

	
3GPP TSG-SA5 Meeting #152 	S5-237510
Chicago,US, 13-17 November 2023

	CR-Form-v12.1

	CHANGE REQUEST

	

	
	28.526
	CR
	[bookmark: _GoBack]0019
	rev
	-
	Current version:
	15.1.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	X

	

	Title:	
	Rel-15 CR 28.526 Fix incorrect operations and parameters

	
	

	Source to WG:
	Huawei

	Source to TSG:
	S5

	
	

	Work item code:
	TEI15
	
	Date:
	2023-11-03

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-15

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier 													release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
…
Rel-15	(Release 15)
Rel-16	(Release 16)
Rel-17	(Release 17)
Rel-18	(Release 18)

	
	

	Reason for change:
	28.526 refers to operations and parameters in IFA013 which are not supported in NFV Release-3.

	
	

	Summary of change:
	Modify procedures in 28.526 to refer to the correct operations and parameters.

	
	

	Consequences if not approved:
	Procedures are invalid because they depend on functionality that does not exist in NFV Release-3.

	
	

	Clauses affected:
	4.2.4.2, 4.3.1, 4.3.4, 4.3.6, 4.3.7, 4.3.10, 4.4.1, 4.5.1, 4.5.4, 4.5.5, 4.5.6, 4.5.8, 4.6.1, 4.6.2, 4.6.4

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	

Page 1

[bookmark: _Toc19796755][bookmark: _Toc27046889][bookmark: _Toc35858107][bookmark: _Toc97827685][bookmark: _Toc468110402]
	1st change

[bookmark: _Toc532316862]4.2.4.2	VNF termination by removing VNF instance from NS
Figure 4.2.4.2-1 depicts the procedure of VNF termination by removing VNF instance from NS through Os-Ma-Nfvo reference point (see clause 7.3.5 of GS NFV-IFA013 [5])
1.	NM sends to NFVO an UpdateNsRequest with parameter nsInstanceId, updateType = “RemoveVnf”, RremoveVnfInstanceId and updateTime to remove the VNF instance(s) from NS (see clause 7.2.2.27.3.5.2 of GS NFV-IFA013 [5]). The RremoveVnfInstanceId identifies the VNF instance to be removed from the NS.
2.	NFVO remove the target VNF instance and sends to NM an UpdateNsResponse with parameter vnfInstanceId and lifecycleOperationOccurrenceId providing the identifier of the NS lifecycle operation occurrence (see clause 7.3.5.3 of GS NFV-IFA013 [5]).
3.	NFVO sends to NM a Notify (see clause 7.4.3 of GS NFV-IFA013 [5]) carrying an NsLifecycleChangeNotification information element with attributes nsInstanceId, lifecycleOperationOccurrenceId, operation = “UpdateNs” and notificationType = “start” to indicate the start of the NS updating that is being performed through removing specific VNF instance(s) (see clause 8.3.2.2 of GS NFV-IFA013[5]).
4.	If the NFVO decides to terminate the NS instance, it sends to NM a Notify (see clause 7.4.3 of GS NFV-IFA013 [5]) carrying an NsLifecycleChangeNotification information element with attributes nsInstanceId, lifecycleOperationOccurrenceId, operation = “UpdateNs” and notificationType = “result” to indicate the end result of the NS updating performed through removing specific VNF(s) removal, and affectedVnf providing information about the removed VNF instance(s), including vnfInstanceId, vnfdId, vnfProfileId, vnfName and changeType = “terminated” (see clause 8.3.2.2 and 8.3.2.3 of GS NFV-IFA013 [5]).
NM
NFVO
3. Notify
1. UpdateNsRequest
2. UpdateNsResponse
4. Notify

Figure 4.2.4.2-1	Procedures of VNF termination by removing VNF from NS instance

	2nd change

[bookmark: _Toc532316870]4.3.1	VNF package on-boarding
Figure 4.4-1 depicts a procedure of VNF package on-boarding,
1. 	NM sends OnboardUploadVnfPackageRequest to NFVO with input parameters listed in clause 7.7.2.2 [5] to on-board a VNF package (see clause 7.7.2 [5]).
2.	NFVO sends OnboardUploadVnfPackageResponse to NM with with vnfPackageId to indicate a VNF package has been on-boarded (see clause 7.7.2.3 [5]).

