
ITU-Telecommunication Standardization Sector

STUDY GROUP 4

Contribution ______ (WP4/4)

Geneva, Switzerland, ? – ? January, 2001

Questions: 14/4, 15/4, 19/4

Title: Draft Rec. “TMN Guidelines for Defining CORBA Managed Objects”

Source: Editors

Contact: Keith Allen
SBC Technology Resources
USA
Tel: +1 512 372 5741
Fax: +1 512 372 5791
E-mail: kallen@tri.sbc.com

Lakshmi Raman
Teraburst
USA
Tel: +1 408 541 1155 x322
Fax: +1 408 541 0439
E-mail: lraman@teraburst.com

ABSTRACT

This draft new recommendation specifies guidelines for defining CORBA-based
interfaces to software objects representing manageable resources in a TMN. It covers
information modeling guidelines, rules for translating models from GDMO, and IDL
style conventions. It also provides an IDL module defining data types, superclasses, and
notifications to be used in CORBA-based information model specifications.

mailto:kallen@tri.sbc.com

DRAFT

Last Modification: 09/18/00 4:29 PM

Question: 14/4

STUDY GROUP 4 – CONTRIBUTION ____

SOURCE*: EDITORs

TITLE: DRAFT NEW RECOMMENDATION X.780: TMN Guidelines for
Defining CORBA Managed Objects

Summary
This draft new Recommendation specifies guidelines for defining CORBA-based
interfaces to software objects representing manageable resources in a TMN. It covers
information modeling guidelines, rules for translating models from GDMO, and IDL
style conventions. It also provides an IDL module defining data types, superclasses, and
notifications to be used in CORBA-based information model specifications.

Source
ITU-T Recommendation X.780 was developed by ITU-T Study Group 4 (1997-2000) and
was approved under the WTSC Resolution 1 procedure on the xx of xx xx.

Keywords
Common Object Request Broker Architecture (CORBA), Interface Definition Language
(IDL), Guidelines for the Definition of Managed Objects (GDMO), Distributed
Processing, TMN Interfaces, Managed Objects, Abstract Syntax Notation One (ASN.1)

Attention: This is not an ITU publication made available to the public, but an internal ITU Document intended only
for use by the Member States of the ITU and by its Sector Members and their respective staff and collaborators in their
ITU related work. It shall not be made available to, and used by, any other persons or entities without the prior written
consent of the ITU.

INTERNATIONAL TELECOMMUNICATION UNION

TELECOMMUNICATION
STANDARDIZATION SECTOR
STUDY PERIOD 1997 - 2000

COM 4-xxx-E
August 2000
Original: English

Foreword

ITU (International Telecommunication Union) is the United Nations Specialized Agency
in the field of telecommunications. The ITU Telecommunication Standardization Sector
(ITU-T) is a permanent organ of the ITU. The ITU-T is responsible for studying
technical, operating and tariff questions and issuing Recommendations on them with a
view to standardizing telecommunications on a worldwide basis.
The World Telecommunication Standardization Conference (WTSC), which meets every
four years, establishes the topics for study by the ITU-T Study Groups which, in their
turn, produce Recommendations on these topics.
The approval of Recommendations by the Members of the ITU-T is covered by the
procedure laid down in WTSC Resolution No. 1.
In some areas of information technology which fall within ITU-T's purview, the
necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to
indicate both a telecommunication administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS
The ITU draws attention to the possibility that the practice or implementation of this
Recommendation may involve the use of a claimed Intellectual Property Right. The ITU
takes no position concerning the evidence, validity or applicability of claimed Intellectual
Property Rights, whether asserted by ITU members or others outside of the
Recommendation development process.
As of the date of approval of this Recommendation, the ITU had/had not received notice
of intellectual property, protected by patents, which may be required to implement this
Recommendation. However, implementers are cautioned that this may not represent the
latest information and are therefore strongly urged to consult the TSB patent database.

� ITU 2000
All rights reserved. No part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm,
without permission in writing from the ITU.

