Page 17

3G TS 32.106-2 R4 draft v4
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

Telecommunication Management;

Configuration Management;

Part 2: Notification Integration Reference Point:

Information Service version 1

(Release R4)
[image: image1.png]
The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organisational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organisational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organisational Partners' Publications Offices.

Keywords

Configuration Management

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2000, 3GPP Organizational Partners (ARIB, CWTS, ETSI, T1, TTA, TTC).

All rights reserved.

Contents

7Foreword

Introduction
7
1
Scope
8
2
References
8
3
Definitions and abbreviations
10
3.1
Definitions
10
3.2
Abbreviations
10
4
System overview
12
4.1
Possible system context for Notification IRP
12
4.2
Overview of Notification IRP
12
5
Modelling approach
13
6 Information Object Classes
14
6.1 Information entities IMPORT and LOCAL LABEL REFERENCES
14
6.2
Class Diagram
14
6.2.1 Class diagram including relationships between classes and attributes
14
6.2.2 Class diagram representing the inheritance hierarchy
15
6.3 Information Object Class Definitions
15
6.3.1 ntfSubscriber
15
6.3.1.1 DEFINITION
15
6.3.1.2 ATTRIBUTE
15
6.3.2 ntfSubscription
16
6.3.2.1 DEFINITION
16
6.3.2.2 ATTRIBUTE
16
6.3.2.3 STATE DIAGRAM
16
6.3.3 notificationIRP
17
6.3.3.1 DEFINITION
17
6.4 Information Relationship Definitions
17
6.4.1 subscription
17
6.4.1.1 DEFINITION
17
6.4.1.2 ROLES
17
6.4.1.3 CONSTRAINTS
17
6.4.2 subscriptionRegistration
17
6.4.2.1 DEFINITION
17
6.4.2.2 ROLES
17
6.4.2.3 CONSTRAINTS
18
6.5 Information Attributes Definitions
18
6.5.1 Definitions and Legal values
18
6.5.2 Constraints
19
7
Interface definition
19
7.1
Class diagram representing interfaces
19
7.2
notificationIRPManagementOperations Interface
20
7.2.1
Operation subscribe (M)
20
7.2.1.1 DEFINITION
20
7.2.1.2 INPUT PARAMETERS
20
7.2.1.3 OUTPUT PARAMETERS
21
7.2.1.4 PRE-CONDITIONS
21
7.2.1.5 POST-CONDITIONS
22
7.2.1.6 EXCEPTIONS
22
7.2.1.6.1 exception_operation_failed_existing_subscription
22
7.2.1.6.2 exception_operation_failed
23
7.2.2
Operation unsubscribe (M)
23
7.2.2.1 DEFINITION
23
7.2.2.2 INPUT PARAMETERS
23
7.2.2.3 OUTPUT PARAMETERS
23
7.2.2.4 PRE-CONDITIONS
23
7.2.2.5 POST-CONDITIONS
24
7.2.2.6 EXCEPTIONS
24
7.2.2.6.1 exception_operation_failed
24
7.2.3
Operation getNotificationIRPVersion (M)
24
7.2.3.1 DEFINITION
24
7.2.3.2 INPUT PARAMETERS
24
7.2.3.3 OUTPUT PARAMETERS
24
7.2.3.4 PRE-CONDITIONS
25
7.2.3.5 POST-CONDITIONS
25
7.2.3.6 EXCEPTIONS
25
7.2.3.6.1 exception_operation_failed
25
7.3
subscriberManagementOperations Interface
26
7.3.1
Operation getSubscriptionIds (O)
26
7.3.1.1 DEFINITION
26
7.3.1.2 INPUT PARAMETERS
26
7.3.1.3 OUTPUT PARAMETERS
26
7.3.1.4 PRE-CONDITIONS
26
7.3.1.5 POST-CONDITIONS
26
7.3.1.6 EXCEPTIONS
27
7.3.1.6.1 exception_operation_failed
27
7.4
subscriptionManagementOperations Interface
28
7.4.1
Operation getSubscriptionStatus (O)
28
7.4.1.1 DEFINITION
28
7.4.1.2 INPUT PARAMETERS
28
7.4.1.3 OUTPUT PARAMETERS
28
7.4.1.4 PRE-CONDITIONS
28
7.4.1.5 POST-CONDITIONS
29
7.4.1.6 EXCEPTIONS
29
7.4.1.6.1 exception_operation_failed
29
7.4.2
Operation changeSubscriptionFilter (O)
29
7.4.2.1 DEFINITION
29
7.4.2.2 INPUT PARAMETERS
29
7.4.2.3 OUTPUT PARAMETERS
30
7.4.2.4 PRE-CONDITIONS
30
7.4.2.5 POST-CONDITIONS
30
7.4.2.6 EXCEPTIONS
30
7.4.2.6.1 exception_operation_failed
30
7.4.3
Operation suspendSubscription (O)
30
7.4.3.1 DEFINITION
30
7.4.3.2 INPUT PARAMETERS
31
7.4.3.3 OUTPUT PARAMETERS
31
7.4.3.4 PRE-CONDITIONS
31
7.4.3.5 POST-CONDITIONS
31
7.4.3.6 EXCEPTIONS
31
7.4.3.6.1 exception_operation_failed
31
7.4.4
Operation resumeSubscription (O)
32
7.4.4.1 DEFINITION
32
7.4.4.2 INPUT PARAMETERS
32
7.4.4.3 OUTPUT PARAMETERS
32
7.4.4.4 PRE-CONDITIONS
32
7.4.4.5 POST-CONDITIONS
32
7.4.4.6 EXCEPTIONS
32
7.4.4.6.1 exception_operation_failed
32
7.5
IRPManagementOperations Interface
33
7.5.1 Operation getNotificationCategories (O)
33
7.5.1.1 DEFINITION
33
7.5.1.2 INPUT PARAMETERS
33
7.5.1.3 OUTPUT PARAMETERS
33
7.5.1.4 PRE-CONDITIONS
33
7.5.1.5 POST-CONDITIONS
33
7.5.1.6 EXCEPTIONS
34
7.5.1.6.1 exception_operation_failed
34
7.5.2 Operation getIRPProfile (O)
34
7.5.2.1 DEFINITION
34
7.5.2.2 INPUT PARAMETERS
34
7.5.2.3 OUTPUT PARAMETERS
34
7.5.2.4 PRE-CONDITIONS
34
7.5.2.5 POST-CONDITIONS
35
7.5.2.6 EXCEPTIONS
35
7.5.2.6.1 exception_operation_failed
35
8
Notification Principles
36
9
Behaviour
37
9.1
Support of packing multiple notifications
37
9.2
Subscription list loss
37
Annex A (informative): Change history
38

NtfSubscriptionId

Foreword

This Technical Specification (TS) has been produced by the 3rd Generation Partnership Project (3GPP).

The present document is part 2 of a multi-part TS covering the 3rd Generation Partnership Project: Technical Specification Group Services and System Aspects; Telecommunication Management; Configuration Management, as identified below:

Part 1:

“3G Configuration Management: Concept and Requirements”;

Part 2:
“Notification Integration Reference Point: Information Service Version 2”;

Part 3:

“Notification Integration Reference Point: CORBA Solution Set Version 1:2”;

Part 4:

“Notification Integration Reference Point: CMIP Solution Set Version 1:2”;

Part 5:

“Basic Configuration Management IRP Information Model (including NRM) Version 1”;

Part 6:

“Basic Configuration Management IRP CORBA Solution Set Version 1:1”;

Part 7:

“Basic Configuration Management IRP CMIP Solution Set Version 1:1”;

Part 8:

“Name Convention for Managed Objects”.

