- 4 -

UIT - Secteur de la normalisation des télécommunications

ITU - Telecommunication Standardization Sector

UIT - Sector de Normalización de las Telecomunicaciones

Study Period 2001-2004

[image: image11.wmf]currentData

supspectIntervalFlagGet()

supspectIntervalFlagSetDefault()

elaspedTimeGet()

historyRetensionGet()

historyRetensionSet()

getMostRecent()

getBetween()

<<Managed Object>>

managedObject

getName()

objectClassGet()

objectKindGet()

packageGet()

creationSourceGet()

deletePolicyGet()

<<Managed Object>>

historyDataScanner

fgInitiate()

fgAbort()

supportedFileFormatsGet()

autoGeneratedFileFormatGet()

autoGeneratedFileFormatSet()

autoGeneratedCurDataListGet()

autoGeneratedCurDataListSet()

<<Managed Object>>

attributeValueChangEvent

avc()

<<NotifyDispatch>>

stateChangeEvent

statechange()

<<NotifyDispatch>>

createDeleteEvent

objectCreate()

objectDelete()

<<NotifyDispatch>>

periodSync

periodSynchronizationTimeGet() : GeneralizedTime

periodSynchronizationTimeSet(pst : GenerializedTime) : void

<<Package>>

attributeValueChangNotification

<<Package>>

+gradulality | periodSynchTime 

Change

<<send >>

stateChangeNotification

<<Package>>

<<send >>

objectCreateDelete

<<Package>>

<<send >>

scanner

granularityPeriodGet() : TimePeriod

granularityPeriodSet(tp : TimePeriod) : TimePeriod

operationalStateGet() : OperationalStateType

administrativeStateGet() : AdministrativeStateType

administrativeStateSet(adms : AdminisrativeStateType) : void

<<Managed Object>>

0..1

0..1

{if sychronizing 

granduality

to a starting time 

is supported}

0..1

0..1

{if supported}

0..1

0..1

{if supported}

0..1

0..1

{if supported}

  4
[image: image2.wmf]ï

þ

ï

ý

ü

ón tardía

Contribuci

on

Contributi

 

Delayed

on tardive

Contributi

  D.4

Geneva, 15 – 19 January 2001


[image: image3.wmf]ï

þ

ï

ý

ü

en

 

solamente

 

disponible

 

Texto

in

only 

 

available

Text 

en

seulement 

 

disponible

 

Texte

  E
Question(s):
Q17/4, 12/4,  13/4, 18/4, 19/4


(Q14/4, 15/4, 18/4, 19/4, 20/4 old numbers)
SOURCE*:
United States of America
TITLE:
CORBA PM Model
___________________

This document defines an information model to be used in telecommunications performance management (PM) based on CORBA.  It defines in Interface Definition Language (IDL) a set of interfaces, notifications, and constants. The intent of this document is to define a CORBA/IDL model similar to that defined in ITU Recommendations X.739 and Q.822 using CMISE. This document is compliant with proposed CORBA modeling standards Recommendation X.780 and Recommendation M.3120.

___________________

Table Of Contents

4Table of Figures

Introduction
5
References
6
Terms and Definitions
7
1.
Acronyms
7
Overview of the PM Information Model
8
Requirements
8
Functional Requirements
8
Modeling Requirements
9
Information Model
9
Scope
9
UML Model
11
Naming Tree
14
Information Model Description
14
Scanner
14
CurrentData
15
ZeroSuppCurrentData
17
HistoryData
17
ThresholdData
18
HistoryDataScanner
19
Documentation Convention of the Model
22
6.
PM Information Model IDL
24
Imports
24
Forward Declarations
24
Structures and Typedefs
26
Exceptions
29
Exceptions for Conditional Package
29
Exceptions for Performance Management
29
Interfaces
30
Scanner
30
CurrentData
32
ZeroSuppCurrentData
35
HistoryData (ValueType)
36
ThresholdData
38
HistoryDataScanner
40
Notifications
41
Name Binding
42
ThresholdData
42
7.
Open Issues
43



Table of Figures

8Figure 1. Use Cases for Performance Measurement

Figure 2. Class Diagram for CurrentData, HistoryData, and ThresholdData
11
Figure 3. Scanner
12
Figure 4. History Data Scanner
13
Figure 5. Naming Tree
14


Introduction

This document defines an information model to be used in telecommunications performance management (PM) based on CORBA.  It defines in Interface Definition Language (IDL) a set of interfaces, notifications, and constants. The intent of this document is to define a CORBA/IDL model similar to that defined in ITU Recommendations X.739 and Q.822 using CMISE. This document is compliant with proposed CORBA modeling standards Recommendation X.780 and Recommendation M.3120.
This document has the following sections:

Section 1.
Introduction

Section 2.
References

Section 3.
Terms and Definitions

Section 4.
Acronyms

Section 5.
Overview of the PM Information Model 

Section 6.
PM Information Model IDL

Section 7.
Open Issues

References

This section contains references for documents on which this specification draws.

[1] The Object Management Group (OMG), "The Common Object Request Broker: Architecture and Specification", OMG Document formal/99-10-07, Revision 2.3.1, October 1999.

[2] The Object Management Group (OMG), "CORBA Services: Common Object Services Specification", Updated version, December 1998.

[3] The Object Management Group (OMG), "Notification Service", OMG TC Document telecom/98-11-01, November 3, 1998.

[4] ITU-T Draft Recommendation, Q.816, "CORBA-Based TMN Services".

[5] ITU-T Draft Recommendation, X.780, "TMN Guidelines for Defining CORBA Managed Objects".

[6] ITU-T Recommendation, X.739 (1993), "Information technology – Open Systems Interconnection – Systems management: Metric objects and attributes".

[7] ITU-T Recommendation, X.738 (1993), "Information technology – Open Systems Interconnection – Systems management: Summarization function.".
[8] ITU-T Recommendation Q.822, (1994), "Stage 1, Stage 2 and Stage 3 description for the Q3 interface – Performance management".

[9] ITU-T Recommendation, X.792 (1999), "Configuration audit support function for ITU-T applications".
[10] T1M1.5/2000-029, "Framework for CORBA-based Telecommunications Management Network Interfaces".

[11] T1M1.5/2000-030, "CORBA Generic Network and NE Level Information Model".

[12] T1M1.5/2000-217, "Proposal for New Addendum to Recommendation Q.821".

Terms and Definitions

This document use the terms and definitions defined in X.739, Q.822, T1M1.5/2000-029, and T1M1.5/2000-030.

1. Acronyms

The following terms and acronyms are defined in X.739 or Q.822 and used in this document.

NE

Network Element

PM

Performance Management

QOS

Quality of Service

TMN

Telecommunications Management Network

Overview of the PM Information Model 

Requirements 

Functional Requirements

Performance Measurement is used in two ways in TMN.  One way is in the measure of the performance of transport and protocol entities.  In this use the measurements are subjected to thresholding and are collected for engineering and service history on a time scale that is not real time critical.  This is the use supported by the use of Q.822 and technology specific standards directly based on it.  The other use of performance measurement is in support of network traffic management.  In this application the measurements are not subjected to thresholding but are collected periodically on a time scale that is needed to support the application of network management controls.  The typical time scale for this collection has historically been 5 minutes.  This is the use supported by Q.823.  Q.823 reuses the mechanisms of Q.822 together with the generic simple scanner of X.738 to produce a single scan report that summarized the previous granularity period and is reported to a network management OS.  These two uses of performance measurement are summarized in the Use Cases shown in Figure 1.