Figure 4.4-1: VNF package on-boarding procedureNM
NFVO
1. UploadVnfPackageRequest
2. UploadVnfPackageResponse

[bookmark: _Toc532316873]
	3rd change

4.3.4	VNF Package deleting
Figure 4.3.4-1 depicts the procedure of VNF Package deleting.
1. NM sends DeleteVnfPackageRequest to NFVO with onboardedVnfPkgInfoId to delete a VNF Package (see clause 7.7.5 [5]).
2.	NFVO sends DeleteVnfPackageResponse to NM to indicate the result of the operation (see clause 7.7.5.4 [5]).
[image: figure_4]
Figure 4.3.4-1: VNF Package deleting procedure
[bookmark: _Toc532316875]
	4th change

4.3.6	VNF Package querying
Figure 4.3.6-1 depicts a procedure to query from the NFVO for information it has stored about one or more VNF Packages.
1. NM sends QueryOnboardedVnfPkgInfoRequest to NFVO with filter and attributeSelector used to filter the VNF Packages on which the query applies, based on the attributes of OnboardedVnfPkgInfo and select the information attributes of OnboardedVnfPkgInfo that are requested to be returned (see clause 7.7.6 [5]).
2.	NFVO sends QueryOnboardedVnfPkgInfoResponse to NM with parameter queryResult providing the information that is selected according to parameters filter and attributeSelector (see clause 7.7.6.4 [5]).
[image: figure_4]
Figure 4.3.6-1: VNF Package querying procedureNM
NFVO
1. QueryVnfPkgInfoRequest
2. QueryVnfPkgInfoResponse

[bookmark: _Toc532316876]4.3.7	Fetch VNF Package
Figure 4.3.7-1 depicts a procedure to fetch from the NFVO a whole VNF Package based on the VNFD identifier that has been assigned by the VNF Provider.
NOTE 1: In cases where NM already knows the value of onboardedVnfPkgInfoId for the VNF Package it wishes to fetch, it may skip the steps 1 and 2 below (execution of procedure begins at step 3).
1. NM sends QueryOnboardedVnfPkgInfoRequest to NFVO with filter parameter set to VNFD identifier that has been assigned by the VNF Provider and attributeSelector set to OnboardedVnfPkgId (see clause 7.7.6 [5]).
2.	NFVO sends QueryOnboardedVnfPkgInfoResponse to NM with parameter queryResult providing the OnboardedVnfPkgId identifier allocated by NFVO to the corresponding VNF package (see clause 7.7.6.4 [5]).
3. NM sends FetchOnboardedVnfPackageRequest to NFVO with onboardedVnfPkgInfoId parameter identifying the VNF Package to fetch (see clause 7.7.10 [5]).
4.	NFVO sends FetchOnboardedVnfPackageResponse to NM with the vnfPackage requested (see clause 7.7.10.4 [5]).
[image: figure_4]
Figure 4.3.7-1: Fetch VNF Package procedureNM
NFVO
1. QueryVnfPkgInfoRequest
2. QueryVnfPkgInfoResponse
3. FetchVnfPackageRequest
4. FetchVnfPackageResponse

	5th change

[bookmark: _Toc532316879]4.3.10	Fetch on-boarded VNF Package artifacts
Figure 4.3.10-1 depicts a procedure to fetch from the NFVO selected artifacts contained in an on-boarded VNF package.
1. NM sends FetchOnboardedVnfPackageArtifactsRequest to NFVO with onboardedVnfPkgInfoId parameter identifying specific on-boarded VNF Package and artifactAccessInformationSelector parameter listing individual package artifacts to fetch (see clause 7.7.11 [5]).
2.	NFVO sends FetchOnboardedVnfPackageArtifactsResponse to NM with the list of vnfPackageArtifact (e.g. files) requested (see clause 7.7.11.4 [5]).
[image: figure_4]
Figure 4.3.10-1: Fetch on-boarded VNF Package artifacts procedureNM
NFVO
1. FetchPackageArtifactsRequest
2. FetchVnfPackageArtifactsResponse

