

3GPP TSG-SA WG5 Meeting #19
S5C010089

Los Angeles, USA, 2 – 6 April 2001

CR-Form-v3

CHANGE REQUEST

(

32.106-XXX
CR
CR-Num
(

rev
-
(

Current version:
1.0.0
(

For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

Proposed change affects:
(

(U)SIM

ME/UE

Radio Access Network
X
Core Network

Title:
(

Bulk CM IRP: CORBA Solution Set

Source:
(

Ericsson (anders.p.frisk@era.ericsson.se), Alcatel, DeTeMobil Deutsche Telekom MobilNet, Lucent, Nokia, Nortel Networks, Mannesmann Mobilfunk, Motorola, Siemens and Telcordia

Work item code:
(

Date: (

2001-03-23

Category:
(

B

Release: (

Rel-4

Use one of the following categories:
F (essential correction)
A (corresponds to a correction in an earlier release)
B (Addition of feature),
C (Functional modification of feature)
D (Editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

Reason for change:
(

Introduction of Operations and Notifications to allow Bulk CM.

Summary of change:
(

 CORBA Solution for Bulk CM

Consequences if
(

not approved:
Bulk CM will not be supported

Clauses affected:
(

New CM part X

Other specs
(

 Other core specifications
(

affected:

 Test specifications

 O&M Specifications

Other comments:
(

This submission is supported by the following companies:

Alcatel, DeTeMobil Deutsche Telekom MobilNet, Ericsson, Lucent,

Nokia, Nortel Networks, Mannesmann Mobilfunk, Motorola, Siemens and Telcordia.

Additionally, the following companies provided contributions to this document:

Bull, BT Cellnet, Compaq, Cramer Systems, Evidian, Orange UK and PSI.

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at: http://www.3gpp.org/3G_Specs/CRs.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://www.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2000-09 contains the specifications resulting from the September 2000 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

1 Introduction

In 1998, LME/DT started an initiative to publish and maintain a collection of strategic Integration Reference Point (Itf-N) specifications for the Telecommunication management domain. Itf-N is a hypothetical named location across which protocol stacks can be pairwise-matched and message exchanges defined. Background information to the initiative is provided in the following LME/DT Statement of Direction documents:

1) “Telecom-management solutions for network and service providers”

2) “General Guidelines for Development of Element Management Solutions” [1]

This document describes the Information Services for the above mentioned Itf-N, including UML interface class diagrams and the CORBA solution as an IDL file.
1.1 Document Structure

Section 1 provides background information.

Section 2 provides an architectural overview
Section 3 describes the class interfaces and CORBA
Section 4 describes mappings between this document and the Information Model

Section 5 describes the how to register the MCCM_BulkCmOperations Interface with the Naming Service.

Annex A, B and C contains IDL specifications.

Annex D contains the State Machine

1.2 Key Terms

This section lists key terms used in this document.

IRPManager: It models all kinds of objects outside the domain of the IRPAgent and it interacts directly with the IRPAgent using this Itf-N for the purpose of uploading or downloading Managed Object data. Since IRPManagers represent IRPAgent users, they help delimit the IRPAgent and give a clearer picture of what IRPAgent is supposed to do.

Notification: It refers to the transport of events from event producer to consumer. An event is an occurrence that is of significance to network operators, the network elements under surveillance and network management applications. Events can indicate many types of network management information, such as network alarms, network configuration change information and network performance data. The term “notification” is taken from TMN. Note that TMN (ITU-T X.710) specifies that notifications are specific to the Managed Objects that emit them and that the notifications are part of the definition of the Managed Object class of which the Managed Object is an instance.

IRPAgent: It models the object that interacts with IRPManager using this Itf-N. For this document, IRPAgent encapsulates network element functions regarding Managed Objects and reporting. From IRPManager’s perspective, IRPAgent behavior is only visible via the subject Common Configuration Itf-N.
1.3 Itf-N version

The version of this Itf-N Information Services is numbered 1.1. This number corresponds to the IDL file having the same version number.
1.4 Glossary

Glossary of terms and acronyms

CORBA: Common Object Request Broker Architecture

EC: Event channel defined by OMG

IDL: Interface Definition Language
IM: Information Model

IS: Information Services (ie this document)

NC: Notification channel defined by OMG

NE: Network Element

NEM: Network Element Manager

NRM: Network Resource Model
SS: Solution Set

UML: Unified Model Language
2 Architectural Overview
The following figures identify IRPAgent contexts of the Interface-N (Itf-N) in terms of its implementation called ’IRPAgent’ and the user of the IRPAgent, called IRPManager.

’IRPManager’ depicts a process that interacts with IRPAgent for the purpose of retrieving or manipulating Managed Object data by exchanging files over the Itf-N containing configuration information. In the context of this document the IRPManager represents the MCCM. The Itf-N is supported on the IRPAgent side by one Network Element Manager (NEM) or mediator that interfaces one or more NEs (also known as Managed Elements)

The Itf-N configuration file service supports the introduction and retrieval of radio network configuration data.

.

[image: image7.wmf]MCCM

Tool

NEM

start_session

IDLE_PHASE &

COMPLETED

sessionState_notification

download

if the downloading

progress must be cancelled,

e.g. exceeded timer

abort

DOWNLOAD_PHASE &

FAILED

sessionState_notification

state_request

if DOWNLOAD_PHASE is

IN_PROGRESS

YES

e.g. retry download

after timeout

download

e.g file parsing fails

DOWNLOAD_PHASE &

FAILED

sessionState_notification

YES

get_log

analyse problem

end_session

YES

[image: image8.wmf]MCCM

Tool

NEM

start_session

IDLE_PHASE &

COMPLETED

sessionState_notification

upload

if the uploading progress

must be cancelled, e.g.