[image: image1.wmf]ï

þ

ï

ý

ü

Estudio

 

de

Comisión 

Group

Study 

études

d'

 

Commission


Figure 1. Use Cases for Performance Measurement
In summary, the TMN Management functions for performance management include data collection, data storage, thresholding, and data reporting. 

Performance data collection refers to the ability for a NE to collect the various PM data relating to a single monitored entity in that NE. This function allows a TMN manager to assign PM data collection intervalxe "Assign PM data collection interval", to suspend/resume PM data collection processxe "Suspend/Resume PM data collection", and to reset the performance monitoring counters.

PM data storage refers to the capability for a NE to store historical PM data on each monitored entity for prescribed time duration. This function allows a TMN manager to establish a duration during which to maintain a specific record of PM historical data, to optionally screen historical data based on some criteria (e.g., suppress "all-zero" data), and to remove historical PM data at the end of time interval.xe "Assign PM history duration"
PM thresholding refers to the ability for a NE to inform a TMN manager of any threshold crossing. It also provides the TMN manager with the means for establishing thresholding criteria.

PM data reporting refers to the capability for a NE to report PM data on a scheduled basis, or as a result of a spontaneous request from the TMN manager. A report may contain data from a given monitored entity, or it can contain summarized data from a set of monitored entities. This function allows a TMN manager to request PM data, to allows/inhibits the emission of scheduled reports in the NE, and to screen the PM data reports on some criteria (e.g., suppress "all-zero" data).

Modeling Requirements

This document follows the information modeling guidelines defined in T1M1.5/2000-029. In addition, this document tries to keep the model practical, simple and make sense to the users and products. 

Information Model 

Scope

To support the functional requirements the performance management model needs currentData to collect performance measurements, historyData to store the collected measurements, thresholdData to specify the thresholds, and some specific scanner to report history data. Since currentData is inherited from Scanner, the model also needs Scanner. 

However, based on the modeling guidelines and the needs from existing and current PM applications, not all the capabilities defined for these managed objects in X.739 and Q.822 are necessary at this point in time. As a result, some of the optional packages are not included in this model. In the future, if the need for a capability arises, the relevant package(s) will be reconsidered for inclusion. 

For most managed objects identified above, their IDL model can be derived from a translation of the X.739 and Q.822 GDMO.  For historyData, however, direct translation may result in potentially large number of managed objects.  These entities are read only data stores of historical data and do not need to be CORBA interfaces.  Instead it is proposed that they are to be defined as CORBA valuetypes.  The Q.822 translation will define a base valuetype for historyData.  These valuetype history data will be accessible through methods on the currentData interface.  When current data is subclass it is intended that a history data valuetype be subclassed along with it.

Since the data that needs to be stored is not in CORBA interfaces but in history data valuetypes, to report history data, simply translating the GDMO homogeneous and simple scanners will not work. Instead, a new kind of scanner is needed - one that collects data from the history data valuetypes.  This model is attempting to keep the interfaces strongly typed whenever possible. This is because the collection of traffic data is computationally intensive since large amount of data must be collected and processed by the network manager in a short period of time. 
For this purpose, HistoryDataScanner is designed to retrieve history data saved under the relevant currentData objects. Two kinds of operations are necessary for a managing system to retrieve data - notification and file transfer.

Notification is used when a traffic control is issued and the managing system needs to know the effectiveness of the control. In this situation, the amount of monitoring data is small but the feedback needs to be quick, which makes the notification a good choice. For now, notification is still a placeholder, the detailed definition will be provided in the further version of the document.

File transfer mechanism is used for retrieving large amount of data since other techniques are likely to be both slower and to consume more computing and communication resources. The recommend supports the ability to control the generation of the file, the selection of the format of the file, and the notification of the user of when the file is produced, along with such information as is needed to obtain the file. However, specific file transfer mechanism and file administration are outside the scope of the document.

The resulting model described in UML is shown in the next section.

UML Model

[image: image7.wmf]Report PM Data

Administer PM

Performance 

Manager

Periodic Report Traffic

Administer Traffic Report

Monitor Performance

qos threshold crossed

Report traffic

Traffic Manager

traffic report

qos threshold crossed

request traffic report

This section illustrates the UML model for performance management. The model covers Scanner, CurrentData, HistoryData, ThresholdData, and HistoryDataScanner. Since the model can not be fit into one page, it is displayed in the next three figures.

Figure 2. Class Diagram for CurrentData, HistoryData, and ThresholdData
  
[image: image8.wmf]currentData

<<Managed Object>>

"monitoredObject"

<<Managed Object>>

thresholdData

<<Managed Object>>

managedElement

<<Managed Object>>

<<contained by>>

<<contained by>>

<<contained by>>

or

Figure 3. Scanner

[image: image9.wmf]managedObject

getName() : NameType

objectClassGet() : ObjectClassType

objectKindGet() : ObjectClassType

packageGet() : IstringSetType

creationSourceGet() : SourceIndicatorType

deletePolicyGet() : DeletePolicyType

<<Managed Object>>

HistoryValueType

peroidEndTime : GeneralizedTimeType

grandularityPeriod : TImePeriodType

supspectIntervalFlag : boolean

numsupressedIntervals : numSupressedIntevalsType

<<Value Type>>

zeroSuppCurrentData

numSuppressedIntervalsGet() : numSuppressedIntervalsTyp

maxSuppressedIntervalsGet() : maxSuppressedIntervalsType

maxSuppressedIntervalsSet(maxinterval : MaxSuppressedIntervalsType) : void

<<Managed Object>>

thresholdData

counterThresholdListGet() : CounterThresholdSetType

counterThresholdListSet(cthset : CounterThresholdSetType) : void

counterTresholdListAdd(cthst : CounterThresholdSetType) : void

counterThresholdListRemove(ctnst : CounterThresholdSetType) : void

gaugeThresholdListGet() : GaugeThresholdSetType

gaugeThresholdListSet(gthset : GaugeThresholdSetType) : void

gaugeTresholdListAdd(gthst : GaugeThresholdSetType) : void

gaugeThresholdListRemove(gtnst : GaugeThresholdSetType) : void

<<Managed Object>>

thresholdCrossingEvent

qosAlarm()

<<NotifyDispatch>>

thresholdPackage

<<Package>>

1..n

1..n

+Control

thresholdDat

aInstance

+threshold crossed

<<send >>

currentData

supspectIntervalFlagGet() : boolean

supspectIntervalFlagSetDefault() : void

elaspedTimeGet() : TimeIntervalType

historyRetensionGet() : Integer

historyRetensionSet(n : Integer) : void

getMostRecent(hd : out HistoryValueType) : boolean

getBetween(sTime : GeneralizedTimeType, eTime : GeneralizedTimeType, howMany : Integer, Iterator : out HistoryDataIterator) : HistoryValueSeqType

<<Managed Object>>

0..1

0..1

{if 

thresholding 

is supported}

scanner

granularityPeriodGet() : TimePeriod

granularityPeriodSet(tp : TimePeriod) : TimePeriod

operationalStateGet() : OperationalStateType

administrativeStateGet() : AdministrativeStateType

administrativeStateSet(adms : AdminisrativeStateType) : void

<<Managed Object>>

0 .. historyRetension

 
Figure 4. History Data Scanner

Naming Tree

This section illustrates the containment relationship of the CORBA interfaces defined in this document.

[image: image10.wmf]Open Issue:  

How is the scan 

report encoded?  

Should we rather 

have an iterator 

method that is  

strongly typed?  