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

Configuration Management (CM), in general, provides the operator with the ability to assure correct and effective operation of the 3G network as it evolves. CM actions have the objective to control and monitor the actual configuration on the Network Elements (NEs) and Network Resources (NRs), and they may be initiated by the operator or by functions in the Operations Systems (OSs) or NEs.

CM actions may be requested as part of an implementation programme (e.g. additions and deletions), as part of an optimisation programme (e.g. modifications), and to maintain the overall Quality Of Service (QOS). The CM actions are initiated either as a single action on a NE of the 3G network or as part of a complex procedure involving actions on many NEs.

The Itf-N interface for Configuration Management (CM) is built up by a number of Integration Reference Points (IRPs) and a related Name Convention, which realise the functional capabilities over this interface. The basic structure of the IRPs is defined in 3GPP TS 32.101 [5] and 3GPP TS 32.102 [6]. For CM, a number of IRPs (and the Name Convention) are defined herein, used by this as well as other specifications for Telecom Management produced by 3GPP. All these are included in 3GPP TS 32.106 from Part 2 and onwards.

The present document is Part 2 of 3GPP TS 32.106 (3GPP TS 32.106-2) - Notification IRP Information Service.

1
Scope

Network Elements (NEs) under management and Element Managers (EMs) generate notifications of events about occurrences within the network. Different kinds of events
carry different kinds of information. For instance a new alarm as specified in Alarm IRP: Information Service 3GPP TS 32.111-2 [1], is one possible kind of event, an object creation as specified in Basic CM IRP : Information Service 3GPP TS 32.106-5 [8] is another possible kind of event.
Information of an event is carried in notification. An IRPAgent (typically an EM or a NE) emits notifications. IRPManager (typically a network management system) receives notifications. The purpose of Notification IRP is to define an interface through which an IRPManager can subscribe to IRPAgent for receiving notifications.
This IRP also specifies information carried in all notifications. This IRP does not specify information that is carried in some but not all notifications. That kind of information is specified in other IRPs involved.For example, perceivedSeverity is a piece of information specific for notifications carrying alarm information. This information is not defined in the present document but in Alarm IRP 3GPP TS 32.111-2 [1].

2
References

The following documents contain provisions, which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies.

[1]
3GPP TS 32.111-2: “Alarm IRP: Information Service”.

[2]
ITU-T Recommendation X.734 (09/92): “Information technology - Open Systems Interconnection - Systems management: Event report management function”.

[3]
3GPP TS 32.106-8: “Name Convention for Managed Objects”.

[4]
OMG: “OMG Notification Service”.

[5]
3GPP TS 32.101: "3G Telecom Management principles and high level requirements".

[6]
3GPP TS 32.102: "3G Telecom Management architecture".

[7]
3GPP TS 32.106-1: “3G Configuration Management: Concept and Requirements”.
[8]
3GPP TS 32.106-5: “ Basic CM IRP : Information Service”.

3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the following terms and definitions apply. For terms and definitions not found here, please refer to 3GPP TS 32.101 [5], 3GPP TS 32.102 [6] and 3GPP TS 32.106-1 [7].

IRPAgent: See 3GPP TS 32.102 [6].

IRPManager: See 3GPP TS 32.102 [6].

Event: It is an occurrence that is of significance to network operators, the NEs under surveillance and network management applications. Events can indicate many types of network management information, such as network alarms, network configuration change information and network performance data.

·
·

Notification: It refers to the transport of information regarding
events from event producer to consumer (receiver). In this IRP, notification is used to carry information about
network events from IRPAgent to IRPManager. Producer sends notifications to consumers as soon as there are new events occur. Consumer does not need to check (“pull”) for events.

IRP : See 3GPP TS 32.102 [6].
Notification Category : It refers to the set of event types specified by

by one 3GPP IRP (protocol and not network resource model) specification. It also refers to the set of notifications of that one IRP specification. A Notification Category is identified by the name of IRP specification and the IRP specification version number.

Qualifiers: The meaning of qualifiers for operations, parameters and information attributes (whether they are Mandatory(M)/ Conditional(C)/ Optional(O)) defined in the present (Information Service) document is provided in 3GPP TS32.102 [6]. Moreover, qualifiers of information attributes, when those information attributes are re-used in other IRP ISs, obey to the following rule : Mandatory and Conditional qualifiers of information attributes shall always be the same in other IRPs ISs, Optional qualifiers of information attributes may be set to either Optional or Mandatory in the other IRP ISs.

3.2
Abbreviations

For the purposes of the present document, the following abbreviations apply:

C
Conditional
CM
Configuration Management

CORBA
Common Object Request Broker Architecture

DN
Distinguished Name

EM
Element Manager

IOC
Information Object Class

IRP
Integration Reference Point

IS
Information Service

ITU-T
International Telecommunication Union, Telecommunication Standardisation Sector

M
Mandatory

NE
Network Element

NM
Network Manager

NR
Network Resource

NRM
Network Resource Model

O
Optional

OMG
Object Management Group

SS
Solution Set

UML
Unified Modelling Language (OMG)

4
System overview

4.1
System context

Figure 1 and Figure 2 identify System contexts of Notification IRP in terms of implementations called IRPAgent and IRPManager.

“IRPManager” depicts a process that interacts with IRPAgent for the purpose of receiving network Notifications via this IRP. IRPAgent detects network events. IRPAgent sends IRPManagers notifications carrying the events. Examples of IRPManagers can be a process running supporting network Notification logging device or supporting network Notification viewing devices (such as a local craft terminal) or a process running within a Network Manager (NM) as shown in Figure 1 and Figure 2. IRPAgent implements and supports this IRP. IRPAgent can run within one Element Manager (EM) with one or more NEs (see Figure 1) or run within one NE (see Figure 2). In the former case, the interfaces (represented by a thick dotted line) between the EM and the NEs are not subject of this IRP. Whether EM and NE share the same hardware system is not relevant to this IRP either. By observing the interaction across the IRP, one cannot deduce if EM and NE are integrated in a single system or if they run in separate systems.