	6th change

[bookmark: _Toc532316881]4.4.1	NS Instance instantiation
Figure 4.4.1-1 depicts the procedure of an NS instantiation initiated through the Os-Ma-nfvo reference point (see clause 7.3.3 [5]). The procedure includes the steps of creating first the corresponding NS instance identifier.
1.	NM sends to NFVO a CreateNsIdentifierRequest with parameters nsdId, nsName, and nsDescription to create an NS instance identifier (nsInstanceId) and an associated instance of an NsInfo information element (see clause 7.3.2.2 [5]).
2.	NFVO sends to NM a CreateNsIdentifierResponse with parameter nsInstanceId identifying the instance of the NS that has been created (see clause 7.3.2.3 [5]).
3.	NFVO sends to subscribers a Notify (see clause 7.4.3 [5]) carrying NsIdentifierCreationNotification information element with attribute nsInstanceId to indicate the NS instance idenfier creation (see clause 8.3.2.9 [5]).
4.	NM sends to NFVO an InstantiateNsRequest with parameters nsInstanceId and flavourId. Additional parameters can be provided including sapData, pnfInfoaddPnfData, locationConstraints, additionalParamsForNs, additionalParamForVnf, startTime, nsInstantiationLevelId, and additionalAffinityOrAntiAffinityRule. In addition, if the NS instantiation includes reusing existing VNF instances and/or NS instances, parameters vnfInstanceData and nestedNsInstanceIdData are provided, respectively. See clause 7.3.3.2 [5].
5.	NFVO sends to NM an InstantiateNsResponse with parameter lifecycleOperationOccurrenceId providing the identifier of the NS lifecycle operation occurrence (see clause 7.3.3.3 [5]).
6.	NFVO sends to NM a Notify (see clause 7.4.3 [5]) carrying an NsLifecycleChangeNotification information element with attributes nsInstanceId, lifecycleOperationOccurrenceId, operation = "NsInstantiation", and notificationType = "start" to indicate the start of the NS instantiation (see clause 8.3.2.2 [5]).
7.	NFVO sends to NM a Notify (see clause 7.4.3 [5]) carrying an NsLifecycleChangeNotification information element with attributes nsInstanceId, lifecycleOperationOccurrenceId, operation = "NsInstantiation", and notificationType = "result" to indicate the end result of the NS instantiation. According to the results of the NS instantiation, additional information is provided in the notification with parameters affectedVnf, affectedPnf, affectedVl, affectedVnffg, affectedNs and affectedSap (see clause 8.3.2.2 [5]).
NM
NFVO
3. Notify
5. InstantiateNsResponse
6. Notify
7. Notify
1. CreateNsIdentifierRequest
2. CreateNsIdentifierResponse
4. InstantiateNsRequest

Figure 4.4.1-1: NS instantiation

	7th change

[bookmark: _Toc532316902]4.5.1	NSD on-boarding
Figure 4.5.1-1 depicts a procedure for on-boarding an NSD in the NFVO. Associated descriptors (VLD and VNFFGD), that are part of the NSD, are on-boarded at the same time. All descriptors needed by the NSD: VNFD, PNFD and NSD for nested NSs shall be on-boarded before being able to successfully on-board the NSD.
1. NM sends OnboardUploadNsdRequest to NFVO with nsd parameter representing the NSD to be on-boarded and list of userDefinedData key-value pairs providing user defined data for the NSD nsdInfoId parameter representing the NSD information object associated with the NSD to be on-boarded (see clause 7.2.2 [5]).
2.	NFVO sends OnboardUploadNsdResponse to NM with the nsdInfoId identifier of the on-boarded instance of the NSD (see clause 7.2.2.4 [5]).
3.	NFVO sends to subscribers a Notify (see clause 7.2.13 [5]) carrying NsdOnBoardingNotification information element with attributes nsdInfoId and nsdId to indicate on-boarding of NSD (see clause 8.2.6 [5]).
[image: figure_4]
Figure 4.5.1-1: NSD on-boarding procedureNM
NFVO
1. UploadNsdRequest
2. UploadNsdResponse
3. Notify