What happens to 

Notification 

service if this 

report is very 

large?

hdSelection

cdInterface : CurrentData

beginRelativeEndTime : TimeOffSet

endRelativeEndTime : TimeOffSet

<<Structure>>

hdSelectionSetType

<<typedef>>

0..n

0..n

<<sequence>>

scanner

granularityPeriodGet()

granularityPeriodSet()

operationalStateGet()

administrativeStateGet()

administrativeStateSet()

<<Managed Object>>

FgInitRspType

started

invokeAgain

resourceLimit

notStartedOther

<<Enum>>

FgAbortType

aborted

couldNotAborted

<<Enum>>

scanReportEvent

scanReport()

<<NotifyDispatch>>

fgReortEvent

fgReport()

<<NotifyDispatch>>

historyDataScanner

fgInitiate(hdslct : hdSelectionSetType, fformat : FileFormatType) : FgInitRspType

fgAbort() : FgAbortType

supportedFileFormatsGet() : FileFormatSetType

autoGeneratedFileFormatGet() : FileFormatType

autoGeneratedFileFormatSet(fformat : FileFormatType) : void

autoGeneratedCurDataListGet() : MOSetType

autoGeneratedCurDataListSet(curdatalist : MOSetType) : void

<<Managed Object>>

+grandularity 

interval

<<send >>

+when hd file 

is ready

<<send >>

FgReportType

result : FgResultType

fileName : String

source : SourceType

<<Structure>>

FgResultType

succeeded

terminatedNoFileSpace

terminatedExternally

terminatedInternally

<<Enum>>

SourceType

autoGenerated

action

<<Enum>>

FileFormatSetType

<<typedef>>

FileFormatType

q822rFileFormat

<<Enum>>

1..n

<<sequence>>

1..n


Figure 5. Naming Tree

Information Model Description 

Scanner

A managed object of this interface represents the ability to retrieve values of attributes of managed objects and produce summary information from those values. This summary information may be made available in attributes, notifications, action replies, or some combination of these. Summary information may consist of observed attribute values or statistics calculated from these values (either over time or over managed objects). 

Observed attribute values are retrieved during a "scan", which is initiated periodically, at the end of each granularity period, provided that the granularity period is non‑zero.

The granularity period attribute indicates the length of the granularity period. The granularity period in the scanner object shall not be modified unless the value of the administrative state is 'locked'. If the period synchronization package is not present, the time at which a granularity period starts after the scanner is unlocked is a local matter.

The administrative state attribute is used to suspend or resume the scanning function. If administrative state has the value 'unlocked', the scanner is administratively permitted to perform scans. If administrative state has the value 'locked', the scanner is administratively prohibited from performing scans.

The operational state attribute represents the operational capability of the scanner to perform its functions.

If the attribute value change notification package is present, then changes to the granularity period shall cause attribute value change notifications to be emitted. If the state change notification package is present then changes to the operational state or administrative state shall cause state change notifications to be emitted. If the object create/delete notification package is present, then the creation or deletion of an object of scanner's subclass shall emit the corresponding create or delete notification.

The Scanner interface is not instantiable.

The following attributes are defined in the entity:

· administrativeState - is used to activate and deactivate (administratively suspend and resume) the function performed by the scanner.

· granularityPeriod - specifies the length of time during which the "scan" is performed.

· operationalState - identifies whether or not the scanning function represented by this object is capable of performing its normal functions.

· periodSynchronizationTime [optional] - contains the time to which a repeating time period is synchronized. The start of each time period is an integral number of periods before or after the time specified by this attribute.

CurrentData

The currentData object class, a particular type of scanner, is a class of managed support objects that record the current performance data for monitoring purpose. The performance data (measurements) of monitored resources are modeled as attributes in the definition of subclasses of currentData since currentData can't be instantiated. The objects that represent monitored resources contain the corresponding currentData objects in the name binding relationship. 

The measurements are collected for a time interval (e.g., 5 min.) specified by granularityTime attribute. At the end of each interval, the elapsedTime attribute will be updated to the difference between the current time and the start of the present monitoring interval. The measurements, granularityTime, and suspectIntervalFlag are copied into a corresponding history data structure. Further more, the periodEndTime of the history data structure is assigned to the current time. 

If historyRetention is greater than zero, then history data structures will be retained in the managed system for at least the duration equivalent to the number of intervals specified in the historyRetention attribute. During that time, history data can be accessed via a set of operations:

· getMostRecent - will retrieve the most recent history data

· getBetween - will retrieve a set of history data within a time window specified by start and end time points

If threshold package is present, the currentData object contains a pointer to a thresholdData object. If any of the thresholds (defined in the referenced thresholdData object) are violated a Quality of Service (QOS) alarm notification is emitted by the currentData object. The thresholdInfo field of the alarm shall contain all the measurement attributes. If additional threshold crossing(s) occur during the current time interval then additional alarms shall be emitted as well.

New thresholds resulting from modifying the thresholdDataInstance attribute or from changing a threshold value in the referenced thresholdData object, should take effect immediately. If an alarm condition exists previous to the occurrence of a threshold value change (i.e. an old threshold had been violated), and the new threshold value is outside of the range of the old threshold value (e.g., in the case of an increasing counter, the new threshold value is greater than the old threshold value), and the current value of the measurement is within the allowable range of the new threshold value, then a QOS Alarm notification is emitted with a severity of 'clear'. If the new threshold value is set within the range of the old threshold value, such that the new threshold is violated, a QOS Alarm notification is emitted if an alarm condition is not already outstanding.
The thresholdDataInstance attribute contains a set of pointers to thresholdData objects, therefore, more than one QOS Alarm notifications might be emitted for a single monitored attribute. And it is possible the notifications might be conflict. For example, one notification indicates alarm is on, the other cleared. It is the managing systems' responsibility to maintain the notification consistency. 

The following attributes are defined in the entity:

· suspectIntervalFlag - is used to indicate that the performance data for the current period may not be reliable. Some reasons for this to occur are:

· Suspect data were detected by the actual resource doing data collection. 

· Transition of the administrativeState attribute to/from the 'lock' state. 

· Transition of the operationalState to/from the 'disabled' state. 

· The performance counters were reset during the interval.

· The currentData (or subclass) object instance was created during the monitoring period.

· elapsedTime - represents the difference between the current time and the start of the present monitoring interval.

· historyRetention - specifies the minimum number of intervals that the history data structure (just being created) must be preserved.

· thresholdDataInstance - is a "list" attribute in which each item is a pointer to a thresholdData object that contains threshold limits for performance parameters. Whenever the value of a PM parameter violates its threshold setting, a qualityOfServiceAlarm notification is emitted. 
· 
· 
ZeroSuppCurrentData
ZeroSuppCurrentData is a CurrentData with zero suppression. Zero suppression is that when the measurements are all zeros no history data structures will be created.  
The following attributes are defined in the entity:

· numSuppressedIntervals  - is used to count the number of consecutive intervals for which suppression (i.e. non-creation of a history data structure) has occurred. This attribute reflects performance measurements up to, but not including, the current interval. This attribute gets incremented at the end of an interval if suppression has occurred. Otherwise, the attribute is reset. Or it reaches maxSuppressedIntervals, a history data record will be created and itself will be reset.

· maxSuppressedIntervals - limits the maximum number of suppressed intervals that will be collected without creating a structure of the history data.
HistoryData

HistoryData valuetype will contain a copy of the performance measurements and other selected attributes that are present in a current data object at the end of the current interval (e.g., 5 min.). A new record of this valuetype structure is created at the end of each interval if historyRetention attribute in the current data object is greater than zero and this record will be retained in the NE for at least the duration equivalent to the number of intervals specified in the historyRetention attribute.