[image: image3.wmf]ntfSubscriber

with

managerReference

in relationship with

ntfSubscription

S

unSubscribe

/

 ntfSubscription

 (and possibly

ntfSubscriber

) removed

getSubscriptionStatus

 (S)

/ failure

Subscribe.

ntfTimetickTimer

initialized

getSubscriptionStatus

 (S)

/ success,

ntfTimeTickTimer

re-initialized

ntfTimeTickTimer

 = 0

/ no resource deleted by

IRPAgent

ntfTimeTickTimer

 = 0

/

 ntfSubscription

 (and possibly

ntfSubscriber

) deleted by

IRPAgent

Waiting for subscription

notSuspended

suspendSusbscription

/

ntfSubscriptionState

= “suspended”

suspended

resumeSusbscription

/

ntfSubscriptionState

= “

notSuspended

”

[image: image4.wmf]IRP

<<

InformationObjectClass

>>

notificationIRP

<<

InformationObjectClass

>>

Top

<<

InformationObjectClass

>>

ntfSubscriber

<<

InformationObjectClass

>>

ntfSubscription

<<

InformationObjectClass

>>

[image: image5.wmf]IRP

<<

InformationObjectClass

>>

notificationIRP

<<

InformationObjectClass

>>

Top

<<

InformationObjectClass

>>

ntfSubscriber

<<

InformationObjectClass

>>

ntfSubscription

<<

InformationObjectClass

>>

[image: image6.wmf]ntfSubscription

<<

InformationObjectClass

>>

ntfSubscriber

<<

InformationObjectClass

>>

notificationIRP

<<

InformationObjectClass

>>

subscription

hasSubscription

isSubscribedBy

(1..N)

(1..1)

ntfManagerReference

ntfSubscriptionId

ntfSubscriptionState

ntfTimeTick

ntfTimeTickTimer

ntfNotificationCategorySet

ntfFilter

subscriptionRegistration

notifiesTo

hasSubscribedIn

(1..1)

(0..N)

[image: image7.wmf]<<Interface>>

notificationIRPManagement

Operations

ntfSubscription

<<

InformationObjectClass

>>

ntfsubscriber

<<

InformationObjectClass

>>

notificationIRP

<<

InformationObjectClass

>>

<<Interface>>

susbcriberManagement

Operations

+ subscribe()

+ unsubscribe()

+

getNotificationIRPVersion

()

<<Interface>>

subscriptionManagement

Operations

+

getSubscriptionStatus

 ()

+

changeSubscriptionFilter

()

+

suspendSubscription

()

+

resumeSubscription

()

+

getSubscriptionIds

()

IRPAgent

<<

InformationObjectClass

>>

<<Interface>>

IRPManagement

Operations

+

getNotificationCategories

 ()

(1..1)

(0..1)

(0..1)

(1..1)

Figure 1: System Context A

Figure 2: System Context B

4.2
Overview of Notification IRP
The purpose of Notification IRP is to define an interface through which an IRPManager can subscribe to an IRPAgent for receiving notifications. It also defines information elements (attributes) carried in all notifications. Collectively, we call these attributes the notificationHeader. This specification also defines an information attribute, called notificationBody, whose semantics shall be further refined by other IRP specifications such as Alarm IRP [?].

An IRPAgent supporting this IRP may emit one or multiple categories of notifications, such as alarms (as specified in 3GPP TS 32.111-2 [1]) and others. This IRP defines a mechanism that IRPManager can use to determine the categories of notifications supported by an IRPAgent. It also defines a mechanism (subscribe and unsubscribe operations) that IRPManager can use to specify the categories of notifications IRPAgent should emit to IRPManager during subscription. It also defines a mechanism (getNtfSubscriptionIds operation) that IRPManager can use to check which categories of notifications it has subscribed to. IRPManager can set and change filter criteria applicable during the life-cycle of a subscription. IRPManager can also exercise flow-control on IRPManager’s emission of notifications ((suspendSubscription and resumeSubscription operations).
Using different managerReference, an IRPManager can subscribe several times. It will result in multiple subscriptions. As far as IRPAgent is concerned, notifications are sent to multiple "places".
Using the same managerReference, an IRPManager can subscribe several times specifying different categories of notifications.

·
·
·
·

5
Modelling approach

This clause identifies the modelling approach adopted and used in this IRP.

This IRP bases its design on work captured in ITU-T Recommendation X.734 [2], OMG Notification Service [4]. The central design ideas are:

· Separation of notification Consumers (IRPManagers) from Producers (IRPAgents);

· Notifications are sent to IRPManagers without the need for IRPManagers to periodically check for new notifications.

· Common characteristics related to notifications in all other IRPs are gathered in one IRP (the present document).

6 Information Object Classes
6.1 Information entities IMPORT and LOCAL LABEL REFERENCES
Full label reference
Local label reference

32.106-5, information object class, Top
Top

32.106-5, information object class, IRP

IRP

32.106-5, information object class, IRPAgent
IRPAgent

32.106-5, information attribute, irpVersion

irpVersion

32.106-5, information attribute, systemDN

systemDN

6.2 Class Diagram
6.2.1 Class diagram including relationships between classes and attributes
This sub-clause depicts the set of information object classes
that encapsulate information within the notification IRP. The intent is to identify the information required for the notification IRP implementation of its operations and notification emission. This sub-clause provides the overview of all information object classes in UML. Subsequent sub-clauses provides more detailed specification of various aspects of these information object classes.

ntfIRPManager in the relationship diagram is ntfSubscriber in the Containment diagram. I think it is better to move this diagram in 6.4.

Edwin: Why there are two diagrams above this statement? I think the second one is sufficient.

Edwin: Comments on the second diagram. Change “hasSubscribedIn” to “hasRegisteredWith”. Change “notifiesTo” to “hasTheRegistrationOf”.

Relation-subscription uses 0..N on the side of ntfSubscription.
6.2.2 Class diagram representing the inheritance hierarchy

This sub-clause depicts the inheritance relationships that exists between information object classes.

GC Note: notificationIRP should be derived from TOP. See note below

6.3 Information Object Class Definitions
6.3.1 ntfSubscriber
6.3.1.1 DEFINITION

This information object represents a Subscriber from a notification IRP perspective : a subscriber is fully identified by a manager reference. It inherits from Information Object Class Top.
6.3.1.2 ATTRIBUTE
Table XXX: Attributes of ntfSubscriber
Attribute name
Support Qualifier

ntfManagerReference
M

6.3.2 ntfSubscription

6.3.2.1 DEFINITION

This information object represents a subscription that can be requested by an IRPManager. It inherits from Information Object Class Top.
6.3.2.2 ATTRIBUTE
Table XXX: Attributes of ntfSubscription

Attribute name
Support Qualifier

ntfSubscriptionId
M

subscriptionState
M

ntfTimeTick
M

ntfTimeTickTimer
M

ntfNotificationCategorySet
M

ntfFilter
M

6.3.2.3 STATE DIAGRAM

The above diagram depicts states that can be supported by a ntfSubscription.

GC NOTE: I think the state diagram should be much simpler: only the two states “suspended” and “not suspended” (may be “active” sounds better) and then it must be specified that the initial state (when the subscription is created) is “active” and the IOC may be deleted in any state at any time.

6.3.3 notificationIRP

6.3.3.1 DEFINITION

This information object represents a notificationIRP. It inherits from Information Object Class IRP.
GC Note: The current documents do not yet contain these two IOC. Currently the 32.106-2 Class Diagram contains the IOC IRPAgent which in turn contains the NotificationIRP, AlarmIRP, etc.
The generic IOC “IRP” defined for inheritance only cannot be a good solution because it cannot be used in containment diagram (only instanceable IOC can be in containment diagrams).

In this document we should define NotificationIRP derived from TOP.

6.4 Information Relationship Definitions

6.4.1 subscription
6.4.1.1 DEFINITION

This relationship defines the relationship between a ntfSubscriber and its current subscriptions.

6.4.1.2 ROLES

Subscription has roles listed in the following table.

