (

in NameBindingType nameBinding,

in itut_x780::ManagedObject superior,

in string name, // no auto-naming, cannot be null

in StringSetType packages,

in VlrFunctionIdType vlrFunctionId,

/**

UserLabel imported from ManagedFunction

*/

in UserLabelType userLabel)

raises (itut_x780::ApplicationError,

itut_x780::CreateError);

}; // interface VlrFunctionFactory

/**

16.12. AucFunction Managed Object

*/

/**

This valuetype is used to retrieve all attributes

*/

valuetype AucFunctionValueType :

BasicCmCorbaObjects::ManagedFunctionValueType

{

public AucFunctionIdType aucFunctionId;

// GET

}; // valuetype AucFunctionValueType

interface AucFunction : BasicCmCorbaObjects::ManagedFunction

{

/**

aucFunctionId GET

*/

AucFunctionIdType aucFunctionIdGet ()

raises (itut_x780::ApplicationError);

/**

List notifications

*/

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, attributeValueChange,

AttributeValueChangeNotificationPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, communicationsAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, environmentalAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, equipmentAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, objectCreation,

CreateDeleteNotificationsPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, objectDeletion,

CreateDeleteNotificationsPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, processingErrorAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, qualityOfServiceAlarm,

AlarmIRPSupportedPackage)

}; // interface AucFunction

/**

Creation and Deletion for AucFunction

*/

interface AucFunctionFactory : itut_x780::ManagedObjectFactory

{

AucFunction create (

in NameBindingType nameBinding,

in itut_x780::ManagedObject superior,

in string name, // no auto-naming, cannot be null

in StringSetType packages,

in AucFunctionIdType aucFunctionId,

/**

UserLabel imported from ManagedFunction

*/

in UserLabelType userLabel)

raises (itut_x780::ApplicationError,

itut_x780::CreateError);

}; // interface AucFunctionFactory

/**

16.13. EirFunction Managed Object

*/

/**

This valuetype is used to retrieve all attributes

*/

valuetype EirFunctionValueType :

BasicCmCorbaObjects::ManagedFunctionValueType

{

public EirFunctionIdType eirFunctionId;

// GET

}; // valuetype EirFunctionValueType

interface EirFunction : BasicCmCorbaObjects::ManagedFunction

{

/**

eirFunctionId GET

*/

EirFunctionIdType eirFunctionIdGet ()

raises (itut_x780::ApplicationError);

/**

List notifications

*/

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, attributeValueChange,

AttributeValueChangeNotificationPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, communicationsAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, environmentalAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, equipmentAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, objectCreation,

CreateDeleteNotificationsPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, objectDeletion,

CreateDeleteNotificationsPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, processingErrorAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, qualityOfServiceAlarm,

AlarmIRPSupportedPackage)

}; // interface EirFunction

/**

Creation and Deletion for EirFunction

*/

interface EirFunctionFactory : itut_x780::ManagedObjectFactory

{

EirFunction create (

in NameBindingType nameBinding,

in itut_x780::ManagedObject superior,

in string name, // no auto-naming, cannot be null

in StringSetType packages,

in EirFunctionIdType eirFunctionId,

/**

UserLabel imported from ManagedFunction

*/

in UserLabelType userLabel)

raises (itut_x780::ApplicationError,

itut_x780::CreateError);

}; // interface EirFunctionFactory

/**

16.14. SmsIwmscFunction Managed Object

*/

/**

This valuetype is used to retrieve all attributes

*/

valuetype SmsIwmscFunctionValueType :

BasicCmCorbaObjects::ManagedFunctionValueType

{

public SmsIwmscFunctionIdType smsIwmscFunctionId;

// GET

}; // valuetype SmsIwmscFunctionValueType

interface SmsIwmscFunction : BasicCmCorbaObjects::ManagedFunction

{

/**

smsIwmscFunctionId GET

*/

SmsIwmscFunctionIdType smsIwmscFunctionIdGet ()

raises (itut_x780::ApplicationError);

/**

List notifications

*/

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, attributeValueChange,

AttributeValueChangeNotificationPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, communicationsAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, environmentalAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, equipmentAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, objectCreation,

CreateDeleteNotificationsPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, objectDeletion,

CreateDeleteNotificationsPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, processingErrorAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, qualityOfServiceAlarm,

AlarmIRPSupportedPackage)

}; // interface SmsIwmscFunction

/**

Creation and Deletion for SmsIwmscFunction

*/

interface SmsIwmscFunctionFactory : itut_x780::ManagedObjectFactory

{

SmsIwmscFunction create (

in NameBindingType nameBinding,

in itut_x780::ManagedObject superior,

in string name, // no auto-naming, cannot be null

in StringSetType packages,

in SmsIwmscFunctionIdType smsIwmscFunctionId,

/**

UserLabel imported from ManagedFunction

*/

in UserLabelType userLabel)

raises (itut_x780::ApplicationError,

itut_x780::CreateError);

}; // interface SmsIwmscFunctionFactory

/**

16.15. SmsGmscFunction Managed Object

*/

/**

This valuetype is used to retrieve all attributes

*/

valuetype SmsGmscFunctionValueType :

BasicCmCorbaObjects::ManagedFunctionValueType

{

public SmsGmscFunctionIdType smsGmscFunctionId;

// GET

}; // valuetype SmsGmscFunctionValueType

interface SmsGmscFunction : BasicCmCorbaObjects::ManagedFunction

{

/**

smsGmscFunctionId GET

*/

SmsGmscFunctionIdType smsGmscFunctionIdGet ()

raises (itut_x780::ApplicationError);

/**

List notifications

*/

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, attributeValueChange,

AttributeValueChangeNotificationPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, communicationsAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, environmentalAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, equipmentAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, objectCreation,

CreateDeleteNotificationsPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, objectDeletion,

CreateDeleteNotificationsPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, processingErrorAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, qualityOfServiceAlarm,

AlarmIRPSupportedPackage)

}; // interface SmsGmscFunction

/**

Creation and Deletion for SmsGmscFunction

*/

interface SmsGmscFunctionFactory : itut_x780::ManagedObjectFactory

{

SmsGmscFunction create (

in NameBindingType nameBinding,

in itut_x780::ManagedObject superior,

in string name, // no auto-naming, cannot be null

in StringSetType packages,

in SmsGmscFunctionIdType smsGmscFunctionId,

/**

UserLabel imported from ManagedFunction

*/

in UserLabelType userLabel)

raises (itut_x780::ApplicationError,

itut_x780::CreateError);

}; // interface SmsGmscFunctionFactory

/**

16.16. GmscFunction Managed Object

*/

/**

This valuetype is used to retrieve all attributes

*/

valuetype GmscFunctionValueType :

BasicCmCorbaObjects::ManagedFunctionValueType

{

public GmscFunctionIdType gmscFunctionId;

// GET

}; // valuetype GmscFunctionValueType

interface GmscFunction : BasicCmCorbaObjects::ManagedFunction

{

/**

gmscFunctionId GET

*/

GmscFunctionIdType gmscFunctionIdGet ()

raises (itut_x780::ApplicationError);

/**

List notifications

*/

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, attributeValueChange,

AttributeValueChangeNotificationPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, communicationsAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, environmentalAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, equipmentAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, objectCreation,

CreateDeleteNotificationsPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, objectDeletion,

CreateDeleteNotificationsPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, processingErrorAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, qualityOfServiceAlarm,

AlarmIRPSupportedPackage)

}; // interface GmscFunction

/**

Creation and Deletion for GmscFunction

*/

interface GmscFunctionFactory : itut_x780::ManagedObjectFactory

{

GmscFunction create (

in NameBindingType nameBinding,

in itut_x780::ManagedObject superior,

in string name, // no auto-naming, cannot be null

in StringSetType packages,

in GmscFunctionIdType gmscFunctionId,

/**

UserLabel imported from ManagedFunction

*/

in UserLabelType userLabel)

raises (itut_x780::ApplicationError,

itut_x780::CreateError);

}; // interface GmscFunctionFactory

/**

16.17. SgsnFunction Managed Object

*/

/**

This valuetype is used to retrieve all attributes

*/

valuetype SgsnFunctionValueType :

BasicCmCorbaObjects::ManagedFunctionValueType

{

public SgsnFunctionIdType sgsnFunctionId;

// GET

}; // valuetype SgsnFunctionValueType

interface SgsnFunction : BasicCmCorbaObjects::ManagedFunction

{

/**

sgsnFunctionId GET

*/

SgsnFunctionIdType sgsnFunctionIdGet ()

raises (itut_x780::ApplicationError);

/**

List notifications

*/

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, attributeValueChange,

AttributeValueChangeNotificationPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, communicationsAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, environmentalAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, equipmentAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, objectCreation,

CreateDeleteNotificationsPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, objectDeletion,

CreateDeleteNotificationsPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, processingErrorAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, qualityOfServiceAlarm,

AlarmIRPSupportedPackage)

}; // interface SgsnFunction

/**

Creation and Deletion for SgsnFunction

*/

interface SgsnFunctionFactory : itut_x780::ManagedObjectFactory

{

SgsnFunction create (

in NameBindingType nameBinding,

in itut_x780::ManagedObject superior,

in string name, // no auto-naming, cannot be null

in StringSetType packages,

in SgsnFunctionIdType sgsnFunctionId,

/**

UserLabel imported from ManagedFunction

*/

in UserLabelType userLabel)

raises (itut_x780::ApplicationError,

itut_x780::CreateError);

}; // interface SgsnFunctionFactory

/**

16.18. GgsnFunction Managed Object

*/

/**

This valuetype is used to retrieve all attributes

*/

valuetype GgsnFunctionValueType :

BasicCmCorbaObjects::ManagedFunctionValueType

{

public GgsnFunctionIdType ggsnFunctionId;

// GET

}; // valuetype GgsnFunctionValueType

interface GgsnFunction : BasicCmCorbaObjects::ManagedFunction

{

/**

ggsnFunctionId GET

*/

GgsnFunctionIdType ggsnFunctionIdGet ()

raises (itut_x780::ApplicationError);

/**

List notifications

*/

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, attributeValueChange,

AttributeValueChangeNotificationPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, communicationsAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, environmentalAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, equipmentAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, objectCreation,

CreateDeleteNotificationsPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, objectDeletion,

CreateDeleteNotificationsPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, processingErrorAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, qualityOfServiceAlarm,

AlarmIRPSupportedPackage)

}; // interface GgsnFunction

/**

Creation and Deletion for GgsnFunction

*/

interface GgsnFunctionFactory : itut_x780::ManagedObjectFactory

{

GgsnFunction create (

in NameBindingType nameBinding,

in itut_x780::ManagedObject superior,

in string name, // no auto-naming, cannot be null

in StringSetType packages,

in GgsnFunctionIdType ggsnFunctionId,

/**

UserLabel imported from ManagedFunction

*/

in UserLabelType userLabel)

raises (itut_x780::ApplicationError,

itut_x780::CreateError);

}; // interface GgsnFunctionFactory

/**

16.19. BgFunction Managed Object

*/

/**

This valuetype is used to retrieve all attributes

*/

valuetype BgFunctionValueType :

BasicCmCorbaObjects::ManagedFunctionValueType

{

public BgFunctionIdType bgFunctionId;

// GET

}; // valuetype BgFunctionValueType

interface BgFunction : BasicCmCorbaObjects::ManagedFunction

{

/**

bgFunctionId GET

*/

BgFunctionIdType bgFunctionIdGet ()

raises (itut_x780::ApplicationError);

/**

List notifications

*/

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, attributeValueChange,

AttributeValueChangeNotificationPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, communicationsAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, environmentalAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, equipmentAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, objectCreation,

CreateDeleteNotificationsPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, objectDeletion,

CreateDeleteNotificationsPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, processingErrorAlarm,

AlarmIRPSupportedPackage)

CONDITIONAL_NOTIFICATION

(itut_x780::Notifications, qualityOfServiceAlarm,

AlarmIRPSupportedPackage)

}; // interface BgFunction

/**

Creation and Deletion for BgFunction

*/

interface BgFunctionFactory : itut_x780::ManagedObjectFactory

{

BgFunction create (

in NameBindingType nameBinding,

in itut_x780::ManagedObject superior,

in string name, // no auto-naming, cannot be null

in StringSetType packages,

in BgFunctionIdType bgFunctionId,

/**

UserLabel imported from ManagedFunction

*/

in UserLabelType userLabel)

raises (itut_x780::ApplicationError,

itut_x780::CreateError);

}; // interface BgFunctionFactory

/**

16.20. Name Binding

*/

module NameBindings

{

/**

This name binding is used to name the AucFunction object to a G3ManagedElement object.

*/

module AucFunction_G3ManagedElement

{

const string superiorClass =

"BasicCmCorbaObjects::G3ManagedElement";

const boolean superiorSubclassesAllowed = TRUE;

const string subordinateClass =

"BasicCmUMTSCorbaObjects::AucFunction";

const boolean subordinateSubclassesAllowed = TRUE;

const boolean managerCreatesAllowed = TRUE;

const DeletePolicyType deletePolicy =

itu_x780::deleteOnlyIfNoContainedObjects;

const string kind = "AucFunction";

}; // module AucFunction_G3ManagedElement

/**

This name binding is used to name the BgFunction object to a G3ManagedElement object.

*/

module BgFunction_G3ManagedElement

{

const string superiorClass =

"BasicCmCorbaObjects::G3ManagedElement";

const boolean superiorSubclassesAllowed = TRUE;

const string subordinateClass =

"BasicCmUMTSCorbaObjects::BgFunction";

const boolean subordinateSubclassesAllowed = TRUE;

const boolean managerCreatesAllowed = TRUE;

const DeletePolicyType deletePolicy =

itu_x780::deleteOnlyIfNoContainedObjects;

const string kind = "BgFunction";

}; // module BgFunction_G3ManagedElement

/**

This name binding is used to name the EirFunction object to a G3ManagedElement object.

*/

module EirFunction_G3ManagedElement

{

const string superiorClass =

"BasicCmCorbaObjects::G3ManagedElement";

const boolean superiorSubclassesAllowed = TRUE;

const string subordinateClass =

"BasicCmUMTSCorbaObjects::EirFunction";

const boolean subordinateSubclassesAllowed = TRUE;

const boolean managerCreatesAllowed = TRUE;

const DeletePolicyType deletePolicy =

itu_x780::deleteOnlyIfNoContainedObjects;

const string kind = "EirFunction";

}; // module EirFunction_G3ManagedElement

/**

This name binding is used to name the GgsnFunction object to a G3ManagedElement object.

*/

module GgsnFunction_G3ManagedElement

{

const string superiorClass =

"BasicCmCorbaObjects::G3ManagedElement";

const boolean superiorSubclassesAllowed = TRUE;

const string subordinateClass =

"BasicCmUMTSCorbaObjects::GgsnFunction";

const boolean subordinateSubclassesAllowed = TRUE;

const boolean managerCreatesAllowed = TRUE;

const DeletePolicyType deletePolicy =

itu_x780::deleteOnlyIfNoContainedObjects;

const string kind = "GgsnFunction";

}; // module GgsnFunction_G3ManagedElement

/**

This name binding is used to name the GmscFunction object to a G3ManagedElement object.

*/

module GmscFunction_G3ManagedElement

{

const string superiorClass =

"BasicCmCorbaObjects::G3ManagedElement";

const boolean superiorSubclassesAllowed = TRUE;

const string subordinateClass =

"BasicCmUMTSCorbaObjects::GmscFunction";

const boolean subordinateSubclassesAllowed = TRUE;

const boolean managerCreatesAllowed = TRUE;

const DeletePolicyType deletePolicy =

itu_x780::deleteOnlyIfNoContainedObjects;

const string kind = "GmscFunction";

}; // module GmscFunction_G3ManagedElement

/**

This name binding is used to name the HlrFunction object to a G3ManagedElement object.

*/

module HlrFunction_G3ManagedElement

{

const string superiorClass =

"BasicCmCorbaObjects::G3ManagedElement";

const boolean superiorSubclassesAllowed = TRUE;

const string subordinateClass =

"BasicCmUMTSCorbaObjects::HlrFunction";

const boolean subordinateSubclassesAllowed = TRUE;

const boolean managerCreatesAllowed = TRUE;

const DeletePolicyType deletePolicy =

itu_x780::deleteOnlyIfNoContainedObjects;

const string kind = "HlrFunction";

}; // module HlrFunction_G3ManagedElement

/**

This name binding is used to name the IubLink object to a RNCFunction object.

*/

module IubLink_RNCFunction

{

const string superiorClass =

"BasicCmCorbaObjects::RNCFunction";

const boolean superiorSubclassesAllowed = TRUE;

const string subordinateClass =

"BasicCmUMTSCorbaObjects::IubLink";

const boolean subordinateSubclassesAllowed = TRUE;

const boolean managerCreatesAllowed = TRUE;

const DeletePolicyType deletePolicy =

itu_x780::deleteOnlyIfNoContainedObjects;

const string kind = "IubLink";

}; // module IubLink_RNCFunction

/**

This name binding is used to name the MscFunction object to a G3ManagedElement object.

*/

module MscFunction_G3ManagedElement

{

const string superiorClass =

"BasicCmCorbaObjects::G3ManagedElement";

const boolean superiorSubclassesAllowed = TRUE;

const string subordinateClass =

"BasicCmUMTSCorbaObjects::MscFunction";

const boolean subordinateSubclassesAllowed = TRUE;

const boolean managerCreatesAllowed = TRUE;

const DeletePolicyType deletePolicy =

itu_x780::deleteOnlyIfNoContainedObjects;

const string kind = "MscFunction";

}; // module MscFunction_G3ManagedElement

/**

This name binding is used to name the NodeBFunction object to a G3ManagedElement object.

*/

module NodeBFunction_G3ManagedElement

{

const string superiorClass =

"BasicCmCorbaObjects::G3ManagedElement";

const boolean superiorSubclassesAllowed = TRUE;

const string subordinateClass =

"BasicCmUMTSCorbaObjects::NodeBFunction";

const boolean subordinateSubclassesAllowed = TRUE;

const boolean managerCreatesAllowed = TRUE;

const DeletePolicyType deletePolicy =

itu_x780::deleteOnlyIfNoContainedObjects;

const string kind = "NodeBFunction";

}; // module NodeBFunction_G3ManagedElement

/**

This name binding is used to name the RNCFunction object to a G3ManagedElement object.

*/

module RNCFunction_G3ManagedElement

{

const string superiorClass =

"BasicCmCorbaObjects::G3ManagedElement";

const boolean superiorSubclassesAllowed = TRUE;

const string subordinateClass =

"BasicCmUMTSCorbaObjects::RNCFunction";

const boolean subordinateSubclassesAllowed = TRUE;

const boolean managerCreatesAllowed = TRUE;

const DeletePolicyType deletePolicy =

itu_x780::deleteOnlyIfNoContainedObjects;

const string kind = "RNCFunction";

}; // module RNCFunction_G3ManagedElement

/**

This name binding is used to name the SgsnFunction object to a G3ManagedElement object.

*/

module SgsnFunction_G3ManagedElement

{

const string superiorClass =

"BasicCmCorbaObjects::G3ManagedElement";

const boolean superiorSubclassesAllowed = TRUE;

const string subordinateClass =

"BasicCmUMTSCorbaObjects::SgsnFunction";

const boolean subordinateSubclassesAllowed = TRUE;

const boolean managerCreatesAllowed = TRUE;

const DeletePolicyType deletePolicy =

itu_x780::deleteOnlyIfNoContainedObjects;

const string kind = "SgsnFunction";

}; // module SgsnFunction_G3ManagedElement

/**

This name binding is used to name the SmsGmscFunction object to a G3ManagedElement object.