This generic valuetype models the history data. Specific current data objects (e.g., SDH/SONET current data objects) will be defined with specific history valuetypes, which are inherited from this generic history valuetype.

The following attributes are defined in the entity:

· periodEndTime - indicates the time at the end of the interval.
· granularityPeriod - is used to copy the same attribute from the currentData object.

· suspectIntervalFlag - is used to copy the same attribute from the currentData object.

· numSupressedIntevals - indicates the number of supressed intervals has occurred before this historyData. It has default value 0. When copying from currentData object, the default value is used. When copying from zeroSuppCurrentData object, the corresponding attribute value is used. 
ThresholdData

The thresholdData object class is a class of managed support objects that contains the values of the threshold settings for the PM parameters. At least one of the counterThresholdListPackage or the gaugeThresholdListPackage must be instantiated.

Thresholds are established by use of the managed object class thresholdData. The thresholdData objects specify the thresholds being applied. Threshold values in a thresholdData object may apply to multiple currentData objects and thresholdData objects are pointed to by currentData objects. The currentData, or its subclasses, object indicates the collection interval used with the threshold. A qualityOfServiceAlarm notification is generated whenever a threshold is crossed. 

A threshold may be specific to a single managed object. In this case, the thresholdData object is contained within the managed object being observed. A currentData object within the managed object points to a thresholdData object. This linkage is needed for consistency with the multiple managed object case. 

It is sometimes desirable to have a threshold apply to a group of managed objects. In this case, the thresholdData object is external to the managed object being observed. It may be contained within the managedElement object. The thresholdData object is pointed to by all the currentData objects to which it applies.

If createDeleteNotificationsPackage is present, the creation or deletion of a threshold object will cause an objectCreation or objectDeletion notification to be emitted.

If attributeValueChangeNotificationPackage is present, then any threshold change will cause an attributeValueChange notification being emitted.

The following attributes are defined in the entity:

· counterThresholdList [optional] - contains a set of threshold settings for performance attributes of the counter type (e.g., erred seconds). Each threshold setting consists of the attribute identifier, the threshold value and (optionally) the severity of the threshold-exceeded event.

· gaugeThresholdList [optional] - contains a set of threshold settings for performance attributes of the gauge type. Each threshold setting consists of the attribute identifier, the threshold value and (optionally) the severity of the threshold-exceeded event.

HistoryDataScanner


HistoryDataScanner is a subclass of Scanner. It supports scanning and reporting history data by providing the ability to control the generation of history data file, the selection of the format of the file, and the notification of user when the file is produced.

HistoryDataScanner supports two ways to generate data files - one by periodically generating files and the other by invoking a file generation action.
To periodically generate files, the managing system specifies the request through a set of attributes:

· autoGeneratedCurDataList - contains a set of current data whose history data needs to be scanned/reported to a file

· granularityPeirod - sets a time window so that the history data with their time stamps fall into the window will be reported

· autoGeneratedFileFormat - indicates which file format to use

Based on the above information, the HistoryDataScanner periodically generates data files at the end of each granularity period. And when the file is produced, a notification is emitted to the managing system.

Independent of periodic file generation, the managing system may also invoke a file generation initiate request. The managing system may select a set of history data records to be included in the file and a file format to follow. The managed system determines if the requested data file can be created and returns this information to the managing system in its file generation initiate response. The managed system then attempts to create the requested file. The results of the attempt to create the data file are reported by the managed system to the managing system in the file generation report. If the file was successfully created, the manager may retrieve the file using a file transfer protocol.
The file generation initiating action requests the initiation of the creation of a data file: 
FginitRspType fgInitiate(hdSelectionSetType hdselection 

fileFormatType fformat)

The parameter hdselection contains a set of following information:

· current data interface - indicates which current data object is considered

· begin relative time - the begin time relative to the current time together with the end relative time defining a window to select history data
· end relative time - the end time relative to the current time
The parameter fformat specifies the file format to use.

The return value is an enum type with one of the followings:

· started - indicates the file is being created by the action invocation
· invokeAgain - the managed system is in the process of creating a data file and only one file can be created at a time, so the managing system needs to invoke the action again
· resourceLimit - indicates that the data file could not be created due to a resource limit in the managed system
· notStartedOther - indicates that the data file could not be created due to some other reason
File generation aborting action is used to abort an ongoing creation of a data file.

FgAbortType fgAbort()

It does not have any parameter. It returns the result of the attempted abortion. The following results are possible:
· aborted - indicates the data file generation has been stopped

· could not aborted - indicates that the data file generation could not be stopped
File generation reporting notification is generated when the creation of the data file terminates. It is used to report the status of the termination, the name of the file if generated, and the source of the notification. The possible termination statuses are:

· succeeded
· terminatedNoFileSpace
· terminatedExternally
· terminatedInternally 
The source of the notification can be:

· autoGenerated - indicates the file is generated periodically

· action - indicates the file is created as the result of an action invocation

If the granularity period is zero, then files are generated only when action requests are received.

The data file is created based on a file format. The file format recommended in this document is defined as follows:

	Definition
	Explanation

	<HD File Format> := <Selection Criteria> <rSep> <Records>*
	The history data file format consists of selection criteria and resulting history data records. 

The selection criteria indicate what this file is for and how the records are organized. 

The number and the order of current data objects specified in the selection criteria determine the number and the order of the corresponding history data records.
There might be zero record if no current data object is specified in the selection criteria. 

	<Records> := <Interface Name> <rSep> <Record>* 
	The records are the selected history data for a given current data object.

The interface name of the current data object is listed here to indicate the data schema for the following records.

There might or might not be a data record for the object.

	<Record> := (<Value> < vSep>)+ < rSep>
	A history data record consists of measurement values. The exact number of values is determined by the corresponding history data structure. 

	<Value> := string | <Composed Value> 
	The simple values are represented by string version of their original type. The composed values, such as struct, set, and sequence, are defined below.

	<Composed Value> := <Begin> 
(<Value> < vSep>)+ <End> 
	Two marks are used to define the boundary of a struct, a set, or a sequence. 

Since a value can be nested in a composed value, a recursive definition is used here.

	<Selection Criteria> := string
	This is the string version of the in parameter (hdselection) for action ftInitiate.

	<Interface Name> := string 
	This is the string version of the interface name for the current data object.

	<rSep> := '\n'
	Record separater (also used for separating interface and selection criteria)

	<vSep> := ','
	Value separater

	<Begin> := '{'
	Beging mark

	<End> := '}'
	End mark


Note: 

*: 0 or more

+: 1 or more


Documentation Convention of the Model

The specification of the PM information model is documented in Section 5 and 6. 

Section 5 covers its requirments, scope, UML model, and the model semantics. Section 6 contains the IDL code for the imported types, forward declarations, structues and typedefs, exceptions, and interfaces. A documentation convention has been used for these sections to improve (1) readability and (2) easy implementation of the specification.

For readability purpose, the descriptive text for the model is included in both Sections 5 and 6. The text in Section 5 is for the people who want to get the idea without reading the IDL. The text (as comments in the IDL code) in Section 6 is for developers to quickly check the model semantics. In addition, subsection numbers and headings are used for the IDL codes, such as imported types, forward declarations, structures and typedefs, exceptions, and the individual interfaces. 

For the purpose of easy implementation, subsection numbers and headings of level 2 and lower are encapsulated in IDL comments. In this way, these subsection numbers and headings need not to be removed when extracting the machine processable IDL files from the document.