Table XXX: Role of subscription
Role name
Role definition

isSubscribedBy
This role represents the one who has subscribed

hasSubscription
This role represents the subscriptions which were made and not unsubscribed

6.4.1.3 CONSTRAINTS
Table XXX: Constraints of subscription
Name
Definition

inv_notificationCategoriesAllDistinct
“the notification categories contained in the ntfNotificationCategorySet attribute of ntfSubscription playing the role hasSubscription are all distinct from each other”

6.4.2 subscriptionRegistration
6.4.2.1 DEFINITION

This relationship defines the relationship between the notificationIRP and the current subscribers of notifications.

6.4.2.2 ROLES

subscriptionRegistration has roles listed in the following table.

Table XXX: Role of subscriptionRegistration
Role name
Role definition

notifiesTo
This role represents the entities to which IRPAgent will notify events

HasSubscribedIn
This role represents the notificationIRP to which an IRPManager has subscribed

6.4.2.3 CONSTRAINTS

Name
Definition

inv_uniqueManagerReference
“all ntfSubscriber involved in the subscriptionRegistration relationship with notificationIRP are distinguished from each other by their ntfManagerReference attribute ”

6.5 Information Attributes Definitions

This sub-clause defines the semantics of the attributes used in Information object classes.
6.5.1 Definitions and Legal values
Table 4: Attributes used by Information Objects

Attribute Name
Definition
Legal Values

ntfSubscriptionId
It identifies uniquely a subscription

N/A

ntfSusbcriptionState
It indicates the activation
state of a subscription

“suspended” : the subscription is suspended

“notSuspended” : the subscription is active

ntfTimeTick
this attribute represents the initial value of ntfTimeTickTimer. It is in unit of whole minute. A special value indicates infinity
Integer greater or equal to 15, OR special infinite value

ntfTimeTickTimer
this attribute represents the current value of a timer
integer greater or equal to zero

ntfNotificationCategorySet
this attribute represents a set of notification categories (see also definition of notification category in clause 3.1)

ntfFilter
this attribute represents the filter of a subscription

ntfManagerReference
this attribute contains the reference of a manager. It uniquely identifies a subscriber

notificationTypeProfile

This attribute contains the set of notification types supported by the IRP.
A notification type defines a type of notification e.g. notifyNewAlarm, notifyObjectDeletion.

operationTypeProfile

This attribute contains the set of operation types supported by the IRP.

An operation type defines a type of operation e.g. acknowledgeAlarm, subscribe.

notificationParameterProfile

This attribute contains, for each notification type defined in attribute notificationTypeProfile and in the same order, the set of parameters supported by the notification.

operationParameterProfile

This attribute contains, for each operation type defined in attribute operationTypeProfile and in the same order, the set of parameters supported by the operation.

scope

6.5.2 Constraints

· “ntfTimeTickTimer is lower or equal to ntfTimeTick”
7
Interface definition
7.1
Class diagram representing interfaces

GC Note: Each IRP should define only the interfaces “used” by the OIC defined within the IRP. Therefore the last interface should be removed from this diagram and moved to the 106-5.

Figure 3: Protocol Independent Interface
[edwin: I think getSubscriptionId() should be “attached” to IRPAgent and not ntfSubscriber. Suppose IRPAgent has multiple ntfSubscriber instances, A, B and C. Suppose we attach getSubscriptionId() to ntfSubscriber (as is proposed). Now suppose the getSubscriptionId() is invoked against instance A and if the input parameter managerReference is B, then possible outcomes are (a) operation succeeds… meaning instance A has to know instance B and C contained objects… and that is not logical and (b) operation fails… and that is not Release 99 compliant. Similar comment is applicable to the set of operations that uses subscriptionId as input parameter (e.g., getSubscriptionStatus()). This set of operations should “attach” to ntfSubscriber that contains ntfSubscription that has the ntfSubscriptionId.
Edwin: Perhaps we need to partition operations in <<interface>>subscriptionManagementOperations further. Currently proposal indicates either all 4 or no operation can be supported.
Edwin: Propose not to remove (but re-introduce back into the above diagram) the <<interface>>notificationIRPnotification that has the notify().
7.2
notificationIRPManagementOperations Interface

7.2.1
Operation subscribe (M)

7.2.1.1 DEFINITION

IRPManager invokes this operation to establish subscription to receive network events via notifications, under the filter constraint specified in this operation. How IRPManager discovers the IRPAgent’s address or reference (so that IRPManager can invoke this operation) is outside the scope of the present document
.
7.2.1.2 INPUT PARAMETERS

Parameter Name
Support Qualifier
Matching Information
Comment

managerReference
M
Type :

ntfSubscriber.ntfManagerReference
It specifies the reference of IRPManager to which notifications shall be sent.

timeTick
O
 Type :

ntfSubscription.ntfTimeTick
It specifies the value of a timer hold by notificationIRP for the subject IRPManager. This value defines a time window within which IRPManager intends to invoke getSubscriptionStatus (or subscribe) operation to confirm its subscription.
The value is in unit of whole minute.
A special infinite value is assumed when parameter is absent or present but equal to zero, which is such that timer will never expire and IRPAgent needs other means to decide when to delete resources allocated to the IRPManager.

notification Categories
O
 Type :

SET OF (name of IRP, version of IRP)
It identifies one or more Notification Category (see also definition in subclause 3.1)

filter
O
The filter can be applied to parameters of notification header (see clause 8) and to parameters of notifications defined as filterable in other IRP ISs.

Filter constraint grammar is SS dependent

It specifies a filter constraint that IRPAgent shall use to filter notification of the category specified in notificationCategories parameter. IRPAgent shall notify IRPManagers if the event satisfies the filter constraint.

If this parameter is absent, then no filter constraint shall be applied.

7.2.1.3 OUTPUT PARAMETERS

Parameter Name
Support Qualifier
Filtering Qualifier
Information Type
Comment

subscriptionId
M

ntfSubscription.ntfSubscriptionId where ntfSubscription is involved in a subscription relationship with ntfSubscriber identified by the managerReference input parameter
It holds an unambiguous identity of this subscription. IRPManager can invoke operations (e.g., suspendSubscription) using this identity. In normal usage, IRPManager shall not provide this identity to another IRPManager such that the second IRPManager can invoke operations using it
.

status
M

 Type :

ENUM (Operation succeeded, Operation failed – existing subscription, Operation failed)

7.2.1.4 PRE-CONDITIONS
Name
Properties

validFilterConstraint
“the filter input parameter is absent or contains a valid filter”

AND

(

notificationCategoriesNotAllSubscribed
“at least one notificationCategory identified in the notificationCategories input parameter is supported by IRPAgent and is not a member of the ntfNotificationCategorySet attribute of an ntfSubscription which is involved in a subscription relationship with the ntfSubscriber identified by the managerReference input parameter”.