*/

module SmsGmscFunction_G3ManagedElement

{

const string superiorClass =

"BasicCmCorbaObjects::G3ManagedElement";

const boolean superiorSubclassesAllowed = TRUE;

const string subordinateClass =

"BasicCmUMTSCorbaObjects::SmsGmscFunction";

const boolean subordinateSubclassesAllowed = TRUE;

const boolean managerCreatesAllowed = TRUE;

const DeletePolicyType deletePolicy =

itu_x780::deleteOnlyIfNoContainedObjects;

const string kind = "SmsGmscFunction";

}; // module SmsGmscFunction_G3ManagedElement

/**

This name binding is used to name the SmsIwmscFunction object to a G3ManagedElement object.

*/

module SmsIwmscFunction_G3ManagedElement

{

const string superiorClass =

"BasicCmCorbaObjects::G3ManagedElement";

const boolean superiorSubclassesAllowed = TRUE;

const string subordinateClass =

"BasicCmUMTSCorbaObjects::SmsIwmscFunction";

const boolean subordinateSubclassesAllowed = TRUE;

const boolean managerCreatesAllowed = TRUE;

const DeletePolicyType deletePolicy =

itu_x780::deleteOnlyIfNoContainedObjects;

const string kind = "SmsIwmscFunction";

}; // module SmsIwmscFunction_G3ManagedElement

/**

This name binding is used to name the UtranCell object to a RNCFunction object.

*/

module UtranCell_RNCFunction

{

const string superiorClass =

"BasicCmCorbaObjects::RNCFunction";

const boolean superiorSubclassesAllowed = TRUE;

const string subordinateClass =

"BasicCmUMTSCorbaObjects::UtranCell";

const boolean subordinateSubclassesAllowed = TRUE;

const boolean managerCreatesAllowed = TRUE;

const DeletePolicyType deletePolicy =

itu_x780::deleteOnlyIfNoContainedObjects;

const string kind = "UtranCell";

}; // module UtranCell_RNCFunction

/**

This name binding is used to name the VlrFunction object to a G3ManagedElement object.

*/

module VlrFunction_G3ManagedElement

{

const string superiorClass =

"BasicCmCorbaObjects::G3ManagedElement";

const boolean superiorSubclassesAllowed = TRUE;

const string subordinateClass =

"BasicCmUMTSCorbaObjects::VlrFunction";

const boolean subordinateSubclassesAllowed = TRUE;

const boolean managerCreatesAllowed = TRUE;

const DeletePolicyType deletePolicy =

itu_x780::deleteOnlyIfNoContainedObjects;

const string kind = "VlrFunction";

}; // module VlrFunction_G3ManagedElement

}; // module NameBindings

}; // module BasicCmUMTSCorbaObjects

#endif

17. ALARM IRP AlarmIRPConstDefs CORBA IDL

/* ## Module: AlarmIRPConstDefs

This module contains commonly used definitions.

==

*/

#ifndef AlarmIRPConstDefs_idl

#define AlarmIRPConstDefs_idl

/**

This IDL code is intended to be stored in a file named "AlarmIRPConstDefs.idl" located in the search path used by the IDL compiler on your system

*/

#include "CosNotification.idl"

#include "CommonIRPConstDefs.idl"

#pragma prefix "3gppsa5.org"

module AlarmIRPConstDefs

{

/**

This block identifies Alarm IRP Event names in Structured Events

*/

const string NOTIFY_FM_NEW_ALARM = "x1";

const string NOTIFY_FM_CHANGED_ALARM = "x2";

const string NOTIFY_FM_ACK_STATE_CHANGED = "x3";

const string NOTIFY_FM_CLEARED_ALARM = "x4";

/**

This block identifies the acknowledgement state reported alarm.

*/

const short ACK_STATE_ACKNOWLEDGED = 1;

const short ACK_STATE_UNACKNOWLEDGED = 2;

/**

This module contains the constant values defined for the ProbableCause UID.

*/

module ProbableCauseConst

{

const string moduleName = "AlarmIRPConstDefs::ProbableCauseConst";

/**

This block identifies the probable cause of a reported alarm.

*/

const short PC_INDETERMINATE = 0;

const short PC_ALARM_INDICATION_SIGNAL = 1;

const short PC_CALL_SETUP_FAILURE = 2;

const short PC_DEGRADED_SIGNAL_M3100 = 3;

const short PC_FAR_END_RECEIVER_FAILURE = 4;

const short PC_FRAMING_ERROR_M3100 = 5;

const short PC_LOSS_OF_FRAME = 6;

const short PC_LOSS_OF_POINTER = 7;

const short PC_LOSS_OF_SIGNAL = 8;

const short PC_PAYLOAD_TYPE_MISMATCH = 9;

const short PC_TRANSMISSION_ERROR = 10;

const short PC_REMOTE_ALARM_INTERFACE = 11;

const short PC_EXCESSIVE_BIT_ERROR_RATE = 12;

const short PC_PATH_TRACE_MISMATCH = 13;

const short PC_UNAVAILABLE = 14;

const short PC_SIGNAL_LABEL_MISMATCH = 15;

const short PC_LOSS_OF_MULTI_FRAME = 16;

const short PC_BACK_PLANE_FAILURE = 51;

const short PC_DATA_SET_PROBLEM = 52;

const short PC_EQUIPMENT_IDENTIFIER_DUPLICATION = 53;

const short PC_EXTERNAL_DEVICE_PROBLEM = 54;

const short PC_LINE_CARD_PROBLEM = 55;

const short PC_MULTIPLEXER_PROBLEM_M3100 = 56;

const short PC_NE_IDENTIFIER_DUPLICATION = 57;

const short PC_POWER_PROBLEM_M3100 = 58;

const short PC_PROCESSOR_PROBLEM_M3100 = 59;

const short PC_PROTECTION_PATH_FAILURE = 60;

const short PC_RECEIVER_FAILURE_M3100 = 61;

const short PC_REPLACEABLE_UNIT_MISSING = 62;

const short PC_REPLACEABLE_UNIT_TYPE_MISMATCH = 63;

const short PC_SYNCHRONISATION_SOURCE_MISMATCH = 64;

const short PC_TERMINAL_PROBLEM = 65;

const short PC_TIMING_PROBLEM_M3100 = 66;

const short PC_TRANSMITTER_FAILURE_M3100 = 67;

const short PC_TRUNK_CARD_PROBLEM = 68;

const short PC_REPLACEABLE_UNIT_PROBLEM = 69;

const short PC_AIR_COMPRESSOR_FAILURE = 101;

const short PC_AIR_CONDITIONING_FAILURE = 102;

const short PC_AIR_DRYER_FAILURE = 103;

const short PC_BATTERY_DISCHARGING = 104;

const short PC_BATTERY_FAILURE = 105;

const short PC_COMMERICAL_POWER_FAILURE = 106;

const short PC_COOLING_FAN_FAILURE = 107;

const short PC_ENGINE_FAILURE = 108;

const short PC_FIRE_DETECTOR_FAILURE = 109;

const short PC_FUSE_FAILURE = 110;

const short PC_GENERATOR_FAILURE = 111;

const short PC_LOW_BATTERY_THRESHOLD = 112;

const short PC_PUMP_FAILURE_M3100 = 113;

const short PC_RECTIFIER_FAILURE = 114;

const short PC_RECTIFIER_HIGH_VOLTAGE = 115;

const short PC_RECTIFIER_LOW_F_VOLTAGE = 116;

const short PC_VENTILATION_SYSTEM_FAILURE = 117;

const short PC_ENCLOSURE_DOOR_OPEN_M3100 = 118;

const short PC_EXPLOSIVE_GAS = 119;

const short PC_FIRE = 120;

const short PC_FLOOD = 121;

const short PC_HIGH_HUMIDITY = 122;

const short PC_HIGH_TEMPERATURE = 123;

const short PC_HIGH_WIND = 124;

const short PC_ICE_BUILD_UP = 125;

const short PC_LOW_FUEL = 127;

const short PC_LOW_HUMIDITY = 128;

const short PC_LOW_CABLE_PRESSURE = 129;

const short PC_LOW_TEMPERATURE = 130;

const short PC_LOW_WATER = 131;

const short PC_SMOKE = 132;

const short PC_TOXIC_GAS = 133;

const short PC_STORAGE_CAPACITY_PROBLEM_M3100 = 151;

const short PC_MEMORY_MISMATCH = 152;

const short PC_CORRUPT_DATA_M3100 = 153;

const short PC_OUT_OF_CPU_CYCLES = 154;

const short PC_SOFTWARE_ENVIRONMENT_PROBLEM = 155;

const short PC_SOFTWARE_DOWNLOAD_FAILURE = 156;

const short PC_ADAPTER_ERROR = 301;

const short PC_APPLICATION_SUBSYSTEM_FAILURE = 302;

const short PC_BANDWIDTH_REDUCTION = 303;

const short PC_COMMUNICATION_PROTOCOL_ERROR = 305;

const short PC_COMMUNICATION_SUBSYSTEM_FAILURE = 306;

const short PC_CONFIGURATION_OR_CUSTOMIZING_ERROR = 307;

const short PC_CONGESTION = 308;

const short PC_CPU_CYCLES_LIMIT_EXCEEDED = 310;

const short PC_DATA_SET_OR_MODEM_ERROR = 311;

const short PC_DTE_DCE_INTERFACE_ERROR = 313;

const short PC_EQUIPMENT_MALFUNCTION = 315;

const short PC_EXCESSIVE_VIBRATION = 316;

const short PC_FILE_ERROR = 317;

const short PC_HEATING_OR_VENTILATION_OR_COOLING_SYSTEM_PROBLEM

= 321;

const short PC_HUMIDITY_UNACCEPTABLE = 322;

const short PC_INPUT_OUTPUT_DEVICE_ERROR = 323;

const short PC_INPUT_DEVICE_ERROR = 324;

const short PC_LAN_ERROR = 325;

const short PC_LEAK_DETECTION = 326;

const short PC_LOCAL_NODE_TRANSMISSION_ERROR = 327;

const short PC_MATERIAL_SUPPLY_EXHAUSTED = 330;

const short PC_OUT_OF_MEMORY = 332;

const short PC_OUTPUT_DEVICE_ERROR = 333;

const short PC_PERFORMANCE_DEGRADED = 334;

const short PC_PRESSURE_UNACCEPTABLE = 336;

const short PC_QUEUE_SIZE_EXCEEDED = 339;

const short PC_RECEIVE_FAILURE = 340;

const short PC_REMOTE_NODE_TRANSMISSION_ERROR = 342;

const short PC_RESOURCE_AT_OR_NEARING_CAPACITY = 343;

const short PC_RESPONSE_TIME_EXCESSIVE = 344;

const short PC_RETRANSMISSION_RATE_EXCESSIVE = 345;

const short PC_SOFTWARE_ERROR = 346;

const short PC_SOFTWARE_PROGRAM_ABNORMALLY_TERMINATED = 347;

const short PC_SOFTWARE_PROGRAM_ERROR = 348;

const short PC_TEMPERATURE_UNACCEPTABLE = 350;

const short PC_THRESHOLD_CROSSED = 351;

const short PC_TOXIC_LEAK_DETECTED = 353;

const short PC_TRANSMIT_FAILURE = 354;

const short PC_UNDERLYING_RESOURCE_UNAVAILABLE = 356;

const short PC_VERSION_MISMATCH = 357;

const short PC_A_BIS_TO_BTS_INTERFACE_FAILURE = 501;

const short PC_A_BIS_TO_TRX_INTERFACE_FAILURE = 502;

const short PC_ANTENNA_PROBLEM = 503;

const short PC_BATTERY_BREAKDOWN = 504;

const short PC_BATTERY_CHARGING_FAULT = 505;

const short PC_CLOCK_SYNCHRONISATION_PROBLEM = 506;

const short PC_COMBINER_PROBLEM = 507;

const short PC_DISK_PROBLEM = 508;

const short PC_EXCESSIVE_RECEIVER_TEMPERATURE = 510;

const short PC_EXCESSIVE_TRANSMITTER_OUTPUT_POWER = 511;

const short PC_EXCESSIVE_TRANSMITTER_TEMPERATURE = 512;

const short PC_FREQUENCY_HOPPING_DEGRADED = 513;

const short PC_FREQUENCY_HOPPING_FAILURE = 514;

const short PC_FREQUENCY_REDEFINITION_FAILED = 515;

const short PC_LINE_INTERFACE_FAILURE = 516;

const short PC_LINK_FAILURE = 517;

const short PC_LOSS_OF_SYNCHRONISATION = 518;

const short PC_LOST_REDUNDANCY = 519;

const short PC_MAINS_BREAKDOWN_WITH_BATTERY_BACKUP = 520;

const short PC_MAINS_BREAKDOWN_WITHOUT_BATTERY_BACKUP = 521;

const short PC_POWER_SUPPLY_FAILURE = 522;

const short PC_RECEIVER_ANTENNA_FAULT = 523;

const short PC_RECEIVER_MULTICOUPLER_FAILURE = 525;

const short PC_REDUCED_TRANSMITTER_OUTPUT_POWER = 526;

const short PC_SIGNAL_QUALITY_EVALUATION_FAULT = 527;

const short PC_TIMESLOT_HARDWARE_FAILURE = 528;

const short PC_TRANSCEIVER_PROBLEM = 529;

const short PC_TRANSCODER_PROBLEM = 530;

const short PC_TRANSCODER_OR_RATE_ADAPTER_PROBLEM = 531;

const short PC_TRANSMITTER_ANTENNA_FAILURE = 532;

const short PC_TRANSMITTER_ANTENNA_NOT_ADJUSTED = 533;

const short PC_TRANSMITTER_LOW_VOLTAGE_OR_CURRENT = 535;

const short PC_TRANSMITTER_OFF_FREQUENCY = 536;

const short PC_DATABASE_INCONSISTENCY = 537;

const short PC_FILE_SYSTEM_CALL_UNSUCCESSFUL = 538;

const short PC_INPUT_PARAMETER_OUT_OF_RANGE = 539;

const short PC_INVALID_PARAMETER = 540;

const short PC_INVALID_POINTER = 541;

const short PC_MESSAGE_NOT_EXPECTED = 542;

const short PC_MESSAGE_NOT_INITIALISED = 543;

const short PC_MESSAGE_OUT_OF_SEQUENCE = 544;

const short PC_SYSTEM_CALL_UNSUCCESSFUL = 545;

const short PC_TIMEOUT_EXPIRED = 546;

const short PC_VARIABLE_OUT_OF_RANGE = 547;

const short PC_WATCH_DOG_TIMER_EXPIRED = 548;

const short PC_COOLING_SYSTEM_FAILURE = 549;

const short PC_EXTERNAL_EQUIPMENT_FAILURE = 550;

const short PC_EXTERNAL_POWER_SUPPLY_FAILURE = 551;

const short PC_EXTERNAL_TRANSMISSION_DEVICE_FAILURE = 552;

const short PC_REDUCED_ALARM_REPORTING = 561;

const short PC_REDUCED_EVENT_REPORTING = 562;

const short PC_RECUCED_LOGGING_CAPABILITY = 563;

const short PC_SYSTEM_RESOURCES_OVERLOAD = 564;

const short PC_BROADCAST_CHANNEL_FAILURE = 565;

const short PC_CALL_ESTABLISHMENT_ERROR = 566;

const short PC_INVALID_MESSAGE_RECEIVED = 567;

const short PC_INVALID_MSU_RECEIVED = 568;

const short PC_LAPD_LINK_PROTOCOL_FAILURE = 569;

const short PC_LOCAL_ALARM_INDICATION = 570;

const short PC_REMOTE_ALARM_INDICATION = 571;

const short PC_ROUTING_FAILURE = 572;

const short PC_SS7_PROTOCOL_FAILURE = 573;

const short PC_TRANSMISSION_FAILURE = 574;

}; // module ProbableCauseConst

/**

This module contains constant values identifying information elements included in the Additional Information parameters of the alarm notifications.

*/

module AdditionalInformationConst

{

const string moduleName =

"AlarmIRPConstDefs::AdditionalInformationConst";

/**

This constant is accompanied by a string value for the "any" field of the ManagementExtensionType to inficate a System DN value is provided. SystemDNType can be found in "CommonIRPConstDefs.idl"

*/

const short systemDNProvided = 1;

/**

This constant is accompanied by a string value for the "any" field of the ManagementExtensionType to inficate an Alarm Id value is provided. AlarmIdType can be found in this IDL file

*/

const short alarmIdProvided = 2;

/**

This constant is accompanied by a string value for the "any" field of the ManagementExtensionType to inficate an Acknowledgement Time value is provided. AckTimeType can be found in this IDL file

*/

const short ackTimeProvided = 3;

/**

This constant is accompanied by a string value for the "any" field of the ManagementExtensionType to inficate an Acknowledgement User Id value is provided. UserIdType can be found in this IDL file

*/

const short ackUserIdProvided = 4;

/**

This constant is accompanied by a string value for the "any" field of the ManagementExtensionType to inficate an Acknowledgement System Id value is provided. SystemIdType can be found in this IDL file

*/

const short ackSystemIdProvided = 5;

/**

This constant is accompanied by a string value for the "any" field of the ManagementExtensionType to inficate an Acknowledgement State is provided. AckStateType can be found in this IDL file

*/

const short ackStateProvided = 6;

}; // module AdditionalInformationConst

/**

These constants define the names of the notifications declared above and are provided to help reduce errors.

*/

const string notifyAlarmListRebuiltTypeName =

"AlarmIRPSystem::Notifications::notifyAlarmListRebuilt";

/**

These constants define the names of the parameters used in the notifications declared above and are provided to help reduce errors.

*/

const string eventTimeName = "eventTime";

const string sourceName = "source";

const string sourceClassName = "sourceClass";

const string notificationIdentifierName = "notificationIdentifier";

const string systemDNName = "systemDN";

const string reasonName = "reason";

typedef sequence <string> AlarmInformationIdSeq;

typedef CosNotification::EventBatch AlarmInformationSeq;

typedef string ReasonType;

/**

SystemDNTypeOpt is an optional type. If the discriminator is true the value is present, otherwise the value is null.

*/

union SystemDNTypeOpt switch (boolean)

{

case TRUE:

CommonIRPConstDefs::SystemDNType value;

};

typedef string AlarmIdType;

typedef string UserIdType;

typedef string SystemIdType;

typedef CommonIRPConstDefs::IRPTime AckTimeType;

typedef short AckStateType;

}; // module AlarmIRPConstDefs

#endif

18. ALARM IRP AlarmIRPSystem CORBA IDL

/* ## Module: AlarmIRPSystem

This module contains the specification of all operations of Alarm IRP Agent specified in Alarm IRP: IS version 1 and Alarm IRP: CORBA SS version 1:1.

==

*/

#ifndef AlarmIRPSystem_idl

#define AlarmIRPSystem_idl

/**

This IDL code is intended to be stored in a file named "AlarmIRPSystem.idl" located in the search path used by the IDL compiler on your system

*/

#include "AlarmIRPConstDefs.idl"

#include "CommonIRPConstDefs.idl"

#include "itut_q816.idl"

#include "itut_x780.idl"

#pragma prefix "3gppsa5.org"

module AlarmIRPSystem

{

/**

18.1. Exceptions

*/

/**

System fails to complete the operation. System provides reasons whose semantics is outside the scope of this IRP.