	8th change

[bookmark: _Toc532316905]4.5.4	NSD querying
Figure 4.5.4-1 depicts the procedure of querying NSD information through the Os-Ma-nfvo reference point (see clause 7.2.7 [5]).
1. NM sends to NFVO a QueryNsdInfoRequest with parameters filter and attributeSelector used to filter the NSDs on which the query applies and the attributes that will be returned for the instances of NSD(s) matching the filter (see clause 7.2.7.2 [5]).
2.	NFVO sends to NM a QueryNsdInfoResponse with parameter queryResult providing the information that is selected according to parameters filter and attributeSelector (see clause 7.2.7.3 [5]). The result of the operation indicates if it has been successful or not with a standard success/error result.
NM
NFVO
1. QueryNsdRequest
2. QueryNsdResponse

Figure 4.5.4-1: Query NSD information through Os-Ma-nfvo NM
NFVO
1. QueryNsdInfoRequest
2. QueryNsdInfoResponse

[bookmark: _Toc532316906]4.5.5	NSD deletion
Figure 4.5.5-1 depicts a procedure for deletion of one or more NSD(s). It is possible to delete only a single version of an NSD or all versions. An NSD can only be deleted when there is no instantiated NS using it. An NSD in the deletion pending state can no longer be enabled, disabled or updated. It is not possible to instantiate NS(s) using an NSD in the deletion pending state.
1. NM sends DeleteNsdRequest to NFVO with list of nsdInfoId parameter representing the identifier(s) of on-boarded NSD to be deleted and an optional applyOnAllVersions parameter indicating if the delete operation is to be applied on all versions of this NSD. By default, if applyOnAllVersions parameter is not present, the request applies only on the current NSD version. (see clause 7.2.6 [5]).
2.	NFVO sends DeleteNsdResponse to NM with list of deletedNsdInfoId parameter representing the identifier(s) of deleted NSD(s) to indicate the result of the operation (see clause 7.2.6.4 [5]).
3.	NFVO sends to subscribers a Notify (see clause 7.2.13 [5]) carrying NsdChangeNotification information element with attributes nsdInfoId, changeType, operationalState and deletionPending to indicate a change of status of NSD (see clause 8.2.7 [5]).
[image: figure_4]
Figure 4.5.5-1: NSD deletion procedure
[bookmark: _Toc532316907]4.5.6	NSD updating
Figure 4.5.6-1 depicts a procedure for updating an already on-boarded NSD, creating a new version of the NSD. The procedure can also be used to update the userDefinedData of an existing NsdInfo information element without creating a new version of the NSD. The previous versions of the NSDs are not modified. It is possible to add (remove) constituent descriptors (i.e. VNFDs, PNFDs, nested NSDs, VLDs, VNFFGDs and Service Access Point Descriptors (SAPDs)) to (from) an NSD via the Update NSD operation. This is done by changing the various descriptor references in the new NSD. For example, to add VNFDs to an NSD, the NM adds corresponding VNFD identifiers to the list of vnfdIds in the new NSD. To remove VNFDs, the NM simply does not include the vnfdIds (of the VNFDs to be removed) in the new NSD.
1. NM sends UpdateNsdInfoRequest to NFVO with nsdInfoId parameter representing the identifier of on-boarded NSD to be updated, an optional (only present if the NSD itself is updated) nsd parameter representing the new NSD to be created and list of userDefinedData key-value pairs optional parameter representing the user defined data to be updated (for existing keys, the value is replaced). At least one of the two parameters (nsd or userDefinedData) needs to be present. If nsd is not present, the operation is used only to update existing or add additional user defined data using the userDefinedData parameter (see clause 7.2.5 [5]).
2.	NFVO sends UpdateNsdInfoResponse to NM with nsdInfoId parameter representing the identifier of the updated NSD to indicate the result of the operation (see clause 7.2.5.4 [5]).
3.	NFVO sends to subscribers a Notify (see clause 7.2.13 [5]) carrying NsdChangeNotification information element with attributes nsdInfoId, changeType, and operationalState and deletionPending to indicate a change of status of NSD (see clause 8.2.7 [5]).
[image: figure_4]
Figure 4.5.6-1: NSD updating procedureNM
NFVO
1. UpdateNsdInfoRequest
2. UpdateNsdInfoResponse
3. Notify