exceeded timer

abort

UPLOAD_PHASE &

FAILED

sessionState_notification

state_request

if UPLOAD_PHASE is

IN_PROGRESS

YES

e.g. retry upload

after timeout

upload

check if one concurrent

config session is in progress

return exception

NO

e.g file parsing fails

UPLOAD_PHASE &

FAILED

sessionState_notification

YES

get_log

analyse problem

end_session

YES

get_log

analyse problem

[image: image9.wmf]MCCM

Tool

NEM

ACTIVATION_PHASE is

COMPLETED or PARTLY_REALISED

activate_fallback

check if one concurrent

config session is in progress

return exception

NO

if fallback fails,

e.g. all related NEs

are disconnected

FALLBACK_PHASE &

FAILED

sessionState_notification

YES

get_log

analyse problem

endSession

e.g. retry fallback one

more time after time-out

activate_fallback

sessionState_notification

e.g. accept partly realised

configuration change of fallback

FALLBACK_PHASE &

PARTLY_REALISED

e.g. retry fallback after

one NE reconnects

activate_fallback

[image: image10.wmf]MCCM

Tool

NEM

DOWNLOAD_PHASE is

COMPLETED

activate

check if one concurrent

config session is in progress

return exception

NO

if activation fails,

e.g. all related NEs

are disconnected

ACTIVATION_PHASE &

FAILED

sessionState_notification

YES

get_log

analyse problem

endSession

e.g. retry activate one

more time after time-out

activate

sessionState_notification

e.g. accept partly realised

configuration change

because only one NE failed

ACTIVATION_PHASE &

PARTLY_REALISED

e.g. retry activate after

one NE reconnects

activate

[image: image11.wmf]MCCM

Tool

NEM

start_session

sessionState_notification

download

DOWNLOAD_PHASE &

COMPLETED

sessionState_notification

end_session

IDLE_PHASE &

COMPLETED

activate

sessionState_notification

ACTIVATION_PHASE &

COMPLETED

[image: image12.wmf]MCCM

Tool

NEM

start_session

sessionState_notification

upload

sessionState_notification

end_session

IDLE_PHASE &

COMPLETED

UPLOAD_PHASE &

COMPLETED

[image: image13.wmf]MCCM

Tool

NEM

subscribe

sessionState_notification

unsubscribe

actor is known to system

actor receives all

sessionState_notification

logState_notification

[image: image14.wmf]activate_fallback

end_session

abort

IN_PROGRESS

activate_fallback

PARTLY_

REALISED

FAILED

COMPLETED

FALLBACK_PHASE

[image: image15.wmf]activate

end_session

abort

IN_PROGRESS

activate

PARTLY_

REALISED

FAILED

COMPLETED

ACTIVATION_PHASE

activate_fallback

Figure 1: IRPAgent Context

3 Itf-N Service Interface
3.1 The class interfaces
This section specifies the operations and notifications that are visible over the Itf-N. The following figure illustrates the operations and notifications defined as interfaces implemented and used by IRPagent and IRPManager (described using UML notation). Parameters and return status are not indicated.

Two interfaces are defined. One is called MCCM_BulkCmOperations. This interface defines operations implemented by the IRPAgent. The second is called MCCM_BulkCmNotifications. This interface defines notifications mechanism implemented by the IRPManager.
[image: image17.wmf]upload

end_session

abort

IN_PROGRESS

upload

FAILED

COMPLETED

UPLOAD_PHASE

[image: image18.wmf]start_session

end_session

COMPLETED

IDLE_PHASE

upload or

download

[image: image19.wmf]activate

download

upload

start_session

end_session

activate_fallback

substate machine of

DOWNLOAD_PHASE

substate machine of

UPLOAD_PHASE

substate machine of

ACTIVATION_PHASE

substate machine of

FALLBACK_PHASE

substate machine of

IDLE_PHASE

[image: image20.emf][image: image21.emf][image: image22.emf][image: image23.emf][image: image24.wmf]MCCM

Tool

NEM

start_session

get_log

end_session

GET_LOG_

COMPLETED

logState_notification

...

e.g. operator analyse a

NEM error

[image: image25.wmf]MCCM

Tool

NEM

start_session

sessionState_notification

download

DOWNLOAD_PHASE &

COMPLETED

sessionState_notification

end_session

IDLE_PHASE &

COMPLETED

activate

sessionState_notification

ACTIVATION_PHASE &

COMPLETED

[image: image26.wmf]MCCM

Tool

NEM

DOWNLOAD_PHASE is

COMPLETED

activate

check if one concurrent

config session is in progress

return exception

NO

if activation fails,

e.g. all related NEs

are disconnected

ACTIVATION_PHASE &

FAILED

sessionState_notification

YES

get_log

analyse problem

endSession

e.g. retry activate one

more time after time-out

activate

sessionState_notification

e.g. accept partly realised

configuration change

because only one NE failed

ACTIVATION_PHASE &

PARTLY_REALISED

e.g. retry activate after

one NE reconnects

activate

[image: image27.wmf]MCCM

Tool

NEM

start_session

IDLE_PHASE &

COMPLETED

sessionState_notification

upload

if the uploading progress

must be cancelled, e.g.

exceeded timer

abort

UPLOAD_PHASE &

FAILED

sessionState_notification

state_request

if UPLOAD_PHASE is

IN_PROGRESS

YES

e.g. retry upload

after timeout

upload

check if one concurrent

config session is in progress

return exception

NO

e.g file parsing fails

UPLOAD_PHASE &

FAILED

sessionState_notification

YES

get_log

analyse problem

end_session

YES

get_log

analyse problem

[image: image28.wmf]activate

end_session

abort

IN_PROGRESS

activate

PARTLY_

REALISED

FAILED

COMPLETED

ACTIVATION_PHASE

activate_fallback

[image: image29.wmf]MCCM

Tool

NEM

subscribe

sessionState_notification

unsubscribe

actor is known to system

actor receives all

sessionState_notification

logState_notification

[image: image30.wmf]MCCM

Tool

NEM

start_session

sessionState_notification

upload

sessionState_notification

end_session

IDLE_PHASE &

COMPLETED

UPLOAD_PHASE &

COMPLETED

[image: image31.wmf]MCCM

Tool

NEM

ACTIVATION_PHASE is

COMPLETED or PARTLY_REALISED

activate_fallback

check if one concurrent

config session is in progress

return exception

NO

if fallback fails,

e.g. all related NEs

are disconnected

FALLBACK_PHASE &

FAILED

sessionState_notification

YES

get_log

analyse problem

endSession

e.g. retry fallback one

more time after time-out

activate_fallback

sessionState_notification

e.g. accept partly realised

configuration change of fallback

FALLBACK_PHASE &

PARTLY_REALISED

e.g. retry fallback after

one NE reconnects

activate_fallback

[image: image32.wmf]MCCM

Tool

NEM

activate

if the activation

progress must be cancelled,

e.g. exceeded timer

abort

ACTIVATION_PHASE &

PARTLY_REALISED

sessionState_notification

state_request

if ACTIVATION_PHASE is

IN_PROGRESS

YES

get_log

analyse problem

end_session

YES

DOWNLOAD_PHASE is

COMPLETED

[image: image33.wmf]MCCM

Tool

NEM

start_session

IDLE_PHASE &

COMPLETED

sessionState_notification

download

if the downloading

progress must be cancelled,

e.g. exceeded timer

abort

DOWNLOAD_PHASE &

FAILED

sessionState_notification

state_request

if DOWNLOAD_PHASE is

IN_PROGRESS

YES

e.g. retry download

after timeout

download

e.g file parsing fails

DOWNLOAD_PHASE &

FAILED

sessionState_notification

YES

get_log

analyse problem

end_session

YES

[image: image34.wmf]activate_fallback

end_session

abort

IN_PROGRESS

activate_fallback

PARTLY_

REALISED

FAILED

COMPLETED

FALLBACK_PHASE

[image: image35.wmf]download

end_session

abort

IN_PROGRESS

download

FAILED

COMPLETED

DOWNLOAD_PHASE

activate

[image: image36.wmf]upload

end_session

abort

IN_PROGRESS

upload

FAILED

COMPLETED

UPLOAD_PHASE

Figure 2: UML Interface Class Diagram

[image: image37.wmf]start_session

end_session

COMPLETED

IDLE_PHASE

upload or

download

[image: image38.wmf]activate

download

upload

start_session

end_session

activate_fallback

substate machine of

DOWNLOAD_PHASE

substate machine of

UPLOAD_PHASE

substate machine of

ACTIVATION_PHASE

substate machine of

FALLBACK_PHASE

substate machine of

IDLE_PHASE

The operations upload, download, activate, getLog, startSession, fallback and abortSessionOperation are performed asynchronously in that when the operations are initiated, the IRPAgent returns an indication that the requested activity has begun, and the IRPManager may release and continue with other tasks. If the IRPManager has subscribed on event notifications, then the IRPAgent will receive a notification when the task requested in the operation is complete.