OR

notificationCategoriesParameterAbsentAndNotAllSubscribed
“ notificationCategories input parameter is absent and at least one notificationCategory supported by IRPAgent is not a member of the ntfNotificationCategorySet attribute of an ntfSsubscription which is involved in a subscription relationship with the ntfSubscriber identified by the managerReference input parameter”

)

7.2.1.5 POST-CONDITIONS
Name
Properties

subscriberPossiblyCreated
“an ntfSubscriber with a ntfManagerReference attribute equal to the value of the managerReference input parameter is involved in a subscriptionRegistration relationship with notificationIRP”

subscriptionCreated
“an ntfSubscription has been created according to the following rules :

· subscriptionState attribute value has been set to “notSuspended”,

· ntfTimeTick attribute value has been set to the value of the timeTick input parameter if this value was higher or equal to 15, or set to 15 if this parameter value was between 1 and 15, or set to a special infinite value if the parameter value was lower or equal to 0 or if parameter was absent,

· ntfTimeTickTimer has been reset with the value of timeTick attribute,

· ntfFilter attribute value has been set to the value of the filter input parameter if present,

· ntfSubscription is involved in a subscription relationship with the ntfSubscriber identified by the managerReference input parameter,

· attribute ntfNotificationCategorySet of ntfSubscription contains EITHER the notification categories identified by the notificationCategories input parameter that were not already contained in the ntfNotificationCategorySet attribute of other ntfSubscription of the same ntfSubscriber identified by the managerReference input parameter OR if notificationCategories input parameter is absent, all notification categories supported by IRPAgent that were not already contained in the ntfNotificationCategorySet attribute of other subscriptions of the same ntfSubscriber identified by the managerReference input parameter ”.
The output parameter status is set to OperationSucceeded

7.2.1.6 EXCEPTIONS

7.2.1.6.1 exception_operation_failed_existing_subscription

Conditions: (inv_notificationCategoriesNotAllSubscribed OR inv_notificationCategoriesParameterAbsentAndNotAllSubscribed) not verified

Information returned: The output parameter status is set to OperationFailedExistingSubscription

Exit behaviour: None.

7.2.1.6.2 exception_operation_failed

Conditions: preconditions or postconditions are false.

Information returned: The output parameter status is set to OperationFailed

Exit behaviour: None.

7.2.2
Operation unsubscribe (M)

7.2.2.1 DEFINITION

The IRPManager invokes this operation to cancel subscriptions. The IRPManager can cancel one subscription made with a managerReference by providing the corresponding subscriptionId or all subscriptions made with the same managerReference by leaving the subscriptionId parameter absent.

7.2.2.2 INPUT PARAMETERS

Parameter Name
Support Qualifier
Matching Information
Comment

managerReference
M
Type :

ntfSubscriber.ntfManagerReference
It specifies the reference of an IRPManager. IRPManager shall supply its valid managerReference.

subscriptionId
O
Type :

ntfSubscription.ntfSubscriptionId
It holds a subscriptionId carried as the output parameter in the subscribe operation.

7.2.2.3 OUTPUT PARAMETERS

Parameter Name
Support Qualifier
Filtering Qualifier
Information Type
Comment

status
M

 Type :

ENUM (Operation succeeded, Operation failed)

7.2.2.4 PRE-CONDITIONS
Name
Properties

validSubscriptionId&ManagerReference
“the ntfSubscription identified by subscriptionId input parameter is involved in a subscription relationship with the ntfSubscriber identified by the managerReference input parameter”

OR

SubscriptionIdAbsent&ValidManagerReference
“subscriptionId input parameter is absent and the ntfSubscriber identified by the managerReference input parameter exists”

7.2.2.5 POST-CONDITIONS
Name
Properties

subscriptionDeleted
“the ntfSubscription identified by subscriptionId input parameter is no more involved in a subscription relationship with the ntfSubscriber identified by the managerReference input parameter and has been deleted. If this ntfSubscriber has no more ntfSubscription, it is deleted as well.”
The output parameter status is set to OperationSucceeded

OR

allSubscriptionDeleted
“in the case subscriptionId input parameter was absent, the ntfSubscriber identified by the managerReference input parameter is no more involved in any subscription relationship and is deleted, the corresponding ntfSubscription have been deleted as well.”
The output parameter status is set to OperationSucceeded

7.2.2.6 EXCEPTIONS

7.2.2.6.1 exception_operation_failed

Conditions: preconditions or postconditions are false.

Information returned: The output parameter status is set to OperationFailed
Exit behaviour: None.

7.2.3
Operation getNotificationIRPVersion (M)

7.2.3.1 DEFINITION

IRPManager wishes to find out the Notification IRP SS versions supported by notificationIRP. notificationIRP shall respond with a set of Notification IRP SS version(s).

GC Note: It is the case to clarify that a new operation to select which one of the IRP Versions must be used is for further study for the next R5

7.2.3.2 INPUT PARAMETERS

None

7.2.3.3 OUTPUT PARAMETERS

Parameter Name
Support Qualifier
Filtering Qualifier
Information Type
Comment

versionNumberSet
M

notificationIRP.irpversion
It indicates one or more SS version numbers supported by the notificationIRP.

status
M

Type :

ENUM (Operation succeeded, Operation failed)

7.2.3.4 PRE-CONDITIONS

None

7.2.3.5 POST-CONDITIONS
Name
Properties

correctOutput
“the versionNumberSet output parameter contains the set of notification IRP versions supported by IRPAgent”

The output parameter status is set to OperationSucceeded

7.2.3.6 EXCEPTIONS

7.2.3.6.1 exception_operation_failed

Conditions: preconditions or postconditions are false.

Information returned: The output parameter status is set to OperationFailed
Exit behaviour: None.

7.3
subscriberManagementOperations Interface

7.3.1
Operation getSubscriptionIds (O)

7.3.1.1 DEFINITION

IRPManager invokes this operation to get the values of all still valid (not unsubscribed or removed by IRPAgent) subscriptionIds assigned by notificationIRP as result of previously subscribe operations performed by this IRPManager.

7.3.1.2 INPUT PARAMETERS

Parameter Name
Support Qualifier
Matching Information
Comment

managerReference
M
Type :

ntfSubscriber.ntfManagerReference
It specifies the reference of IRPManager that requests the set of identifiers of active subscriptions related to this IRPManager.

7.3.1.3 OUTPUT PARAMETERS

Parameter Name
Support Qualifier
Filtering Qualifier
Information Type
Comment

subscriptionIdSet
M

SET OF ntfSubscription.ntfSubscriptionId
It holds a set of the subscriptionId, each assigned as output parameter in previous subscribe operations invoked by the current IRPManager. This value should contain no information if the IRPManager did not yet subscribed to that System or System lost all subscription related information.

status
M

 Type :

ENUM (Operation succeeded, Operation failed)

7.3.1.4 PRE-CONDITIONS

Name
Properties

validManagerReference
“the ntfSubscriber identified by the managerReference input parameter exists”

7.3.1.5 POST-CONDITIONS

Name
Properties

validSubscriptionIdSet
“the subscriptionIdSet output parameter contains the set of ntfSubscription.ntfSubscriptionId where ntfSubscription is involved in a subscription relationship with the ntfSubscriber identified by the managerReference input parameter and ntfSubscription.ntfSubscriptionState equals to “notSuspended”
”

The output parameter status is set to OperationSucceeded

7.3.1.6 EXCEPTIONS

7.3.1.6.1 exception_operation_failed

Conditions: preconditions or postconditions are false.

Information returned: The output parameter status is set to OperationFailed

Exit behaviour: None.

7.4
subscriptionManagementOperations Interface
7.4.1
Operation getSubscriptionStatus (O)

7.4.1.1 DEFINITION

IRPManager invokes this operation to query the subscription status of a particular subscription.
IRPManager can get similar service by invoking subscribe operation.
 However, the following differences are noted.

