
X INFORMATION OBJECT CLASSES

-- ‘X’ represents a number
X.1 Information entities imported and local labels
-- this clause identifies a list of information entities (e.g. information object class, information relationship, information attribute) that have been defined in other specifications and that are imported in this specification. This includes information entities from other specifications imported for inheritance purpose. Each element of this list is a pair (label reference, local label).The label reference contains the name of the specification where it is defined, the type of the information entity and its name. The local label of imported information entities can then be used throughout the specification instead of the label reference.
-- this information is provided in a table. An example of such a table is given herebelow :

Label reference
Local label

32.106-5[10], information object class, Top
Top

X.2 Class diagram

X.2.1 Class diagram defining attributes and relationships
-- this first diagram represents all information object classes defined in this IRP IS with all their relationships and all their attributes. This diagram shall contain relationship names, role name and role cardinality. This shall be a UML compliant class diagram.
-- Characteristics (attributes, relationships) of imported information object classes need not to be repeated in the diagram. Names of information elements (class, attribute) defined in the IRP IS and which scope is local to this IRP IS must be prefixed by a 3 characters prefix uniquely identifying the IRP IS. Information object classes should be defined using the stereotype <<InformationObjectClass>>. On the class diagram, each attribute in an information object class shall be qualified as “protected” by the addition of a symbol “#” before each attribute.
X.2.2 Class diagram representing the inheritance hierarchy

-- this second diagram represents the inheritance hierarchy of all information object classes defined in this IRP IS. This diagram does not need to contain the complete inheritance hierarchy but shall at least contain the parent information object classes of all information object classes defined in this specification. This shall be a UML compliant class diagram.
-- Characteristics (attributes, relationships) of imported information object classes need not to be repeated in the diagram. Information object classes should be defined using the stereotype <<InformationObjectClass>>.

-- Note : some inheritance relationships presented in X.2.2 can be repeated in X.2.1 to enhance readability.
X.3 Information object classes definition
-- each information object class is defined using the following structure :

X.3.a InformationObjectClassName

-- InformationObjectClassName is the name of the information object class
-- ‘a’ represents a number, starting at 1 and increasing by 1 with each new definition of an information object class
X.3.a.1 Definition
-- The <definition> sub-clause is written in natural language. The <definition> sub-clause refers to the information object class itself. The characteristics related to the relationships that the object class can have with other object classes can't be found in the definition. The reader has to refer to relationships definition to find such kind of information. Information related to inheritance shall be precised here.
X.3.a.2 Attributes
-- The <attributes> sub-clause presents the list of attributes, which are the manageable properties of the object class . Each element is a pair (attributeName, supportQualifier).The supportQualifier indicates whether the attribute is Mandatory (M) or Optional (O).

·
·
-- this information is provided in a table. An example of such a table is given herebelow :

Attribute name
Support Qualifier

ntfSubscriptionId
M

- Note : this sub-clause does not need to be present when there is no attribute to define.

X.3.a.3 Attribute constraints
-- The <attribute constraints> sub-clause presents constraints between attributes that are always held to be true.). Those properties are always held to be true during the lifetime of the attributes and in particular don’t need to be repeated in pre or post conditions of operations or notifications.

- Note : this sub-clause does not need to be present when there is no attribute constraints to define.

X.3.a.4 Relationships
-- The <relationship> sub-clause presents the list of relationships in which this class in involved. Each element is a relationshipName.

- Note : this sub-clause is optional and may be avoided since all relationships are represented in the class diagram in clause.X.2.1.
X.3.a.5 State diagram
-- The <state diagram> sub-clause contains state diagrams. A state diagram of an information object class defines permitted states of this information object class and the transitions between those states. A state is expressed in terms of individual attribute values or a combination of attribute values or involvement in relationships of the information object class being defined. This shall be a UML compliant state diagram.
X.4 Information relationships definition
-- each information relationship is defined using the following structure :

X.4.a InformationRelationshipName

-- InformationRelationshipName is the name of the information relationship

-- ‘a’ represents a number, starting at 1 and increasing by 1 with each new definition of an information relationship

X.4.a.1 Definition
-- The <definition> sub-clause is written in natural language.

X.4.a.2 Roles
-- The <roles> sub-clause identifies the roles played in the relationship by object classes.. Each element is a pair (roleName, roleDefinition)

-- this information is provided in a table. An example of such a table is given herebelow :

Name
Definition

isSubscribedBy
This role represents the one who has subscribed

X.4.a.3 Constraints
-- The <constraints> sub-clause contains the list of properties specifying the semantic invariants that must be preserved on the relationship. Each element is a pair (propertyName, propertyDefinition). Those properties are always held to be true during the lifetime of the relationship and don’t need to be repeated in pre or post conditions of operations or notifications.

-- this information is provided in a table. An example of such a table is given herebelow :

Name
Definition

inv_notificationCategoriesAllDistinct
“the notification categories contained in the ntfNotificationCategorySet attribute of ntfSubscription playing the role hasSubscription are all distinct from each other”

X.5 Information attributes definition
-- each information attribute is defined using the following structure :

X.5.1 Definition and legal values
-- This sub-clause contains for each attribute being defined its name, its definition written in natural language and a list of legal values supported by the attribute.