The operations subscribe, unsubscribe, getSessionStatus, getSessionIds and get_basicCm_IRP_version are performed synchronously in that the result of the operation is returned as a callback to the operation, and the IRPManager will wait until the response is received before continuing.
3.2

3.3 ORB Interoperability

Different vendors will use different ORB implementations. Even if CORBA is standard, experience tells us that there may be problems if the interoperability aspect is not considered.

· No ORB vendor specific features that are not CORBA standard should be used

· No complicated datatypes should be used in the IDL specification

4 Mapping

4.1 General Mappings

All MOs are arranged in a containment structure, according to the containment relations defined in the NRM. This structure is held internally by the IRPAgent. Externally, the MO containment structure is defined by the semantics in the distinguished name syntax. The distinguished name for an MO contains the distinguished name of the parent plus the Relative Distinguished Name for the MO itself.

Associations as defined in the NRM (UML) are in this document mapped to attributes in the MIB. The names of the roles for an association in the NRM are used for defining attribute names in the MIB. When the cardinality for a role is 0..1 or 1..1 the datatype for the attribute is defined as a MO reference. The value of a MO reference contains the distinguished name of the referred MO. When the cardinality for a role allows more than one referred MO, the attribute will contain a sequence of MO references (distinguished names).

Notifications are in this document mapped to a callback interface implemented by the IRPManager.

4.2 Operation and Notification mapping

The Information Model document defines semantics of operations and notifications visible across the Common Configuration Itf-N. The table below indicates mapping of these operations and notifications to their equivalents defined in this document.

Table 1: Mapping from IM Notification/Operation to SS equivalents

IM Operation/ notification
SS Method
Interface
Qualifier

Upload
Upload
IRPAgent
M

Download
Download
IRPAgent
M

Activate
Activate
IRPAgent
M

StatusRequest
getSessionStatus
IRPAgent
M

Notification
NotifySessionStateChanged
IRPManager
M

GetErrorLog
GetLog
IRPAgent
M

Subscribe
Subscribe
IRPAgent
M

ActivateFallback
fallback
IRPAgent
M

EndSession
endSession
IRPAgent
M

4.3 Operation Parameter Mapping

Reference Common CM N-IF: IM [0] defines semantics of parameters carried in operations. The tables below indicate the mapping of these parameters, as per operation, to their equivalents defined in this SS.

Table 2: Mapping from IM Upload parameters to SS equivalents

IM Operation parameter
SS parameter
Qualifier

ConfigIdReference
Destination
M

ConfigId
SessionId
M

BaseObject
baseObject
M

SearchControl
search_control

This optional parameter is together with the baseObject used to upload only a part of the MIB.
M

Status
Exception UndefinedMOException,
exception IllegalDNFormatException,
exception UndefinedScopeException,
exception IllegalScopeTypeException,
exception IllegalScopeLevelException,
exception IllegalFilterFormatException, exception SessionInUseException, exception SystemBusyException
M

Table 3: Mapping from IM Notification parameters to SS equivalents

IM Operation parameter
SS Method parameter
Qualifier

ConfigId
Session
M

Event
Event
M

Event
errorInformation (the event information is divided into two parameters in this SS)
O

Table 4: Mapping from IM Download parameters to SS equivalents

IM Operation parameter
SS Method parameter
Qualifier

ConfigId
SessionId
M

ConfigIdReference
Source
M

status
exception SessionInUseException, exception SystemBusyException
M

Table 5: Mapping from IM Activate parameters to SS equivalents

IM Operation parameter
SS Method parameter
Qualifier

ConfigId
SessionId
M

status
Exception UnknownSessionException,
exception DownloadInProgressException, exception SystemBusyException
M

Table 6: Mapping from IM StatusRequest parameters to SS equivalents

IM Operation parameter
SS Method parameter
Qualifier

ConfigId
SessionId
M

Status
Method return value and parameter errorInfo
M

Table 7: Mapping from IM Subscribe parameters to SS equivalents

IM Operation parameter
SS Method parameter
Qualifier

ConfigId
SessionId
M

-
subscriber This is a reference to a callback interface. This is needed in this SS to identify the receiver of notifications. The parameter is not identified in the IM, because other protocols may have other ways of solving this.
M

status
- (no error conditions are identified)
M

Table 8: Mapping from IM GetErrorLog parameters to SS equivalents

IM Operation parameter
SS Method parameter
Qualifier

ConfigId
SessionId
M

ConfigIdReference
Destination
M

Status
- (no error conditions are idenitified)
M

Table 9: Mapping from IM EndSession parameters to SS equivalents

IM Operation parameter
SS Method parameter
Qualifier

ConfigId
SessionId
M

status
exception SystemBusyException,

exception UnknownSessionException

M

Table 10: Mapping from IM ActivateFallback parameters to SS equivalents

IM Operation parameter
SS Method parameter
Qualifier

status
Exception SystemBusyException
M

5
5.1

6 Finding/Registering the System Interface

Each IRPAgent shall instantiate one instance of the MCCM_BulkCmOperations interface. This interface is registered in a CORBA Naming Service running in the network. The ORB Vendor specific methods provided for getting a handle to the Name Service (root context) is not standardized by OMG. Therefore FTP is used for this.
6.1 Finding the CORBA Name Service

A program (IRPManager/MCCM/NE Manager) that wants to resolve/register CORBA objects in the naming service must first get a reference to the naming service itself. This reference must be stored by the Name Server in a root naming context ior file. The contents of the file is fetched by using FTP, like ftp://<name-server>/ior_files/nameroot.ior , where <name-server> is the IP-adress of the host running the CORBA naming service.
6.2 Registering the MCCM_BulkCmOperations Interface

Each IRPAgent simulator must register its MCCM_BulkCmOperations interface in the CORBA Naming Service. The Naming Service is found according to section 4.1.