It should be noted that ThresholdDataFactory and HistoryDataIterator interfaces, though required, are not shown in the table of contents. They are defined in the corresponding section, ThresholdData and HistoryData respectively. 

HistoryData is represented as valuetype rather than interface in this model. However, for the ease of organizing the managed objects and the ease of retrieval, it is listed under "Interfaces" in the "Information Model IDL" section.

2. PM Information Model IDL

#ifndef _itut_q822r_idl_

#define _itut_q822r_idl_

#pragma prefix "t1.org"

#include <CosNaming.idl>

#include <itut_x780.idl>

#include <itut_q821.idl>

/**

It is expected that this document will become a delta to ITU Recommendation 

Q.822r and the pragma prefix used would be modified from t1.org to itu.int. 

This should be taken into consideration when considering future migration and  interoperability.

*/

/**

This module, itut_q822r, contains IDL definition based on objects defined in X.739 and Q.822.  The IDL definitions in this file are the object interfaces.

*/

module itut_q822r

{

/**

Imports

IMPORTS

*/

/**

Types imported from itut_x780 and itut_q821

*/

typedef itut_x780::AdministrativeStateType AdministrativeStateType;

typedef itut_x780::GeneralizedTimeType GeneralizedTimeType;

typedef itut_x780::OperationalStateType OperationalStateType;

typedef itut_x780::PerceivedSeverityType PerceivedSeverityType;

typedef itut_x780::MOSetType MOSetType;

typedef itut_x780::NameType NameType;

typedef itut_x780::Istring Istring;


typedef itut_x780::IstringSetType IstringSetType;

typedef itut_x780::NameBindingType NameBindingType;

typedef itut_q821::TimeIntervalType TimeIntervalType;

/**

Interfaces imported from itut_x780

*/


typedef itut_x780::ManagedObject ManagedObject;


typedef itut_x780::ManagedObjectFactory ManagedObjectFactory;

/**

Forward Declarations

FORWARD DECLARATIONS

*/

/**

Interface forward declarations

*/


interface Scanner;


interface CurrentData;
interface ZeroSuppCurrentData;
interface ThresholdData;

interface HistoryDataScanner;

interface HistoryDataIterator

/**

Valuetype forward declarations

*/


valuetype ScannerValueType;


valuetype CurrentDataValueType;

valuetype ZeroSuppCurrentDataValueType;

valuetype ThresholdDataValueType;

valuetype HistoryValueType;

valuetype HistoryDataScannerValueType;

/**

Structures and Typedefs

STRUCTURES AND TYPEDEFS

*/

/**

PerceivedSeverityTypeOpt is an optional type. If the discriminator is

true the value is present, otherwise the value is null.  

*/


union PerceivedSeverityTypeOpt switch (boolean) {


case TRUE:
PerceivedSeverityType
value;

};

/**

This data type defines a sequence of HistoryValueType. The order is significant.

*/

typedef sequence <HistoryValueType> HistoryValueSeqType;

/**

The following definitions are translated from X.739 ASN.1 definitions.

*/

enum TimePeriodChoiceType  

{



daysChoice,



hoursChoice,



minutesChoice,



secondsChoice,



milliSecondsChoice,



microSecondsChoice,



nanoSecondsChoice,



picoSecondsChoice


};

union TimePeriodType switch (TimePeriodChoiceType)  

{



case daysChoice

: unsigned long days;



case hoursChoice

: unsigned long hours;



case minutesChoice

: unsigned long minutes;



case secondsChoice

: unsigned long seconds;



case milliSecondsChoice
: unsigned long milliSeconds;



case microSecondsChoice
: unsigned long microSeconds;



case nanoSecondsChoice
: unsigned long nanoSeconds;



case picoSecondsChoice
: unsigned long picoSeconds;


};

/**

The SeverityIndicatingThresholdType contains the threshold level, which is to be applied to counter/gauge attribute. It shall be initialized when the managed object in which it is included is created and may be modified. An optional parameter is used to associate the threshold level to the severity parameter of the emitted notification. The generation of the notification can be switched off using the boolean parameter notifyOnOff. The severity parameter is mandatory if notifyOnOff is true.

Editor Note: A clarification is needed in X.739 section 8.1.9.4.3 on the behavior of the severity indicating gauge threshold. Currently it is unclear what value of PerceivedSeverity is sent in the threshold crossing notification PerceivedSeverity field if notify is set on but the optional PerceivedSeverity value of the threshold is not present in the severity indication gauge threshold syntax. We suggest that in this case the indeterminate value be sent unless the managed object behavior specifies a different value. The following text should be added to the end of this section: 

If a notify-high or notify-low switch is on (true) and the severity indication value is not present, then the indeterminate value is sent in the notification unless the managed object behavior specifies another value. 

*/

struct SeverityIndicatingThresholdType 

{



float



threshold;



boolean


notifyOnOff;



PerceivedSeverityTypeOpt
severityIndication;


};

struct CounterThresholdSettingType 

{



string




attributeId;



SeverityIndicatingThresholdType
severityIndicatingThreshold;

};

/**

Set type the order is insignificant.

*/

typedef sequence <CounterThresholdSettingType> 

CounterThresholdSetType;

/**

The attribute of SeverityIndicatingGaugeThresholdType has similar behaviour to the gauge-threshold attribute defined in X.721. The syntax has an added parameter for indicating the associated severity, as defined in SeverityIndicatingThresholdType, to the notification triggered by the crossing of the corresponding threshold level. As an enhancement to the syntax of the gauge-threshold attribute type it adds an optional severity indication parameter to the syntax of both the notify-high and notify-low sub-members within each threshold level member. This attribute type has additional behavior associated with these optional perceived severity indication parameters, which is defined as follows:

· If the notify-high’s switch is on (true), the notify-high’s severity indication value shall be reported in the perceived severity parameter of a notification triggered by the gauge value crossing the notify-high’s gauge-threshold value in the positive going direction. 

· If the notify-low’s switch is on (true), the notify-low’s severity indication value shall be reported in the perceived severity parameter of a notification triggered by the gauge value crossing the notify-low’s gauge-threshold value in the negative going direction. 

· If both switches are on (true) for a single threshold level, one of the severity indication values shall be "clear". The severity indicating gauge-threshold shall only emit a clear event notification if the corresponding threshold level (either notify-high or notify-low) notification has been emitted and no other clear notification for this threshold level pair has been emitted since the previous corresponding threshold level notification has been emitted.

*/


struct SeverityIndicatingGaugeThresholdType 

{



SeverityIndicatingThresholdType notifyLow;



SeverityIndicatingThresholdType notifyHigh;


};

/**

Sequence type the order is insignificant.

*/

typedef sequence <SeverityIndicatingGaugeThresholdType> 

SeverityIndicatingGaugeThresholdSetType;


struct GaugeThresholdSettingType

{



string attributeId;



SeverityIndicatingGaugeThresholdSetType

severityIndicatingGaugeThreshold;

};

/**

Set type the order is insignificant.

*/

typedef sequence <GaugeThresholdSettingType> 

GaugeThresholdAttributeSetType;


typedef TimePeriodType TimeOffsetType;


struct HdSelectionType


{



NameType 

name;



TimeOffsetType
beginRelativeEndTime;

TimeOffsetType
endRelativeEndTime;


};

/**

Set type the order is insignificant.