Draft ITU-T Recommendation X.780

vii

Table Of Contents
Foreword ... v
Table Of Contents ...vii
Table Of Figures.. x
Table Of Tables... x
1 Scope .. 1

1.1 PURPOSE ... 1
1.2 APPLICATION .. 2
1.3 DOCUMENT ROADMAP.. 4
1.4 DOCUMENT CONVENTIONS ... 4
1.5 COMPILING THE IDL... 5

2 References .. 6
2.1 NORMATIVE REFERENCES... 6
2.2 ADDITIONAL REFERENCES .. 6

3 Definitions .. 7
4 CORBA Modeling Goals and Requirements.. 8

4.1 GOALS .. 8
4.1.1 Application Interoperability.. 9
4.1.2 Common Usage of CORBA Common Object Services.................................... 9
4.1.3 Information Model Transparency ... 9

4.2 ENTITIES ... 9
4.2.1 Access Granularity.. 10

4.3 PRINCIPLES OF CONTAINMENT AND NAMING.. 10
4.3.1 Naming .. 11
4.3.2 Entity Identification... 12

4.4 MANAGED OBJECT CLASSES... 12
4.5 PACKAGES .. 12
4.6 ATTRIBUTES.. 12

4.6.1 GET and SET... 13
4.6.2 Generic Attribute Get .. 13
4.6.3 Set-valued Attributes ... 13

4.7 CREATION AND DELETION OF MANAGED OBJECTS ... 13
4.7.1 Creation... 13
4.7.2 Deletion ... 14

4.8 INHERITANCE .. 15
5 The Object Model IDL Module.. 15

5.1 THE BASE (TOP) MANAGED OBJECT INTERFACE .. 16
5.1.1 The nameGet() Operation ... 17
5.1.2 The objectClassGet() Operation.. 17
5.1.3 The packagesGet() Operation ... 18
5.1.4 The creationSourceGet() Operation .. 18
5.1.5 The deletePolicyGet() Operation .. 18
5.1.6 The attributesGet() Operation ... 18
5.1.7 The destroy() Operation .. 19

5.2 THE MANAGED OBJECT FACTORY .. 19

ITU-T Recommendation X.780 Draft

viii

5.3 THE NOTIFICATIONS INTERFACE... 20
5.4 THE DATA TYPE DEFINITIONS .. 22
5.5 EXCEPTIONS.. 23

1.1.1 The ApplicationError Exception ... 23
1.1.2 The CreateError Exception .. 24
1.1.3 The DeleteError Exception .. 25

5.6 MACRO DEFINITIONS .. 25
5.7 THE CONSTANT DEFINITIONS.. 26

6 Information Modeling Guidelines .. 26
6.1 MODULES.. 26
6.2 INTERFACES .. 27
6.3 ATTRIBUTES.. 28

6.3.1 Readable Attributes ... 28
6.3.2 Settable Attributes ... 28
6.3.3 Set-valued Attributes ... 28
6.3.4 Exceptions ... 29
6.3.5 Standard Attributes ... 29

6.4 ACTIONS ... 30
6.5 NOTIFICATIONS... 30
6.6 CONDITIONAL PACKAGES ... 31
6.7 BEHAVIOR... 32
6.8 NAME BINDING INFORMATION.. 32
6.9 FACTORIES.. 35

6.9.1 Create Operations ... 35
6.9.2 Factory Finder .. 38

6.10 MANAGED OBJECT CLASS VALUE TYPES ... 38
6.11 CONSTANTS .. 39
6.12 REGISTRATION.. 41
6.13 VERSIONING OF CORBA/IDL SPECIFICATIONS.. 41

7 GDMO Translation... 42
7.1 MANAGED OBJECT CLASSES... 42
7.2 PACKAGES .. 43
7.3 ATTRIBUTES.. 44
7.4 ATTRIBUTE GROUPS ... 45
7.5 ACTIONS ... 45
7.6 NOTIFICATIONS... 46
7.7 BEHAVIORS... 46
7.8 NAME BINDINGS ... 47
7.9 PARAMETERS .. 48