*/

exception AcknowledgeAlarms

{

string reason;

};

exception UnacknowledgeAlarms

{

string reason;

};

exception GetAlarmList

{

string reason;

};

exception GetAlarmIRPVersion

{

string reason;

};

exception GetAlarmCount

{

string reason;

};

exception ParameterNotSupported

{

string parameter;

};

/**

Name of the unsupported parameter as defined in IDL

*/

exception InvalidParameter

{

string parameter;

};

/**

Name of the parameter as defined in IDL

*/

exception OperationNotSupported {};

exception NextAlarmInformations

{

string reason;

};

/**

18.2. Interface AlarmInformationIterator

*/

/**

The AlarmInformationIterator is used to iterate through a snapshot of

Alarm Informations taken from the Alarm List when IRPManager invokes get_alarm_list. IRPManager uses it to pace the return of Alarm Informations.

IRPAgent controls the life-cycle of the iterator. However, a destroy operation is provided to handle the case where IRPManager wants to stop the iteration procedure before reaching the last iteration.

*/

interface AlarmInformationIterator

{

/**

This method returns between 1 and "how_many" Alarm Informations. The IRPAgent may return less than "how_many" items even if there are more items to return. "how_many" must be non-zero.

If FALSE is returned, the IRPAgent will automatically destroy the iterator.

@param how_many
The maximum number of items to be returned in the results

@param alarm_informations
The next batch of results

@return
Return TRUE if there may be more Alarm Informations to return. Return FALSE if there are no more Alarm Informations to be returned.

*/

boolean next_alarmInformations (

in unsigned short how_many,

out AlarmIRPConstDefs::AlarmInformationSeq

alarm_informations)

raises (NextAlarmInformations,

InvalidParameter);

/**

This method destroys the iterator.

*/

void destroy ();

}; // interface AlarmInformationIterator

/**

18.3. Interface AlarmIRPOperations

*/

/**

This interface specifies all methods supported by System as specified in 3GPP AlarmIRP: CORBA Solution Set version 1:1.

*/

interface AlarmIRPOperations

{

/**

This operation acknowledges one or more alarms

@param alarm_information_id_list
Alarms to be acknowledged

@param ack_user_id
User acknowledging the alarm

@param ack_system_id
System acknowledging the alarm

@param bad_alarm_information_id_list
Alarms that could not be acknowledged

@return
Success, failure or partial failure

*/

CommonIRPConstDefs::Signal acknowledge_alarms (

in AlarmIRPConstDefs::AlarmInformationIdSeq

alarm_information_id_list,

in AlarmIRPConstDefs::UserIdType ack_user_id,

in AlarmIRPConstDefs::SystemIdType ack_system_id,

out AlarmIRPConstDefs::AlarmInformationIdSeq

bad_alarm_information_id_list)

raises (AcknowledgeAlarms,

ParameterNotSupported,

InvalidParameter);

/**

This operation unacknowledges one or more alarms

@param alarm_information_id_list
Alarms to be unacknowledged

@param ack_user_id
User unacknowledging the alarm

@param ack_system_id
System unacknowledging the alarm

@param bad_alarm_information_id_list
Alarms that could not be unacknowledged

@return
Success, failure or partial failure

*/

CommonIRPConstDefs::Signal unacknowledge_alarms (

in AlarmIRPConstDefs::AlarmInformationIdSeq

alarm_information_id_list,

in AlarmIRPConstDefs::UserIdType ack_user_id,

in AlarmIRPConstDefs::SystemIdType ack_system_id,

out AlarmIRPConstDefs::AlarmInformationIdSeq

bad_alarm_information_id_list)

raises (UnacknowledgeAlarms,

OperationNotSupported,

ParameterNotSupported,

InvalidParameter);

/**

This method returns Alarm List alarm information

@param alarmAckState
Constraint for alarm selection based on Acknowledgement State

@param filter
Filter constraint for alarm selection

@param flag
If flag is TRUE, all returned Alarm Informations shall be in AlarmInformationSeq that contains 0,1 or more Alarm Informations. Output parameter iter shall be useless. If flag is FALSE, no Alarm Informations shall be in AlarmInformationSeq. IRPAgent needs to use iter to retrieve them

@param iter
Alarm list iterator or NULL

@return
Alarm list or NULL

*/

AlarmIRPConstDefs::AlarmInformationSeq get_alarm_list (

in AlarmIRPConstDefs::AlarmInformationSeq alarmAckState,

in itut_q816::FilterType filter,

out boolean flag,

out AlarmInformationIterator iter)

raises (GetAlarmList,

ParameterNotSupported,

InvalidParameter);

/**

This method retrieves the amount of Alarm Information maintained in the alarm list

@param alarmAckState
Constraint for alarm selection based on Acknowledgement State

@param filter
Filter constraint for alarm selection

@param critical_count
Number of critical alarms matching the filter constraint

@param major_count
Number of major alarms matching the filter constraint

@param minor_count
Number of minor alarms matching the filter constraint

@param warning_count
Number of warning alarms matching the filter constraint

@param indeterminate_count
Number of indeterminate alarms matching the filter constraint

@param cleared_count
Number of cleared alarms matching the filter constraint

*/

void get_alarm_count (

in AlarmIRPConstDefs::AlarmInformationSeq alarmAckState,

in itut_q816::FilterType filter,

out long critical_count,

out long major_count,

out long minor_count,

out long warning_count,

out long indeterminate_count,

out long cleared_count)

raises (GetAlarmCount,

OperationNotSupported,

ParameterNotSupported,

InvalidParameter);

/**

@return
The list of Alarm IRP versions currently supported

*/

CommonIRPConstDefs::VersionNumberSet get_alarm_IRP_version ()

raises (GetAlarmIRPVersion);

}; // interface AlarmIRPOperations

/**

18.4. Interface Notifications

*/

/**

Define the notifications created by Alarm IRP, i.e., notifyAlarmListRebuilt

@param eventTime

Managed system's current time

@param source

Object emitting notification

@param sourceClass

Actual class of source object

@param notificationIdentifier
A unique identifier for this notification. Must be unique for an object instance

@param systemDN
Optional system Distinguished Name value

@param reason
Reason for alarm list being rebuilt

*/

interface Notifications

{

void notifyAlarmListRebuilt

(in itut_x780::ExternalTimeType eventTime,

in itut_x780::NameType source,

in itut_x780::ObjectClassType sourceClass,

in itut_x780::NotifIDType notificationIdentifier,

in AlarmIRPConstDefs::SystemDNTypeOpt systemDN,

in AlarmIRPConstDefs::ReasonType reason);

}; // interface Notifications

}; // module AlarmIRPSystem

#endif

19. NOTIFICATION IRP CommonIRPConstDefs CORBA IDL

/* ## Module: CommonIRPConstDefs

This module contains definitions commonly used among all IRPs such as Alarm IRP.

==

*/

#ifndef CommonIRPConstDefs_idl

#define CommonIRPConstDefs_idl

/**

This IDL code is intended to be stored in a file named "CommonIRPConstDefs.idl" located in the search path used by the IDL compiler on your system

*/

#include "TimeBase.idl"

#pragma prefix "3gppsa5.org"

module CommonIRPConstDefs

{

/**

Definition imported from CosTime. The time refers to time in Greenwich Time Zone. It also consists of a time displacement factor in the form of minutes of displacement from the Greenwich Meridian.

*/

typedef TimeBase::UtcT IRPTime;

enum Signal {OK, Failure, PartialFailure};

typedef sequence <string> VersionNumberSet;

typedef string SystemDNType;

}; // module CommonIRPConstDefs

#endif

20. NOTIFICATION IRP NotificationIRPConstDefs CORBA IDL

/* ## Module: NotificationIRPConstDefs

This module contains definitions specific to Notification IRP.

==

*/

#ifndef NotificationIRPConstDefs_idl

#define NotificationIRPConstDefs_idl

/**

This IDL code is intended to be stored in a file named "NotificationIRPConstDefs.idl" located in the search path used by the IDL compiler on your system

*/

#pragma prefix "3gppsa5.org"

module NotificationIRPConstDefs

{

/**

This is a string sequence identifying notification categories. A notification category is identified by the IRP name and its version.

*/

typedef sequence <string> NotificationCategorySet;

/**

This is a sequence of strings identifying event types of a particular notification category.

*/

typedef sequence <string> EventTypesPerNotificationCategory;

/**

This sequence identifies all event types of all notification categories identified by NotificationCategorySet. The number of elements in this sequence shall be identical to that of NotificationCategorySet.

*/

typedef sequence <EventTypesPerNotificationCategory> EventTypesSet;

/**

This is a sequence of strings identifying extended event types of a particular notification category.

*/

typedef sequence <string> ExtendedEventTypePerNotificationCategory;

/**

This sequence identifies all extended event types of all notification categories identified by NotificationCategorySet. The number of elements in this sequence shall be identical to that of NotificationCategorySet.

*/

typedef sequence <ExtendedEventTypePerNotificationCategory>

ExtendedEventTypesSet;

/**

This is a sequence of strings identifying Subscription Ids.

*/

typedef string SubscriptionId;

typedef sequence <SubscriptionId> SubscriptionIdSet;

/**

This block encapsulates valid strings carried in domain_name of structured event header. It carries the name of IRP and its corresponding CORBA SS version number. They are the returned values for get_XXX_IRP_version() as well.

*/

const string ALARM_IRP_VERSION_1_1 = "1f1"; //alarm IRP 1:1

const string CONFIGURATION_IRP_VERSION_1_1 = "1c1"; //CM IRP 1:1

const string NOTIFICATION_IRP_VERSION_1_1 = "1n1";

//Notification IRP 1:1

/**

This indicates if the subscription is active (not suspended) or inactive.

*/

enum SubscriptionState {Inactive, Active, DontKnow};

}; // module NotificationIRPConstDefs

#endif

21. NOTIFICATION IRP NotificationIRPSystem CORBA IDL

/* ## Module: NotificationIRPSystem

This module implements capabilities of IRPAgent specified in Notification IRP: Information Service version 1 and its equivalents in Notification IRP: CORBA Solution Set version 1:1.

==

*/

#ifndef NotificationIRPSystem_idl

#define NotificationIRPSystem_idl

/**

This IDL code is intended to be stored in a file named "NotificationIRPSystem.idl" located in the search path used by the IDL compiler on your system

*/

#include "CosNotifyChannelAdmin.idl"

#include "NotificationIRPConstDefs.idl"

#include "CommonIRPConstDefs.idl"

#pragma prefix "3gppsa5.org"

module NotificationIRPSystem

{

/**

21.1. Exceptions

*/

/**

System fails to complete the operation. System can provide reason to qualify the exception. The semantics carried in reason is outside the scope of this IRP.

*/

exception Attach

{

string reason;

};

exception DetachException

{

string reason;

};

exception GetSubscriptionStatus

{

string reason;

};

exception GetSubscriptionIds

{

string reason;

};

exception ChangeSubscriptionFilter

{

string reason;

};

exception GetNotificationCategories

{

string reason;

};

exception GetNotificationIRPVersion

{

string reason;

};

exception ParameterNotSupported

{

string parameter;

};

/**

Name of the unsupported parameter as defined in IDL

*/

exception InvalidParameter

{

string parameter;

};

/**

Name of the parameter as defined in IDL

*/

exception OperationNotSupported {};

exception AlreadySubscribed {};

exception AtLeastOneNotificationCategoryNotSupported {};

/**

21.2. Interface NotificationIRPOperations

*/

interface NotificationIRPOperations

{

/**

Operation: attach_push

@param manager_reference
Unique object representing this manager

@param time_tick
Per minute time for length of subscription. Negative or 0 values indicate infinite time

@param notification_category_set
One or more notification categories

@param filter
Filter constraint for notification reception

@return
Unambiguous subscription id

*/

NotificationIRPConstDefs::SubscriptionId attach_push (

in Object manager_reference,

in long time_tick,

in NotificationIRPConstDefs::NotificationCategorySet

notification_category_set,

in string filter)

raises (Attach,

ParameterNotSupported,

InvalidParameter,

AlreadySubscribed,

AtLeastOneNotificationCategoryNotSupported);

/**

Operation: attach_push_b

@param manager_reference
Unique object representing this manager

@param time_tick
Per minute time for length of subscription. Negative or 0 values indicate infinite time

@param notification_category_set
One or more notification categories

@param filter
Filter constraint for notification reception

@param system_reference
OMG Notification Service CosNotifyChannelAdmin::SequenceProxyPushSupplier

@return
Unambiguous subscription id

*/

NotificationIRPConstDefs::SubscriptionId attach_push_b (

in Object manager_reference,

in long time_tick,

in NotificationIRPConstDefs::NotificationCategorySet

notification_category_set,

in string filter,

out CosNotifyChannelAdmin::SequenceProxyPushSupplier

system_reference)

raises (Attach,

OperationNotSupported,

ParameterNotSupported,

InvalidParameter,

AlreadySubscribed,

AtLeastOneNotificationCategoryNotSupported);

/**

Operation: attach_pull

@param manager_reference
Unique object representing this manager

@param time_tick
Per minute time for length of subscription. Negative or 0 values indicate infinite time

@param notification_category_set
One or more notification categories

@param filter
Filter constraint for notification reception

@param system_reference
OMG Notification Service CosNotifyChannelAdmin::SequenceProxyPullSupplier

@return
Unambiguous subscription id

*/

NotificationIRPConstDefs::SubscriptionId attach_pull (

in Object manager_reference,

in long time_tick,

in NotificationIRPConstDefs::NotificationCategorySet

notification_category_set,

in string filter,

out CosNotifyChannelAdmin::SequenceProxyPullSupplier

system_reference)

raises (Attach,

OperationNotSupported,

ParameterNotSupported,

InvalidParameter,

AlreadySubscribed,

AtLeastOneNotificationCategoryNotSupported);

/**

Operation: detach

@param manager_reference
Unique object representing this manager

@param subscription_id

Unambiguous subscription id

*/

void detach (

in Object manager_reference,

in string subscription_id)

raises (DetachException,

InvalidParameter);

/**

Operation: get_notification_IRP_version

@return
The list of Notification IRP versions currently supported

*/

CommonIRPConstDefs::VersionNumberSet

get_notification_IRP_version ()

raises(GetNotificationIRPVersion);

/**

Operation: get_subscription_status

@param subscription_id
Unambiguous subscription id

@param filter_in_effect
Current filter constraint for notification reception

@param subscription_state
Active, Inactive or Don’t Know

@param time_tick
Current time for length of subscription.

@return
Notification categories supported through this subscription id

*/

NotificationIRPConstDefs::NotificationCategorySet

get_subscription_status (

in string subscription_id,

out string filter_in_effect,

out NotificationIRPConstDefs::SubscriptionState

subscription_state,

out long time_tick)

raises (GetSubscriptionStatus,

OperationNotSupported,

InvalidParameter);

/**

Operation: get_subscription_ids

@param manager_reference
Unique object representing this manager

@return
List if subscription ids

*/

NotificationIRPConstDefs::SubscriptionIdSet get_subscription_ids (

in Object manager_reference)

raises (GetSubscriptionIds,

OperationNotSupported,

InvalidParameter);

/**

Operation: change_subscription_filter

@param subscription_id
Unambiguous subscription id

@param filter
Filter constraint for notification reception

*/

void change_subscription_filter (

in string subscription_id,

in string filter)

raises (ChangeSubscriptionFilter,

OperationNotSupported,

InvalidParameter);

/**

Operation: get_notification_categories

@param event_type_list
List of Event Types per notification category

@param extended_event_type_list
List of Extended Event Types per notification category

@return
List of supported notification categories

*/

NotificationIRPConstDefs::NotificationCategorySet

get_notification_categories (

out NotificationIRPConstDefs::EventTypesSet event_type_list,

out NotificationIRPConstDefs::ExtendedEventTypesSet

extended_event_type_list)

raises (GetNotificationCategories,

OperationNotSupported);

}; // interface NotificationIRPOperations

}; // module NotificationIRPSystem

#endif

Annex A: The T1M1.5 / ITU-T Constraint Language BNF

The BNF in this annex is an extension of the BNF used by the OMG’s Notification Service filter language. The Notification Service filter BNF is actually an extension of the OMG’s Trader Constraint Language (TCL) BNF. This annex is copied from reference [32].

The Constraint Language Proper in Terms of Lexical Tokens

<constraint> := /* empty */

| <bool>

<preference> := /* <empty> */

| min <bool>

| max <bool>

| with <bool>

| random

| first

<bool> := <bool_or>

<bool_or> := <bool_or> or <bool_and>

| <bool_and>

<bool_and> := <bool_and> and <bool_compare>

| <bool_compare>

<bool_compare> := <expr_in> == <expr_in>

| <expr_in> != <expr_in>

| <expr_in> < <expr_in>

| <expr_in> <= <expr_in>

| <expr_in> > <expr_in>

| <expr_in> >= <expr_in>

| <expr_in>

| <expr> ^ <expr> /* non-null set intersection test */

| <seq_factor> % <seq_factor> /* true if sequence operands have identical values */

<expr_in> := <expr_twiddle> in <Ident>

| <expr_twiddle>

| <expr_twiddle> in $ <Component>

<expr_twiddle> := <expr> ~ <expr>

| <expr>

| <expr> # <expr>

<expr> := <expr> + <term>

| <expr> - <term>

| <term>

<term> := <term> * <factor_not>

| <term> / <factor_not>

| <factor_not>

<factor_not> := not <factor>

| <factor>

<factor> := (<bool_or>)

| exist <Ident>

| <Ident>

| <Number>

| - <Number>

| <String>

| TRUE

| FALSE

| + <Number>

| exist $ <Component>

| $ <Component>

| default $ <Component>

| MAX (<seq_factor>)

| MIN (<seq_factor>)

| <seq_literal>

<seq_factor> := <Ident>

| <seq_literal>

<seq_literal> := { <factor_list> }

<factor_list> := /* empty */

| <factor_list> , <factor>

| <factor>

BNF for Lexical Tokens up to Character Set Issues

<Ident> := <Leader> <FollowSeq>

| \ <Leader> <FollowSeq><Component> := /* empty */

| . <CompDot>

| <CompArray>

| <CompAssoc>

| <Ident> <CompExt> /* run-time variable */

<CompExt> := /* empty */

| . <CompDot>

| <CompArray>

| <CompAssoc>

<CompDot> := <Ident> <CompExt>

| <CompPos>

| <UnionPos>

| _length

| _d

| _type_id

| _repos_id

<CompArray> := [<Digits>] <CompExt>

<CompAssoc> := (<Ident>) <CompExt>

<CompPos> := <Digits> <CompExt>

<UnionPos> := (<UnionVal>) <CompExt>

<UnionVal> := /* empty */

| <Digits>

| - <Digits>

| + <Digits>

| <String>

<FollowSeq> := /* <empty> */

| <FollowSeq> <Follow>

<Number> := <Mantissa>

| <Mantissa> <Exponent>

<Mantissa> := <Digits>

| <Digits> .

| . <Digits>

| <Digits> . <Digits>

<Exponent> := <Exp> <Sign> <Digits>

<Sign> := +

| -<

<Exp> := E

| e

<Digits> := <Digits> <Digit>

| <Digit>

<String> := ’ <TextChars> ’

<TextChars> := /* <empty> */

| <TextChars> <TextChar>

<TextChar> := <Alpha>

| <Digit>

| <Other>

| <Special>

<Special> := \\

| \’

Character Set Issues

The previous BNF has been complete up to the non-terminals <Leader>, <Follow>, <Alpha>, <Digit>, and <Other>. For a particular character set, one must define the characters that make up these character classes.

Each character set which the trading service is to support must define these character classes. This appendix defines these character classes for the ASCII character set.