-- In the case where the legal values can be enumerated, each element is a pair (legalValueName, legalValueDefinition). When the legal values cannot be enumerated, the list of legal values is defined by a single definition.

-- this information is provided in a table. An example of such a table is given herebelow :

Attribute Name
Definition
Legal Values

ntfSubscriptionId
It identifies uniquely a subscription

N/A

ntfSusbcriptionState
It indicates the activation state of a subscription

“suspended” : the subscription is suspended

“notSuspended” : the subscription is active

X.5.2 Constraints
-- The <constraints> sub-clause indicates whether there are any constraints affecting attributes. Each constraint is defined by a pair (propertyName, propertyDefinition). PropertyDefinitions are expressed in natural language.

-- An example is given herebelow :
Name
Definition

inv_TimerConstraints
“ntfTimeTickTimer is lower than or equal to ntfTimeTick”

X.6 Particular information configurations

-- some configurations of information are special or complex enough to justify the usage of a state diagram to clarify them. A state diagram in this clause defines permitted states of the system and the transitions between those states. A state is expressed in terms of a combination of attribute values constraints or involvement in relationships of one or more information object classes.

Y INTERFACE DEFINITION

-- ‘Y’ represents a number, immediately following ‘X’
Y.1 Class diagram representing interfaces

-- each interface is defined in the diagram. This shall be a UML compliant class diagram.

-- Interfaces are defined using a stereotype <<Interface>>. Each interface contains a set of either operations or notifications which are mandatory or either a single operation or a single notification which is optional. The support of an interface by an information object class is represented by a relationship between the 2 entities with a cardinality (1..1) if all the operations or notifications contained in the interface are mandatory, and (0..1) if the operation or notification contained in the interface is optional. On the class diagram, each operation and notification in an interface shall be qualified as “public” by the addition of a symbol “+” before each operation and notification.

Y.b InterfaceName Interface
-- InterfaceName is the name of the interface

-- ‘b’ represents a number, starting at 2 and increasing by 1 with each new definition of an interface

-- Each interface is defined by its name and by a sequence of operations or notifications as defined herebelow.

-- each operation is defined using the following structure :

Y.b.a Operation OperationName (supportQualifier)

-- OperationName is the name of the operation followed by a qualifier indicating whether the operation is Mandatory, Optional or Conditional (M, O, C)
-- ‘a’ represents a number, starting at 1 and increasing by 1 with each new definition of an operation

Y.b.a.1 Definition
-- The <definition> sub-clause is written in natural language.

Y.b.a.2 Input parameters
-- list of input parameters of the operation. Each element is a tuple (inputParameterName, supportQualifier, InformationType, inputParameterComment)

-- this information is provided in a table. An example of such a table is given herebelow :

Parameter Name
Qualifier
Information type
Comment

managerReference
M
ntfSubscriber.ntfManagerReference
It specifies the reference of IRPManager to which notifications shall be sent.

Y.b.a.3 Output parameters
-- list of output parameters of the operation. Each element is a tuple (outputParameterName, supportQualifier, MatchingInformation, outputParameterComment)

-- this information is provided in a table. An example of such a table is given herebelow :

Parameter Name
Qualifier
Matching Information
Comment

versionNumberSet
M
notificationIRP.irpversion
It indicates one or more SS version numbers supported by the notificationIRP.

Y.b.a.4 Pre-condition
-- a pre-condition is a collection of assertions joined by AND, OR, and NOT logical operators. The pre-condition must be held to be true before the operation is invoked . Each assertion is a pair (propertyName, propertyDefinition)

-- all assertions constituting the pre-condition are provided in a table. An example of such a table is given herebelow :

Name
Definition

notificationCategoriesNotAllSubscribed
“at least one notificationCategory identified in the notificationCategories input parameter is supported by IRPAgent and is not a member of the ntfNotificationCategorySet attribute of an ntfSubscription which is involved in a subscription relationship with the ntfSubscriber identified by the managerReference input parameter”.

notificationCategoriesParameterAbsentAndNotAllSubscribed
“ notificationCategories input parameter is absent and at least one notificationCategory supported by IRPAgent is not a member of the ntfNotificationCategorySet attribute of an ntfSsubscription which is involved in a subscription relationship with the ntfSubscriber identified by the managerReference input parameter”

-- if the table only contains one assertion, this is the pre-condition itself. If the table contains more than one assertion, the pre-condition is expressed below the table with the help of AND, OR and NOT logical operators. In this latter case, the pre-condition is introduced by the keyword “pre-condition :”. An example is given herebelow :
pre-condition :

notificationCategoriesNotAllSubscribed OR notificationCategoriesParameterAbsentAndNotAllSubscribed
Y.b.a.5 Post-condition
-- a post-condition is a collection of assertions joined by AND, OR, and NOT logical operators. The post-condition must be held to be true after the completion of the operation. Each assertion is a pair (propertyName, propertyDefinition)

-- all assertions constituting the post-condition are provided in a table. An example of such a table is given herebelow :
Name
Definition

subscriptionDeleted
“the ntfSubscription identified by subscriptionId input parameter is no more involved in a subscription relationship with the ntfSubscriber identified by the managerReference input parameter and has been deleted. If this ntfSubscriber has no more ntfSubscription, it is deleted as well.”

allSubscriptionDeleted
“in the case subscriptionId input parameter was absent, the ntfSubscriber identified by the managerReference input parameter is no more involved in any subscription relationship and is deleted, the corresponding ntfSubscription have been deleted as well.”