The host where the naming service is running and which name the IRPAgent should be registered as must be defined by means of runtime properties in the IRPAgent. All names should be registered in the root naming context.
6.3 Finding the MCCM_BulkCmOperations Interface

The IRPManager must get the naming service according to section 4.1, and resolve each IRPAgent.
6.4 Naming the MCCM_BulkCmOperations Interface

The name of the instance of the interface shall be the same names as on the OMC instance.
7 References

1. OMG Notification Service, OMG TC Document telecom/98-11-01

2. OMG CORBA services: Common Object Services Specification, Update: November 22, 1996. (Clause 4 contains the Event Service Specification.)

3. 3GPP 3G Configuration Management (Release 99), Appendix H.

4. The Common Object Request Broker: Architecture and Specification, version 2.3.

5. Notification N-IF: CORBA solution set, version 1 (rev A), LME/DT 98:2054.

6. Common Configuration Management, N Interface Specification Information Model, ERA/RT-00:505, Revision PA2.
8 Annex A: Itf-N CORBA IDL: BulkCmCommonTypes

// @Module:
 MobileCommonConfiguarionManagement

// @Interface:
 N-Interface MCCM

// @Source file: mccm_BulkCmCommonTypes_idl.idl

/**

 *

 * Workfile: mccm_BulkCmCommonTypes_idl.id

 * Revision: 2.0

 * State:
 Draft Product defintion

 *

 * PURPOSE: IDL definitions of the common types of the BulkCm interface

 *

 *

 * AUTHORS: MCCM/Catalyst project group

 *

 * NOTES: draft product defintion

 *

 ***/

/*

 * HISTORY OF CHANGES

;

; Rev 2.0 22 March 2001 Gerd Schoenwolf, Siemens AG

; update: for 3GPP input and product definition

;

***/

// MobileCommonConfigurationManagement

#ifndef MCCM_BULK_CM_COMMON_TYPES_IDL

#define MCCM_BULK_CM_COMMON_TYPES_IDL

/* @Type: MCCM_SessionId

 * For each started configuration session a unique identifier is generated

 * by the IRPManager. An sessionId can not be used for an upload if it is

 * already in use of a download configuration and vice versa.

 */

typedef string MCCM_SessionId;

/* @Type: MCCM_ErrorInformation

 * This string field is used in order to provide additional error information

 * on none working MCCM functionality.

 */

typedef string MCCM_ErrorInformation;

/* @Type: MCCM_SubPhase

 * defines the different subphases of a configuration session

 * e.g. thus it is easy to implement a detection of an upload

 *or a download/activate session.

 */

enum MCCM_SubPhase { MCCM_IDLE_PHASE,

 MCCM_DOWNLOAD_PHASE,

 MCCM_UPLOAD_PHASE,

 MCCM_ACTIVATION_PHASE,

 MCCM_FALLBACK_PHASE

};

/* @Type: MCCM_SessionSubState

 * defines the different substates of a configuration session. This includes

 * the transition state as well. The substate IDLE is only defined for

 * reasons of consistency to the IDLE_LEVEL.

 */

enum MCCM_SubState { MCCM_COMPLETED,

 MCCM_FAILED,

 MCCM_PARTLY_REALISED,

 MCCM_IN_PROGRESS //transition state

};

/* @Type: MCCM_SessionState

 * defines state of a configuration session with the phase and the substate

 * of the configuration.

 */

struct MCCM_SessionState { MCCM_SubPhase sub_phase;

 MCCM_SubState sub_state;

};

#endif
9 Annex B: Itf-N CORBA IDL: BulkCmOperations

// @Module:
 MobileCommonConfiguarionManagement

// @Interface:
 N-Interface MCCM

// @Source file: mccm_BulkCmOperations_idl.idl

/**

 *

 * Workfile:
 mccm_BulkCmOperations_idl.idl

 * Revision: 2.0

 * State:
 Draft Product Definition

 *

 * PURPOSE: IDL definitions of the BulkCm EM interface

 *

 *

 * AUTHORS: MCCM/Catalyst project group

 *

 * NOTES: draft product defintion

 *

 ***/

/*

 * HISTORY OF CHANGES

;

; Rev 2.0 22 March 2001 Gerd Schoenwolf, Siemens AG

; update: for 3GPP input and product definition

;

***/

// MobileCommonConfigurationManagement

#ifndef MCCM_BULK_CM_OPERATIONS_IDL

#define MCCM_BULK_CM_OPERATIONS_IDL

#include <mccm_BulkCmNotifications_idl.idl>

// copied for compile cleaness from file CommonIRPConstDefs.idl

module CommonIRPConstDefs {

 typedef sequence <string> VersionNumberSet;

};

/* @Class: MCCM_BulkCm_Operations

 * this class defines the System interface of a EM. It defines all methods

 * which are necessary to control a configuration session from a IRPManager.

 */

interface MCCM_BulkCm_Operations {

 // Exceptions begin

 // The ActivationMode is not supported

 exception ActivationModeException {

 string reason;

 };

 // The addressed configuration session can not be performed because

 // of a concurrency situation

 exception ConcurrencyException {

 string reason;

 };

 // The string contents of type FilterType is not valid

 exception IllegalFilterFormatException {

 string reason;

 };

 // The string contents of type DistinguishedName is not valid

 exception IllegalDistinguishedNameFormatException {

 string reason;

 };

 // The value of the filter ScopeType is not valid

 exception IllegalScopeTypeException {

 string reason;

 };

 // The value of the filter level field is not valid

 exception IllegalScopeLevelException {

 string reason;

 };

 // The maximum number of subscriber is exceeded

 exception MaxSubscriberException{

string reason;

 };

 // No fallback position has been saved

 exception NoFallbackException{};

 // The value of the sessionId is already in used by a current

 // configuration session

 exception SessionIdInUseException {

 string reason;

 };

 // The addressed configuration session is in a Transition state:

 // s. substate IN_PROGRESS

 exception TransitionStateException {

 string reason;

 };

 // the subscriber is not known

 exception UnknownSubscriberException{

 string reason;

 };

 // The value of the sessionId does not identify a configuration session

 exception UnknownSessionIdException{};

 // Exceptions end

 /* @Type: ActivationMode

 * in most cases it can shorten the activation time of new configuration

 * data within the mobile subnetwork if the IRPManager suggest an

 * activation mode. E.g. a low amount of configuration data will be

 * indicated with the mode "soft" thus the EM could decide to introduce

 * the configurations changes to the subnetwork via single commands

 * instead of exchanging the complete MIB of a network element.

 */

 enum ActivationMode {

 SOFT_ACTIVATE,

 HARD_ACTIVATE

 };

 /* @Type:MCCM_SessionIdList

 * contains the list of all current sessionIds

 */

 typedef sequence<MCCM_SessionId> MCCM_SessionIdList;

 /* @Type: FileDestination

 * specifies a ftp path and filename.

 */

 typedef string FileDestination;

 /* @Type: DistinguishedName

 * The format of Distinguished Name is specified in

 * the Naming Conventions for Managed Objects; 3G TS 32.106 Annex H.

