

3G TS 32.111-6 V0.0.1 (2001-01)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

Telecommunication Management;

Fault Management;

Part 6: Log Management IRP: CORBA Solution Set

(Release 5)
[image: image1.png]K ey

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organisational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organisational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organisational Partners' Publications Offices.

Keywords

Fault Management, Alarms

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2000, 3GPP Organizational Partners (ARIB, CWTS, ETSI, T1, TTA, TTC).

All rights reserved.

Contents

2Contents

3Foreword

41
Scope

42
References

53
Definitions and abbreviations

53.1
Definitions

53.2
Abbreviations

53.3
IRP Solution Set version

54
Architectural Features

54.1
Notification Services

54.2
Push and Pull Style

65
Mapping

65.1
Operation and Notification mapping

75.2
Operation parameter mapping

75.3
Log Attributes mapping

105.4
Notification parameter mapping

105.5
Parameter Attribute mapping

116
Use of OMG Structured Event

127
LogManagementIRPNotifications Interface

127.1
Method push (M)

14Annex A (normative): IDL specification

20Annex B (informative): Change history

Foreword

This Technical Specification (TS) has been produced for the 3rd Generation Partnership Project (3GPP).

1
Scope

The present document specifies the CORBA Solution Set (SS) for the IRP whose semantics is specified in Log Management IRP: Information Service (IS) (3G TS XX.XXX-X [14]).

Clause 1 to 3 provides background information. Clause 4 provides key architectural features supporting the SS. Clause 5 defines the usage of OMG CORBA Structured Event to carry information defined in notifications carrying event information. Clause 7 describes the notification interface containing the push method. Annex A contains the IDL specification. Annex B contains the Change History for this document.

2
References

The following documents contain provisions, which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc) or non-specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies.

[1] ITU-T Recommendation X.735: “Information technology – Open Systems Interconnection – Systems Management: Log Control Function”.

[2] ITU-T Recommendation X.736: “Information technology – Open Systems Interconnection – Security Alarm Reporting Function”.

[3] OMG TC Document telecom/98-11-01: “OMG Notification Service”.

[4] OMG CORBA Services: “Common Object Services Specification, Update: November 22, 1996” (Clause 4 contains the Event Service specification).

[5] 3G TS 32.106-8 “Name Convention for Managed Objects”.

[6] 3G TS 32.106-1: “3G Configuration Management: Concept and Requirements”.

[7] 3G TS 32.106-2: “Notification IRP: Information Service”.

[8] 3G TS 32.106-3: “Notification IRP: CORBA Solution Set”.

[9] 3G TS 32.106-5: “Configuration Management IRP: Information Service”.

[10] 3G TS 32.106-6: “Configuration Management IRP: CORBA Solution Set”

[11] 3G TS 32.111-1: “3G Fault Management”.

[12] 3G TS 32.111-2: “Alarm IRP: Information Service”.

[13] 3G TS 32.111-3: “Alarm IRP: CORBA Solution Set”.

[14] 3G TS XX.XXX-X: “Log Management IRP: Information Service”.
3
Definitions and abbreviations

3.1 Definitions

In addition to the terms and definitions defined in TS XX.XXX-X [14], there are no additional definitions applicable to the present document.

3.2
Abbreviations

For the purposes of the present document, the following abbreviations apply:

CORBA

Common Object Request Broker Architecture

IDL

Interface Definition Language

IRP

Integration Reference Point

NE

Network Element

OMG

Object Management Group

SS

Solution Set

3.3
IRP Solution Set version

The version of this CORBA SS is 1:1, where the first “1” indicates the version number of the Log Management IRP:IS (3G TS XX.XXX-X [14]) and the second “1” indicates the version number of this document.

4 Architectural Features

The overall architectural feature of the Log Management IRP is specified in 3G TS XX.XXX-X [14]. This clause specifies features that are specific to the CORBA SS.
4.1
Notification Services

In implementations of CORBA SS, IRPAgent conveys Alarm and Event Information to IRPManager via OMG Notification Service (OMG TC Document telecom [2]).