· Operation subscribe uses managerReference and this operation uses subscriptionId.

· If IRPAgent has lost IRPManager’s reference, IRPManager use of subscribe operation may result in establishment of another subscription. Using this operation does not establish another subscription.

· IRPManager can use getSubscriptionStatus operation to know about the filter constraint in effect, the state of subscription (i.e., if subscription is suspended/inactive or resumed/active), the timeTick value that may be set at subscribe invocation time and the notificationCategory currently in used in the subscription.

(a)
(b)

7.4.1.2 INPUT PARAMETERS

Parameter Name
Support Qualifier
Matching Information
Comment

subscriptionId
M
Type :

ntfSubscription.ntfSubscriptionId
It holds the subscriptionId carried as the output parameter in the subscribe operation.

7.4.1.3 OUTPUT PARAMETERS

Parameter Name
Support Qualifier
Filtering Qualifier
Information Type
Comment

notification CategorySet
M

ntfSubscription.ntfNotificationCategorySet
It identifies the notification Category(ies) supported in this subscription.

filterInEffect
O

ntfSubscription.ntfFilter
Filter constraint grammar is SS dependent

It contains the filter constraint currently set.

SubscriptionState
O

ntfSubscription.ntfSubscriptionState

timeTick
O

ntfSubscription.ntfTimeTick
It carries the same value as the one in subscribe operation

status
M

 Type :

ENUM (Operation succeeded, Operation failed)

7.4.1.4 PRE-CONDITIONS
Name
Properties

validSubscriptionId
“the ntfSubscription identified by subscriptionId input parameter is involved in a subscription relationship”

7.4.1.5 POST-CONDITIONS
Name
Properties

timeTickReset
“the ntfTimeTickTimer attribute of ntfSubscription identified as input parameter has been reset with the value of ntfTimeTick attribute of the same ntfSubscription ”

validOutputParameters
“the output parameters are valid”
The output parameter status is set to OperationSucceeded

7.4.1.6 EXCEPTIONS

7.4.1.6.1 exception_operation_failed

Conditions: preconditions or postconditions are false.

Information returned: The output parameter status is set to OperationFailed
Exit behaviour: None.

7.4.2
Operation changeSubscriptionFilter (O)

7.4.2.1 DEFINITION

IRPManager invokes this operation to replace the present filter constraint with a new one.

(a)
(b)

7.4.2.2 INPUT PARAMETERS

Parameter Name
Support Qualifier
Matching Information
Comment

subscriptionId
M
Type :

ntfSubscription.ntfSubscriptionId
It carries the subscriptionId carried as the output parameter in the subscribe operation.

filter
M
The filter can be applied to parameters of notification header (see clause 8) and to parameters of notifications defined as filterable in other IRP ISs.

Filter constraint grammar is SS dependent
It specifies a filter constraint that IRPAgent shall use to filter notification of the category specified in notificationCategory parameter.

7.4.2.3 OUTPUT PARAMETERS

Parameter Name
Support Qualifier
Filtering Qualifier
Information Type
Comment

status
M

 Type :

ENUM (Operation succeeded, Operation failed)

7.4.2.4 PRE-CONDITIONS
Name
Properties

validFilterConstraint
“the filter input parameter contains a valid filter”

validNtfSubscriptionId
“the ntfSubscription identified by subscriptionId input parameter is involved in a subscription relationship”

7.4.2.5 POST-CONDITIONS
Name
Properties

filterUpdated
“ntfFilter attribute value of the ntfSubscription identified by subscriptionId input parameter has been set to the value of the filter input parameter”

The output parameter status is set to OperationSucceeded

7.4.2.6 EXCEPTIONS

7.4.2.6.1 exception_operation_failed

Conditions: preconditions or postconditions are false.

Information returned: The output parameter status is set to OperationFailed
Exit behaviour: None.

7.4.3
Operation suspendSubscription (O)

7.4.3.1 DEFINITION

IRPManager invokes this operation to request IRPAgent to stop emission of notifications. IRPAgent may lose notification(s) if subscription is suspended.

(a)
(b)

7.4.3.2 INPUT PARAMETERS

Parameter Name
Support Qualifier
Matching Information
Comment

subscriptionId
M
Type :

ntfSubscription.ntfSubscriptionId
It carries the subscriptionId carried as the output parameter in the subscribe operation.

7.4.3.3 OUTPUT PARAMETERS

Parameter Name
Support Qualifier
Filtering Qualifier
Information Type
Comment

status
M

 Type :

ENUM (Operation succeeded, Operation failed)

7.4.3.4 PRE-CONDITIONS
Name
Properties

validSubscriptionId
“the ntfSubscription identified by subscriptionId input parameter is involved in a subscription relationship”

7.4.3.5 POST-CONDITIONS
Name
Properties

subscriptionStateSuspended
“ntfSubscriptionState attribute value of the ntfSubscription identified by subscriptionId input parameter has been set to or kept as “suspended””
The output parameter status is set to OperationSucceeded

7.4.3.6 EXCEPTIONS

7.4.3.6.1 exception_operation_failed

Conditions: preconditions or postconditions are false.

Information returned: The output parameter status is set to OperationFailed
Exit behaviour: None.

7.4.4
Operation resumeSubscription (O)

7.4.4.1 DEFINITION

IRPManager invokes this operation to request IRPAgent to resume emission of notifications.

(a)
(b)

7.4.4.2 INPUT PARAMETERS

Parameter Name
Support Qualifier
Matching Information
Comment

subscriptionId
M
Type :

ntfSubscription.ntfSubscriptionId
It carries the subscriptionId carried as the output parameter in the subscribe operation.

7.4.4.3 OUTPUT PARAMETERS

Parameter Name
Support Qualifier
Filtering Qualifier
Information Type
Comment

status
M

 Type :

ENUM (Operation succeeded, Operation failed)

7.4.4.4 PRE-CONDITIONS
Name
Properties

inv_validSubscriptionId
“the ntfSubscription identified by subscriptionId input parameter is involved in a subscription relationship”

7.4.4.5 POST-CONDITIONS
Name
Properties

inv_subscriptionStateNotSuspended
“ntfSubscriptionState attribute value of the ntfSubscription identified by subscriptionId input parameter has been set to or kept as “notSuspended””

The output parameter status is set to OperationSucceeded

7.4.4.6 EXCEPTIONS

7.4.4.6.1 exception_operation_failed

Conditions: preconditions or postconditions are false.

Information returned: The output parameter status is set to OperationFailed
Exit behaviour: None.

7.5
IRPManagementOperations Interface

(a)
(b)

7.5.1 Operation getNotificationCategories (O)

7.5.1.1 DEFINITION

IRPManager invokes this operation to query the categories of notification supported by IRPAgent. IRPManager does not need to be in subscription to invoke this operation.
7.5.1.2 INPUT PARAMETERS

None

7.5.1.3 OUTPUT PARAMETERS

Parameter Name
Support Qualifier
Filtering Qualifier
Information Type
Comment

IRPSet

M

SET OF (name of IRP, version of IRP) where each IRP is contained by IRPAgent and IRP.notificationTypeProfile is not empty
It identifies the IRPs contained by IRPAgent which can emit notifications
.

notificationTypeSet
O

SET OF IRP.notificationTypeProfile where each IRP is contained by IRPAgent and IRP.notificationTypeProfile is not empty

IRPSet and notificationTypeSet have the same cardinality, the n-th element of the latter relating to the n-th element of the former.

status
M

 Type :

ENUM (Operation succeeded, Operation failed)

7.5.1.4 PRE-CONDITIONS

None

7.5.1.5 POST-CONDITIONS
Name
Properties

validOutputParameters
“the output parameters are valid”
The output parameter status is set to OperationSucceeded

7.5.1.6 EXCEPTIONS

7.5.1.6.1 exception_operation_failed

Conditions: preconditions or postconditions are false.