 * e.g. "g3SubNetwork=10001,g3ManagedElement=400001" identifies an

 * G3ManagedElement instance of the object model.

 */

 typedef string DistinguishedName;

 /* @Type: FillterType

 * is used within in the upload function in order to give a filter criteria

 * for the confiuration data which will be uploaded. In general there are

 * three different kind of string information as a filter argument to the

 * object model:

 * @Subtype: IM_Identifier

 * the contents depends on the used scope within the struct

 * e.g .className="ExternalUtranCell" or

 * e.g. attributeName="externalCellId"

 * e.g. attributeValue="powerControlAttributes", s. vsDataType

 * The name or value must fit to the definition of the object model.

 * @Subtype: LogicalOperator

 * How a filter string gets evaluated is defined by the given

 * logical operator:

 * EQUAL: the related string value must equal

 * NOT: the related string must not equal

 * DONT_CARE: the related string is not evaluated as filter criteria

 * (substitutes null string evaluation)

 * Restriction: The support of the logical operator NOT is only required

 * for className. The support of the attribute value is only

 * required for base types or value names of vsDataType.

 */

 typedef string IM_Identifier;

 enum LogicalOperator { EQUAL,

 NOT,

 DONT_CARE };

 struct FilterAttributeValue { IM_Identifier attributeValue;

 LogicalOperator operator; };

 struct FilterAttribute { IM_Identifier attributeName;

 FilterAttributeValue attrValueStruct;

 LogicalOperator operator; };

 struct FilterClassType { IM_Identifier className;

 LogicalOperator operator;};

 struct FilterType { FilterClassType filter_classType;

 FilterAttribute filter_attribute; };

 /* @Type: ScopeType

 * defines the kind of scope to use in a search together with

 * SearchControl.level, in a SearchControl value.

 * SearchControl.level is always >= 0. If a level is bigger than the

 * depth of the tree there will be no exceptions thrown.

 * @Value: BASE_ONLY

 *
 level ignored, just return the base object.

 * @Value: BASE_NTH_LEVEL

 * return all subordinate objects that are on "level"

 * distance from the base object, where 0 is the base object.

 * @Value: BASE_SUBTREE

 * return the base object and all of its subordinates

 *
 down to and including the nth level.

 * @Value: BASE_ALL

 * level ignored, return the base object and all of

 * it's subordinates

 */

 enum ScopeType {

 BASE_ONLY,

 BASE_NTH_LEVEL,

 BASE_SUBTREE,

 BASE_ALL

 };

 /* @Type: SearchControl

 * controls the searching for MOs during upload, and contains:

 * the type of scope ("type" field),

 * the level of scope ("level" field),

 * the filter ("filter" field),

 * The type and level fields are mandatory.

 * The filter field is optional (defined by an empty string).

 */

 struct SearchControl {

 ScopeType type;

 unsigned long level;

 FilterType filter;
 // optional paramter

 };

 /* @Method: upload

 * @Algorithm: asynchronous

 * Uploads a configuration from the subnetwork. The result is put in a

 * XML file in a ftp area specified by the IRPManager.

 * The MIB of the subnetwork is iterated by means of containment search,

 * using a SearchControl to control the search and the returned results.

 * All MOs in the scope constitutes a set that the filter works on.

 * In case of a concurrent running session the function will

 * return an exception. If the value of the given baseObject or FiterType

 * does not exist then this asynchronous error condition will be notified.

 * @Precond: MCCM_IDLE_PHASE & MCCM_COMPLETED or

 * MCCM_UPLOAD_PHASE & MCCM_FAILED

 * @Postcond: MCCM_UPLOAD_PHASE & MCCM_COMPLETED

 * @Errcond: MCCM_UPLOAD_PHASE & MCCM_FAILED

 *

 * @Param: session_id

 * identifies the configuration session

 * @Param: sink

 * specifies the FTP address and filename where the result

 * shall be placed in the file by the EM.

 *
 It shall contain an URL: "ftp://<path>/<filename>"

 * @Param: baseObject

 * The start MO in the containment tree. A null here means

 * the search shall start at the subnetwork root instance.

 * @Param: search_control

 *
 the SearchControl to use.

 */

 void upload(in MCCM_SessionId session_id,

 in FileDestination sink,

 in DistinguishedName base_object,

 in SearchControl search_control)

 raises(UnknownSessionIdException,

TransitionStateException,

ConcurrencyException,

 IllegalDistinguishedNameFormatException,

 IllegalFilterFormatException,

 IllegalScopeTypeException,

 IllegalScopeLevelException

);

 /* @Method: download

 * @Algorithm: asynchronous

 * Indicates the EM that it can download a configuration XML file from

 * a given ftp area. The downloaded XML file will be parsed and checked

 * against the XML schema. The EM will check the consistence of the

 * configuration data and the software compatibilty.

 * @Precond: MCCM_IDLE_PHASE & MCCM_COMPLETED or

 * MCCM_DOWNLOAD_PHASE & MCCM_FAILED

 * @Postcond: MCCM_DOWNLOAD_PHASE & MCCM_COMPLETED

 * @Errcond: MCCM_DOWNLOAD_PHASE & MCCM_COMPLETED

 *

 * @Param: session_id

 * identifies the configuration session

 * @Param: source

 *
 specifies the FTP address and the filname where the new

 * configuration shall be fetched by the EM.

 * It shall contain an URL: "ftp://<path>/<filename>"

 */

 void download(in MCCM_SessionId session_id,

 in FileDestination source)

 raises (UnknownSessionIdException);

 /* @Method: activate

 * @Algorithm: asynchronous

 * Activates a previously downloaded and sucessfully parsed configuration.

 * This means that the configuration will be introduced in the live

 * sub-network. In case of a concurrent running session the function will

 * return an exception.

 * @Precond: MCCM_DOWNLOAD_PHASE & MCCM_COMPLETED or

 * MCCM_ACTIVATION_PHASE & MCCM_PARTLY_REALISED or

 * MCCM_ACTIVATION_PHASE & MCCM_FAILED

 * @Postcond: MCCM_ACTIVATION_PHASE & MCCM_COMPLETED or

 * MCCM_ACTIVATION_PHASE & MCCM_PARTLY_REALISED

 * @Errcond: MCCM_ACTIVATION_PHASE & MCCM_FAILED

 *

 * @Param: session_id

 *
 defines a configuration session created by a subscribe

 * @Param: activation_mode

 *
 the IRPManager suggest an activation mode.

 * @Param: fallback

 * if TRUE a fallback position will be saved before configuration

 * data are changed. If FALSE no fallback will be saved.

 */

 void activate(in MCCM_SessionId session_id,

 in ActivationMode activation_mode,

 in boolean fallback)

 raises (UnknownSessionIdException,

 TransitionStateException,

 ConcurrencyException,

 ActivationModeException);

 /* @Method: getLog

 * @Algorithm: asynchronous

 * Uploads an log from the subnetwork which is usally used for error

 * analysis. The log is put in an XML file in the filesystem which can

 * be accessed by the EM. If there are no log entries an empty log file

 * is uploaded.