OMG Event Service provides event routing and distribution capabilities. OMG Notification Service provides, in addition to Event Service, event filtering and Quality of Service (QOS) as well.

A necessary and sufficient sub set of OMG Notification Services shall be used to support LogManagementIRPNotifications notifications as specified in 3G TS XX.XXX-X [14].
4.2 Push and Pull Style

OMG Notification Service defines two styles of interaction. One is called push style. In this style, IRPAgent pushes notifications to IRPManager as soon as they are available. The other is called pull style. In this style, IRPAgent keeps the notifications until IRPManager requests for them.

This CORBA SS specifies that support of Push style is Mandatory (M) and that Pull style is Optional (O).

4.3
Support multiple notifications in one push operation

For efficiency reasons, IRPAgent may send multiple notifications using one single push operation. To pack multiple notifications into one push operation, IRPAgent may wait and not invoke the push operation as soon as notifications are available. To avoid IRPAgent to wait for an extended period of time that is objectionable to IRPManager, IRPAgent shall implement an IRPAgent wide timer configurable by administrator. On expiration of this timer, IRPAgent shall invoke push if there is at least one notification to be conveyed to IRPManager. This timer is re-started after each push invocation.

4.4
Filter

IRPAgent shall optionally support alarm filtering based on IRPManager’s supplied alarm filter constraints (e.g., as parameter in subscribe () of 3G TS 32.106-2 [6]. Alarm and Event filtering can be applied in the following cases:

· It is applicable to alarms/events emitted by IRPAgent via LogManagementIRPNotifications. IRPManager supplies filter constraint via the subscribe method. This filter is effective during the period of subscription.

This SS shall use filter grammar specified by reference 3G TS 32.106 [6]. The name of the grammar is called “EXTENDED_TCL”. See clause 2.4, Default Filter Constraint Language in 3G TS 32.106-2 [6]. This SS shall use this grammar only.

5
Mapping

5.1
Operation and Notification mapping

Log Management IRP:IS TS XX.XXX-X [14] defines semantics of operations and notifications across the Log Management IRP. Table 1 indicates mapping of these operations and notifications, for the Log Manager, to their equivalents defined in this SS.

Table 1: Mapping from IS Operation/Notification to SS equivalents
	IS Operation/ notification 3G TS XX.XXX-X [14]
	SS Method
	Qualifier

	createLog
	create_log
	M

	deleteLog
	delete_log
	M

	getLog
	get_log
	M

	listLogs
	list_logs
	M

	getLogManagementIRPVersion
	get_logManagement_IRP_version
	M

	notifyObjectCreated
	push_structured_event

Note that OMG Notification Service [3] defines this method. See clause 7.1
	M

	notifyObjectDeleted
	push_structured_event

See clause 7.1
	M

Table 2 indicates mapping of the operations and notifications, for a Log, to their equivalents defined in this SS.

Table 2: Mapping from IS Operation/Notification to SS equivalents
	IS Operation/ notification 3G TS XX.XXX-X [14]
	SS Method
	Qualifier

	logFullAction
	get_log_full_action, set_log_full_action
	M, M

	capacityThresholdList
	get_capacity_alarm_thresholds, set_capacity_alarm_thresholds
	O, O

	maxSize
	get_max_size, set_max_size
	M, M

	queryLog
	query_log
	M

	getRecordCount
	get_record_count
	M

	deleteRecords
	delete_records
	M

	exportLog
	export_log
	M

	notifyCapacityThresholdAlarm
	push_structured_event

See clause 7.1
	M

	notifyRecordsDeleted
	push_structured_event

See clause 7.1
	O

	notifyExportCompleted
	push_structured_event

See clause 7.1

	O

	notifyAttributeValueChange
	push_structured_event

See clause 7.1
	M

	notifyStateChange
	push_structured_event

See clause 7.1
	M

5.2
Log Attributes mapping

Log Management IRP:IS TS XX.XXX-X [14] defines certain attributes which a Log must support. Table 3 indicates mapping of these attributes, for the Log, to their equivalents defined in this SS.