7.9.1 ACTION-INFO and ACTION-REPLY... 48
7.9.2 EVENT-INFO and EVENT-REPLY... 48
7.9.3 Context-Keyword... 50
7.9.4 SPECIFIC-ERROR.. 50

7.10 ASN.1 DATA TYPES ... 51
7.10.1 Basic Types.. 52
7.10.2 Sequence.. 52

Draft ITU-T Recommendation X.780

ix

7.10.3 Sequence of.. 52
7.10.4 Set of.. 52
7.10.5 Choice.. 52
7.10.6 Object Identifier (OID).. 53
7.10.7 Object Instance.. 53

8 Style Idioms for CORBA IDL Specifications .. 53
8.1 USE CONSISTENT INDENTATION.. 53
8.2 USE CONSISTENT CASE FOR IDENTIFIERS.. 54
8.3 FOLLOW JIDM APPROACH FOR IMPORT .. 54
8.4 USE JIDM APPROACH FOR OPTIONAL AND CHOICE 55
8.5 USE A CONSISTENT TYPE SUFFIX.. 55
8.6 USE A CONSISTENT SUFFIX FOR SEQUENCE TYPES. .. 55
8.7 USE A CONSISTENT SUFFIX FOR SET TYPES. ... 56
8.8 USE A CONSISTENT SUFFIX FOR OPTIONAL TYPES.. 56
8.9 ARRANGE OPERATION PARAMETERS IN A CONSISTENT MANNER......................... 56
8.10 ASSUME NO GLOBAL IDENTIFIER SPACES... 56
8.11 MODULE LEVEL DEFINITIONS... 56
8.12 USE OF EXCEPTIONS AND RETURN CODES .. 56
8.13 EXPLICIT VS. IMPLICIT OPERATIONS ... 56
8.14 DON’T CREATE A LARGE NUMBER OF EXCEPTIONS.. 56

9 Compliance and Conformance ... 56
9.1 STANDARDS DOCUMENT COMPLIANCE... 56
9.2 SYSTEM CONFORMANCE... 57
9.3 CONFORMANCE STATEMENT GUIDELINES .. 57

Annex A The Object Model CORBA IDL Module ... 59
// MODULE ITUT_X780... 59
// IMPORTED TYPES... 59
// FORWARD DECLARATIONS AND TYPEDEFS .. 59
// ENUMERATED TYPES.. 62
// STRUCTURES AND UNIONS... 63
// EXCEPTIONS.. 68
// MANAGED OBJECT INTERFACE ... 70
// MANAGED OBJECT FACTORY INTERFACE.. 71
// NOTIFICATIONS INTERFACE... 72
// MACROS ... 86

Annex B Network Management Constant Definitions ... 87
// APPLICATIONERRORCONST MODULE.. 87
// CREATEERRORCONST MODULE .. 87
// DELETEERRORCONST MODULE... 88
// PROBABLECAUSECONST MODULE .. 89

ITU-T Recommendation X.780 Draft

x

 Table Of Figures
Figure 1. CORBA Based Specification with Requirements Analysis and Design 3
Figure 2. Example of Containment .. 11
Figure 3. Diamond Inheritance .. 27

Table Of Tables
Table 1. Standard Attributes ... 30

Draft ITU-T Recommendation X.780

1

Recommendation X.780

TMN Guidelines for Defining CORBA Managed Objects
(2001)

1 Scope
The TMN architecture defined in Recommendation M.3010 –2000 introduces concepts
from distributed processing and includes the use of multiple management protocols. The
initial TMN interface specifications for intra- and inter-administration interfaces were
developed using the Guidelines for the Definition of Managed objects (GDMO) notation
from OSI Systems Management with Common Management Information Protocol
(CMIP) as the protocol. The inter-administration interface (X) included both CMIP and
CORBA GIOP/IIOP as possible choices at the application layer.