 * @Precond: none

 * @Postcond: event send MCCM_GET_LOG_COMPLETED

 * @Errcond: event send MCCM_GET_LOG_FAILED

 *

 * @Param: sink

 * specifies the FTP address and filename where the result

 * shall be placed in the by the EM.

 *
 It shall contain an URL: "ftp://<path>/<filename>"

 * @Param: session_id

 *
 defines a configuration session created by a subcribe

 * @Param: only_error_info

 * if TRUE only error information is put into file.

 */

 void getLog(in FileDestination sink,

 in MCCM_SessionId session_id,

 in boolean only_error_info)

 raises (UnknownSessionIdException,

 ConcurrencyException);

 /* @Method: startSession

 * @Algorithm: asynchronous

 * creates an instance of the configuration session state machine. The

 * MCCM_IDLE_PHASE & MCCM_COMPLETED is notified. This entry point enables

 * together with the reset function an IRPManager to control

 * a session with a maximum of flexibilty.

 * @Precond: session_id not in use

 * @Postcond: MCCM_IDLE_PHASE & MCCM_COMPLETED

 *

 * @Param: session_id

 * defines the configuration to subscribe on

 * @Param: subscriber

 * defines the subscriber which is a handle to the IRPManager.

 */

 void startSession(in MCCM_SessionId session_id)

 raises(SessionIdInUseException);

 /* @Method: getSessionStatus

 * @Algorithm: synchronous

 * Returns the state of a configuration session.

 * states.

 * @Precond: none

 * @Postcond: none

 * @Errcond: none

 *

 * @Param: session_id

 *
 defines the configuration to subscribe on

 * @Param: error_info

 *
 defines error information which gives the IRPManager

 * additional information when a task has failed.

 * @Return:the current status of the configuration

 */

 MCCM_SessionState

 getSessionStatus(in MCCM_SessionId session_id,

 out MCCM_ErrorInformation error_information)

 raises (UnknownSessionIdException);

 /* @Method: fallback

 * @Algorithm: asynchronous

 * Actives a fallback area. Each time a configuration is activated a

 * fallback area can be created, s. activate parameter.

 * This area is backup of the complete configuration which can be

 * restored by this method. The process is as follows:

 * 1. When the method activate(...,..., TRUE) is used,

 * a copy of the valid area is taken before the activation

 * of the new planned data has started. Only one fallback area can

 * exists at a time for a specific scope of the subnetwork.

 * 2. When a fallback area is avilable and triggered by this method, the

 * previous valid area is replaced with the data stored in

 * the fall back area.

 * If the EM detects that the former configuration has never been

 * changed it returns an exception because it does not trigger an

 * activation of the former data.

 * @Precond: MCCM_ACTIVATION_PHASE & MCCM_COMPLETED or

 * MCCM_ACTIVATION_PHASE & MCCM_PARTLY_REALISED

 * @Postcond: MCCM_FALLBACK_PHASE & MCCM_COMPLETED or

 * MCCM_FALLBACK_PHASE & MCCM_PARTLY_REALISED

 * @Errcond: MCCM_FALLBACK_PHASE & MCCM_FAILED

 *

 * @Param: session_id

 *
 identifies the configuration session

 */

 void fallback(in MCCM_SessionId session_id)

 raises (UnknownSessionIdException,

 NoFallbackException,

 TransitionStateException,

 ConcurrencyException);

 /* @Method: endSession

 * @Algorithm: synchronous

 * The IRPManager invokes this operation to delete all its temporary

 * entities and the related sessionId which belong to the scope of

 * a configuration session. This includes the related error and log

 * informationen too.

 * @Precond: not in a Transition state, s. MCCM_IN_PROGRESS

 * @Postcond: sessionId is released

 *

 * @Param: sessionId

 *
 identifies the configuration session

 */

 void endSession(in MCCM_SessionId session_id)

 raises (UnknownSessionIdException,

 TransitionStateException);

 /* @Method: abortSessionOperation

 * @Algorithm: asynchronous

 * The IRPManager invokes this operation to abort a configuration sesssion.

 * This operation can be called in any state. But it is only effecting

 * a configuration session in state MCCM_IN_PROGRESS. In this case the

 * current session task is interrupted, e.g. the activating in progress

 * and a state change is notified

 * @Precond: none

 * @Postcond: if MCCM_IN_PROGRESS then

 * (MCCM_UPLOAD_PHASE and MCCM_FAILED) or

 * (MCCM_DOWNLOAD_PHASE and MCCM_FAILED) or

 *

(MCCM_ACTIVATION_PHASE and MCCM_FAILED) or

 * (MCCM_ACTIVATION_PHASE and MCCM_PARTLY_REALISED)

 * @Param: session_id

 *
 identifies the configuration session

 */

 void abortSessionOperation(in MCCM_SessionId session_id)

 raises (UnknownSessionIdException);

 /* @Method: subscribe

 * @Algorithm: synchronous

 * This is the initial method for the IRPManager to register at the system.

 * This registration ensures that the it gets all seesion state and

 * log state notifications. The subscription can be started at anytime.

 * @Precond: max. number of subcriber in not exceeded

 * @Postcond: no

 * @Errcond: none

 *

 * @Param: subscriber

 * defines the subscriber which is a handle to the IRPManager.

 */

 void subscribe(in MCCM_BulkCm_Notications subscriber)

 raises (MaxSubscriberException);

 /* @Method: unsubscribe

 * @Algorithm: synchronous

 * the IRPManager unregister at the system. Notification are not anymore

 * send to the IRPManager.

 * @Precond: none

 * @Postcond: new subcribe possible

 * @Errcond: none

 *

 * @Param: subscriber

 * defines the subscriber which is a handle to the IRPManager.

 */

 void unsubscribe(in MCCM_BulkCm_Notications subscriber)

 raises (UnknownSubscriberException);

 /* @Method: getSessionIds

 * @Algorithm: synchronous

 * returns a list all sessionIds of current running configuration

 * sessions.

 * @Precond: none

 * @Postcond: none

 * @Errcond: none

 *

 */

 MCCM_SessionIdList getSessioIds();

 /* @Method: get_basicCm_IRP_version

 * Get the version of the interface and all supported resource

 * model versions.

 * @Return: all supported versions.