Table 3: Mapping from IS Log attribute parameters to SS equivalents
	IS Attribute
	SS Attributes
	Qualifier

	creationTime
	readonly attribute CommonIRPConstDefs::IRPTime creation_time
	READ-ONLY, M

	operationalState
	readonly attribute LogManagementIRPConstDefs::OperationalState op_state
	READ-ONLY, M

	administrativeState
	attribute LogManagementIRPConstDefs::AdministrativeState admin_state
	M

	logId
	attribute LogManagementIRPConstDefs::LogIdType log_id
	M

	filter
	Attribute LogManagementIRPConstDefs::FilterType filter
	M

5.3
Operation parameter mapping

Reference 3G TS XX.XXX-X [14] defines semantics of parameters carried in operations across the Log Management IRP. Table 4-18 indicate the mapping of these parameters, as per operation, to their equivalents defined in this SS.

Table 4: Mapping from IS createLog parameters to SS equivalents
	IS Operation parameter
	SS Method parameter
	Qualifier

	logId
	LogManagementIRPConstDefs::LogIdType log_id
	O

	filter
	LogManagementIRPConstDefs::FilterType filter
	O

	logFullAction
	LogManagementIRPConstDefs::LogFullAction log_full_action
	M

	maxSize
	LogManagementIRPConstDefs::LogSizeType size
	M

	logReference
	Log log_ref
	M

	status
	CommonIRPConstDefs::Signal

Exceptions:

CreateLog, LogAlreadyExists, InvalidLogFullAction, InvalidParameter
	M

Table 5: Mapping from IS deleteLog parameters to SS equivalents
	IS Operation parameter
	SS Method parameter
	Qualifier

	logId
	LogManagementIRPConstDefs::LogIdType log_id
	M

	status
	CommonIRPConstDefs::Signal

Exceptions:

DeleteLog, UnknownLogId
	M

Table 6: Mapping from IS getLog parameters to SS equivalents
	IS Operation parameter
	SS Method parameter
	Qualifier

	logId
	LogManagementIRPConstDefs::LogIdType log_id
	M

	logReference
	Log log_ref
	M

	status
	CommonIRPConstDefs::Signal

Exceptions:

GetLog, UnknownLogId
	M

Table 7: Mapping from IS listLogs parameters to SS equivalents
	IS Operation parameter
	SS Method parameter
	Qualifier

	logIdList
	LogManagementIRPConstDefs::LogIdSeq log_ids
	M

	Status
	CommonIRPConstDefs::Signal

Exceptions:

ListLogs
	M

Table 8: Mapping from IS getLogManagementIRPVersion parameters to SS equivalents
	IS Operation parameter
	SS Method parameter
	Qualifier

	versionNumberList
	Return value of type

CommonIRPConstDefs::VersionNumberSet
	M

	status
	Exceptions:

GetLogManagementIRPVersion
	M

Table 9: Mapping from IS setLogFullAction parameters to SS equivalents
	IS Operation parameter
	SS Method parameter
	Qualifier

	logFullAction
	LogManagementIRPConstDefs::LogFullAction log_full_action
	M

	status
	Exceptions:

SetLogFullAction, InvalidLogFullAction
	M

Table 10: Mapping from IS getLogFullAction parameters to SS equivalents
	IS Operation parameter
	SS Method parameter
	Qualifier

	logFullAction
	Return value of type:

LogManagementIRPConstDefs::LogFullAction
	M

	status
	Exceptions:

GetLogFullAction
	M

Table 11: Mapping from IS setCapacityAlarmThresholds parameters to SS equivalents
	IS Operation parameter
	SS Method parameter
	Qualifier

	capacityThresholdsList
	LogManagementIRPConstDefs::CapacityAlarmThresholdSeq thresholds
	M

	status
	Exceptions:

SetCapacityAlarmThresholds, InvalidThreshold
	M

Table 12: Mapping from IS getCapacityAlarmThresholds parameters to SS equivalents
	IS Operation parameter
	SS Method parameter
	Qualifier

	capacityThresholdsList
	Returns value of type:

LogManagementIRPConstDefs::CapacityAlarmThresholdSeq
	M

	status
	Exceptions:

GetCapacityAlarmThresholds
	M

Table 13: Mapping from IS setMaxSize parameters to SS equivalents
	IS Operation parameter
	SS Method parameter
	Qualifier

	maxLogSize
	LogManagementIRPConstDefs::LogSizeType size
	M

	status
	Exceptions:

SetMaxSize, InvalidParameter
	M

Table 14: Mapping from IS getMaxSize parameters to SS equivalents
	IS Operation parameter
	SS Method parameter
	Qualifier

	maxSize
	Return value of type:

LogManagementIRPConstDefs::LogSizeType
	M

	status
	Exceptions:

GetMaxSize
	M

Table 15: Mapping from IS queryLog parameters to SS equivalents
	IS Operation parameter
	SS Method parameter
	Qualifier

	filter
	LogManagementIRPConstDefs::FilterType filter
	O

	logRecordList
	Return value of type:

LogManagementIRPConstDefs::LogRecordSeq
	M

	status
	Exceptions:

QueryLog
	M

Table 16: Mapping from IS getRecordCount parameters to SS equivalents
	IS Operation parameter
	SS Method parameter
	Qualifier

	filter
	LogManagementIRPConstDefs::FilterType filter
	O

	recordCount
	LogManagementIRPConstDefs::RecordCountType record_count
	M

	status
	CommonIRPConstDefs::Signal

Exceptions:

GetRecordCount
	M

Table 17: Mapping from IS deleteRecords parameters to SS equivalents
	IS Operation parameter
	SS Method parameter
	Qualifier

	filter
	LogManagementIRPConstDefs::FilterType filter
	O

	transactionId
	LogManagementIRPConstDefs::TransactionIdType trans_id
	O

	status
	CommonIRPConstDefs::Signal

Exceptions:

DeleteRecords
	M

Table 18: Mapping from IS exportLog parameters to SS equivalents
	IS Operation parameter
	SS Method parameter
	Qualifier

	filter
	LogManagementIRPConstDefs::FilterType filter
	O

	destination
	LogManagementIRPConstDefs::AddressType destination
	M

	transactionId
	LogManagementIRPConstDefs::TransactionIdType trans_id
	O

	status
	CommonIRPConstDefs::Signal

Exceptions:

ExportLog, InvalidAddressType
	M

5.4
Notification parameter mapping

Log Management IRP:IS TS XX.XXX-X [14] defines semantics of parameters carried in notifications across the Log Management IRP.

Reference 3G TS 32.106-6 [9] defines the ObjectCreation, ObjectDeletion and AttributeValueChange events. An AttributeValueChangeEvent should be used to encode a StateChangeEvent.

Reference 3G TS 32.111-3 [12] defines the CapacityThresholdAlarm.

Table 19 indicates the mapping from the IS attributes to their SS equivalents for the ExportCompletedEvent and the RecordsDeletedEvent.

Table 19: Mapping from IS notify[ExportCompleted,RecordsDeleted]Event parameters to SS equivalents

	IS Notification parameter
	SS Notification parameter
	Comment

	notificationHeader
	structuredEvent

Note that OMG Notification Service [2] defines this structuredEvent.

See Clause 4 as well.
	Attributes of notificationHeader are mapped to attributes of structuredEvent. See clause 6 for attributes related to notificationHeader. See Table 21 for qualifiers for the parameter-attributes.

The extendedEventType shall contain an empty string.

	eventInformationBody
	structuredEvent
	Attributes of eventInformationBody are mapped to attributes of structuredEvent. See clause 6 for attributes related to eventInformationBody. See table 21 for qualifiers for the parameter-attributes.