*/


typedef sequence <HdSelectionType> HdSelection SetType;

/**

Exceptions

EXCEPTIONS

*/

/**

Exceptions for Conditional Package

Conditional package exception

*/

exception NOperiodSynchronizationPackage {};

exception NOthresholdPackage {};



exception NOcounterThresholdListPackage {};

exception NOgaugeThresholdListPackage {};

/**

Exceptions for Performance Management

Editor Note: Placeholder for now.

*/

/**

Interfaces

INTERFACES

*/

/**

Scanner

A managed object of this interface represents the ability to retrieve values of attributes of managed objects and produce summary information from those values. This summary information may be made available in attributes, notifications, action replies, or some combination of these. Summary information may consist of observed attribute values or statistics calculated from these values (either over time or over managed objects). 

Observed attribute values are retrieved during a "scan", which is initiated periodically, at the end of each granularity period, provided that the granularity period is non‑zero.

The granularity period attribute indicates the length of the granularity period. The granularity period in the scanner object shall not be modified unless the value of the administrative state is "locked". If the period synchronization package is not present, the time at which a granularity period starts after the scanner is unlocked is a local matter.

The administrative state attribute is used to suspend or resume the scanning function. If administrative state has the value "unlocked", the scanner is administratively permitted to perform scans. If administrative state has the value "locked", the scanner is administratively prohibited from performing scans.

The operational state attribute represents the operational capability of the scanner to perform its functions.

If the attribute value change notification package is present, then changes to the granularity period shall cause attribute value change notifications to be emitted. If the state change notification package is present then changes to the operational state or administrative state shall cause state change notifications to be emitted. If the object create/delete notification package is present, then the creation or deletion of an object of scanner's subclass shall emit the corresponding create or delete notification.

The Scanner interface is not instantiable.

*/

valuetype ScannerValueType: itut_x780::ManagedObjectValueType


{

public AdministrativeStateType

administrativeState;




// GET-REPLACE

public TimePeriodType


granularityPeriod;




// GET-REPLACE

public OperationalStateType

operationalState;




// GET



public GeneralizedTimeType 

periodSynchronizationTime;




// conditional: periodSynchronizationPackage

// PRESENT IF
 configurable agent internal synchronization // of repeating time periods is required

// GET-REPLACE

}; // valuetype ScannerValueType


interface Scanner: ManagedObject


{

/**

The administrativeState attribute is used to activate and deactivate (administratively suspend and resume) the function performed by the scanner.

administrativeState is a read/write attribute supported by Get and Set access operations.

/*

AdministrativeStateType administrativeStateGet()

raises (Itut_x780::ApplicationError);



void administrativeStateSet(in AdministrativeStateType value)




raises (itut_x780::ApplicationError);

/**

The granularityPeriod attribute is of type TimePeriod that is defined in Structures and Typedefs Section. GranularityPeriod specifies the length of time during which the "scan" is performed. 

granularityPeriod is a read/write attribute supported by Get and Set access operations.

*/

TimePeriodType granularityPeriodGet()


raises (itut_x780::ApplicationError);

void  granularityPeriodSet(in TimePeriodType value)


raises (itut_x780::ApplicationError);

/**

The operationalState attribute identifies whether or not the scanning function represented by this object is capable of performing its normal functions.

The attribute operationalState is read-only supported by Get access operation.

*/

OperationalStateType operationalStateGet()


raises (itut_x780::ApplicationError);

/**

Attribute periodSynchronizationTime contains the time to which a repeating time period is synchronized. The attribute is of type GeneralizedTime. The start of each time period is an integral number of periods before or after the time specified by this attribute.

periodSynchronizationTime is a read/write attribute supported by Get and Set access operations.

*/

GeneralizedTimeType periodSynchronizationTimeGet()




raises (itut_x780::ApplicationError,





NOperiodSynchronizationPackage);



void periodSynchronizationTimeSet(in GeneralizedTimeType value)




raises (itut_x780::ApplicationError,





NOperiodSynchronizationPackage);



CONDITIONAL_NOTIFICATION




(itut_x780::Notifications, objectCreation,




createDeleteNotificationsPackage)



CONDITIONAL_NOTIFICATION




(itut_x780::Notifications, objectDeletion,




createDeleteNotificationsPackage)



CONDITIONAL_NOTIFICATION




(itut_x780::Notifications, attributeValueChange,




attributeValueChangeNotificationPackage)



CONDITIONAL_NOTIFICATION




(itut_x780::Notifications, stateChange,




stateChangeNotificationPackage)


};  // interface Scanner

/**

CurrentData

The currentData object class, a particular type of scanner, is a class of managed support objects that record the current performance data for monitoring purpose. The performance data (measurements) of monitored resources are modeled as attributes in the definition of subclasses of currentData since currentData can't be instantiated. The objects that represent monitored resources contain the corresponding currentData objects in the name binding relationship. 

The measurements are collected for a time interval (e.g., 5 min.) specified by granularityTime attribute. At the end of each interval, the elapsedTime attribute will be updated to the difference between the current time and the start of the present monitoring interval. The measurements as well as name, granularityTime, and suspectIntervalFlag are copied into a corresponding history data structure. Further more, the periodEndTime of the history data structure is assigned to the current time. 

If historyRetention is greater than zero, then history data structures will be retained in the managed system for at least the duration equivalent to the number of intervals specified in the historyRetention attribute. During that time, history data can be accessed via a set of operations:

· getMostRecent - will retrieve the most recent history data

· getBetween - will retrieve a set of history data within a time window specified by start and end time points

If threshold package is present, the currentData object contains a pointer to a thresholdData object. If any of the thresholds (defined in the referenced thresholdData object) are violated a Quality of Service (QOS) alarm notification is emitted by the currentData object. The thresholdInfo field of the alarm shall contain all the measurement attributes. If additional threshold crossing(s) occur during the current time interval then additional alarms shall be emitted as well.
New thresholds resulting from modifying the thresholdDataInstance attribute or from changing a threshold value in the referenced thresholdData object, should take effect immediately. If an alarm condition exists previous to the occurrence of a threshold value change (i.e. an old threshold had been violated), and the new threshold value is outside of the range of the old threshold value (e.g., in the case of an increasing counter, the new threshold value is greater than the old threshold value), and the current value of the measurement is within the allowable range of the new threshold value, then a QOS Alarm notification is emitted with a severity of 'clear'. If the new threshold value is set within the range of the old threshold value, such that the new threshold is violated, a QOS Alarm notification is emitted if an alarm condition is not already outstanding.

The thresholdDataInstance attribute contains a set of pointers to thresholdData objects, therefore, more than one QOS Alarm notifications might be emitted for a single monitored attribute. And it is possible the notifications might be conflict. For example, one notification indicates alarm is on, the other cleared. It is the managing systems' responsibility to maintain the notification consistency.



· 
· 



*/

valuetype CurrentDataValueType: ScannerValueType


{

public boolean


suspectIntervalFlag;




// GET REPLACE-WITH-DEFAULT



public TimeIntervalType

elapsedTime;




// GET

public short 



historyRetention;




// Mandatory now (used to be conditional)


// GET-REPLACE

public MOSetType


thresholdDataInstance;




// conditional: thresholdPackage

// PRESENT IF a Quality of Service Alarm Notification is

// to be emitted for threshold crossing


// GET-REPLACE ADD-REMOVE









}; // valuetype CurrentDataValueType

interface CurrentData: Scanner


{



/**



define default value for suspectIntervalFlag



*/



const boolean suspectIntervalFlagDefault = FALSE;

/**

The attribute suspectIntervalFlagGet is used to indicate that the performance data for the current period may not be reliable. Some reasons for this to occur are:

· Suspect data were detected by the actual resource doing data collection. 