 */

 CommonIRPConstDefs::VersionNumberSet get_basicCm_IRP_version();

};

#endif

10 Annex C: Itf-N CORBA IDL: BulkCmNotifications

// @Module:
 MobileCommonConfiguarionManagement

// @Interface:
 N-Interface MCCM

// @Source file: mccm_BulkCmNotifications_idl.idl

/***

 *

 * Workfile:
 mccm_BulkCmNotificatios_idl.id

 * Revision: 2.0

 * State:
 draft

 *

 * PURPOSE: IDL definitions of the BulkCm IRPManager interface

 *

 *

 * AUTHORS: MCCM/Catalyst project group

 *

 * NOTES: draft product defintion

 *

 ***/

/*

 * HISTORY OF CHANGES

;

; Rev 2.0 22 March 2001 Gerd Schoenwolf, Siemens AG

; update: for 3GPP input and product definition

;

***/

// MobileCommonConfigurationManagement

#ifndef MCCM_BULK_CM_NOTIFICATIONS_IDL

#define MCCM_BULK_CM_NOTIFICATIONS_IDL

#include <mccm_BulkCmCommonTypes_idl.idl>

/* @Class: MCCM_BulkCm_Notications

 * this class defines the notification interface of the IRPManager.

 * The control of a configuration session from IRPManager is based on the

 * session state notifications.

 */

interface MCCM_BulkCm_Notications {

 // @Type: LogState

 // defines the different states during the upload of a log file

 enum LogState { GET_LOG_COMPLETED,

 GET_LOG_FAILED

 };

 /* @Method: notify_SessionStateChanged

 * It informs the IRPManager about the session state changes of

 * a configuration session.

 * @Precond: none

 * @Postcond: changes into transmission states are not send.

 *

 * @Param: session_id

 *
 identifies the configuration session

 * @Param: session_event

 * state of the configuration

 * @Param: error_information

 *
 additional error information used when a task has failed.

 */

 void notify_SessionStateChanged (

 in MCCM_SessionId session_id,

 in MCCM_SessionState session_event,

 in MCCM_ErrorInformation error_information);

 /* @Method: notify_LogState

 * It informs the IRPManager that the log file had been written to the

 * ftp area

 *

 * @Precond: none

 * @Postcond: state MCCM_Get_LOG_COMPLETED or MCCM_GET_LOG_FAILED

 *

 * @Param: session_id

 *
 the Log informnation belonging to the configuration session

 * @Param: log_event

 * state of the written log file

 * @Param: error_information

 *
 additional error information on log file.

 */

 void notify_LogState (in MCCM_SessionId session_id,

 in LogState log_event,

 in MCCM_ErrorInformation error_information);

};

#endif

11 Annex D: Itf-N State Machine

11.1
11.2

11.3 State Machine Requirements

For the design of the state machine the following requirements are defined:

· Each configuration session is controlled by one state machine. The session is identified via a sessionId. If a session is a started an instance of the state machine is created. If the session is finished the instance of the state machine is deleted.

· The control of a configuration session which is running without problems can be done from IRPManager completely with the notification event mechanism of the IRPAgent.

· Errors which are not notified can be handled via state_request call. The IRPManager does not need any history information on the state machine.

· There is only one download configuration file for a session at a time.

· Multi configuration session must be supported by the IRPAgent. E.g. it must be possible to start an upload session in parallel to an activated session which is not yet finished.

· The IRPAgent has to resolve concurrency problems in a "first come - first serve" strategy. E.g. an upload and a activation progressed on the same configuration data can not be performed at the same time. In this case the first triggered will be supported and the second one deferred.

· It must be possible to abort a configuration session within a transition state.

· The operator decides on the need of a fallback position which describes the configuration which had been valid before an activation of the new configuration data had been triggered. The fallback is saved only once before the first activation is started. It is only available during a configuration session.
· The log file can be requested at any state. The uploaded log file contains information which are specific to the configuration session.
11.4 The State Machine

From IRPManager a configuration session is controlled with the events which are notified with the notification interface. The transition state, s. IN_PROGRESS, must not be notified to the IRPManager because its control flow should know it anyway.

If the IRPManager assumes that it lost the control of a configuration session then it can request the actual state via state_request call. In must not need to know anything about the history of the state machine history because the requested state describes the actual situation.
Such a loss of control can happen because of the following reasons:

I) state change notifications are not coming within time, e.g. IRPAgent is blocking in
 a IN_PROGRESS state.

II) IRPManager gets disconnected to IRPAgent, e.g. notification not received.

The notification events are a consistent subset of the state machine (without transition state). The actual configuration state can be requested via state_request. Because of this common behaviour it is reasonable to define one interface type for the state machine handling which is used in the notification and in the state_request interface operation.
The figure describes the state machine of a configuration session in different substate machines.
Within the description of the substate machines it is becoming clear that they have the following state symmetries.

· the state of the UPLOAD_PHASE and the DOWNLOAD_PHASE are the same

· the state of the ACTIVATION_PHASE and the FALLBACK_PHASE are the same

The start_session creates a state machine. The end_session deletes a state machine which is not in a transition state.

Figure 1: State Machine

The following figures describe the substate machine of a configuration session. The blue outlined state represent the transmission state. The blue arrows represent state changes which are performed automatically by IRPAgent. These state changes can only be triggered at the interface via an abort call.

The initial state of the configuration session is COMPLETED in the IDLE_PHASE.

Figure 2: Substate Machine – IDLE_PHASE

When the upload is triggered the IRPAgent writes the requested configuration data in a XML file and copies it to the given ftp session. If the process succeeds the state COMPLETED is indicated.
If the upload fails a retry can be triggered in state FAILED. Once a configuration is specialised to upload behaviour none of the other phases can be triggered within this session.

Figure 3: Substate Machine – UPLOAD_PHASE

When the download is triggered the IRPAgent copies the configuration data file from a given ftp area. The XML file is checked against its schema and parsed. and copies it to the given ftp session. If the process succeeds the state COMPLETED is indicated. If the download fails a retry can be triggered in state FAILED. Once a configuration is specialised to download/activation behaviour then an upload phase can not be triggered within this session.

Figure 4: Substate Machine – DOWNLOAD_PHASE

After a download had been COMPLETED the configuration can be activated into the real subnetwork of a IRPAgent. If the process fully succeeds the activation is completed. In case that not all configuration data were successfully changed the state Partly_REALISED is indicated. This state is not a error condition because the activation of configuration changes follows a best effort strategy. If the activation fails completely the state FAILED is indicated. A retry of activate can be performed in the state PARTLY_REALISED and FAILED.

Figure 5: Substate Machine – ACTIVATION_PHASE

If an activation succeeded and a fallback position has been saved then a activate_fallback can be triggered. If the process of a fallback fully succeeds then the related subnetwork is set back to its former configuration. In case that not all configuration data were successfully changed the state Partly_REALISED is indicated. This state is not a error condition because even the fallback to the former configuration follows a best effort strategy. If the fallback fails completely the state FAILED is indicated. A retry of activate_fallback can be performed in the state PARTLY_REALISED and FAILED.
Figure 6: Substate Machine – FALLBACK_PHASE

11.5 Functional Interface

Within the IDL files the functional interface is completely described. The dependencies to the state machine are pointed out in the defined pre-, post- and error conditions. The IDL files are found in annexes A, B and C.
11.6 Scenarios

11.7 Scenario: subscribe/unsubscribe

Once the IRPManager registers at the IRPAgent with subscribe it gets all sessionState_notification.