5.5
Parameter Attribute mapping

Notification IRP: IS 3G TS 32.106-2 [6] defines the semantics of attributes for notificationHeader parameter. Alarm IRP: IS 3G TS 32.111-2 [11] and Configuration Management IRP: IS 3G TS 32.106-5 [8] defines the semantics of attributes for those IRPs. Tables 20 and 21 show the mapping of the the ExportCompletedEvent and the RecordsDeletedEvent IS attributes to SS equivalents.
Table 20: Mapping from IS notificationHeader attributes to SS equivalents
	IS Attribute of notificationHeader in [6]
	SS Attribute
	Qualifier

	managedObjectClass
	managedObjectClass
	O

	managedObjectInstance
	ManagedObjectInstance
	M

	notificationID
	notificationID
	M

	eventTime
	eventTime
	M

	systemDN
	systemDN
	M

	eventType
	eventType
	M

	extentedEventType
	extendedEventType
	M

Table 21: Mapping from IS notificationHeader attributes to SS equivalents
	IS Attribute of eventInformationBody in 3G TS XX.XXX-X [14]
	SS Attribute
	Qualifier

	numberOfRecords
	numberOfRecords
	O

	transactionId
	transactionId
	M

6
Use of OMG Structured Event

Operation notify defined in 3G TS XX.XXX-X [14] carries parameters, such as notificationHeader and eventInformationBody. In CORBA SS, OMG defined StructuredEvent (see ITU-T Recommendation X.736[2]) is used to carry notifications. The Alarm IRP: IS 3G TS 32.111-2 [11] and Configuration Management IRP: IS 3G TS 32.106-5 [8] define the use of the OMG Structured Event for ObjectCreationEvent, ObjectDeletionEvent, AttributeValueChangeEvent and CapacityThresholdAlarm. This clause identifies the OMG defined StructuredEvent attributes that carry the attributes of parameters defined in 3G TS XX.XXX-X [14] for the ExportCompletedEvent and the RecordsDeletedEvent.

The composition of the of OMG StructuredEvent, as defined in the OMG TC Document [3], is:

Header

Fixed Header

domain_name

type_name

event_name

Variable Header

Body

filterable_body_fields

remaining_body

Table 22 lists all OMG Structured Event attributes in the second column. The first column identifies the SS attributes, if any, that shall be carried in the Structured Event attributes.

Table 22: Use of OMG Structured Event

	SS Attribute
	OMG CORBA Structured Event attribute
	Comment

	There is no corresponding SS attribute
	domain_name
	It contains a string defined by interface.

IRPNotificationCategoryValue.logManagementIRPVersion_1_1. It indicates the syntax and semantics of this Structured Event is defined by LogManagement IRP: CORBA SS 1:1

	eventType
	type_name
	Attribute event_type is an attribute of notificationHeader. It shall indicate that this event is either an ExportCompletedEvent or a RecordsDeletedEvent. It is a string. See block of const string definitions starting with “ET_” in the IDL

	extendedEventType
	event_name
	Attribute extendedEventType is an attribute of notificationHeader. It shall contain a zero length string for this IRP.

	There is no corresponding SS attribute
	Variable Header
	

	managedObjectClass, managedObjectInstance
	One NV pair of filterable_body_fields
	NV stands for name-value pair. Order arrangement of NV pairs is not significant. The name of NV-pair is always encoded in string. They are attributes of notificationHeader.

Name of NV pair is a string, AttributeNameValue.managedObjectInstance.

Value of NV pair is a string. See corresponding table in Notification IRP CORBA SS (3G 32.106-3 [8]).

	notificationId
	One NV pair of filterable_body_fields
	It is an attribute of notificationHeader.

Name of NV pair is a string, AttributeNameValue.notificationId.

Value of NV pair is a long. See corresponding table in Notification IRP CORBA SS (3G 32.106-3 [8]).

	eventTime
	One NV pair of filterable_body_fields
	It is an attribute of notificationHeader.

Name of NV pair is a string, AttributeNameValue.eventTime
Value of NV pair is a IRPTime. See corresponding table in Notification IRP CORBA SS (3G 32.106-3 [8]).

	systemDN
	One NV pair of filterable_body_fields
	It is an attribute of notificationHeader.