<Leader> := <Alpha>

<Follow> := <Alpha>

| <Digit>

| _

<Alpha> is the set of alphabetic characters [A-Za-z]

<Digit> is the set of digits [0-9]

<Other> is the set of ASCII characters that are not <Alpha>, <Digit>, or <Special>

Annex B: ITU-T X.780 itut_x780.idl CORBA IDL

/**

This file is an unofficial version of itut_x780.idl. It has been included in this document for reference only. This version is from reference [25], with comments from references [33] and [38] applied.

*/

/* This IDL code is meant to be stored in a file named "itut_x780.idl"

located in the search path used by IDL compilers on your system. */

#ifndef ITUT_X780_IDL

#define ITUT_X780_IDL

#include <CosNaming.idl>

#include <CosTime.idl>

#include <itut_x780Const.idl>

#pragma prefix "itu.int"

/* Most comments in this file are formatted to be parsed by an IDL-to-HTML

converter such as idldoc or orbacus hidl. */

// MODULE itut_x780

/** This module provides the fundamental capabilities for implementing network

management interfaces and defines the "managed object" interface. The

interfaces below are modeled after the managed object specifications

found in the ITU-T CMIP specification document X.721. */

module itut_x780 {

// IMPORTED TYPES

// Types imported from CosNaming

typedef CosNaming::Name NameType;

// Types imported from CosTime

typedef TimeBase::UtcT UtcT;

// FORWARD DECLARATIONS AND TYPEDEFS

/** International strings are strings of wide (16 bit unicode)

characters. */

typedef wstring Istring;

/** Istring Sets are just sets of Istrings */

typedef sequence <Istring> IstringSetType;

/** Additional Text Type is often used in notifications to convey a

text explanation for the notification.

*/

typedef Istring AdditionalTextType;

/** Avalibility Type is used in a sequence to indicate the

availability of a resource. Zero or more of these conditions may be

indicated.

*/

typedef short AvailabilityStatusType;

const AvailabilityStatusType inTest = 0;

const AvailabilityStatusType failed = 1;

const AvailabilityStatusType powerOff = 2;

const AvailabilityStatusType offLine = 3;

const AvailabilityStatusType offDuty = 4;

const AvailabilityStatusType dependency = 5;

const AvailabilityStatusType degraded = 6;

const AvailabilityStatusType notInstalled = 7;

const AvailabilityStatusType logFull = 8;

/** Availability status is used to indicate the availability of a

resource. It is represented as a sequence of integers because several

of the conditions may exist at once.

*/

typedef sequence<AvailabilityStatusType> AvailabilityStatusSetType;

/** Backed Up Status Type is used to indicate if an object has a back

up. */

typedef boolean BackedUpStatusType;

typedef sequence <octet> BitString;

/** Control Status Type is used in a sequence to indicate the

control status of a resource. Zero or more of these may be indicated.

*/

typedef short ControlStatusType;

const ControlStatusType subjectToTest = 0;

const ControlStatusType partOfServicesLocked = 1;

const ControlStatusType reservedForTest = 2;

const ControlStatusType suspended = 3;

/** Control status set is used to indicate the control status of a

resource. It is represented as a sequence of integers because several

of the conditions may exist at once.

*/

typedef sequence<ControlStatusType> ControlStatusSetType;

/** Generalized time is a basic ASN.1 type. It is usually represented

as a string in computing languages but it has certain, parseable

formats. The 3 possible forms are:

Local time only. "YYYYMMDDHHMMSS.fff", where the optional fff is

accurate to three decimal places,

Universal time (UTC time) only. "YYYYMMDDHHMMSS.fffZ", and

Difference between local and UTC times. "YYYYMMDDHHMMSS.fff+-HHMM".

The options for representing this in IDL seem to be either a string or

the UtcT structure from the CORBA Time Service. UtcT makes it a little

easier to compare times from different zones, but requires managed

systems to know their time zones. UtcT was picked.

*/

typedef UtcT GeneralizedTimeType;

/** External Time is generalized time. */

typedef GeneralizedTimeType ExternalTimeType;

/** Forward declaration. */

interface ManagedObject;

/** MO Set is a set of ManagedObject references. */

typedef sequence <ManagedObject> MOSetType;

/** MO Seq is a sequence of ManagedObject references. */

typedef sequence <ManagedObject> MOSeqType;

/** A set of names is definded as a sequence of names. */

typedef sequence <NameType> NameSetType;

/** Notification IDs are long integers. */

typedef long NotifIDType;

/** This defines a set of notification IDs. */

typedef sequence <long> NotifIDSetType;

/** Procedural Status Type is used in a sequence to indicate the

procedural status of a resource. Zero or more of these may be

indicated.

*/

typedef short ProceduralStatusType;

const ProceduralStatusType initializationRequired = 0;

const ProceduralStatusType notInitialized = 1;

const ProceduralStatusType initializing = 2;

const ProceduralStatusType reporting = 3;

const ProceduralStatusType terminating = 4;

/** Procedural Status Set is used to indicate the procedural status of

a resource. It is represented as a sequence of integers because

several of the conditions may exist at once.

*/

typedef sequence<ProceduralStatusType> ProceduralStatusSetType;

/** ScopedName is just a string. */

typedef string ScopedNameType;

/** Scoped Name Sets are simply sets of Scoped Names. */

typedef sequence <ScopedNameType> ScopedNameSetType;

/** In CORBA, strings containing scoped names are used to identify

object classes (actually, "interfaces"). */

typedef ScopedNameType ObjectClassType;

/** Object Class Set is a set of object classes */

typedef sequence <ObjectClassType> ObjectClassSetType;

/** Name Binding Modules are identified with scoped names. */

typedef ScopedNameType NameBindingType;

/** StartTimeType is used to specify a time when something starts.

It is often paired with a StopTimeType to control the activation of

some function.

*/

typedef GeneralizedTimeType StartTimeType;

/** String sets are sets of strings. */

typedef sequence <string> StringSetType;

/** System Labels are strings used to identify systems. */

typedef string SystemLabelType;

/** Unknown status is used to indicate if the status of a resource is

not known. A value of true indicates the status is unknown. */

typedef boolean UnknownStatusType;

// ENUMERATED TYPES

/* The following state objects are used in many interfaces and parallel

the state objects in CMIP standards. */

/** Administrative State is read/write. A "locked" object is usually

one that may not be changed or one which is not providing service.

Setting the Admininstrative State of an object to "shuttingDown" begins

the shutdown process for that object. */

enum AdministrativeStateType {locked, unlocked, shuttingDown};

/** Operational State is read only. It simply reports the current

capability of the object to provide service. */

enum OperationalStateType {disabled, enabled};

/** Usage state is read only. If "idle," the resource is completely

unused. If "busy," the total capacity of the resource is in use.

"Active" is in between. */

enum UsageStateType {idle, active, busy};

/** Delete Policy indicates if an object can be deleted and if so if

any contained objects should automatically be deleted. Since objects

must not be orphaned, if an object has a delete policy of

"deleteOnlyIfNoContainedObjects" the object must not be deleted if it

has contained objects. A value of "deleteContainedObjects" means if

the object is deleted its contained objects should also be deleted. */

enum DeletePolicyType {notDeletable, deleteOnlyIfNoContainedObjects,

deleteContainedObjects};

/** PerceivedSeverity reports the severity of an alarm. "Indeterminate"

is used when it is not possible to assign one of the other values */

enum PerceivedSeverityType {indeterminate, critical, major, minor,

warning, cleared};

/** Source Indicator is used in many notifications. It identifies

whether the notification is a result of a management operation or

something that occurred on the managed system. */

enum SourceIndicatorType {resourceOperation, managementOperation,

unknown};

/** The standby status attribute is single-valued and read-only.

The value is only meaningful when the back-up relationship role exists.

If "hot standby" the resource is not providing service, but is

operating in synchronism with another resource that is to be backed-up.

If "cold standby" the resource is to back-up another resource, but is

not synchronized with that resource. If "providing service" the back-up

resource is providing service and is backing up another resource.

*/

enum StandbyStatusType {hotStandby, coldStandby, providingService};

/** Stop times are used to specify when some function should cease.

There are normally two choices, the function runs continually (in

which case no actual time is specified) or the function ends at

a specified time.

*/

enum StopTimeChoice {specific, continual};

/** Threshold indication describes if the threshold crossed was in the

up or down direction. */

enum ThresholdIndicationType {up, down};

/** TrendIndication values indicate if some observed condition is

getting better, worse, or not changing. */

enum TrendIndicationType {lessSevere, noChange, moreSevere};

// STRUCTURES AND UNIONS

/* The structures defined below are used to pass values that may be

optionally included. For some types of values, like strings, lists,

and pointers, it is easy to tell if the value is included. For others,

like enumerations, numbers, and structures, it is not. */

/** AdministrativeStateTypeOpt is an optional type. If the

discriminator is true the value is present, otherwise the value is

null. */

union AdministrativeStateTypeOpt switch (boolean) {

case TRUE:
AdministrativeStateType
value;

};

/** BooleanTypeOpt is an optional type. If the discriminator is

true the value is present, otherwise the value is null. */

union BooleanTypeOpt switch (boolean) {

case TRUE:
boolean
value;

};

/** FloatTypeOpt is an optional type. If the discriminator is

true the value is present, otherwise the value is null. */

union FloatTypeOpt switch (boolean) {

case TRUE:
float
value;

};

/** LongTypeOpt is an optional type. If the discriminator is

true the value is present, otherwise the value is null. */

union LongTypeOpt switch (boolean) {

case TRUE:
long
value;

};

/** OperationalStateTypeOpt is an optional type. If the discriminator

is true the value is present, otherwise the value is null. */

union OperationalStateTypeOpt switch (boolean) {

case TRUE:
OperationalStateType
value;

};

/** ShortTypeOpt is an optional type. If the discriminator is

true the value is present, otherwise the value is null. */

union ShortTypeOpt switch (boolean) {

case TRUE:
short
value;

};

/** TrendIndicationTypeOpt is an optional type. If the discriminator

is true the value is present, otherwise the value is null. */

union TrendIndicationTypeOpt switch (boolean) {

case TRUE:
TrendIndicationType
value;

};

/** UnsignedShortTypeOpt is an optional type. If the discriminator is

the value is present, otherwise the value is null. */

union UnsignedShortTypeOpt switch (boolean) {

case TRUE:
unsigned short value;

};

/** UsageStateTypeOpt is an optional type. If the discriminator is

true the value is present, otherwise the value is null. */

union UsageStateTypeOpt switch (boolean) {

case TRUE:
UsageStateType
value;

};

/** Many times interface specifications need to define standard values

to be passed across the interface. Also, often the scheme used to

define these values needs to be extensible as new interfaces are

subclassed, so enumerations don't work well. CMIP uses OIDs, strings

of numbers that are often appended, in standards. To serve this

purpose, the Unique ID is used. It consists of two parts, a string

containing a scoped module name, and an integer value defined as a

constant within that module. These UIDs, and the ObjectClass type

defined above, replace ASN.1 OIDs. It is expected that each module

will contain a constant string named "moduleName" that contains the

name of the module for error-free use by the programmer. A null module

name will indicate a null value for the UID. <p>

Code to interpret a UID might look like the following code snippet:

<code><pre>

UIDType
pc;
// probable cause

...

if (pc.moduleName ==

itut_x780::ProbableCauseConst::moduleName) //string compare

switch (pc.value) {

case itut_x780::ProbableCauseConst::adapterError:

...

case

itut_x780::ProbableCauseConst::applicationSubsystemFailure:

...

case itut_x780::ProbableCauseConst::bandwidthReduced:

...

}

else if (pc.moduleName == MyLocal::ProbableCauseConst::moduleName)

switch (pc.value) {

...

}

</pre></code>

@member moduleName
The scoped module name where values are

defined.

@member value

The value defined as a constant within the

module.

*/

struct UIDType {

string moduleName;
// module where value is defined

short value;

// constant within the module

};

typedef sequence <UIDType> UIDSetType;

/** Management Extension is a structure for flexibly reporting

information. It is typically used in the Additional Information field

of notifications.

@see

AdditionalInformationSetType

@member id
identifies the type of information

@member any
contains the actual information, type will depend on

the value of the id member.

*/

struct ManagementExtensionType {

UIDType
id;

// identifies the type of info

any
info;

// type will depend on id

};

/** Additional Information is a flexible way to report information that

does not fit into the structure of a notification. It contains a

sequence of a structure called "Management Extension". */

typedef sequence <ManagementExtensionType>

AdditionalInformationSetType;

/** An Attribute Value structure is used in a notification to report

the value of any attribute. The string used for the attribute’s name

is the same as the name of the data member in the value object defined

for the object. In other words, it is the name of an attribute accessor

method minus the "get" or "set".

@member attributeName
the name of the attribute

@member value

contains the value of the attribute, type will

depend on the attributeName.

*/

struct AttributeValueType {

string
attributeName;

any
value;

// type will depend on the attribute

};

/** Attribute Value Sets are used to report attributes generically,

in a batch mode. */

typedef sequence <AttributeValueType> AttributeSetType;

/** An Attribute Value Change structure is used in a notification to

report an attribute that has been changed.

@see AttributeValueType

@member attributeName
the name of the attribute

@member oldValue
the old value, type will depend on the

attributeName

@member newValue
the new value, type will depend on the

attributeName.

*/

struct AttributeValueChangeType {

string

attributeName;

any

oldValue;
// type depends on attribute

any

newValue;
// type depends on attribute

};

/** An Attribute Change Set is used to report the attributes that have

been changed in an attribute value change notification. */

typedef sequence <AttributeValueChangeType> AttributeChangeSetType;

/** A Correlated Notification is identified by the object that emitted

the notification and the notification ID. Both are included in case

the Notification IDs are not unique across objects.

@member source
Reference to object that emitted the correlated

notification. If null, the correlated notifications

are from the same source as the notification containing

this data structure.

@member notifIDs IDs of the correlated notifications. Notification

identifiers must be chosen to be unique across all

notifications from a particular managed object

throughout the time that correlation is significant.

*/

struct CorrelatedNotificationType {

NameType
source;

NotifIDSetType
notifIDs;

};

/** Correlated Notification sets are sets of Correlated Notification

structures. */

typedef sequence <CorrelatedNotificationType>

CorrelatedNotificationSetType;

/** ProbableCause, in CMIP standards, may be either an integer or GDMO

OID, a dot-notation string. The UID type is used instead. */

typedef UIDType ProbableCauseType;

/** Proposed Repair Actions are sets of unique identifiers. */

typedef UIDSetType ProposedRepairActionSetType;

/** Security Alarm Causes are unique identifiers. */

typedef UIDType SecurityAlarmCauseType;

/** Security Alarm Detector can indicate either a mechanism or a

specific object. According to X.721 a choice is made between one or

the other, though it is not clear why. (Actually, X.721 adds a third

choice for an AE-title which has no equivalent here.) Unless otherwise

indicated, then, at most one of the members will be non-null. Two

nulls may be sent if the managed system does not support this property.

@member mechanism
the scheme or function detecting the alarm, may

be null

@member obj

the object detecting the alarm, may be null

*/

struct SecurityAlarmDetectorType {

UIDType

mechanism;
// may be null

NameType
obj;

// may be null

};

/** Service User

@member id
the id of the service user

@member details
details about the service user, type will depend on id

*/

struct ServiceUserType {

UIDType
id;

any
details;
// value will depend on id

};

/** Service Providers share the same representation as Service Users.

*/

typedef ServiceUserType ServiceProviderType;

/** Specific Problems are sets of unique identifiers. */

typedef UIDSetType SpecificProblemSetType;

/** A Stop Time Type is used to indicate when some function should

cease. In the specific case, an actual time is given. In the

continual case, the function runs continually and no value is

carried in this union.

*/

union StopTimeType switch (StopTimeChoice) {

case specific:
GeneralizedTimeType time;

/* case continual carries NULL value */

};

/** A SuspectObject identifies an object that may be the cause of a

failure. It is usually a component of a SuspectObjectList.

@member objectClass

Object class of the suspect object

@member suspectObjectInstance
Object instance of the suspect object

@member failureProbability
Optional failure responsibility

probability from 1 to 100

*/

struct SuspectObjectType {

ObjectClassType

objectClass;

ManagedObject

suspectObjectInstance;

UnsignedShortTypeOpt
failureProbability;

};

/** Suspect Object Lists are used to identify objects that may be the

cause of a failure.

*/

typedef sequence<SuspectObjectType> SuspectObjectSetType;

/** Threshold Level Indication describes multi-level threshold

crossings. Up is the only permitted choice for a counter. In ASN.1,

if indication is "up", low value is optional.

@member indication
indicates up or down direction of crossing.

@member low

the low observed value.

@member high

the high observed value.

*/

struct ThresholdLevelIndType {

ThresholdIndicationType

indication;

FloatTypeOpt

low;
// observed value

float

high;
// observed value

};

/** Threshold Level Ind Type Opt is an optional type. If the

discriminator is true the value is present, otherwise the value is

null. */

union ThresholdLevelIndTypeOpt switch (boolean) {

case TRUE:
ThresholdLevelIndType
value;

};

/** Threshold Information indicates some guage or counter attribute

passed a set threshold. The structure differs from X.721 some to

simplify the syntax.

@member attributeID
Identifies the attribute that crossed the

threshold. Actually, it is an operation name

on an interface minus the "get" or "set". The

interface on which the operation is defined is

included elsewhere in the notification as

ObjectClass. A Null value indicates the entire

structure is null.

@member observedValue
Attributes that are of type integer will be

converted to floats.

@member thresholdlevel
This parameter is for multi-level threhsolds.

Optional.

@member armTime

May be null(0). */

struct ThresholdInfoType {

string

attributeID;

float

observedValue;

ThresholdLevelIndTypeOpt
thresholdLevel;

ExternalTimeType

armTime;

};

// EXCEPTIONS

/** Application error info types are passed back in managed object

exceptions.

@member error
A unique identifier identifying the problem.

@member details
A text message with additional information about the

problem.

*/

valuetype ApplicationErrorInfoType {

public UIDType

error;

public Istring

details;

};

/** Create error info types are passed back in managed object create

exceptions. They extend application error info types.

@member relatedObjects
objects that have some relationship to the

object to be created that somehow prevented the

creation.

@member attributeList
the values that would have been assigned to the

created object. These may hold some key to why

the object could not be created.

*/

valuetype CreateErrorInfoType : ApplicationErrorInfoType {

public MOSetType
relatedObjects;

public AttributeSetType
attributeList;

};

/** Delete error info types are passed back in managed object delete

exceptions. They extend application error info types.

@member relatedObjects
objects that have some relationship to the

object to be deleted that somehow prevented the

deletion.

@member attributeList
the attribute values assigned to the object to

be deleted. These may hold some key to why the

object could not be deleted.

*/

valuetype DeleteErrorInfoType : ApplicationErrorInfoType {

public MOSetType
relatedObjects;

public AttributeSetType
attributeList;

};

/** A package error info type is a special create error. It will be

passed back in a managed object create exception as a create error. If

the UID error code matches the package error info type, the client

application may narrow the value type from create error info type to

package error info type to access the additional information.

@member packages
the list of requested packages that conflicted

or could not be supported.