This function call should be done before the first configuration session is started in order to receive sessionState_notification during a session.

11.8 Scenario: Straight Forward Upload

This scenario shows a upload configuration session which is running without problems.

A session is started. The IRPManager (MCCM Tool) requests the upload of specific configuration data. The IRPAgent (NEM) copies the generated XML file into the given ftp area and notifies that the UPLOAD_PHASE is COMPLETED. The session is finished.

11.9 Scenario: Straight Forward Download and Activation

This scenario shows a download/activation configuration session which is running without problems.

A session is started. The IRPManager provides new configuration data in form of XML file. The download call triggers the IRPAgent to copy this file from the given ftp area, to check it against the schema and to parse it. If this process succeeds the DOWNLOAD_PHASE is COMPLETED. The activate call triggers the IRPAgent to activate the configuration changes into the real network. If this process succeeds the ACTIVATION_PHASE is COMPLETED. The session is finished.

11.10 Scenario: Activation with notified Error Handling

This scenario shows a download/activation configuration session that has been started but the activation itself is causing problems.

The configuration session in DOWNLOAD_PHASE is COMPLETED. The first activation fails, e.g. a concurrent session is uploading, an exception is raised. The following retry does not succeed because e.g. the communication link to the related IRPAgents is not established. In such a case none configuration data can be changed and the ACTIVATION_PHASE has been FAILED. Assuming one of the related IRPAgent’s communication link is working again then a second retry indicates that the ACTIVATION_PHASE had been PARTLY_REALISED. If this satisfies the need of the operator then the session is finished.

11.11 Scenario: Fallback with notified Error Handling

This scenario shows an already activated configuration session which is reset with the fallback position but the fallback itself is causing problems.

The configuration session in ACTIVATION_PHASE is COMPLETED or PARTLY_REALISED.

The first fallback call fails, e.g. a concurrent session is uploading, an exception is raised. The following retry does not reset any configuration changes therefore the FALLBACK_PHASE has been FAILED. Assuming the problem can be partly fixed a second retry indicates that the FALLBACK_PHASE is PARTLY_REALISED. If this satisfies the need of the operator then the session is finished.

11.12 Scenario: Upload with Error Handling

This scenario shows a upload configuration session which does not work.

A session is started. The IRPManager requests the upload of specific configuration but it does not get the notification the UPLOAD_PHASE is COMPLETED within a required time span. It requests the state and detects a blocking situation because the IRPAgent is still in IN_PROGRESS. In this case the session must be aborted therefore the UPLOAD_PHASE is FAILED. Then a retry of the upload is started which fails at the IRPAgent’s side. The problem can not be fixed and the session is ended.

11.13 Scenario: Download with Error handling

This scenario shows a download configuration session which does not work.

A session is started. The IRPManager indicates that a configuration data file has been provided. The IRPAgent copies the XML file from the given ftp area and processes the parsing. The IRPManager does not get the notification the DOWNLOAD_PHASE is COMPLETED within a required time span. It requests the state and detects a blocking situation because the IRPAgent is still in IN_PROGRESS. In this case the session must be aborted therefore the DOWNLOAD_PHASE is FAILED. Then a retry of the download is started which fails at the IRPAgent’s side e.g. invalid schema. The problem can not be fixed and the session is ended.

11.14 Scenario: Activation with Error handling

This scenario shows a download/activation configuration session in which the activation is causing problems. The configuration session in DOWNLOAD_PHASE is COMPLETED. The first activation is triggered. The IRPManager does not get a state change a required time span. It requests the state and detects a blocking situation because the IRPAgent is still in IN_PROGRESS. In this case the session must be aborted most probably the ACTIVATION_PHASE has been PARTLY_REALISED. The operator accepts the only partly realised configuration and ends the session.

11.15 Scenario: Get_Log

The get_log can be called at any state of a configuration session. After end_session the log information in not anymore available. The notification is sent to all subscribed IRPAgents. When the session is finished the related log and error information at the IRPAgent is also deleted.

MCCM

toolIRPManager

 get_error_logendSession()

 status_requestgetLog()

 activate_fallbackstartSession()

 subcribegetSessionStatus()

use

implement

implement

use

NEMIRPAgent

CCM Solution Set

<<Interface>>

 notification()

 get_error_logetSessionIdsg()

NEs

 get_error_loget_basicCm_IRP_versiong()

 get_error_losubscribeg()

- Operations

- File

 get_error_logabortSessionOperation()

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

 end_sessionfallbackactivate_fallback()

ActorMCCM_BulkCmNotifications

<<Interface>>

 get_error_logunsubscribe()

 activate()

 download()

 upload()

SystemMCCM_BulkCmOperations

 end_sessionactivate_fallback()notify_SessionStateChanged()

 end_sessionactivate_fallback()notify_LogState()

� EMBED Visio.Drawing.6 ���

CCM Information Model

Itf-N

IRPManagerActor

(e.g. MCCM tool)

SystemIRPAgent

 NEM

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the lastest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. Work item acronyms are listed in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report 21.900 "3GPP working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. essential correction).

�PAGE \# "'Page: '#'�'" �� Enter each the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

23.03.2001
mccm_infoServices.doc
page 1of 1
CR Page 38

_1045557437.doc
[image: image1.wmf]Activate

�

Activate Complete

Activate Partly Failed

Or Activate Completely Failed

Activate

Download Complete

Downloading Failed

Upload

Download

Upload Complete

Uploading Failed

ACTIVATE

FAILED

ACTIVATING

DOWNLOADED

UPLOADING

DOWNLOADING

 IDLE

_1045908578.vsd

_1046506007.vsd

_1046506222.vsd

_1045911001.vsd

_1045827152.vsd

_1045827992.vsd

_1045849155.vsd

_1045850539.vsd

_1045827880.vsd

_1045819671.vsd

_1045825740.vsd

_1045813657.vsd

_1045818774.vsd

_1045813294.vsd

_1044432832.doc

download()

end_session()

IDLE

subscribe()

status _request()

IDLE

Downloaded

IDLE

Uploading

notification (UPLOAD_COMPLETED)

IDLE

upload()

notification (ACTIVATION_COMPLETED)

Activating

activate()

MCCM

NEM

notification (DOWNLOAD_COMPLETED)

Downloading

end_session()

subscribe()

NEM

MCCM

_1045035999.vsd

_1023195898.doc

Namespace (containment hierarhy)

MO

Association

MIB

_1025092048.doc

Examine Error Log and take necessary action

Status Request

Activate Failed

Downloaded

Notification (Activate Failed)

Activating

Activate

GetErrorLog

Failure occurs in the activation process

Notification (DL complete)

Notification (Errorlog uploaded)

NEM

CCM