Information returned: The output parameter status is set to OperationFailed
Exit behaviour: None.

7.5.2 Operation getIRPProfile (O)

7.5.2.1 DEFINITION

IRPManager invokes this operation to query the detailed profile of an IRP (supported operations and notifications, supported parameters).

7.5.2.2 INPUT PARAMETERS

None

7.5.2.3 OUTPUT PARAMETERS

Parameter Name
Support Qualifier
Filtering Qualifier
Information Type
Comment

notificationTypeProfile
M

IRP.notificationTypeProfile

If this parameter contains no information, it implies that the IRP does not support any notification.

operationTypeProfile
M

IRP.operationTypeProfile
If this parameter contains no information, it implies that the IRP does not support any operation.

notificationParametersProfile
O

IRP.notificationParametersProfile

operationParametersProfile
O

IRP.notificationParametersProfile

status
M

 Type :

ENUM (Operation succeeded, Operation failed)

7.5.2.4 PRE-CONDITIONS

None

7.5.2.5 POST-CONDITIONS
Name
Properties

validOutputParameters
“the output parameters are valid”

The output parameter status is set to OperationSucceeded

7.5.2.6 EXCEPTIONS

7.5.2.6.1 exception_operation_failed

Conditions: preconditions or postconditions are false.

Information returned: The output parameter status is set to OperationFailed
Exit behaviour: None.

8
Notification Principles

[edwin: I have an alternative proposal for this sub-clause. It is in another contribution. The main idea is to keep the concept of notify interface here in Notification IRP.]

IRPAgent notifies the subscribed IRPManager that an event has occurred and that the event has satisfied the filter constraints used for this subscription. One event example is the notification defined in Alarm IRP: IS (3GPP TS 32.111‑2 [1]).
NotificationIRP doesn’t define any specific notification and as a consequence doesn’t contain any notification interface
.
The present clause only defines the information that shall be contained in any notification defined in other IRP ISs. Additional information, specific to a notification, can be contained in a notification and is defined in the specification of the notification in the relevant IRP IS.
Any notification notified by IRPAgent to IRPManager that has subscribed to it shall contain the following information :

a) the type of notification
which is reported by the notification (M),
b) the identification of the Managed Object in which the network event occured (M) :

· Managed Object Class : specifies the class of the Managed Object (MO) in which the network event occured.

· Managed Object Instance : specifies the instance of the MO in which the network event occured
c) the time when the network event occured (M).
parameter : eventTime. The semantics of Generalised Time specified by ITU-T shall be used here.
d) An identifier of the IRPAgent (C).

Parameter : systemDN. It carries the Distinguished Name (DN) of IRPAgent that detects the network event and generates the notification. See 3GPP TS 32.106-8 [3] for name convention regarding DN.

e) An identifier of the notification (O).
Parameter : notificationId. This is an identifier for the notification, which may be used to correlate notifications. The identifier of the notification shall be chosen to be unique across all notifications of a particular managed object throughout the time that correlation is significant, it uniquely identifies the notification from other notifications generated by the subject MO.

If IRPManager receives notifications from one IRPAgent, IRPManager shall use the identifier of the notification and the managedObjectInstance to uniquely identify all received notifications.

If IRPManager receives notifications from multiple IRPAgents and notifications of each MO are reported at most through one IRPAgent, IRPManager shall use the identifier of the notification and managedObjectInstance to uniquely identify all received notifications.

If IRPManager receives notifications from multiple IRPAgents and notifications of one or more MOs are reported through two or more IRPAgents, IRPManager shall use the identifier of the notification together with managedObjectInstance and the identity of IRPAgent (systemDN), to uniquely identify all received notifications. If the information systemDN is absent, IRPManager needs other means, which are outside the scope of this IRP, to determine the identity of IRPAgent.

How identifiers of notifications are re-used to correlate notifications is outside of the scope of this recommendation.
All those information shall be filterable.

·
·

·
·
·
·
·
·
·
·
·
·
·
·
·
·
·

·
·

9
Behaviour

9.1
Support of packing multiple notifications

It should be possible to pack multiple notifications together for sending to NM. This provides more efficient use of data communication resources. In order to pack multiple notifications, an EM/NE configurable parameter defines the maximum number of notifications to be packed together. Additionally an EM/NE configurable parameter defines the maximum time delay before the notifications have to be sent.

9.2
Subscription list loss

notificationIRP can lose the list of managerReference that identifies current IRPManagers under subscription. Under this condition, IRPAgent is incapable of sending events to the affected subscriber(s).

This Notification IRP recommends that IRPManager should invoke the getSubscriptionStatus operation periodically to confirm that IRPAgent still has the IRPManager’s reference in its list. In case IRPManager does not obtain a positive confirmation, IRPManager should assume that IRPAgent has lost the IRPManager’s reference. In this case, IRPManager should invoke unsubscribe and
then subscribe operation again.

This IRP does not recommend the frequency IRPManager should use to invoke getSubscriptionStatus
operation.

Annex A (informative):
Change history

This annex lists all change requests approved for the present document since the specification was first approved by 3GPP TSG-SA.

Change history

TSG SA#
Version
CR
Tdoc SA
New Version
Subject/Comment

S_07
2.0.0
-
SP-000012
3.0.0
Approved at TSG SA #7 and placed under Change Control

Mar 2000
3.0.0

3.0.1
cosmetic

S_08
3.0.1
002
SP-000242
3.1.0
Split of TS - Part 2: Notification Integration Reference Point (IRP): Information Service (IS)

S_10
3.1.0
001
SP-000518
3.2.0
Consistent description of Event types and Extended event types

S_10
3.1.0
002
SP-000518
3.2.0
Correction of parameter inconsistency in operation unsubscribe

NM

IRPManager

IRPAgent

EM

Itf-N

NEs

Notification IRP

NM

IRPManager

- supportedNotificationCategories

- irpAgentId

- systemDN

IRPAgent

NE

Itf-N

Notificat

ion IRP

IRPAgent

subscriber

subscription

- managerReference

ntfsubscriberIRPManager

(1..1)

- subscriptionId

- subscriptionState

- timeemTick

- timeemTickTimer

- notificationCategoryList

- filter

�

� EMBED Word.Picture.8 ����

�

hasSubscribedTosubscriptionsupports

hasSubscribedTosubscriptionsupports

hasIRPsSubscribedTo

ntfSsubscription

(0..N)

- notificationIRPId

- irpVersion

- irpName

- profile

- scope

hasSubscribedTosubscription

ntfNnotificationIRP

�

�PAGE \# "'PAGE: '#'�'" ��To be updated

�PAGE \# "'Page: '#'�'" ��

Notifications

�PAGE \# "'Page: '#'�'" ��To be consistent with the previous changes in the Scope

�PAGE \# "'Page: '#'�'" �� see previous note

�PAGE \# "'Page: '#'�'" ��

�PAGE \# "'Page: '#'�'" ��Edwin: “set of notifications”… “set of notifications and the set of event types”.