*/

valuetype PackageErrorInfoType : CreateErrorInfoType {

public StringSetType
packages;

};

/** Application error exceptions may be raised on any managed object

operation to identify a problem preventing the operation from being

completed. */

exception ApplicationError { ApplicationErrorInfoType info; };

/** Create error exceptions may be raised on any managed object create

operation to identify a problem preventing the object from being

completed. */

exception CreateError { CreateErrorInfoType info; };

/** Delete error exceptions may be raised by a managed object in

response to an attempt to delete the object. They may also be raised

by the terminator service. */

exception DeleteError { DeleteErrorInfoType info; };

/** Use for Bitstrings */

exception InvalidLength { long length; } ;

// MANAGED OBJECT INTERFACE

/** This valuetype object contains members for each of the attributes

accessible on this interface. */

valuetype ManagedObjectValueType {

public NameType

name;

public ObjectClassType

objectClass;

public StringSetType

packages;

public SourceIndicatorType
creationSource;

public DeletePolicyType

deletePolicy;

};

/** The Managed Object interface is intended to be the base interface

from which all other managed object interfaces inherit. It is a

central place to specify basic functions which all managed objects are

expected to support. */

interface ManagedObject {

/** This method returns the fully-qualified name for the

object. This method is used rather than having a "get*ID"

method defined for each interface, as is done in CMIP

specifications. This will ensure that objects have only a

single operation to retrieve names when they are sub-classed.

<p>

The response is a sequence of name component structures,

starting with the name assigned to the "local root" naming

context under which this object is contained. The client may

find the superiors of this object by removing components from

the tail end of this sequence and performing a resolve

operation on the first part of the name. */

NameType nameGet()

raises (ApplicationError);

/** This method returns the scoped name of the most-specific

class of the interface (e.g. "EquipmentR1"). */

ObjectClassType objectClassGet()

raises (ApplicationError);

/** This method returns a list of all the conditional packages

supported by this instance. */

StringSetType packagesGet ()

raises (ApplicationError);

/** This method returns an indication of how the object was

created. */

SourceIndicatorType creationSourceGet()

raises (ApplicationError);

/** This method returns a value indicating if the object may be

deleted and if it may, if all contained objects are

automatically deleted. */

DeletePolicyType deletePolicyGet ()

raises (ApplicationError);

/** This method may be used to generically get all of the

attributes supported by an instance. Each interface is

expected to sub-class the Managed Object value type and add the

other attributes supported by that interface. The managed

object must return a value object of that type. The client

must then narrow the reference to access all the attributes.

<p>

The client may also submit a list of names indicating the

attributes it wishes to receive. These names must match the

member names in the value object. For members not on the list,

and for members that are part of packages that are not

supported, the server may return any value but it should be as

short as possible. The server also returns the list of

attributes, which may be shorter due to exclusion of attributes

in unsupported packages. The client must regard the value of

any member not in the list as garbage. <p>

A null attribute names list indicates that all supported

attributes are to be returned. The server must return the

actual list. */

ManagedObjectValueType attributesGet (

inout StringSetType attributeNames)

raises (ApplicationError);

/** This method destroys the object. It is used to simply

release any resources associated with the managed object. It

does not check for contained objects or remove name bindings

from the naming tree. <p>

The intent of this operation is to allow support services to

destroy the managed object. <p>

NOTE: Direct invocation of this operation from a managing

system could corrupt the naming tree and is recommended only

under extraordinary circumstances. Clients wishing to delete

an object should instead use the terminator service. */

void destroy()

raises (ApplicationError, DeleteError);

}; // end of ManagedObject interface

// MANAGED OBJECT FACTORY INTERFACE

/** This interface defines the generic managed object factory

interface. All Managed Object factories should inherit from this

interface. <p>

In addition to providing the means for creating objects by management

operation, the factories are assumed to take responsibility for

maintaining the integrity of the naming tree by creating name bindings

for the objects they create. <p>

Currently, this interface is null. It is included, however, as a

placeholder for capabilities that must be supported by all managed

object factories.

*/

interface ManagedObjectFactory {

}; // end of ManagedObjectFactory interface

// NOTIFICATIONS INTERFACE

/** This interface contains the definitions of notifications emitted by

many managed objects. <p>

The use of "typed" notifications is done here so that the notifications

can be documented in IDL and to support typed notifications for those

manager and managing systems that wish to use them. Note that the

OMG's Notification Service supports both structured and typed

notifications. It is not clear if implementations of the Notification

Service will support translation between them. It is expected that the

implementation agreement between the managing and managed system will

specify the use of structured or typed notifications. <p>

Notification users wishing to use typed notifications need only support

the interfaces below. Notification publishers and subscribers wishing

to use structured notifications based on the operations defined below

should follow these rules for constructing and reading the notification

structure:

The domain_type string in the fixed header of the structure should be

set to "telecommunications".

The event_type string in the fixed header of the structure should be

set to the scoped name of the operation. For example, for the

Attribute Value Change notification defined below this field would be

"itut_x780::Notifications::attributeValueChange".

The event_name string in the fixed header of the structure is not used

by this framework. It can be set to null or used for other purposes.

Optional header fields may be included to support features like Quality

of Service as appropriate.

Each parameter in the operation should be placed in a name-value pair

in the filterable body portion of the notification. The fd_name string

of this pair shall be set to the name of the parameter and the type

placed in the associated fd_value will be the type specified for the

parameter. For example, each of the notifications defined below has a

parameter named "eventTime" that is an "ExternalTimeType." This

parameter would be placed in the filterable data portion of the event.

The fd_name string of this pair would be set to "eventTime" and

fd_value would contain an ExternalTimeType value.

The remainder of the body of the notification (the unfilterable part)

should be null.

Unfortunately, typed notifications are mapped to notification

structures differently, so if one system wants to use typed

notifications and the other structured, the structured notification

user must be aware of how the CORBA Notification Service translates

typed notifications to structured notifications. See the specification

for details. In short, however, each of the parameters in the

operations below will be converted into a name-value pair in the

filterable data protion of the structured notification. Also, the

event_type field in the fixed header of the structured notification

will be set to the special value "%TYPED" and the domain_type field

will be an empty string. Finally, a name-value pair will be added as

the first element in the filterable data portion of the notification

with the name "operation". The value associated with this name will be

a string with the value set to the scoped name of the operation used to

emit the notification

(e.g. itut_x780::Notifications::attributeValueChange). <p>

Also, structured notification publishers may exclude notification

parameters that are marked "optional" or are of an optional type (a

type name ending in "TypeOpt." This should be done for efficiency.

This will, however, preclude the automatic conversion of structured

notifications to typed, so managers must be capable of accepting

structured notifications. (They do not strictly have to support typed

notifications, but if managed systems emit typed notifications managers

should accept them rather than translations because it will be more

efficient.) If an "optional" parameter is included in a notification,

the "optional" type (discriminated union) must be used. <p>

Parameters named "operation" should be avoided in notification

operations to support the use of typed notifications. While the

notification channel should be able to differentiate the real parameter

from the one added based on their positions in the filterable data

list, it could have an impact on filtering as the default filtering

language does not have a way to differentiate parameters based on

position. <p>

Because the scoped operation name is placed in either the type_name

string (when structured notifications are used) or a filterable body

name-value pair with the name "operation" (when typed notifications are

used), there is no "event type" parameter explicitly included in any of

the notification data structures. */

 interface Notifications {

/** An Attribute Value Change notification is used to report changes to

the attributes of an object such as addition or deletion of members to

one or more set-valued attributes and replacement of the value of one

or more attributes.

@param eventTime

Managed system's current time.

@param source

Object emitting notification.

@param sourceClass

Actual class of source object.

@param notificationIdentifier
A unique identifier for this

notification. Must be unique for

an object instance. (Optional in X.721

but not here. See text for

discussion of possible implications)

@param correlatedNotifications
List of correlated notifications.

Optional. Zero length sequence

indicates absence of this parameter.

@param additionalText

Text message. Optional. Zero length

string indicates absence of this

parameter.

@param additionalInfo

Optional. Zero length sequence

indicates absence of this parameter.

param sourceIndicator

Cause of event. Optional. Use

"unknown" if not supported.

@param attributeChanges

Changed attributes

*/

void attributeValueChange (

in ExternalTimeType

eventTime,

in NameType

source,

in ObjectClassType

sourceClass,

in NotifIDType

notificationIdentifier,

in CorrelatedNotificationSetType correlatedNotifications,

in AdditionalTextType

additionalText,

in AdditionalInformationSetType

additionalInfo,

in SourceIndicatorType

sourceIndicator,

in AttributeChangeSetType

attributeChanges

);

/** A Communications Alarm notification is used to report when an

object detects a communications error.

@param eventTime

Managed system's current time.

@param source

Object emitting notification.

@param sourceClass

Actual class of source object.

@param notificationIdentifier
A unique identifier for this

notification. Must be unique for

an object instance. (Optional in X.721

but not here. See text for

discussion of possible implications)

@param correlatedNotifications
List of correlated notifications.

Optional. Zero length sequence

indicates absence of this parameter.

@param additionalText

Text message. Optional. Zero length

string indicates absence of this

parameter.

@param additionalInfo

Optional. Zero length sequence

indicates absence of this parameter.

@param probableCause

@param specificProblems

Optional. Zero length sequence

indicates absence of this parameter.

@param perceivedSeverity

@param backedUpStatus

"True" if backed up

@param backUpObject

Will be null if backedUpStatus is

"false"

@param trendIndication

Optional. See type for details.

@param thresholdInfo

Optional. See type for details.

@param stateChangeDefinition
Optional. Zero length sequence

indicates absence of this parameter.

@param monitoredAttributes
Optional. Zero length sequence

indicates absence of this parameter.

@param proposedRepairActions
Optional. Zero length sequence

indicates absence of this parameter.

@param alarmEffectOnService
True if alarm is service effecting.

@param alarmingResumed

True if alarming was just resumed,

possibly resulting in delayed reporting

of an alarm

@param suspectObjectList
Objects possibly involved in failure.

*/

void communicationsAlarm (

in ExternalTimeType

eventTime,

in NameType

source,

in ObjectClassType

sourceClass,

in NotifIDType

notificationIdentifier,

in CorrelatedNotificationSetType correlatedNotifications,

in AdditionalTextType

additionalText,

in AdditionalInformationSetType

additionalInfo,

in ProbableCauseType

probableCause,

in SpecificProblemSetType

specificProblems,

in PerceivedSeverityType

perceivedSeverity,

in BooleanTypeOpt

backedUpStatus,

in NameType

backUpObject,

in TrendIndicationTypeOpt

trendIndication,

in ThresholdInfoType

thresholdInfo,

in AttributeChangeSetType

stateChangeDefinition,

in AttributeSetType

monitoredAttributes,

in ProposedRepairActionSetType

proposedRepairActions,

in BooleanTypeOpt

alarmEffectOnService,

in BooleanTypeOpt

alarmingResumed,

in SuspectObjectSetType

suspectObjectList

);

/** An Environmental Alarm notification is used to report a problem in

the environment.

@param eventTime

Managed system's current time.

@param source

Object emitting notification.

@param sourceClass

Actual class of source object.

@param notificationIdentifier
A unique identifier for this

notification. Must be unique for

an object instance. (Optional in X.721

but not here. See text for

discussion of possible implications)

@param correlatedNotifications
List of correlated notifications.

Optional. Zero length sequence

indicates absence of this parameter.

@param additionalText

Text message. Optional. Zero length

string indicates absence of this

parameter.

@param additionalInfo

Optional. Zero length sequence

indicates absence of this parameter.

@param probableCause

@param specificProblems

Optional. Zero length sequence

indicates absence of this parameter.

@param perceivedSeverity

@param backedUpStatus

"True" if backed up

@param backUpObject

Will be null if backedUpStatus is

"false"

@param trendIndication

Optional. See type for details.

@param thresholdInfo

Optional. See type for details.

@param stateChangeDefinition
Optional. Zero length sequence

indicates absence of this parameter.

@param monitoredAttributes
Optional. Zero length sequence

indicates absence of this parameter.

@param proposedRepairActions
Optional. Zero length sequence

indicates absence of this parameter.

@param alarmEffectOnService
True if alarm is service effecting.

@param alarmingResumed

True if alarming was just resumed,

possibly resulting in delayed reporting

of an alarm

@param suspectObjectList
Objects possibly involved in failure.

*/

void environmentalAlarm (

in ExternalTimeType

eventTime,

in NameType

source,

in ObjectClassType

sourceClass,

in NotifIDType

notificationIdentifier,

in CorrelatedNotificationSetType correlatedNotifications,

in AdditionalTextType

additionalText,

in AdditionalInformationSetType

additionalInfo,

in ProbableCauseType

probableCause,

in SpecificProblemSetType

specificProblems,

in PerceivedSeverityType

perceivedSeverity,

in BooleanTypeOpt

backedUpStatus,

in NameType

backUpObject,

in TrendIndicationTypeOpt

trendIndication,

in ThresholdInfoType

thresholdInfo,

in AttributeChangeSetType

stateChangeDefinition,

in AttributeSetType

monitoredAttributes,

in ProposedRepairActionSetType

proposedRepairActions,

in BooleanTypeOpt

alarmEffectOnService,

in BooleanTypeOpt

alarmingResumed,

in SuspectObjectSetType

suspectObjectList

);

/** An Equipment Alarm notification is used to report a failure in the

equipment.

@param eventTime

Managed system's current time.

@param source

Object emitting notification.

@param sourceClass

Actual class of source object.

@param notificationIdentifier
A unique identifier for this

notification. Must be unique for

an object instance. (Optional in X.721

but not here. See text for

discussion of possible implications)

@param correlatedNotifications
List of correlated notifications.

Optional. Zero length sequence

indicates absence of this parameter.

@param additionalText

Text message. Optional. Zero length

string indicates absence of this

parameter.

@param additionalInfo

Optional. Zero length sequence

indicates absence of this parameter.

@param probableCause

@param specificProblems

Optional. Zero length sequence

indicates absence of this parameter.

@param perceivedSeverity

@param backedUpStatus

"True" if backed up

@param backUpObject

Will be null if backedUpStatus is

"false"

@param trendIndication

Optional. See type for details.

@param thresholdInfo

Optional. See type for details.

@param stateChangeDefinition
Optional. Zero length sequence

indicates absence of this parameter.

@param monitoredAttributes
Optional. Zero length sequence

indicates absence of this parameter.

@param proposedRepairActions
Optional. Zero length sequence

indicates absence of this parameter.

@param alarmEffectOnService
True if alarm is service effecting.

@param alarmingResumed

True if alarming was just resumed,

possibly resulting in delayed reporting

of an alarm

@param suspectObjectList
Objects possibly involved in failure.

*/

void equipmentAlarm (

in ExternalTimeType

eventTime,

in NameType

source,

in ObjectClassType

sourceClass,

in NotifIDType

notificationIdentifier,

in CorrelatedNotificationSetType correlatedNotifications,

in AdditionalTextType

additionalText,

in AdditionalInformationSetType

additionalInfo,

in ProbableCauseType

probableCause,

in SpecificProblemSetType

specificProblems,

in PerceivedSeverityType

perceivedSeverity,

in BooleanTypeOpt

backedUpStatus,

in NameType

backUpObject,

in TrendIndicationTypeOpt

trendIndication,

in ThresholdInfoType

thresholdInfo,

in AttributeChangeSetType

stateChangeDefinition,

in AttributeSetType

monitoredAttributes,

in ProposedRepairActionSetType

proposedRepairActions,

in BooleanTypeOpt

alarmEffectOnService,

in BooleanTypeOpt

alarmingResumed,

in SuspectObjectSetType

suspectObjectList

);

/** An Integrity Violation notification is used to report that a

potential interruption in information flow has occurred such that

information may have been illegally modified, inserted or deleted.

@param eventTime

Managed system's current time.

@param source

Object emitting notification.

@param sourceClass

Actual class of source object.

@param notificationIdentifier
A unique identifier for this

notification. Must be unique for

an object instance. (Optional in X.721

but not here. See text for

discussion of possible implications)

@param correlatedNotifications
List of correlated notifications.

Optional. Zero length sequence

indicates absence of this parameter.

@param additionalText

Text message. Optional. Zero length

string indicates absence of this

parameter.

@param additionalInfo

Optional. Zero length sequence

indicates absence of this parameter.

@param securityAlarmCause

@param securityAlarmSeverity
Clears allowed? X.721 appears to

restrict the "cleared" value on this

alarm but clears should be allowed.

@param securityAlarmDetector

@param serviceUser

@param serviceProvider

*/

void integrityViolation (

in ExternalTimeType

eventTime,

in NameType

source,

in ObjectClassType

sourceClass,

in NotifIDType

notificationIdentifier,

in CorrelatedNotificationSetType correlatedNotifications,

in AdditionalTextType

additionalText,

in AdditionalInformationSetType

additionalInfo,

in SecurityAlarmCauseType

securityAlarmCause,

in PerceivedSeverityType

securityAlarmSeverity,

in SecurityAlarmDetectorType

securityAlarmDetector,

in ServiceUserType

serviceUser,

in ServiceProviderType

serviceProvider

);

/** An Object Creation notification is used to report the creation of a

managed object to another open system. Note that the source field

should be set to the created object, not the factory.

@param eventTime

Managed system's current time.

@param source

Object emitting notification.

@param sourceClass

Actual class of source object.

@param notificationIdentifier
A unique identifier for this

notification. Must be unique for

an object instance. (Optional in X.721

but not here. See text for

discussion of possible implications)

@param correlatedNotifications
List of correlated notifications.

Optional. Zero length sequence

indicates absence of this parameter.

@param additionalText

Text message. Optional. Zero length

string indicates absence of this

parameter.

@param additionalInfo

Optional. Zero length sequence

indicates absence of this parameter.

@param sourceIndicator

Cause of event. Optional. Use

"unknown" if not supported.

@param attributeSet

Attribute values. Optional. Zero length

sequence indicates absence of this

parameter.

*/

void objectCreation (

in ExternalTimeType

eventTime,

in NameType

source,

in ObjectClassType

sourceClass,

in NotifIDType

notificationIdentifier,

in CorrelatedNotificationSetType correlatedNotifications,

in AdditionalTextType

additionalText,

in AdditionalInformationSetType

additionalInfo,

in SourceIndicatorType

sourceIndicator,

in AttributeSetType

attributeList

);

/** An Object Deletion notification is used to report the deletion of a

managed object. Note that the source field should be set to

the object being deleted.

@param eventTime

Managed system's current time.

@param source

Object emitting notification.

@param sourceClass

Actual class of source object.

@param notificationIdentifier
A unique identifier for this

notification. Must be unique for

an object instance. (Optional in X.721

but not here. See text for

discussion of possible implications)

@param correlatedNotifications
List of correlated notifications.

Optional. Zero length sequence

indicates absence of this parameter.

@param additionalText

Text message. Optional. Zero length

string indicates absence of this

parameter.

@param additionalInfo

Optional. Zero length sequence

indicates absence of this parameter.

@param sourceIndicator

Cause of event. Optional. Use

"unknown" if not supported.

@param attributeSet

Attribute values. Optional. Zero length

sequence indicates absence of this

parameter.

*/

void objectDeletion (

in ExternalTimeType

eventTime,

in NameType

source,

in ObjectClassType

sourceClass,

in NotifIDType

notificationIdentifier,

in CorrelatedNotificationSetType correlatedNotifications,

in AdditionalTextType

additionalText,

in AdditionalInformationSetType

additionalInfo,

in SourceIndicatorType

sourceIndicator,

in AttributeSetType

attributeList

);

/** An Operational Violation notification is used to report that the

provision of the requested service was not possible due to the

unavailability, malfunction or incorrect invocation of the service.

@param eventTime

Managed system's current time.

@param source

Object emitting notification.

@param sourceClass

Actual class of source object.

@param notificationIdentifier
A unique identifier for this

notification. Must be unique for

an object instance. (Optional in X.721

but not here. See text for

discussion of possible implications)

@param correlatedNotifications
List of correlated notifications.

Optional. Zero length sequence

indicates absence of this parameter.

@param additionalText

Text message. Optional. Zero length

string indicates absence of this

parameter.

@param additionalInfo

Optional. Zero length sequence

indicates absence of this parameter.