	9th change

[bookmark: _Toc532316909]4.5.8	Notify operation for NSD management changes
The Figure 4.5.8-1 depicts a procedure of delivery of notifications related to NSD management changes.
1. 	NFVO sends Notify message to the NM according to the clause 7.2.13 in [5]. This operation delivers to the NM the notifications related to NSD Management changes. In order to receive notifications, the NM shall perform an explicit Subscribe operation beforehand.

Figure 4.5.8-1: Procedure for the Notify operation for NSD management changes

The following notifications can be sent by this operation:
-	NsdOnBoardingNotification. See clause 8.2.6 in [5].
The notification contains the following parameters:
- 	nsdInfoId: Identifier of the on-boarded instance of the NSD
-	nsdId: Identifies the NSD being on-boarded.
-	NsdChangeNotification. See clause 8.2.7 in [5].
The notification contains the following parameters:
-	nsdInfoId:	Identifier of the on-boarded instance of the NSD.
-	changeType:	It categorizes the type of change. Possible values can be "change of operational state of an on-boarded NSD", "NSD in deletion pending", and "deletion of an NSD".
-	operationalState:	New operational state of the NSD. Only present when changeType is "change of operational state".
-	deletionPending:	Indicates if the deletion of the NSD instance has been requested but the NSD still being used by instantiated NSs. Only present when changeType is "NSD in deletion pending".

	10th change

[bookmark: _Toc532316911]4.6.1	PNFD on-boarding
Figure 4.6.1-1 depicts a procedure for on-boarding a PNFD in the NFVO, making it available to be used by NSDs.
1. NM sends OnboardUploadPnfdRequest to NFVO with pnfd parameter representing the PNFD to be on-boarded and pnfdInfoId parameter representing the PNFD information object associated with the PNFD to be on-boarded and pnfdArchive parameter identifying an archive file containing the PNFDlist of userDefinedData key-value pairs providing user defined data for the PNFD (see clause 7.2.8 [5]).
2.	NFVO sends OnboardUploadPnfdResponse to NM with the pnfdInfoId identifier of the on-boarded instance of the PNFD (see clause 7.2.8.4 [5]).
[image: figure_4]
Figure 4.6.1-1: PNFD on-boarding procedureNM
NFVO
1. UploadPnfdRequest
2. UploadPnfdResponse

[bookmark: _Toc532316912]4.6.2	PNFD updating
Figure 4.6.2-1 depicts a procedure for updating a PNFD, creating a new version of already on-boarded PNFD. The procedure can also be used to update the userDefinedData of an existing PnfInfo information element without creating a new version of the PNFD. The previous versions of the PNFD are not modified.
1. NM sends UpdatePnfdInfoRequest to NFVO with pnfdInfoId parameter representing the identifier of on-boarded PNFD to be updated, an optional (only present if the PNFD itself is updated) pnfd parameter representing the new PNFD to be created and list of userDefinedData key-value pairs optional parameter representing the user defined data to be updated (for existing keys, the value is replaced). At least one of the two parameters (pnfd or userDefinedData) needs to be present. If pnfd is not present, the operation is used only to update existing or add additional user defined data using the userDefinedData parameter (see clause 7.2.9 [5]).
2.	NFVO sends UpdatePnfdInfoResponse to NM with pnfdInfoId parameter representing the identifier of the updated PNFD to indicate the result of the operation (see clause 7.2.9.4 [5]).
[image: figure_4]
Figure 4.6.2-1: PNFD updating procedureNM
NFVO
1. UpdatePnfdInfoRequest
2. UpdatePnfdInfoResponse