�PAGE \# "'PAGE: '#'�'" ��?

�PAGE \# "'Page: '#'�'" �� edwin: I think “System context” for the title is sufficient. Use of “possible” should be avoided less it can lead to mean that there are other system contexts.

�PAGE \# "'Page: '#'�'" �� With the new concept of <<IOC>>, we can now introduce the concept of notificationHeader and notificationBody “formally” as parameters of notify() of the <<interface>>NotificationIRPNotification, in this IRP specification. Other IRP specification, such as Alarm IRP specification, can import and refine their semantics.

For example, Alarm IRP specification can import <<interface>>NotificationIRPNotification. Make <<interface>>AlarmIRPNotification inherits from <<interface>>NotificationIRPNotification. Refine the semantics of eventType. Refine the notificationBody semantics to contain multiple attributes with their individual semantics.

�PAGE \# "'Page: '#'�'" �� Edwin: I would prefer that this yellowed text remains because these statement should be true statements for Release 4 as well.

�PAGE \# "'Page: '#'�'" �� Edwin: I would prefer that this yellowed text remains because these statement should be true statements for Release 4 as well.

�PAGE \# "'Page: '#'�'" ��

The MOC “IRP” does not exist in 106-5-2. BasicCmIRP exists, which contains irpVersion I guess this IOC will be renamed in 106-5

�PAGE \# "'Page: '#'�'" �� I think there is no need to specify this imported attribute if we import its IOC. Should we specify which MOC the Attribute is specified in ?

�PAGE \# "'Page: '#'�'" ��

This is an Attribute of the imported IRPAgent.

�PAGE \# "'Page: '#'�'" ��

It may be better to replace with IOC

�PAGE \# "'Page: '#'�'" �� To be deleted after discussion

�PAGE \# "'Page: '#'�'" �� This is a note and must be deleted after discussion

�PAGE \# "'Page: '#'�'" �� To be deleted after discussion

�PAGE \# "'Page: '#'�'" �� Since we don’t provide all the values, it’s better to change with “Notes on ligal values”

�PAGE \# "'Page: '#'�'" ��delete

�PAGE \# "'Page: '#'�'" �� This attribute seems new and should be introduced with a dedicated contribution. Behind, is this attribute really necessary? For the implementation it may require a lot of CPU time for info that may be irrelevant. For the CMIP Interfaces this is not used.

�PAGE \# "'Page: '#'�'" ��Edwin: I would prefer this be called notificationCategories. Its value is used to supply the response to getNotificationCategories().

�PAGE \# "'PAGE: '#'�'" �� Where this attribute is defined? According to this draft it should be imported from IRP. According to my comments to this draft iIt should be an attribute of Information Object CClass Notification IRP and imported

�PAGE \# "'Page: '#'�'" ��Edwin. I would prefer operationTypeProfile and operationParameterProfile be combined to one attribute called operationProfile, the same attribute proposed by the Ericsson discovery paper. I would also suggest to change the operationTypeProfile to operationProfile (same in Ericsson discovery paper). The XXXProfile contains the following semantics… the name of the operations, the parameters supported by the operations…

�PAGE \# "'PAGE: '#'�'" ��Same as previous noteIt should be an attribute of Information Object Class IRP and imported

�PAGE \# "'PAGE: '#'�'" �� I’m not sure it is convenient to show such information on the interface as attributeIt should be an attribute of Information Object Class IRP and imported

�PAGE \# "'PAGE: '#'�'" ��Same as previous noteIt should be an attribute of Information Object Class IRP and imported

�PAGE \# "'PAGE: '#'�'" ��Under study

�PAGE \# "'PAGE: '#'�'" ��We should get a title in line with the diagram included in this clause which represents interfaces

�PAGE \# "'PAGE: '#'�'" ��there is no notification interface as such

�PAGE \# "'Page: '#'�'" �� to be deleted after discussion

�PAGE \# "'PAGE: '#'�'" ��this should be moved somewhere else, it is not particular to subscribe

�PAGE \# "'Page: '#'�'" �� It is strange, however, that another Manager can invoke operations for subscriptions originated by this Manager. This allows e.g. to unsubscribe by mistake.

�PAGE \# "'Page: '#'�'" ��Not clear

�PAGE \# "'Page: '#'�'" �� To be deleted after discussion

�PAGE \# "'PAGE: '#'�'" ��To be discussed

�PAGE \# "'PAGE: '#'�'" ��to be clarified. It is far from being similar.

�PAGE \# "'Page: '#'�'" �� Edwin: Suggest that R99 getNotificationCategories() remains. Add getNotificationProfile() and getOperationProfile(). The first one allows the IRPManager to discover the notification types (e.g., notifyNewAlarm() and their supported parameters. The second one allows the IRPManager to discover the operations and their supported parameters.

�PAGE \# "'PAGE: '#'�'" ��this operation replaces getNotificationCategories.R99

�PAGE \# "'Page: '#'�'" ��Edwin: why not use the term “notificationCategories” here?

�PAGE \# "'Page: '#'�'" ��Edwin: This comment is not accurate if this parameter name is changed to “notificationCategories”.

�PAGE \# "'PAGE: '#'�'" ��this operation enhances getNotificationCategories which was not generic enough. This is a generic operation, supported by any IRP. It should be an operation of IOC IRP.

�PAGE \# "'Page: '#'�'" ��Edwin: Please see our companion contribution that relates to this sub-section. The file name should be “ericsson-321060-2-320-notify-interface-r4.doc”.

�PAGE \# "'PAGE: '#'�'" ��It is under study whether a generic notify() notification could be defined in a UML compliant diagram.

�PAGE \# "'Page: '#'�'" �� Event

�PAGE \# "'PAGE: '#'�'" ��This may be clarified by highlighting difference between information element and parameter

�PAGE \# "'PAGE: '#'�'" ��redundant

�PAGE \# "'PAGE: '#'�'" ��reason for this ? relationship with bulk data transfer ?

�PAGE \# "'PAGE: '#'�'" ��redundant

�PAGE \# "'PAGE: '#'�'" ��why ? failure of getSubscriptionStatus means subscription has been deleted (cannot find it)

�PAGE \# "'PAGE: '#'�'" ��do we need this anymore with the state diagram ?

_1023053456.doc
[image: image1.emf]NotificationIRPNotification

notify()

<<Interface>>

IRPAgent

use

IRPManager

implement

NotificationIRPOperation

subscribe()

unsubscribe()

getNotificationIRPVersion()

getSubscriptionStatus()

getSubscriptionIds()

changeSubscriptionFilter()

suspendSubscription()

resumeSubscription()

getNotificationCategories()

<<Interface>>

implement

use

_1048509482.doc

IRP

<<

InformationObjectClass

>>

notificationIRP

<<

InformationObjectClass

>>

Top

<<

InformationObjectClass

>>

ntfSubscriber

<<

InformationObjectClass

>>

ntfSubscription

<<

InformationObjectClass

>>