@param securityAlarmCause

@param securityAlarmSeverity
Clears allowed? X.721 appears to

restrict the "cleared" value on this

alarm but clears should be allowed.

@param securityAlarmDetector

@param serviceUser

@param serviceProvider

*/

void operationalViolation (

in ExternalTimeType

eventTime,

in NameType

source,

in ObjectClassType

sourceClass,

in NotifIDType

notificationIdentifier,

in CorrelatedNotificationSetType correlatedNotifications,

in AdditionalTextType

additionalText,

in AdditionalInformationSetType

additionalInfo,

in SecurityAlarmCauseType

securityAlarmCause,

in PerceivedSeverityType

securityAlarmSeverity,

in SecurityAlarmDetectorType

securityAlarmDetector,

in ServiceUserType

serviceUser,

in ServiceProviderType

serviceProvider

);

/** A Physical Violation notification is used to report that a physical

resource has been violated in a way that indicates a potential security

attack.

@param eventTime

Managed system's current time.

@param source

Object emitting notification.

@param sourceClass

Actual class of source object.

@param notificationIdentifier
A unique identifier for this

notification. Must be unique for

an object instance. (Optional in X.721

but not here. See text for

discussion of possible implications)

@param correlatedNotifications
List of correlated notifications.

Optional. Zero length sequence

indicates absence of this parameter.

@param additionalText

Text message. Optional. Zero length

string indicates absence of this

parameter.

@param additionalInfo

Optional. Zero length sequence

indicates absence of this parameter.

@param securityAlarmCause

@param securityAlarmSeverity
Clears allowed? X.721 appears to

restrict the "cleared" value on this

alarm but clears should be allowed.

@param securityAlarmDetector

@param serviceUser

@param serviceProvider

*/

void physicalViolation (

in ExternalTimeType

eventTime,

in NameType

source,

in ObjectClassType

sourceClass,

in NotifIDType

notificationIdentifier,

in CorrelatedNotificationSetType correlatedNotifications,

in AdditionalTextType

additionalText,

in AdditionalInformationSetType

additionalInfo,

in SecurityAlarmCauseType

securityAlarmCause,

in PerceivedSeverityType

securityAlarmSeverity,

in SecurityAlarmDetectorType

securityAlarmDetector,

in ServiceUserType

serviceUser,

in ServiceProviderType

serviceProvider

);

/** A Processing Error Alarm notification is used to report a

processing failure in a managed object.

@param eventTime

Managed system's current time.

@param source

Object emitting notification.

@param sourceClass

Actual class of source object.

@param notificationIdentifier
A unique identifier for this

notification. Must be unique for

an object instance. (Optional in X.721

but not here. See text for

discussion of possible implications)

@param correlatedNotifications
List of correlated notifications.

Optional. Zero length sequence

indicates absence of this parameter.

@param additionalText

Text message. Optional. Zero length

string indicates absence of this

parameter.

@param additionalInfo

Optional. Zero length sequence

indicates absence of this parameter.

@param probableCause

@param specificProblems

Optional. Zero length sequence

indicates absence of this parameter.

@param perceivedSeverity

@param backedUpStatus

"True" if backed up

@param backUpObject

Will be null if backedUpStatus is

"false"

@param trendIndication

Optional. See type for details.

@param thresholdInfo

Optional. See type for details.

@param stateChangeDefinition
Optional. Zero length sequence

indicates absence of this parameter.

@param monitoredAttributes
Optional. Zero length sequence

indicates absence of this parameter.

@param proposedRepairActions
Optional. Zero length sequence

indicates absence of this parameter.

@param alarmEffectOnService
True if alarm is service effecting.

@param alarmingResumed

True if alarming was just resumed,

possibly resulting in delayed reporting

of an alarm

@param suspectObjectList
Objects possibly involved in failure.

*/

void processingErrorAlarm (

in ExternalTimeType

eventTime,

in NameType

source,

in ObjectClassType

sourceClass,

in NotifIDType

notificationIdentifier,

in CorrelatedNotificationSetType correlatedNotifications,

in AdditionalTextType

additionalText,

in AdditionalInformationSetType

additionalInfo,

in ProbableCauseType

probableCause,

in SpecificProblemSetType

specificProblems,

in PerceivedSeverityType

perceivedSeverity,

in BooleanTypeOpt

backedUpStatus,

in NameType

backUpObject,

in TrendIndicationTypeOpt

trendIndication,

in ThresholdInfoType

thresholdInfo,

in AttributeChangeSetType

stateChangeDefinition,

in AttributeSetType

monitoredAttributes,

in ProposedRepairActionSetType

proposedRepairActions,

in BooleanTypeOpt

alarmEffectOnService,

in BooleanTypeOpt

alarmingResumed,

in SuspectObjectSetType

suspectObjectList

);

/** A Quality of Service Alarm notification is used to report a failure

in the quality of service of the managed object.

@param eventTime

Managed system's current time.

@param source

Object emitting notification.

@param sourceClass

Actual class of source object.

@param notificationIdentifier
A unique identifier for this

notification. Must be unique for

an object instance. (Optional in X.721

but not here. See text for

discussion of possible implications)

@param correlatedNotifications
List of correlated notifications.

Optional. Zero length sequence

indicates absence of this parameter.

@param additionalText

Text message. Optional. Zero length

string indicates absence of this

parameter.

@param additionalInfo

Optional. Zero length sequence

indicates absence of this parameter.

@param probableCause

@param specificProblems

Optional. Zero length sequence

indicates absence of this parameter.

@param perceivedSeverity

@param backedUpStatus

"True" if backed up

@param backUpObject

Will be null if backedUpStatus is

"false"

@param trendIndication

Optional. See type for details.

@param thresholdInfo

Optional. See type for details.

@param stateChangeDefinition
Optional. Zero length sequence

indicates absence of this parameter.

@param monitoredAttributes
Optional. Zero length sequence

indicates absence of this parameter.

@param proposedRepairActions
Optional. Zero length sequence

indicates absence of this parameter.

@param alarmEffectOnService
True if alarm is service effecting.

@param alarmingResumed

True if alarming was just resumed,

possibly resulting in delayed reporting

of an alarm

@param suspectObjectList
Objects possibly involved in failure.

*/

void qualityOfServiceAlarm (

in ExternalTimeType

eventTime,

in NameType

source,

in ObjectClassType

sourceClass,

in NotifIDType

notificationIdentifier,

in CorrelatedNotificationSetType correlatedNotifications,

in AdditionalTextType

additionalText,

in AdditionalInformationSetType

additionalInfo,

in ProbableCauseType

probableCause,

in SpecificProblemSetType

specificProblems,

in PerceivedSeverityType

perceivedSeverity,

in BooleanTypeOpt

backedUpStatus,

in NameType

backUpObject,

in TrendIndicationTypeOpt

trendIndication,

in ThresholdInfoType

thresholdInfo,

in AttributeChangeSetType

stateChangeDefinition,

in AttributeSetType

monitoredAttributes,

in ProposedRepairActionSetType

proposedRepairActions,

in BooleanTypeOpt

alarmEffectOnService,

in BooleanTypeOpt

alarmingResumed,

in SuspectObjectSetType

suspectObjectList

);

/** A Relationship Change notification is used to report the change in

the value of one or more relationship attributes of a managed object,

that result through either internal operation of the managed object or

via management operation.

@param eventTime

Managed system's current time.

@param source

Object emitting notification.

@param sourceClass

Actual class of source object.

@param notificationIdentifier
A unique identifier for this

notification. Must be unique for

an object instance. (Optional in X.721

but not here. See text for

discussion of possible implications)

@param correlatedNotifications
List of correlated notifications.

Optional. Zero length sequence

indicates absence of this parameter.

@param additionalText

Text message. Optional. Zero length

string indicates absence of this

parameter.

@param additionalInfo

Optional. Zero length sequence

indicates absence of this parameter.

@param sourceIndicator

Cause of event. Optional. Use

"unknown" if not supported.

@param relationshipChanges
Changed relationship attributes

*/

void relationshipChange (

in ExternalTimeType

eventTime,

in NameType

source,

in ObjectClassType

sourceClass,

in NotifIDType

notificationIdentifier,

in CorrelatedNotificationSetType correlatedNotifications,

in AdditionalTextType

additionalText,

in AdditionalInformationSetType

additionalInfo,

in SourceIndicatorType

sourceIndicator,

in AttributeChangeSetType

relationshipChanges

);

/** A Security Violation notification is used to report that a security

attack has been detected by a security service or mechanism.

@param eventTime

Managed system's current time.

@param source

Object emitting notification.

@param sourceClass

Actual class of source object.

@param notificationIdentifier
A unique identifier for this

notification. Must be unique for

an object instance. (Optional in X.721

but not here. See text for

discussion of possible implications)

@param correlatedNotifications
List of correlated notifications.

Optional. Zero length sequence

indicates absence of this parameter.

@param additionalText

Text message. Optional. Zero length

string indicates absence of this

parameter.

@param additionalInfo

Optional. Zero length sequence

indicates absence of this parameter.

@param securityAlarmCause

@param securityAlarmSeverity
Clears allowed? X.721 appears to

restrict the "cleared" value on this

alarm but clears should be allowed.

@param securityAlarmDetector

@param serviceUser

@param serviceProvider

*/

void securityViolation (

in ExternalTimeType

eventTime,

in NameType

source,

in ObjectClassType

sourceClass,

in NotifIDType

notificationIdentifier,

in CorrelatedNotificationSetType correlatedNotifications,

in AdditionalTextType

additionalText,

in AdditionalInformationSetType

additionalInfo,

in SecurityAlarmCauseType

securityAlarmCause,

in PerceivedSeverityType

securityAlarmSeverity,

in SecurityAlarmDetectorType

securityAlarmDetector,

in ServiceUserType

serviceUser,

in ServiceProviderType

serviceProvider

);

/** A State Change notification is used to report the change in the the

value of one or more state attributes of a managed object, that result

through either internal operation of the managed object or via

management operation.

@param eventTime

Managed system's current time.

@param source

Object emitting notification.

@param sourceClass

Actual class of source object.

@param notificationIdentifier
A unique identifier for this

notification. Must be unique for

an object instance. (Optional in X.721

but not here. See text for

discussion of possible implications)

@param correlatedNotifications
List of correlated notifications.

Optional. Zero length sequence

indicates absence of this parameter.

@param additionalText

Text message. Optional. Zero length

string indicates absence of this

parameter.

@param additionalInfo

Optional. Zero length sequence

indicates absence of this parameter.

@param sourceIndicator

Cause of event. Optional. Use

"unknown" if not supported.

@param stateChanges

Changed state attributes.

*/

void stateChange (

in ExternalTimeType

eventTime,

in NameType

source,

in ObjectClassType

sourceClass,

in NotifIDType

notificationIdentifier,

in CorrelatedNotificationSetType correlatedNotifications,

in AdditionalTextType

additionalText,

in AdditionalInformationSetType

additionalInfo,

in SourceIndicatorType

sourceIndicator,

in AttributeChangeSetType

stateChanges

);

/** A Time Domain Violation notification is used to report that an

event has occurred at an unexpected or prohibited time.

@param eventTime

Managed system's current time.

@param source

Object emitting notification.

@param sourceClass

Actual class of source object.

@param notificationIdentifier
A unique identifier for this

notification. Must be unique for

an object instance. (Optional in X.721

but not here. See text for

discussion of possible implications)

@param correlatedNotifications
List of correlated notifications.

Optional. Zero length sequence

indicates absence of this parameter.

@param additionalText

Text message. Optional. Zero length

string indicates absence of this

parameter.

@param additionalInfo

Optional. Zero length sequence

indicates absence of this parameter.

@param securityAlarmCause

@param securityAlarmSeverity
Clears allowed? X.721 appears to

restrict the "cleared" value on this

alarm but clears should be allowed.

@param securityAlarmDetector

@param serviceUser

@param serviceProvider

*/

void timeDomainViolation (

in ExternalTimeType

eventTime,

in NameType

source,

in ObjectClassType

sourceClass,

in NotifIDType

notificationIdentifier,

in CorrelatedNotificationSetType correlatedNotifications,

in AdditionalTextType

additionalText,

in AdditionalInformationSetType

additionalInfo,

in SecurityAlarmCauseType

securityAlarmCause,

in PerceivedSeverityType

securityAlarmSeverity,

in SecurityAlarmDetectorType

securityAlarmDetector,

in ServiceUserType

serviceUser,

in ServiceProviderType

serviceProvider

);

/** These constants define the names of the notifications declared

above and are provided to help reduce errors. */

const string attributeValueChangeTypeName =

"itut_x780::Notifications::attributeValueChange";

const string communicationsAlarmTypeName =

"itut_x780::Notifications::communicationsAlarm";

const string environmentalAlarmTypeName =

"itut_x780::Notifications::environmentalAlarm";

const string equipmentAlarmTypeName =

"itut_x780::Notifications::equipmentAlarm";

const string integrityViolationTypeName =

"itut_x780::Notifications::integrityViolation";

const string objectCreationTypeName =

"itut_x780::Notifications::objectCreation";

const string objectDeletionTypeName =

"itut_x780::Notifications::objectDeletion";

const string operationalViolationTypeName =

"itut_x780::Notifications::operationalViolation";

const string physicalViolationTypeName =

"itut_x780::Notifications::physicalViolation";

const string processingErrorAlarmTypeName =

"itut_x780::Notifications::processingErrorAlarm";

const string qualityOfServiceAlarmTypeName =

"itut_x780::Notifications::qualityOfServiceAlarm";

const string relationshipChangeTypeName =

"itut_x780::Notifications::relationshipChange";

const string securityViolationTypeName =

"itut_x780::Notifications::securityViolation";

const string stateChangeTypeName =

"itut_x780::Notifications::stateChange";

const string timeDomainViolationTypeName =

"itut_x780::Notifications::timeDomainViolation";

/** These constants define the names of the parameters used in the

notifications declared above and are provided to help reduce errors.

*/

const string additionalInfoName = "additionalInfo";

const string additionalTextName = "additionalText";

const string alarmEffectOnServiceName = "alarmEffectOnService";

const string alarmingResumedName = "alarmingResumed";

const string attributeChangesName = "attributeChanges";

const string attributeListName = "attributeList";

const string backedUpStatusName = "backedUpStatus";

const string backUpObjectName = "backUpObject";

const string correlatedNotificationsName = "correlatedNotifications";

const string eventTimeName = "eventTime";

const string monitoredAttributesName = "monitoredAttributes";

const string notificationIdentifierName = "notificationIdentifier";

const string perceivedSeverityName = "perceivedSeverity";

const string probableCauseName = "probableCause";

const string proposedRepairActionsName = "proposedRepairActions";

const string relationshipChangesName = "relationshipChanges";

const string securityAlarmCauseName = "securityAlarmCause";

const string securityAlarmDetectorName = "securityAlarmDetector";

const string securityAlarmSeverityName = "securityAlarmSeverity";

const string serviceProviderName = "serviceProvider";

const string serviceUserName = "serviceUser";

const string sourceName = "source";

const string sourceClassName = "sourceClass";

const string sourceIndicatorName = "sourceIndicator";

const string specificProblemsName = "specificProblems";

const string stateChangeDefinitionName = "stateChangeDefinition";

const string stateChangesName = "stateChanges";

const string suspectObjectListName = "suspectObjectList";

const string thresholdInfoName = "thresholdInfo";

const string trendIndicationName = "trendIndication";

 }; // end of Notifications interface

// Valuetypes

valuetype BitStringValue {

// state definition, first octet is count of unused bits in last octet

public BitString bitStringVal;

// initializer

factory initValue (in unsigned long number_of_bits);

// all positions set to ‘0’

factory InitFromBitString (in BitString desiredValue);

//initializes to desiredValue

// local operations

short getBit (in unsigned long position)

raises (InvalidLength);

// returns 0 or 1 as bit values

void setBit (in unsigned long position, in short new_bit_value)

raises (InvalidLength);

// input 0 or 1 as valid bit values

unsigned long length ();

/**

number of bits in bitstring = (NumberOfOctets – 2)*8 +

(8 – firstOctetVal)

*/

string asString ();

// produces a string with binary values ("1001011B")

void setFromString (in string string_value)

raises (InvalidLength);

// input a string with binary values ("1001011B")

}; // end of BitStringValue

}; // end of itut_x780 module

// MACROS

/* The following macros are provided for quickly and concisely defining

the notifications to be supported by an object. Example usage (within an

interface):

MANDATORY_NOTIFICATION(itut_x780::Notifications, objectCreation);

CONDITIONAL_NOTIFICATION(itut_x780::Notifications, stateChange, statePackage);

The macros simply expand into nothing, as CORBA IDL doesn’t really have

anything for them to expand into that makes sense. Eventually, these

may be changed to expand into IDL supporting the CORBA Component Model.

*/

#undef MANDATORY_NOTIFICATION

#define MANDATORY_NOTIFICATION(InterfaceName, NotificationName)

#undef CONDITIONAL_NOTIFICATION

#define CONDITIONAL_NOTIFICATION(InterfaceName, NotificationName, PackageName)

#endif // end of ifndef itut_x780_IDL

Annex C: ITU-T X.780 itut_x780Const.idl CORBA IDL

/**

This file is an unofficial version of itut_x780Const.idl. It has been included in this document for reference only. This version is from reference [25], with comments from references [33] and [38] applied.

*/

/* This IDL code is intended to be stored in a file named "itut_x780Const.idl"

and located in the same directory as the file containing Annex A */

#ifndef ITUT_X780Const_IDL

#define ITUT_X780Const_IDL

#pragma prefix "itu.int"

module itut_x780 {

// ApplicationErrorConst Module

/** This module contains the constants defined for the error code contained in

Application Error Info structures returned with Application Error exceptions.

*/

module ApplicationErrorConst {

const string moduleName = "itut_x780::ApplicationErrorConst";

/** This application error exception code indicates the operation

 failed due to a problem downstream from the managed system,

 possibly a communication problem between the managed system

 and the resource */

const short downstreamError = 1;

/** An application error exception returining this code will return

 the name of the offending paramter in the details field. */

const short invalidParameter = 2;

/** This application error exception code indicates the operation

 failed due to a transient problem on the managed system. */

const short resourceLimit = 3;

}; // end of module ApplicationErrorConst

// CreateErrorConst Module

/** This module contains the constants defined for the error code contained in

Create Error Info structures returned with Create Error exceptions.

*/

module CreateErrorConst {

const string moduleName = "itut_x780::CreateErrorConst";

/** This create error exception code indicates that the name included

 in the create operation is not valid. */

const short badName = 1;

/** This create error exception code indicates that the name included

 in the create operation is a duplicate. */

const short duplicateName = 2;

/** This create error exception code indicates some packages requested

 in the create operation are incompatible with each other. It must

 be included in a PackageErrorInfoType structure (subclass of

 CreateErrorInfoType). The packages list contains the names of the

 unsupported packages. */

const short incompatiblePackages = 3;

/** This create error exception code indicates that the name binding

 referenced in the create operation is not valid. */

const short invalidNameBinding = 4;

/** This create error exception code indicates a package requested in

 the create operation is not supported. It must be included in a

 PackageErrorInfoType structure (subclass of CreateErrorInfoType).

 The packages list contains the names of the unsupported packages.

 */

const short unsupportedPackages = 5;

}; // end of module CreateErrorConst

// DeleteErrorConst Module

/** This module contains the constants defined for the error code contained in

Delete Error Info structures returned with Delete Error exceptions.