Name of NV pair is a string, AttributeNameValue.systemDN.

Value of NV pair is a string. See corresponding table in Notification IRP CORBA SS (3G 32.106-3 [8]).

	numberOfRecords
	One NV pair of filterable_body_fields
	It is an attribute of notificationHeader.

Name of NV pair is a string, AttributeNameValue.numberOfRecords.

Value of NV pair is a long. See corresponding table in Notification IRP CORBA SS (3G 32.106-3 [8]).

	transactionId
	One NV pair of filterable_body_fields
	It is an attribute of notificationHeader.

Name of NV pair is a string, AttributeNameValue.transactionId.

Value of NV pair is a long. See corresponding table in Notification IRP CORBA SS (3G 32.106-3 [8]).

7
LogManagementIRPNotifications Interface

OMG CORBA Notification push operation is used to realise the notification of LogManagementIRPNotifications. All the notifications in this interface are implemented using push_structured_event method.

7.1 Method push (M)

module CosNotifyComm {

…

interface SequencePushConsumer: NotifyPublish {

void push_structured_events(

in CosNotification::EventBatch notifications)

raises (CosEventComm::Disconnected);

…

}; // SequencePushConsumer

…

}; // CosNotifyComm

NOTE 1:
The push_structured_events method takes an input parameter of type EventBatch as defined in OMG CosNotification module (OMG TC Document telecom [3]). This data type is the same as a sequence of Structured Events. Upon invocation, this parameter will contain a sequence of Structured Events being delivered to IRPManager by IRPAgent to which it is connected.

NOTE 2:
The maximum number of events that will be transmitted within a single invocation of this operation is controlled by IRPAgent wide configuration parameter.

NOTE 3:
The amount of time the supplier (IRPAgent) of a sequence of Structured Events will accumulate individual events into sequence before invoking this operation is controlled by IRPAgent wide configuration parameter as well.

NOTE 4:
IRPAgent may push EventBatch with only one Structured Event.
Annex A (normative): IDL specification

/* ## Module: LogManagementIRPConstDefs

This module contains commonly used declarations

===

*/

#ifndef LogManagementIRPConstDefs_idl

#define LogManagementIRPConstDefs_idl

#include "CosNotification.idl"

#include "CommonIRPConstDefs.idl"

#pragma prefix "3ggpsa5.org"

module LogManagementIRPConstDefs

{

 const string ET_EXPORT_COMPLETED_EVENT = "x1";

 const string ET_RECORDS_DELETED_EVENT = "x2";

 enum OperationalState { disabled, enabled };

 enum AdministrativeState { locked, unlocked };

 enum LogFullAction { wrap, halt };

 typedef string LogIdType;

 typedef sequence <LogIdType> LogIdSeq;

 typedef string FilterType;

 typedef string AddressType;

 typedef long TransactionIdType;

 typedef long long LogSizeType;

 typedef long RecordCountType;

 /**

 * A Threshold is to hold a

 * value from 0 to 100 (%)

 */

 typedef unsigned short Threshold;

 typedef sequence <Threshold> CapacityAlarmThresholdSeq;

 struct LogRecord

 { unsigned long recordId;

 CommonIRPConstDefs::IRPTime creation_time;

 CosNotification::StructuredEvent notification;

 };

 typedef sequence <LogRecord> LogRecordSeq;

};

#endif

/* ## Module: LogManagementIRPSystem

This module contains the specfication of all operations of LogManagement

IRP Agent specified in LogManagement IRP: IS version 1 and LogManagement IRP: CORBA SS version 1:1

===*/

#ifndef LogManagementIRPSystem_idl

#define LogManagementIRPSystem_idl

#include "CosNotification.idl"

#include "LogManagementIRPConstDefs.idl"

#include "LogManagementIRPConstDefs.idl"

#pragma prefix "3gppsa5.org"

module LogManagementIRPSystem

{

 /**

 * System fails to complete the operation. System provides

 * reasons whose semantics is outside the scope of this IRP.