-- if the table only contains one assertion, this is the post-condition itself. If the table contains more than one assertion, the post-condition is expressed below the table with the help of AND, OR and NOT logical operators. In this latter case, the post-condition is introduced by the keyword “post-condition :”. An example is given herebelow :

post-condition :

subscriptionDeleted OR allSubscriptionDeleted
Y.b.a.6 Exceptions
-- list of exceptions that can be raised by the operation. Each element is a tuple (exceptionName, condition, ReturnedInformation, exitState))

Y.b.a.6.c exceptionName
-- exceptionName is the name of an exception

-- ‘c’ represents a number, starting at 1 and increasing by 1 with each new definition of an exception
-- this information is provided in a table. An example of such a table is given herebelow :
Exception Name
Definition

Ope_failed_existing_subscription
Condition: (notificationCategoriesNotAllSubscribed OR notificationCategoriesParameterAbsentAndNotAllSubscribed) not verified
Returned information: output parameter status is set to OperationFailedExistingSubscription
Exit state: Entry State

-- each notification is defined using the following structure :

Y.b.a Notification NotificationName (supportQualifier)

-- NotificationName is the name of the notification followed by a qualifier indicating whether the notification is Mandatory, Optional or Conditional (M, O, C).
-- ‘a’ represents a number, starting at 1 and increasing by 1 with each new definition of a notification

Y.b.a.1 Definition
-- The <definition> sub-clause is written in natural language.

Y.b.a.2 Input parameters
-- list of input parameters of the notification. Each element is a tuple (inputParameterName, supportQualifier and filteringQualifier, matchingInformation, inputParameterComment)

-- the filteringQualifier indicates whether the parameter of the notification can be filtered or not. Values are Yes (Y) or No (N). The matchingInformation refers to information in the state “toState”.
-- this information is provided in a table. The column “Qualifiers” contains the two qualifiers supportQualifier and filteringQualifier separated by a comma. An example of such a table is given herebelow :

Parameter Name
Qualifiers
Matching Information
Comment

managerReference
M,Y
ntfSubscriber.ntfManagerReference
It specifies the reference of IRPManager to which notifications shall be sent.

Y.b.a.3 Triggering event
-- the triggering event for the notification to be sent is the transition from the information state defined by the ‘from state’ sub-clause to the information state defined by the ‘to state’ sub-clause.
 Y.b.a.3.1 From state
 -- this sub-clause is a collection of assertions joined by AND, OR, and NOT logical operators. Each assertion is a pair (propertyName, propertyDefinition))

-- all assertions constituting the state “from state” are provided in a table. An example of such a table is given herebelow :
Name
Definition

alarmMatched
The newly generated network alarm matches with one AlarmInformation (same values for eventType, probableCause, specificProblem attributes) in AlarmList.

alarmInformationNotCleared
The perceivedSeverity attribute of the matched AlarmInformation is not cleared

-- if the table only contains one assertion, this is the state “from state” itself. If the table contains more than one assertion, the state “from state” is expressed below the table with the help of AND, OR and NOT logical operators. In this latter case, the state “from state” is introduced by the keyword “from state:”. An example is given herebelow :

from state :

alarmMatched AND alarmInformationNotCleared
 Y.b.a.3.2 To state
 -- this sub-clause is a collection of assertions joined by AND, OR and NOT logical operators. Each assertion is a pair (propertyName, propertyDefinition))

-- all assertions constituting the state “to state” are provided in a table. An example of such a table is given herebelow :
Name
Definition

resetAcknowledgementInformation
The matched AlarmInformation identified in inv_alarmMatched in pre-condition has been updated according to the following rule :

ackTime, ackUserId and ackSystemId are updated to contain no information; ackState is updated to “unacknowledged”;

perceivedSeverityUpdated
The perceivedSeverity attribute of matched AlarmInformation identified in inv_alarmMatched in pre-condition has been updated.

-- if the table only contains one assertion, this is the state “to state” itself. If the table contains more than one assertion, the state “to state” is expressed below the table with the help of AND, OR and NOT logical operators. In this latter case, the state “to state” is introduced by the keyword “to state:”. An example is given herebelow :

to state :

resetAcknowledgementInformation AND perceivedSeverityUpdated
Z SCENARIO
-- ‘Z’ represents a number, immediately following ‘Y’

-- list of sequence diagrams each describing a possible scenario. This shall be a UML compliant sequence diagram.