*/

module DeleteErrorConst {

const string moduleName = "itut_x780::DeleteErrorConst";

/** This delete error exceptin code indicates the object has both

 subordinates and a delete policy of deleteOnlyIfNoContained. */

const short containsObjects = 1;

/** This delete error exception code indicates the object has a delete

 policy of notDeletable, and cannot be deleted. */

const short notDeletable = 2;

/** This delete error exception code indicates the object had a

 subordinate object that could not be deleted, so the superior

 object(s) could not be deleted. */

const short undeletableContainedObject = 3;

/** This delete error exception code indicates the object is in

 a state in which it cannot be deleted. */

const short invalidStateForDestroy = 4;

}; // end of module DeleteErrorConst

// ProbableCauseConst Module

/** This module contains the constant values defined for the

ProbableCause UID. These values were borrowed from X.721. */

module ProbableCauseConst {

const string moduleName = "itut_x780::ProbableCauseConst";

const short indeterminate = 0;

const short adapterError = 1;

const short applicationSubsystemFailure = 2;

const short bandwidthReduced = 3;

const short callEstablishmentError = 4;

const short communicationsProtocolError = 5;

const short communicationsSubsystemFailure = 6;

const short configurationOrCustomizationError = 7;

const short congestion = 8;

const short corruptData = 9;

const short cpuCyclesLimitExceeded = 10;

const short dataSetOrModemError = 11;

const short degradedSignal = 12;

const short dTE_DCEInterfaceError = 13;

const short enclosureDoorOpen = 14;

const short equipmentMalfunction = 15;

const short excessiveVibration = 16;

const short fileError = 17;

const short fireDetected = 18;

const short floodDetected = 19;

const short framingError = 20;

const short heatingOrVentilationOrCoolingSystemProblem = 21;

const short humidityUnacceptable = 22;

const short inputOutputDeviceError = 23;

const short inputDeviceError = 24;

const short lANError = 25;

const short leakDetected = 26;

const short localNodeTransmissionError = 27;

const short lossOfFrame = 28;

const short lossOfSignal = 29;

const short materialSupplyExhausted = 30;

const short multiplexerProblem = 31;

const short outOfMemory = 32;

const short ouputDeviceError = 33;

const short performanceDegraded = 34;

const short powerProblem = 35;

const short pressureUnacceptable = 36;

const short processorProblem = 37;

const short pumpFailure = 38;

const short queueSizeExceeded = 39;

const short receiveFailure = 40;

const short receiverFailure = 41;

const short remoteNodeTransmissionError = 42;

const short resourceAtOrNearingCapacity = 43;

const short responseTimeExcessive = 44;

const short retransmissionRateExcessive = 45;

const short softwareError = 46;

const short softwareProgramAbnormallyTerminated = 47;

const short softwareProgramError = 48;

const short storageCapacityProblem = 49;

const short temperatureUnacceptable = 50;

const short thresholdCrossed = 51;

const short timingProblem = 52;

const short toxicLeakDetected = 53;

const short transmitFailure = 54;

const short transmitterFailure = 55;

const short underlyingResourceUnavailable = 56;

const short versionMismatch = 57;

}; // end of ProbableCauseConst module

// SecurityAlarmCauseConst Module

/** This module contains the constant values defined for the

SecurityAlarmCause UID. These values were borrowed from

X.721. */

module SecurityAlarmCauseConst {

const string moduleName = "itut_x780::SecurityAlarmCauseConst";

const short authenticationFailure = 1;

const short breachOfConfidentiality = 2;

const short cableTamper = 3;

const short delayedInformation = 4;

const short denialOfService = 5;

const short duplicateInformation = 6;

const short informationMissing = 7;

const short informationModificationDetected = 8;

const short informationOutOfSequence = 9;

const short intrusionDetection = 10;

const short keyExpired = 11;

const short nonRepudiationFailure = 12;

const short outOfHoursActivity = 13;

const short outOfService = 14;

const short proceduralError = 15;

const short unauthorizedAccessAttempt = 16;

const short unexpectedInformation = 17;

const short unspecifiedReason = 18;

}; // end of SecurityAlarmCauseConst module

}; // end of itut_x780 module

#endif // end of ifndef ITUT_X780Const_IDL

Annex D: ITU-T Q.816 itut_q816.idl CORBA IDL

/**

This file is an unofficial version of itut_q816.idl. It has been included in this document for reference only. This version is from reference [15], with comments from references [32] and [37] applied.

*/

/* This IDL code is intended to be stored in a file named "itut_q816.idl"

located in the search path used by IDL compilers on your system. */

#ifndef ITUT_Q816_IDL

#define ITUT_Q816_IDL

#include <CosNotifyChannelAdmin.idl>

#include <CosTime.idl>

#include <itut_x780.idl>

#pragma prefix "itu.int"

module itut_q816 {

// Types imported from CosTime

typedef TimeBase::UtcT UtcT;

// Types imported from itut_x780

typedef itut_x780::AttributeSetType AttributeSetType;

typedef itut_x780::NameType NameType;

typedef itut_x780::NameSetType NameSetType;

typedef itut_x780::ObjectClassType ObjectClassType;

typedef itut_x780::ObjectClassSetType ObjectClassSetType;

typedef itut_x780::ScopedNameType ScopedNameType;

typedef itut_x780::ScopedNameSetType ScopedNameSetType;

typedef itut_x780::StringSetType StringSetType;

typedef itut_x780::SystemLabelType SystemLabelType;

typedef itut_x780::GeneralizedTimeType GeneralizedTimeType;

// Data Types and Structures

/** EventSetType is a list of event types. It is actually just a list

of strings. The values of the strings are the names of the event types

(the strings that go in the "type_name" field of the structured event),

which are the same as the scoped names of the operation defined on the

Notifications interfaces to send the events. For example:

itut_x780::Notifications::objectCreation */

typedef sequence <ScopedNameType> EventSetType;

/** Scope Choice enumerates four possible choices for a scope. A

scope may include just the named base object, the entire subtree

of object below and including the base object, the objects at a certain

level below the base object (level 1 objects are directly contained by

the base object), or all of the objects down to a level, including the

base object and the level.

*/

enum ScopeChoiceType {baseObjectOnly, wholeSubtree, individualLevel,

baseToLevel};

/** Scope is used to convey which objects contained under the base

object, if any, are to be included in the scope of a scoped and

filtered operation. A level does not make sense for the baseObjectOnly

and wholeSubtree choices, but does for the other two. To illustrate

the difference between the two options that include a level, a

scope choice of individualLevel with level = 1 would include all

of the objects directly contained by the base object. A scope choice

of baseToLevel with level = 1 would include all of the objects

directly contained by the base object, and the base object.

*/

union ScopeType switch (ScopeChoiceType)

{

/* The baseObjectOnly and wholeSubtree cases carry no value. */

case individualLevel:
/* fall through */

case baseToLevel:
short level;

};

/** BaseAndScopeType combines the name of a base managed object with

a "scope" of objects contained below it. */

struct BaseAndScopeType {

NameType
base;

ScopeType
scope;

};

/** BaseAndScopeSetType is a set of BaseAndScopeTypes. */

typedef sequence <BaseAndScopeType> BaseAndScopeSetType;

/** EventChannel could have been typedeffed to

CosNotifyChannelAdmin::EventChannel, but instead is typedeffed

to just Object for flexibility. */

typedef Object EventChannel;

/** A channel info structure contains information about an event

channel.

@member channelID
A string identifier for the channel.

@member channelClass
the channel’s scoped class name.

@member baseAndScopes
The objects and the scopes of managed objects

below them sending events to this channel.

A null list indicates that all base managed

objects on the system are covered by this

channel.

@member eventTypes
The list of event types handled by this

channel. A null list indicates all event types

are handled by this channel.

@member excludedEventTypes If the eventTypes parameter is null, this

can be used to exclude event types. If

eventTypes is not null, this should be null

and is ignored.

@member sourceClasses
The list of types of objects that send events

to this channel. A null list indicates all

types of managed objects send events to this

channel.

@member excludedSourceClasses If the sourceClsses parameter is null,

this can be used to exclude source classes.

If sourceClasses is not null, this should be

null and is ignored.

@member channel

a reference to the channel.

*/

struct ChannelInfoType {

string

channelID;

ObjectClassType

channelClass;

BaseAndScopeSetType
baseAndScopes;

EventSetType

eventTypes;

EventSetType

excludedEventTypes;

ObjectClassSetType
sourceClasses;

ObjectClassSetType
excludedSourceClasses;

EventChannel

channel;

};

/** A channel info set contains a list of channel references and the

data associated with them. */

typedef sequence <ChannelInfoType> ChannelInfoSetType;

/** Channel Modification indicates the type of event channel

modification. */

enum ChannelModificationType {ChannelCreate, ChannelDelete,

ChannelUpdate};

/** The DeleteResultsType holds, for a single object, the results

of a scoped delete operation. If both boolean flags in the result

are false, the object was deleted.

@member name

The name of the object to which these results

apply.

@member notFilterable
This flag will be true if the service could not

interact with the object to see if it even

passed the filter.

@member notDeletable
This flag will be true if the object could not

be deleted due to its delete policy or because

it raised an exception.

*/

struct DeleteResultsType {

NameType

name;

boolean

notFilterable;

boolean

notDeletable;

};

/** The DeleteResultsSetType is a set of results returned by the

scoped delete operation. */

typedef sequence <DeleteResultsType> DeleteResultsSetType;

/** A factory info structure contains information about a managed

object factory.

@member factoryClass
the factory’s scoped class name

@member factoryRef
a reference to the factory

*/

struct FactoryInfoType {

ObjectClassType

factoryClass;

itut_x780::ManagedObjectFactory
factoryRef;

};

/** A factory info set contains a list of factory references and

their class names. */

typedef sequence <FactoryInfoType> FactoryInfoSetType;

/** A Filter Type parameter conveys the filter expression used in a

scoped and filtered operation.

*/

typedef string FilterType;

/** Get Results structures hold a list of attribute values per object.

@member name

The CORBA name of the object

@member notFilterable
This flag will be true if the service could not

interact with the object to see if it even

passed the filter. If true, the attributes and

failedAttributes members will be empty.

@mebmer attributes
The list of attributes retrieved from the

object.

@member failedAttributes The list of attributes whose values could

not be retrieved from the object.

*/

struct GetResultsType {

NameType

name;

boolean

notFilterable;

AttributeSetType
attributes;

StringSetType

failedAttributes;

};

/** The Get Results Set is a set of results returned by a scoped get

operation. */

typedef sequence <GetResultsType> GetResultsSetType;

/** A Language Type parameter conveys the filter expression language

used in a scoped and filtered operation.

*/

typedef string LanguageType;

/** A Language Set Type parameter contains a sequence of Languages. */

typedef sequence <LanguageType> LanguageSetType;

/** ModificationOp is used to indicate the type of update to be made to

an attribute. */

enum ModificationOpType {set, add, remove};

/** Modification structures identify an attribute and a modification to

be made to it. Multiple updates may be made to a single attribute by

including multiple structures with the same attribute name in the

modification Set.

@member attrib

The name of the attribute to update.

@member op

The operation to be performed on the attribute.

@member val

The value to be used for the update operation.

It’s type will depend on the attribute.

*/

struct ModificationType {

string

attrib;
// the name of the attribute

ModificationOpType
op;
// operation to be performed

any

value;
// value used to update attrib.

};

/** The Modification Sequence contains a sequence of modifications to

be made (in order) to each object in a scoped update operation. */

typedef sequence <ModificationType> ModificationSeqType;

/** Update Results structures hold the name of an object, a boolean

flag indicating if all modifications to that object were successful,

and a list of the attributes that could not be updated on that object.

The list will be null if the success flag is true.

@member name

the CORBA name of the object

@member notFilterable
This flag will be true if the service could not

interact with the object to see if it even

passed the filter. If true, the client will

know no attributes could be set, so

the failedAttributes member will be empty.

@member failedAttributes the list of attributes that were not

correctly updated.

*/

struct UpdateResultsType {

NameType
name;

boolean

notFilterable;

StringSetType
failedAttributes;

};

/** An Update Results Set is returned in response to a scoped update

operation (one that sets, adds to, or removes from the value of an

attribute). */

typedef sequence <UpdateResultsType> UpdateResultsSetType;

/** Heartbeat Period Type contains the length of the interval between

heartbeats emitted by the Heartbeat Service. Using an unsigned short

to contain this interval limits the longest possible interval to

a little over 18 hours. */

typedef unsigned short HeartbeatPeriodType;

/** Channel ID Type is a string used to contain a channel ID */

typedef string ChannelIDType;

// Constants

/** Default filter is to allow everything through the filter*/

const FilterType defaultFilter = "TRUE";

/** Default language is the grammar described in this document */

const LanguageType defaultLanguage = "MOO 1.0";

// Exceptions

/** A channel already registered exception is returned when an attempt

is made to register a channel with multiple channel IDs. */

exception ChannelAlreadyRegistered {};

/** A channel not found exception is returned when an event channel

cannot be found. */

exception ChannelNotFound {};

/** A FactoryNotFound exception is raised when a requested factory

can’t be found. */

exception FactoryNotFound {};

/** A Filter Complexity Limit is raised when a filter expression in a

scoped operation is valid, but too complex to be processed. */

exception FilterComplexityLimit {};

/** An invalid filter exception is raised when a client includes a

filter expression that cannot be parsed. The text surrounding the

syntax error should be returned for trouble-shooting purposes. */

exception InvalidFilter {string badText;};

/** An Invalid Parameter exception is raised when the value of a

parameter is not valid for the operation.

@param parameter
the name of the bad parameter

*/

exception InvalidParameter {string parameter;};

// Interfaces

// Factory Finder Interface

/**

This interface defines a simple service for locating a managed object

factory.

*/

interface FactoryFinder {

/** This method is used to find a managed object factory.

@param factoryClass
The scoped class name of the factory,

NOT the managed object to be created.

*/

itut_x780::ManagedObjectFactory find (in ObjectClassType factoryClass)

raises (FactoryNotFound, itut_x780::ApplicationError);

/** This method returns the list of factories registered

with the factory finder. */

FactoryInfoSetType list()

raises (itut_x780::ApplicationError);

}; // end of FactoryFinder interface

/**

This interface extends the FactoryFinder interface to add methods

to support the registration and unregistration of factories.

*/

interface FactoryFinderComponent : FactoryFinder {

/** This method is used by factories to register themselves.

It should not be used by managing systems.

@param factoryClass
The scoped class name of the factory,

NOT the managed object to be created.

@param factoryRef
A reference to the factory.

*/

void register (in ObjectClassType factoryClass,

in itut_x780::ManagedObjectFactory factoryRef)

raises (itut_x780::ApplicationError);

/** This method is used by factories to unregister themselves,

if necessary. It should not be used by managing systems.

@param factoryClass
The scoped class name of the factory,

NOT the managed object to be created.

@param factoryRef
A reference to the factory.

*/

void unregister (in ObjectClassType factoryClass,

in itut_x780::ManagedObjectFactory factoryRef)

raises (FactoryNotFound, itut_x780::ApplicationError);

}; // end of FactoryFinderComponent interface

// Channel Finder Interface

/**

This interface defines a simple service for locating event channels.

*/

interface ChannelFinder {

/** This method returns the list of channels registered

with the channel finder. */

ChannelInfoSetType list()

raises (itut_x780::ApplicationError);

}; // end of ChannelFinder interface

/**

This interface extends the ChannelFinder interface to add methods

to support the registration and unregistration of channels.

*/

interface ChannelFinderComponent : ChannelFinder {

/** This method is used by channels to register themselves.

It should not be used by managing systems. Re-registering

a channel (re-using an existing channelID) results in

updating that entry. The other information previously

associated with that entry is overwritten. A

ChannelAlreadyRegistered exception may be raised when an

attempt is made to register a channel with multiple channelIDs.

This should not be done. (The service cannot guarantee that

because two object references differ, they do not reference

the same object. It is therefore required that the managed

system ensure that the same channel is not registered twice.)

A channel change notification is sent whenever calling this

method results in a change.

@param channelID
A string identifier for the channel.

@param channelClass
The scoped class name of the event

channel.

@param baseAndScopes
The objects and the scopes of managed

objects below them sending events to

this channel. A null list indicates

that all base managed objects on the

system are covered by this channel.

@param eventTypes
The list of event types handled by

this channel. A null list indicates all

event types are handled by this

channel.

@param excludedEventTypes If the eventTypes parameter is null,

this can be used to exclude event

types. If eventTypes is not null, this

should be null and is ignored.

@param sourceClasses
The list of types of objects that send

events to this channel. A null list

indicates all types of managed objects

send events to this channel.

@param excludedSourceClasses If the sourceClsses parameter is

null, this can be used to exclude

source classes. If sourceClasses is

not null, this should be null and is

ignored.

@param channel

A reference to the channel.

*/

void register (in string channelID,

in ObjectClassType channelClass,

in BaseAndScopeSetType baseAndScopes,

in EventSetType eventTypes,

in EventSetType excludedEventTypes,

in ScopedNameSetType sourceClasses,

in ScopedNameSetType excludedSourceClasses,

in EventChannel channel)

raises (ChannelAlreadyRegistered, itut_x780::ApplicationError);

/** This method is used by managed systems to unregister

channels, if necessary. It should not be used by managing

systems.

@param channel

A reference to the channel.

*/

void unregister (in EventChannel channel)

raises (ChannelNotFound, itut_x780::ApplicationError);

}; // end of ChannelFinderComponent interface

// Heartbeat Service Interface

/**

This interface defines a service used to periodically test the

operation of the notification channels on a system. The service

supporting this interface periodically emits a short "heartbeat"

notification on each channel on the system.

*/

interface Heartbeat {

/** The systemLabel attribute is sent in heartbeat

notifications. It is used to identify the heartbeat service

instance from which the notification came. Resetting this does

not cause the service to immediately emit a notification, but

the new value will be sent with the next notification. */

attribute SystemLabelType systemLabel;

/** The period is the interval, in seconds, at which the

heartbeat service emits the heartbeat notification. If it is

zero, the service does not emit notifications. */

HeartbeatPeriodType periodGet()

raises (itut_x780::ApplicationError);

/** Updating of the period shall cause the service to deliver a

notification to all channels with the new period value and then

begin a new period. Setting the period to zero shall cause the

service to emit one final notification with a period value of

zero, then no more (until the period is reset).

Implementations may limit the range of values supported by this

operation, particularly on the low end as excessive heartbeats

would present a drain on the managed system.

An attempt to

set the period to a value outside the range supported will

result in an ApplicationError with the error code set to

invalidParameter. */

void periodSet(in HeartbeatPeriodType period)

raises(itut_x780::ApplicationError);

}; // end of Heartbeat interface

// Terminator Service Interface

/**

This interface defines a service that supports the deletion of managed

objects by clients. A goal of the framework is to enable

implementations in which the managed objects do not have to maintain

the naming tree information. The factories are one place to implement

the functions needed to create name bindings, and this service can be

used to clean up the naming tree after object deletion. <p>

Also, this service can implement the rules for deleting objects based

on the delete policy of the managed objects.

*/

interface TerminatorService {

/** This method is used to delete a managed object by

specifying its name. */

void deleteByName (in NameType name)

raises (itut_x780::ApplicationError, itut_x780::DeleteError);

/** This method is used to delete a managed object by

reference. */

void deleteByRef (in itut_x780::ManagedObject mo)

raises (itut_x780::ApplicationError, itut_x780::DeleteError);

}; // end of TerminatorService interface

// DeleteResultsIterator Interface

/** The Delete Results Iterator interface is used to retrieve the

results from a scoped delete operation using the iterator design

pattern. */

interface DeleteResultsIterator {

/** This method is used to retrieve the next "howMany" results

in the result set.