· Transition of the administrativeState attribute to/from the 'lock' state. 

· Transition of the operationalState to/from the 'disabled' state. 

· The performance counters were reset during the interval.

· The currentData (or subclass) object instance was created during the monitoring period.

This attribute is read-only, supported by Get access operation, however it can be replaced by default, which is supported by SetDefault operation.

*/

boolean suspectIntervalFlagGet()


raises (itut_x780::ApplicationError);

void suspectIntervalFlagSetDefault()


raises (itut_x780::ApplicationError);

/**

The elapsedTime attribute represents the difference between the current time and the start of the present monitoring interval.

The attribute is read-only, supported by Get access operation.

*/



TimeIntervalType elapsedTimeGet()




raises (itut_x780::ApplicationError);

/**

The historyRetention attribute specifies the minimum number of intervals that the history data structure (just being created) must be preserved.

This attribute is read/write, supported by Get and Set access operations.

*/

short historyRetentionGet()




raises (itut_x780::ApplicationError);

void historyRetentionSet(in short value)




raises (itut_x780::ApplicationError);

/**

The thresholdDataInstance is a "list" attribute in which each item is a pointer to a thresholdData object that contains threshold limits for performance parameters. Whenever the value of a PM parameter violates its threshold setting, a qualityOfServiceAlarm notification is emitted.

This attribute is supported by Get, Set, Add, and Remove access operations.

*/

MOSetType thresholdDataInstanceGet()




raises (itut_x780::ApplicationError,



NOthresholdPackage);

void thresholdDataInstanceSet(in MOSetType value)




raises (itut_x780::ApplicationError,



NOthresholdPackage);

void thresholdDataInstanceAdd(in MOSetType value)

raises (itut_x780::ApplicationError,



NOthresholdPackage);

void thresholdDataInstanceRemove(in MOSetType value)

raises (itut_x780::ApplicationError,



NOthresholdPackage);




















/** 

Editor Note: The following operations are for the retrieval of history data.

*/

/**

This method is used to retrieve most recent history data record. The "most recent" means the most recent history data record saved, which may be several intervals before the current time because the historyRetention may be set to zero or the measurements collected are all zero.

It is possible the getMostRecent may not be able to retrieve any data back. For example, all measurements are zeros (no history data is saved) or historyRetention has been set to zero. The boolean value returned by getMostRecent method indicates the availability of the data. True means the out parameter contains the data, false the parameter is undefined.

*/



boolean getMostRecent(out HistoryValueType value)




raises (itut_x780::ApplicationError);

/**

The getBetween method will retrieve a sequence of history data records falling within the time window specified by the startTime and endTime parameters. The resultIterator is used to transfer large chunk of data.

If howMany is not provided, then the initial amount of data returned is a local matter. 

*/



HistoryValueSeqType getBetween(in GeneralizedTimeType startTime,

in GeneralizedTimeType endTime,

in unsigned short howMany,

out HistoryDataIterator resultIterator)




raises (itut_x780::ApplicationError);

CONDITIONAL_NOTIFICATION




(itut_x780::Notifications, qualityOfServiceAlarm, 

NOthresholdPackage)


};  // interface CurrentData

/**

ZeroSuppCurrentData
ZeroSuppCurrentData is a CurrentData with zero suppression. Zero suppression is that when the measurements are all zeros no history data structures will be created.  Two attributes are defined for this purpose: numSuppressedIntervals and maxSuppressedIntervals.
*/

valuetype ZeroSuppCurrentDataValueType: CurrentDataValueType

{

public short



numSuppressedIntervals;


// GET

public short



maxSuppressedIntervals;


// GET-REPLACE

}; // valuetype ZeroSuppCurrentDataValueType

interface ZeroSuppCurrentData: CurrentData

{



/**

define default value for maxSuppressedIntervals. The default value -1 means that no limit on the number of consecutive suppressed intervals. On the other hand, the maxSuppressedIntervals is effectively equal to infinity.


*/



const short maxSuppressedIntervals = -1;

/**

The numSuppressedIntervals attribute is used to count the number of consecutive intervals for which suppression (i.e. non-creation of a history data structure) has occurred. This attribute reflects performance measurements up to, but not including, the current interval. This attribute gets incremented at the end of an interval if suppression has occurred. Otherwise, the attribute is reset. Or it reaches maxSuppressedIntervals, a history data record will be created and it will be reset. 

The attribute is read-only, supported by Get access operations.

Editor Note: it was read/write in Q.822.
*/

short numSuppressedIntervalsGet()

raises (itut_x780::ApplicationError);

/**

In conjunction with record compression, the maxSuppressedIntervals attribute limits the maximum number of suppressed intervals that will be collected without creating a structure of the history data  (maxSuppressedIntervals = -1 indicates that the maximum number is equal to infinity).
For example, consider an instance of (a subclass of) zeroSuppCurrentData with maxSuppressedIntervals set to 32, and the interval set to 15 minutes. For record compression, it means that after 32 consecutive suppressed (e.g., all-zero) intervals (8 hours) at least one history data record (with all zero PM Parameters) will be generated with a count of 32. This ensures that at least one history data record per maxSuppressedIntervals will be created.

This attribute is read/write, supported by Get and Set access operations.

*/

short maxSuppressedIntervalsGet()

raises (itut_x780::ApplicationError);

void maxSuppressedIntervalsSet(in short value)

raises (itut_x780::ApplicationError);


};  // interface ZeroSuppCurrentData
/**

HistoryData (ValueType)

HistoryData valuetype will contain a copy of the performance measurements and other selected attributes that are present in a current data object at the end of the current interval (e.g., 5 min.). A new record of this valuetype structure is created at the end of each interval if historyRetention attribute in the current data object is greater than zero and this record will be retained in the NE for at least the duration equivalent to the number of intervals specified in the historyRetention attribute.

This generic valuetype models the history data. Specific current data objects (e.g., SDH/SONET current data objects) will be defined with specific historyData valuetypes, which are inherited from this generic historyData valuetype.

*/

valuetype HistoryValueType


{

/**

Attribute periodEndTime indicates the time at the end of the interval.

*/



public GeneralizedTimeType

periodEndTime;




// GET






/**

Attribute granularityPeriod is used to copy the same attribute from the currentData object.

*/

public TimePeriodType

granularityPeriod;


// GET

/**

Attribute suspectIntervalFlag is used to copy the same attribute from the currentData object.

*/

public boolean


suspectIntervalFlag;


// GET

/**

Attribute numSuppressedIntervals is used to copy the same attribute from the zsCurrentData object. When copying from currentData object, it uses 0 as default value.
*/

public short



numSupressedIntevals;


// GET

}; // valuetype HistoryValueType

/**

HistoryDataIterator is used for iteratively transferring large chunk of history data.

*/

interface HistoryDataIterator


{

/**

This method is used to return the next how many history data

@param howMany
Maximum number of history data for which results should be returned in first batch, must be non-zero

@param HistoryDataSeqType
Sequence of history data

@param boolean
true if there is something in the out param, false otherwise

*/

boolean getNext (in unsigned short howMany, out HistoryValueSeqType historyData)

raises (itut_x780::ApplicationError);

/**

This method is used to destroy the iterator and release its resources. This must be done by the application.

*/

void destroy ();


};  // interface HistoryDataIterator
/**

ThresholdData

The thresholdData object class is a class of managed support objects that contains the values of the threshold settings for the PM parameters. At least one of the counterThresholdListPackage or the gaugeThresholdListPackage must be instantiated.