 */

 exception CreateLog { string reason; };

 exception DeleteLog { string reason; };

 exception GetLog { string reason; };

 exception ListLogs { string reason; };

 exception QueryLog { string reason; };

 exception GetRecordCount { string reason; };

 exception DeleteRecords { string reason; };

 exception ExportLog { string reason; };

 exception GetLogManagementIRPVersion { string reason; };

 exception SetLogFullAction { string reason; };

 exception GetLogFullAction { string reason; };

 exception SetCapacityAlarmThresholds { string reason; };

 exception GetCapacityAlarmThresholds { string reason; };

 exception SetMaxSize { string reason; };

 exception GetMaxSize { string reason; };

 // name of parameter as defined in IDL

 exception InvalidParameter { string parameter; };

 exception NextLogRecord { string reason; };

 exception InvalidThreshold {};

 exception LogAlreadyExists {};

 exception UnknownLogId {};

 exception InvalidAddressType {};

 exception InvalidLogFullAction {};

 /**

 * The LogRecordIterator is a pull iterator used to iterate through a

 * set of log records within a log. Method query_log contains it as an

 * out parameter.

 *

 * IRPManager uses it to pace the return of LogRecords. IRPManager

 * cannot use it to pace when IRPAgent should retrieve log records

 * from a log.

 */

 interface LogRecordIterator

 {

 /**

 * This Method returns up to "how_many" log records.

 * If 1 or more records is returned, return TRUE.

 * Return FALSE if there is no record to be returned.

 */

 boolean next_logRecord(

 in unsigned long how_many,

 out LogManagementIRPConstDefs::LogRecordSeq log_records)

 raises(NextLogRecord,

 InvalidParameter);

 /**

 * This method destroys the iterator.

 */

 void destroy();

 };

 interface Log;

 /**

 * This interface specifies all methods supported by system as

 * specified in LogManagementIRP: CORBA Solution Set version 1:1

 */

 interface LogManagementIRPOperations

 {

 /**

 * This method creates a log. If an empty log_id is

 * supplied the system places an autogenerated system wide

 * unique id in the inout log_id parameter.

 * The IRPAgent should only create records within the log

 * which match the filter parameter.

 *

 * An ObjectCreation notification should be sent to the IRPManager

 * upon successful completion of this operation.

 */

 CommonIRPConstDefs::Signal create_log(

 inout LogManagementIRPConstDefs::LogIdType log_id,

 in LogManagementIRPConstDefs::FilterType filter,

 in LogManagementIRPConstDefs::LogFullAction log_full_action,

 in LogManagementIRPConstDefs::LogSizeType max_size,

 out Log log_ref)

 raises(CreateLog,

 LogAlreadyExists,

 InvalidLogFullAction,

 InvalidParameter);

 /**

 * An ObjectDeletion notification should be sent to the IRPManager

 * upon successful completion of this operation.

 */

 CommonIRPConstDefs::Signal delete_log(

 in LogManagementIRPConstDefs::LogIdType log_id)

 raises(DeleteLog,

 UnknownLogId);

 CommonIRPConstDefs::Signal get_log(

 in LogManagementIRPConstDefs::LogIdType log_id,

 out Log log_ref)

 raises(GetLog,

 UnknownLogId);

 CommonIRPConstDefs::Signal list_logs(

 out LogManagementIRPConstDefs::LogIdSeq log_ids)

 raises(ListLogs);

 CommonIRPConstDefs::VersionNumberSet get_logManagement_IRP_version()

 raises(GetLogManagementIRPVersion);

 };

 /**

 * This interface specifies all methods supported by a Log as

 * specified in LogManagementIRP: CORBA Solution Set version 1:1

 */

 interface Log

 {

 readonly attribute CommonIRPConstDefs::IRPTime creation_time;

 /**

 * A StateChange notification should be sent to the IRPManager

 * whenever the admin_state, or the op_state changes.