@param howMany
The maximum number of items to be returned in

the results.

@param results
The next batch of results.

@return

True if there are more results after those

being returned. The return value should not

be true if the results set is empty, as this

forces the client to poll for results.

Instead the call should block.

*/

boolean getNext(in unsigned short howMany,

out DeleteResultsSetType results)

raises (itut_x780::ApplicationError);

/** This method is used to destroy the iterator and release its

resources. */

void destroy();

}; // end of Delete Results Iterator interface

// GetResultsIterator Interface

/** The Get Results Iterator interface is used to retrieve the results

from a scoped get operation using the iterator design pattern. */

interface GetResultsIterator {

/** This method is used to retrieve the next "howMany" results

in the result set.

@param howMany
The maximum number of items to be returned in

the results.

@param results
The next batch of results.

@return

True if there are more results after those

being returned. The return value should not

be true if the results set is empty, as this

forces the client to poll for results.

Instead the call should block.

*/

boolean getNext(in unsigned short howMany,

out GetResultsSetType results)

raises (itut_x780::ApplicationError);

/** This method is used to destroy the iterator and release its

resources. */

void destroy();

}; // end of Get Results Iterator interface

// UpdateResultsIterator Interface

/** The Update Results Iterator interface is used to retrieve the

results from a scoped update (set, add, remove) operation using the

iterator design pattern.

*/

interface UpdateResultsIterator {

/** This method is used to retrieve the next "howMany" results

in the result set.

@param howMany
The maximum number of items to be returned in

the results.

@param results
The next batch of results.

@return

True if there are more results after those

being returned. The return value should not

be true if the results set is empty, as this

forces the client to poll for results.

Instead the call should block.

*/

boolean getNext(in unsigned short howMany,

out UpdateResultsSetType results)

raises (itut_x780::ApplicationError);

/** This method is used to destroy the iterator and release its

resources. */

void destroy();

}; // end of Update Results Iterator interface

// BasicMooService Interface

/** The basic scoping and filtering interface provides a common service

for performing attribute retrieval operations on multiple objects.

*/

interface BasicMooService {

/** This operation is used to retrieve the list of filter

languages supported by the service. At the least, the

list must include the value of the defaultLanguage constant

defined above. */

LanguageSetType getFilterLanguages()

raises (itut_x780::ApplicationError);

/** This operation is used to retrieve attributes from multiple

objects using a small number of method invocations. The method

returns the first batch of results, one per object. Each

result has the name of the object and a list of name-value

pairs indicating the attributes that could be retrieved with

their values.

@param baseName
The name of the object at the base of the scope

tree.

@param scope
A value indicating the contained objects to

include in the scope of the operations. See

ScopeType for details.

@param filter
A string containing an expression to be

evaluated with attribute values from each

object in the scope. Attribute values are

returned only for those objects for which the

expression evaluates to true.

@param language
A string identifying the language in which the

filter expression is written.

@param attributes The names of the attributes for which values

should be returned. If this list is null, all

attributes are to be returned.

@param howMany
The maximum number of objects for which results

should be returned in the first batch.

@param resultsIterator A reference to an iterator that can be

used to retrieve the rest of the results. This

reference will be null if all results were

returned in the first batch.

*/

GetResultsSetType scopedGet (

in NameType baseName,

in ScopeType scope,

in FilterType filter,

in LanguageType language,

in StringSetType attributes,

in unsigned short howMany,

out GetResultsIterator resultsIterator)

raises (InvalidParameter,

InvalidFilter,

FilterComplexityLimit,

itut_x780::ApplicationError);

}; // end of BasicMooService interface

// AdvancedMooService Interface

/** The advanced scoping and filtering interface provides a common

service for performing multiple-attribute updates on multiple objects,

and for deleting multiple objects.

*/

interface AdvancedMooService : BasicMooService {

/** This operation is used to modify multiple attributes in

multiple objects using a small number of method invocations.

The method returns the first batch of results, a list of

objects for which one or more modifications failed. Each

result indicates the attribute(s) on that object that could not

be updated.

@param baseName
The name of the object at the base of the scope

tree.

@param scope
A value indicating the contained objects to

include in the scope of the operations. See

ScopeType for details.

@param filter
A string containing an expression to be

evaluated with attribute values from each

object in the scope. Updates are performed

only on those objects for which the expression

evaluates to true.

@param language
A string identifying the language in which the

filter expression is written.

@param modifications The list of modifications to be made to

each object.

@param failuresOnly If true only results for failed objects

will be returned.

@param howMany
The maximum number of objects for which results

should be returned in the first batch.

@param resultsIterator A reference to an iterator that can be

used to retrieve the rest of the results. This

reference will be null if all results were

returned in the first batch.

*/

UpdateResultsSetType scopedUpdate (

in NameType baseName,

in ScopeType scope,

in FilterType filter,

in LanguageType language,

in ModificationSeqType modifications,

in boolean failuresOnly,

in unsigned short howMany,

out UpdateResultsIterator resultsIterator)

raises (InvalidParameter,

InvalidFilter,

FilterComplexityLimit,

itut_x780::ApplicationError);

/** This operation is used to delete multiple objects using a

small number of method invocations. The method returns the

first batch of results, a list of the objects that could not be

deleted.

@param baseName
The name of the object at the base of the scope

tree.

@param scope
A value indicating the contained objects to

include in the scope of the operations. See

ScopeType for details.

@param filter
A string containing an expression to be

evaluated with attribute values from each

object in the scope. Only those objects for

which the expression evaluates to true are

deleted.

@param language
A string identifying the language in which the

filter expression is written.

@param failuresOnly If true only results for failed objects

will be returned.

@param howMany
The maximum number of objects for which results

should be returned in the first batch.

@param resultsIterator A reference to an iterator that can be

used to retrieve the rest of the results. This

reference will be null if all results were

returned in the first batch.

*/

DeleteResultsSetType scopedDelete (

in NameType baseName,

in ScopeType scope,

in FilterType filter,

in LanguageType language,

in boolean failuresOnly,

in unsigned short howMany,

out DeleteResultsIterator resultsIterator)

raises (InvalidParameter,

InvalidFilter,

FilterComplexityLimit,

itut_x780::ApplicationError);

}; // end of AdvancedMooService interface

// Notifications Interface

/** The notifications interface defines the notifications emitted by

the framework services, not the managed objects themselves.

*/

interface Notifications {

/** The Channel Change notification is a special notification

because it is emitted by the framework (the Channel Finder) and

not a managed object. It reports the addition, deletion, or

change of a registered event channel.

@param channelModification
indicates if a channel has been

added, removed, or updated.

@param channelInfo

provides the information about

the affected channel.

*/

void channelChange (

in ChannelModificationType
channelModification,

in ChannelInfoType

channelInfo

);

/** This operation signature defines the notification emitted

by the heartbeat service.

@param systemLabel
the current value of the Heartbeat

service systemLabel attribute.

@param channelID
the ID of the channel through which the

notification was sent.

@param period

the current value of the Heartbeat

service period attribute.

@param timeStamp
the current time when the notification

is emitted.

*/

void heartbeat (

in SystemLabelType
systemLabel,

in ChannelIDType
channelID,

in HeartbeatPeriodType
period,

in GeneralizedTimeType
timeStamp

);

/** These constants defines the names of the notification

declared above and are provided to help reduce errors. */

const string channelChangeTypeName =

"itut_q816::Notifications::channelChange";

const string heartbeatTypeName =

"itut_q816::Notifications::heartbeat";

/** These constants define the names of the parameters used in

the notifications declared above and are provided to help

reduce errors. */

const string channelIDName = "channelID";

const string channelModificationName = "channelModification";

const string channelInfoName = "channelInfo";

const string periodName = "period";

const string systemLabelName = "systemLabel";

const string timeStampName = "timeStamp";

}; // end of Notifications interface

}; // end of module itut_q816

#endif // end of #ifndef ITUT_Q816_IDL

TABLE OF CONTENTS

11.
REFERENCES

2.
INTRODUCTION
2

3.
BACKGROUND
3

4.
BENEFITS OF USING THE T1M1.5 / ITU-T CORBA FRAMEWORK
4

4.1.
Full Set Of Managed Object Operations
4

4.2.
TMN Compatible
4

4.3.
TMN Capabilities Already Supported
4

4.4.
Notification Extensions Allowed
4

4.5.
CORBA Telecommunications Frameworks
4

4.6.
Internationalization
4

4.7.
New Capabilities
5

5.
SUPPORT FOR BASIC CM IRP
5

5.1.
Framework Differences
5

5.1.1
CORBA Version
5

5.1.2
T1M1.5 / ITU-T Managed Objects
5

5.1.3
T1M1.5 / ITU-T Naming
6

5.1.4
Multiple-Object Operation (MOO) Service
7

5.1.5
Filter Grammar And Scoping
8

5.1.6
Managed Object Factories
8

5.1.7
Terminator Service
8

5.1.8
Notifications
8

5.1.9
Additional Information Attribute
10

5.1.10
getMoAttributes Operation
11

5.1.11
getContainment Operation
12

5.1.12
getBasicCmIRPVersion Operation
13

5.2.
IDL
13

5.2.1
BasicCmIRPSystem.idl Updates
13

5.2.2
NotificationDefs.idl Updates
13

5.2.3
NRMDefinitions.idl Updates
14

5.2.4
BasicCmCorbaObjects.idl
14

5.2.5
BasicCmUMTSCorbaObjects.idl
14

5.3.
Open Items
14

6.
SUPPORT FOR ALARM IRP
15

6.1.
Framework Differences
15

6.1.1
Notifications
15

6.1.2
Telecom Log
18

6.1.3
Defining New Notifications
19

6.1.4
acknowledgeAlarms Operation
19

6.1.5
unacknowledgeAlarms Operation
19

6.1.6
getAlarmList Operation
20

6.1.7
getAlarmCount Operation
20

6.1.8
getAlarmIRPVersion Operation
21

6.2.
IDL
21

6.2.1
AlarmIRPConstDefs.idl Updates
21

6.2.2
AlarmIRPSystem.idl Updates
21

6.3.
Open Items
22

7.
SUPPORT FOR NOTIFICATION IRP
22

7.1.
Framework Differences
22

7.1.1
Channel Finder
22

7.1.2
Heartbeat Service
23

7.1.3
subscribe Operation
23

7.1.4
unsubscribe Operation
24

7.1.5
getNotificationIRPVersion Operation
24

7.1.6
getSubscriptionStatus Operation
25

7.1.7
getSubscriptionIds Operation
25

7.1.8
changeSubscriptionFilter Operation
25

7.1.9
getNotificationCategories Operation
26

7.2.
IDL
26

7.2.1
CommonIRPConstDefs.idl Updates
26

7.2.2
NotificationIRPConstDefs.idl Updates
26

7.2.3
NotificationIRPSystem.idl
26

7.3.
Open Items
26

8.
OVERVIEW OF INTERFACES TO BE IMPLEMENTED
27

9.
COMPLIANCE TO T1M1.5 / ITU-T COMPLIANCE RULES
28

10.
COMPLIANCE TO 3GPP SA5 INFORMATION MODELS
37

11.
RECOMMENDATIONS
37

12.
CONCLUSIONS
38

13.
BASIC CM BasicCmIRPSystem CORBA IDL
39

13.1.
Exceptions
39

13.2.
Structures And Typedefs
39

13.3.
Interface ContainmentResultsIterator
40

13.4.
Interface BasicCmIrpOperations
41

13.5.
Interface G3AdvancedMooService
41

14.
BASIC CM NRMDefinitions CORBA IDL
43

15.
BASIC CM BasicCmCorbaObjects CORBA IDL
51

15.1.
Imports
51

15.2.
Forward Declarations
51

15.3.
Structures And Typedefs
52

15.4.
Exceptions
52

15.5.
G3SubNetwork Managed Object
53

15.6.
G3ManagedElement Managed Object
54

15.7.
MEContext Managed Object
57

15.8.
ManagementNode Managed Object
58

15.9.
ManagedFunction Managed Object (Abstract Only)
61

15.10.
IRPAgent Managed Object
61

15.11.
NotificationIRP Managed Object
62

15.12.
AlarmIRP Managed Object
63

15.13.
BasicCmIRP Managed Object
64

15.14.
Name Binding
65

16.
BASIC CM BasicCmUMTSCorbaObjects CORBA IDL
69

16.1.
Imports
69

16.2.
Forward Declarations
69

16.3.
Structures And Typedefs
70

16.4.
Exceptions
71

16.5.
RNCFunction Managed Object
72

16.6.
NodeBFunction Managed Object
73

16.7.
UtranCell Managed Object
75

16.8.
IubLink Managed Object
77

16.9.
MscFunction Managed Object
78

16.10.
HlrFunction Managed Object
80

16.11.
VlrFunction Managed Object
81

16.12.
AucFunction Managed Object
82

16.13.
EirFunction Managed Object
83

16.14.
SmsIwmscFunction Managed Object
84

16.15.
SmsGmscFunction Managed Object
85

16.16.
GmscFunction Managed Object
86

16.17.
SgsnFunction Managed Object
88

16.18.
GgsnFunction Managed Object
89

16.19.
BgFunction Managed Object
90

16.20.
Name Binding
91

17.
ALARM IRP AlarmIRPConstDefs CORBA IDL
96

18.
ALARM IRP AlarmIRPSystem CORBA IDL
101

18.1.
Exceptions
101

18.2.
Interface AlarmInformationIterator
102

18.3.
Interface AlarmIRPOperations
103

18.4.
Interface Notifications
105

19.
NOTIFICATION IRP CommonIRPConstDefs CORBA IDL
106

20.
NOTIFICATION IRP NotificationIRPConstDefs CORBA IDL
107

21.
NOTIFICATION IRP NotificationIRPSystem CORBA IDL
109

21.1.
Exceptions
109

21.2.
Interface NotificationIRPOperations
110

Annex A: The T1M1.5 / ITU-T Constraint Language BNF
114

The Constraint Language Proper in Terms of Lexical Tokens
114

BNF for Lexical Tokens up to Character Set Issues
115

Character Set Issues
115

Annex B: ITU-T X.780 itut_x780.idl CORBA IDL
117

// MODULE itut_x780
117

// IMPORTED TYPES
117

// FORWARD DECLARATIONS AND TYPEDEFS
117

// ENUMERATED TYPES
119

// STRUCTURES AND UNIONS
120

// EXCEPTIONS
125

// MANAGED OBJECT INTERFACE
126

// MANAGED OBJECT FACTORY INTERFACE
127

// NOTIFICATIONS INTERFACE
128

// Valuetypes
139

// MACROS
140

Annex C: ITU-T X.780 itut_x780Const.idl CORBA IDL
141

// ApplicationErrorConst Module
141

// CreateErrorConst Module
141

// DeleteErrorConst Module
142

// ProbableCauseConst Module
142

Annex D: ITU-T Q.816 itut_q816.idl CORBA IDL
145

// Data Types and Structures
145

// Constants
148

// Exceptions
149

// Interfaces
149

// Factory Finder Interface
149

// Channel Finder Interface
150

// Heartbeat Service Interface
151

// Terminator Service Interface
152

// DeleteResultsIterator Interface
152

// GetResultsIterator Interface
152

// UpdateResultsIterator Interface
153

// BasicMooService Interface
153

// AdvancedMooService Interface
154

// Notifications Interface
155

TABLES

10Table 5‑1. Comparison of Object Creation, Object Deletion and Attribute Value Change Structured Events

Table 5‑2. OMG Notification Service Supported Notification Conversions
10

Table 5‑3. Mapping From Information Model getMoAttributes Parameters To Solution Set Equivalents
12

Table 5‑4. Mapping From Information Model getContainment Parameters To Solution Set Equivalents
12

Table 5‑5. Mapping From Information Model getBasicCmIRPVersion Parameters To Solution Set Equivalents
13

Table 6‑1. Comparison of Alarm Structured Events
17

Table 6‑2. Comparison of Notify Alarm List Rebuilt Structured Events
18

Table 6‑3. Mapping From Information Model acknowledgeAlarms Parameters To Solution Set Equivalents
19

Table 6‑4. Mapping From Information Model unacknowledgeAlarms Parameters To Solution Set Equivalents
20

Table 6‑5. Mapping From Information Model getAlarmList Parameters To Solution Set Equivalents
20

Table 6‑6. Mapping From Information Model getAlarmCount Parameters To Solution Set Equivalents
21

Table 6‑7. Mapping From Information Model getAlarmIRPVersion Parameters To Solution Set Equivalents
21

Table 7‑1. Mapping From Information Model subscribe Parameters To attach_push Solution Set Equivalent
23

Table 7‑2. Mapping From Information Model subscribe Parameters To attach_push_b Solution Set Equivalent
23

Table 7‑3. Mapping From Information Model subscribe Parameters To attach_pull Solution Set Equivalent
24

Table 7‑4. Mapping From Information Model unsubscribe Parameters To Solution Set Equivalents
24

Table 7‑5. Mapping From Information Model getNotificationIRPVersion Parameters To Solution Set Equivalents
25

Table 7‑6. Mapping From Information Model getSubscriptionStatus Parameters To Solution Set Equivalents
25

Table 7‑7. Mapping From Information Model getSubscriptionIds Parameters To Solution Set Equivalents
25

Table 7‑8. Mapping From Information Model changeSubscriptionFilter Parameters To Solution Set Equivalents
26

Table 7‑9. Mapping From Information Model getNotificationCategories Parameters To Solution Set Equivalents
26

Table 9‑1. Compliance Matrix For ITU-T X.780
30

Table 9‑2. Compliance Matrix For ITU-T Q.816
37

FIGURES

3Figure 3‑1. Overview Of T1M1.5 / ITU-T CORBA Framework Structure

Figure 5‑1. Root Naming Contexts
7

Figure 6‑1. OMG Telecom Log Service
18

� The Java 2 SDK, Standard Edition IDL compiler has a known problem with enumeration constants not being supported. This causes an incorrect IDL compile error with the deletePolicy in the BasicCmCorbaObjects.idl and BasicCmUMTSCorbaObjects.idl NameBinding modules.

NOTICE

This document has been prepared by Lucent Technologies Inc. (“Lucent”) to assist 3GPP subcommittee SA5. It is proposed to the subcommittee as a basis for discussion and is not to be construed as a binding proposal on Lucent. Lucent specifically reserves the right to amend or modify the material contained herein and nothing herein shall be construed as conferring or offering licenses or rights with respect to any intellectual property of Lucent.

PAGE 40

PAGE 38

_1040630845.vsd

Filter�

OMG Notification Service Event Channel�

Filter�

Filter�

Filter�

Filter�

Filter�

Log Filter�

Consumer�

Supplier�

Quality Of
Service�

Consumer�

Quality Of
Service�

Supplier�

Quality Of
Service�

Supplier�

Quality Of
Service�

Consumer�

Quality Of
Service�

Quality Of
Service�

Log
Persistent Store�

_1040798701.doc

Superclasses:

Managed Object

Managed Object Factory

Std. Data Types

GDMO to IDL

Con-

ven-

tions

Managed Element

Connection

Network

Link

Inherit

…

Managed Element Factory

Link

Factory

Network

Factory

Connection

Factory

…

Application-specific Objects

Notification

Service

Telecom Log Service

Notification Specifications

Terminator

Service

Multiple Object Operation Service

Naming

Service

Channel Finder

Factory Finder

Names

CORBA 2.3.1 ORB

Heartbeat Service

_1040556945.doc

A

B

C

Object

Object

Local Root = C

Local Root = A

Element1:ManagedElement

Managed System Y

Managing System

Object

Local Root = B

Managed System X

Element1:ManagedElement

Element1:ManagedElement