Thresholds are established by use of the managed object class thresholdData. The thresholdData objects specify the thresholds being applied. Threshold values in a thresholdData object may apply to multiple currentData objects and thresholdData objects are pointed to by currentData objects. The currentData, or its subclasses, object indicates the collection interval used with the threshold. A qualityOfServiceAlarm notification is generated whenever a threshold is crossed. 

A threshold may be specific to a single managed object. In this case, the thresholdData object is contained within the managed object being observed. A currentData object within the managed object points to a thresholdData object. This linkage is needed for consistency with the multiple managed object case. 

It is sometimes desirable to have a threshold apply to a group of managed objects. In this case, the thresholdData object is external to the managed object being observed. It may be contained within the managedElement object. The thresholdData object is pointed to by all the currentData objects to which it applies.

If createDeleteNotificationsPackage is present, the creation or deletion of a threshold object will cause an objectCreation or objectDeletion notification to be emitted.

If attributeValueChangeNotificationPackage is present, then any threshold change will cause an attributeValueChange notification being emitted.

*/

valuetype ThresholdDataValueType: itut_x780::ManagedObjectValueType

{

public CounterThresholdSetType

counterThresholdList;




// conditional: counterThresholdListPackage

// PRESENT IF an instance supports it and the 

// gaugeThresholdListPackage is not present




// GET-REPLACE ADD-REMOVE



public GaugeThresholdAttributeSetType






gaugeThresholdList;




// conditional: gaugeThresholdListPackage

// PRESENT IF an instance supports it and the 

// counterThresholdListPackage is not present




// GET-REPLACE ADD-REMOVE


}; // valuetype ThresholdDataValueType


interface ThresholdData: ManagedObject


{

/**

The counterThresholdList attribute contains a set of threshold settings for performance attributes of the counter type (e.g., erred seconds). Each threshold setting consists of the attribute identifier, the threshold value and (optionally) the severity of the threshold-exceeded event.

The attribute is supported by Get, Set, Add, and Remove access operations.

*/

CounterThresholdSetType

counterThresholdListGet()




raises (itut_x780::ApplicationError,





NOcounterThresholdListPackage);

void counterThresholdListSet(in 

CounterThresholdSetType value)




raises (itut_x780::ApplicationError,





NOcounterThresholdListPackage);

void counterThresholdListAdd(in 

CounterThresholdSetType value)

raises (itut_x780::ApplicationError,





NOcounterThresholdListPackage);

void counterThresholdListRemove(in 

CounterThresholdSetType value)

raises (itut_x780::ApplicationError,





NOcounterThresholdListPackage);

/**

The gaugeThresholdList attribute contains a set of threshold settings for performance attributes of the gauge type. Each threshold setting consists of the attribute identifier, the threshold value and (optionally) the severity of the threshold-exceeded event.

The attribute is supported by Get, Set, Add, and Remove access operations.

*/

GaugeThresholdAttributeSetType

gaugeThresholdListGet()




raises (itut_x780::ApplicationError,





NOgaugeThresholdListPackage);

void gaugeThresholdListSet(in 

GaugeThresholdAttributeSetType value)




raises (itut_x780::ApplicationError,





NOgaugeThresholdListPackage);

void gaugeThresholdListAdd(in 

GaugeThresholdAttributeSetType value)

raises (itut_x780::ApplicationError,





NOgaugeThresholdListPackage);

void gaugeThresholdListRemove(in 

GaugeThresholdAttributeSetType value)

raises (itut_x780::ApplicationError,





NOgaugeThresholdListPackage);



CONDITIONAL_NOTIFICATION




(itut_x780::Notifications, objectCreation,




createDeleteNotificationsPackage)



CONDITIONAL_NOTIFICATION




(itut_x780::Notifications, objectDeletion,




createDeleteNotificationsPackage)



CONDITIONAL_NOTIFICATION




(itut_x780::Notifications, attributeValueChange,




attributeValueChangeNotificationPackage)


};  // interface ThresholdData 

interface ThresholdDataFactory: ManagedObjectFactory


{



ThresholdData create




(in NameBindingType nameBinding,




in ManagedObject superior,




inout Istring name,
// auto naming if null




in IstringSetType packageNameList,

// parameters from ThresholdData

//




in CounterThresholdSetType 

counterThresholdList,





// conditional: counterThresholdListPackage





// GET-REPLACE ADD-REMOVE




in GaugeThresholdAttributeSetType








gaugeThresholdAttributeLIst





// conditional: gaugeThresholdListPackage





// GET-REPLACE ADD-REMOVE

)

raises (itut_x780::ApplicationError, 

itut_x780::CreateError);


}; // interface ThresholdDataFactory

/**

HistoryDataScanner

HistoryDataScanner is designed to retrieve history data saved under the relevant currentData objects. 

There are some open issues (listed in Section 7) need to be resolved before the design can be completed.

*/

valuetype HistoryDataScannerValueType: ScannerValueType


{

public HdSelectionSetType

hdSelectionList;


// GET-REPLACE

}; // valuetype HistoryDataScannerValueType

interface HistoryDataScanner: Scanner


{

/**

The hdSelectionList attribute is used to specify which history data to be retrieved by history data scanner.

This attribute is supported by Get, Set, Add, and Remove access operations.

*/

HdSelectionSetType hdSelectionListGet()




raises (itut_x780::ApplicationError);

void hdSelectionListSet(in HdSelectionSetType value)




raises (itut_x780::ApplicationError);

void hdSelectionListAdd(in HdSelectionSetType value)




raises (itut_x780::ApplicationError);

void hdSelectionListRemove(in HdSelectionSetType value)




raises (itut_x780::ApplicationError);

/**

Editor Note: more capabilities will be added when the open issues get resolved.

*/


};  // interface HistoryDataScanner

/**

Notifications

Editor Note: Placeholder for now.

*/

interface Notifications {

}; // interface Notifications

/**

Name Binding

NAME BINDING

*/

/**

The following module contains name-binding information.

*/


module NameBinding


{

/**

ThresholdData

*/

/**

This name binding is used to name the ThresholdData object to a Managed Element object.

*/



module ThresholdData_ManagedElement



{




const string
superiorClass =





"itut_m3120::ManagedElement";




const boolean
superiorSubclassesAllowed = TRUE;




const string
subordinateClass =





"itut_q822r::ThresholdData";




const boolean
subordinateSubclassesAllowed = TRUE;




const boolean
managerCreatesAllowed = TRUE;




const DeletePolicyType deletePolicy =





itut_x780::deleteOnlyIfNoContainedObjects;




const string
kind =





"itut_q822r::ThresholdData";



}; // module ThresholdData_ManagedElement


}; // module NameBinding

}; // module itut_q822r

#endif // _itut_q822r_idl_

3. Open Issues


· How is the historyData scan report encoded?
____________________

	* Contact: 
	Bing Leng

Lucent Technologies

Room 4H-428

2000 Naperville Rd 

Naperville, IL 60566-7033  U S
	Tel:
+1 630 713 8333

Fax:
+1 630 224 0755

E-mail:     bleng@lucent.com


Attention: This is not a publication made available to the public, but an internal ITU-T Document intended only for use by the Member States of the ITU, by ITU-T Sector Members and Associates, and their respective staff and collaborators in their ITU related work. It shall not be made available to, and used by, any other persons or entities without the prior written consent of the ITU-T.
M:\SG_DOC\SG4\JAN01\DELAYED\04.doc
04/01/01
M:\SG_DOC\SG4\JAN01\DELAYED\04.doc
04/01/01