	11th change

[bookmark: _Toc532316914]4.6.4	PNFD querying
Figure 4.6.4-1 depicts a procedure to query the NFVO concerning details of one or more PNFDs.
1. NM sends QueryPnfdInfoRequest to NFVO with filter and attributeSelector used to filter the PNFD(s) on which the query applies, based on the attributes of PnfdInfo and select the information attributes of PnfdInfo that are requested to be returned (see clause 7.2.11 [5]).
2.	NFVO sends QueryPnfdInfoResponse to NM with parameter queryResult providing the information of the on‑boarded PNFD matching the input filter that is selected according to attributeSelector (see clause 7.2.11.4 [5]).
[image: figure_4]
Figure 4.6.4-1: PNFD querying procedureNM
NFVO
1. QueryPnfdInfoRequest
2. QueryPnfdInfoResponse

	[bookmark: _Toc462827461][bookmark: _Toc458429818]End of changes

image1.emf
NFVO NM

1. OnboardVnfPackageRequest

2. OnboardVnfPackageResponse

NFVO
NM
1. OnboardVnfPackageRequest
2. OnboardVnfPackageResponse

image2.png
NM NFVO

| 1. DeleteVnfPackageRequest !
1. DeleteVnfPackageRequest |

| 2 DeleteVnfPackageResponse |
< 2 DefeteVinfPackageResponse |

image3.png
NM

NFVO

| 1. QueryOnboardedVifPkglnfoRequest _ |
1. QueryCnboardedVifPkginfoRequest |

| 2. QueryOnboardedVnfPkglnfoResponse |
<2 QueryOnboardedVnfPhginfoResponss |

image4.png
NM NFVO

| 1. QueryOnboardedVifPkglnfoRequest _ !
1. QueryCnboardedVinfPkginfoRequest |

| 2. QueryOnboardedVnfPkginfoResponse !
<2 QueryOnboardedVnPkginfoResponse |

1 3. FetchOnboardedVnfPackageRequest _!
1.3 FetchOnboardedViPackageRequest_{

|_ 4. FatchOnboardedVnfPackageRespanse |
i 4 FetchOnboardedVnfPackageResponse |

image5.png
NM NFVO

| 1. FetchOnboardedVnfPackageArtifactsRequest __ |

_ 2. FetchOnboardsdVnfPackagsArifactsResponss |

image6.png
NM NFVO

| 1. OnboardNsdRequest !
1 OnboardNsdRequest |

|_ 2. OnboardNsdResponse |
<2 OnboardNisdResponse |

| 3. Natify i
ety

image7.png
NM NFVO

| 1. DeleteNsdRequest __|
1. DeleteNsdRequest |

|_ 2 DeleteNsdResponse |
<2 DefeteNsdResponse |

| 3. Natify i
ety

image8.png
NM NFVO

| 1. UpdateNsdRequest __|
1 UpdatelsdRequest |

|_ 2. UpdateNsdResponse |
<2 UpdatelsdResponse |

| 3. Natify i
ety

image9.emf
NFVO NM

1. Notify

oleObject2.bin

image10.png
NM

NFVO

| 1. OnboardPnfdRequest _!
1. OnboardPnfdRequest |

|_ 2. OnboardPrfdResponse |
1< 2 OnboardPnfdResponse |

image11.png
NM

NFVO

| 1. UpdatePnfdRequest _ |
1 UpdatePrfdRequest |

|_ 2. UpdatePnfdResponse |
<2 pdatePnfResponse |

image12.png
NM

NFVO

| 1. QueryPrfdRequest !
1 QueryPnfdRequest)

| 2. QueryPrfdResponse |
<2 QueryPnidResponse |