 */

 attribute LogManagementIRPConstDefs::AdministrativeState admin_state;

 readonly attribute LogManagementIRPConstDefs::OperationalState

op_state;

 /**

 * An AttributeValueChange notification should be sent to the

 * IRPManager whenever the log_id or filter is changed.

 */

 attribute LogManagementIRPConstDefs::LogIdType log_id;

 attribute LogManagementIRPConstDefs::FilterType filter;

 /**

 * An AttributeValueChange notification should be sent to the

 * IRPManager whenever the log_full_action changes.

 */

 void set_log_full_action(

 in LogManagementIRPConstDefs::LogFullAction log_full_action)

 raises(SetLogFullAction, InvalidLogFullAction);

 LogManagementIRPConstDefs::LogFullAction get_log_full_action()

 raises(GetLogFullAction);

 /**

 * A ThresholdAlarm should be sent to the IRPManager

 * when any threshold is reached.

 * An AttributeValueChange notification should be sent to the

 * IRPManager whenever a threshold changes.

 */

 void set_capacity_alarm_thresholds(

 in LogManagementIRPConstDefs::CapacityAlarmThresholdSeq

thresholds)

 raises(SetCapacityAlarmThresholds, InvalidThreshold);

 LogManagementIRPConstDefs::CapacityAlarmThresholdSeq

 get_capacity_alarm_thresholds()

 raises(GetCapacityAlarmThresholds);

 /**

 * A size of 0 should be set to

 * indicate an indeterminate size.

 * An AttributeValueChange notification should be sent to the

 * IRPManager whenever the maximum size is changed.

 */

 void set_max_size(

 in LogManagementIRPConstDefs::LogSizeType size)

 raises(SetMaxSize, InvalidParameter);

 LogManagementIRPConstDefs::LogSizeType get_max_size()

 raises(GetMaxSize);

 /**

 * This method returns log records.

 * If flag is TRUE, all returned records shall be in LogRecordSeq

 * that contains 0,1 or more LogRecords.

 * Output parameter iter shall be useless

 * If flag is FALSE, no records shall be in LogRecordSeq,

 * IRPAgent needs to use iter to retrieve them.

 */

 LogManagementIRPConstDefs::LogRecordSeq query_log(

 in LogManagementIRPConstDefs::FilterType filter,

 out boolean flag,

 out LogRecordIterator iter)

 raises(QueryLog);

 CommonIRPConstDefs::Signal get_record_count(

 in LogManagementIRPConstDefs::FilterType filter,

 out RecordCountType record_count)

 raises(GetRecordCount);

 /**

 * This method may operate asynchronously. A RecordsDeleted

 * notification should be sent to the IRPManager when all the

 * records are finally deleted by the IRPAgent.

 *

 * The out trans_id parameter should be matched with the trans_id

 * in the RecordsDeleted notification to correlate a call to this

 * operation with a notification recieved by the IRPManager.

 */

 CommonIRPConstDefs::Signal delete_records(

 in LogManagementIRPConstDefs::FilterType filter,

 out LogManagementIRPConstDefs::TransactionIdType trans_id)

 raises(DeleteRecords);

 /**

 * This method exports a Log to a standard XML format.

 * This method takes a filter and an AddressType to place

 * the XML once it is generated. The destination may,

 * for example, be an FTP, HTTP or FTAM address.

 *

 * This method may operate asynchronously. An ExportCompleted

 * notification should be sent to the IRPManager when this operation

 * is completed by IRPAgent.

 *

 * The out trans_id parameter should be matched with the trans_id

 * in the ExportCompleted notification to correlate a call to this

 * operation with a notification recieved by the IRPManager.

 */

 CommonIRPConstDefs::Signal export_log(

 in LogManagementIRPConstDefs::FilterType filter,

 in LogManagementIRPConstDefs::AddressType destination,

 out LogManagementIRPConstDefs::TransactionIdType trans_id)

 raises(ExportLog, InvalidAddressType);

 };

};

#endif

Annex B (informative): Change history

	Change History

	TSG SA#
	Version
	CR
	Tdoc SA
	New Version
	Subject/Comment

	
	
	
	
	
	