CORBA, a distributed processing technology, is being considered for use in the TMN
communication architecture primarily due to its acceptance by the Information
Technology industry. This acceptance is expected to enhance the availability of
CORBA-based interfaces due to better development tools and wide-spread expertise in
developing CORBA-based interfaces. This technology, developed by the Object
Management Group (OMG), is also being considered by multiple industries.
Specifications using this technology provide support for standard application
programming interfaces (APIs) and language bindings to programming languages, and
they also facilitate software portability. The interoperability solutions offered by the
object request broker combined with the Inter-ORB protocol address interoperability
between client and server. While CMIP and information models provide solutions for
interoperability between manager and agent systems, CORBA defines inter-object
interactions where the objects may be distributed.

1.1 Purpose
Several groups are developing network management specifications that use CORBA
modeling techniques with IDL as the notation along with CORBA services. The scope
of this standard is to define guidelines suitable for use in the specification of
interoperable CORBA-based network management interfaces. Previous standards for
CORBA-based network management interfaces have mainly focused on TMN “X”
interfaces, which are interfaces between administrations (carriers). The demands placed
on these interfaces are different from those used “inside” an administration, “Q”
interfaces. The scope of this Recommendation covers all interfaces in the TMN where
CORBA may be used. It is expected that not all capabilities and models defined here are
required in all TMN interfaces. This implies that the framework can be used for

ITU-T Recommendation X.780 Draft

2

interfaces between management systems at all levels of abstractions (inter and intra-
administration) as well as between management systems and network elements.

ITU-T Recommendation Q.816[1] defines a set of services that are required for CORBA-
based TMN interfaces. This Recommendation defines guidelines for specifying
information models written in CORBA IDL to which the services are applicable. It also
provides rules for translating existing GDMO models to IDL. Finally, it defines some
base IDL code for use by all CORBA-based TMN information models. The combination
of this Recommendation and Q.816 form a framework for defining and implementing
CORBA-based TMN interfaces.

Use of a common framework on telecommunications management interfaces has several
advantages. Some examples are: facilitating reuse of models that are developed to meet
the generic requirements of telecommunications; profiling CORBA services for use by
the telecommunications industry; easing the definition of new services for TMN; reusing
the semantics of the existing rich set of models; and harmonizing the modeling approach
across groups using a single source similar to Recommendations X.720, X.721 and X.722
for CMIP. Re-using a common approach to modeling resources and re-using a generic
information model for a variety of network technologies and network management
applications will speed the introduction of new network services while keeping network
management system development costs down.

The telecommunications industry has invested a great deal of time and energy in the
development of information models for the CMIP network management protocol. A
primary goal of the TMN CORBA framework is the re-use of these information models
by enabling their translation to CORBA Interface Definition Language (IDL) with little
change in semantics. As a result, initial IDL information models are expected to be
derived from CMIP models.

1.2 Application
Recommendation M.3020 defines three phases in the development of a TMN
specification. The three phases are Requirements, Analysis and Design. Figure 1 shows
this process and the scope of this Recommendation for developing CORBA based
interface specification relative to this process.

Draft ITU-T Recommendation X.780

3

Requirements

Analysis

CMIP
Design

CORBA
Design

Other
Paradigm

Design

(a) (b)

(c)

paradigm
independent

paradigm
specific

Figure 1. CORBA Based Specification with Requirements Analysis and Design

The requirements and analysis are specified using an approach that is not specific to a
network management technology paradigm. The output from the analysis phases is used
for development in the design phase. In this phase, network management technology
specific features are used to define information models. The arrows marked as (a) and (b)
show that the analysis output is mapped to GDMO/ASN.1 based model to use with CMIP
or IDL models to use with CORBA/IIOP, respectively. There are no prescriptive rules
available at this time to generate these models. It may be possible to develop such rules in
the future in M.3020.

This Recommendation addresses the reuse of existing models developed in the CMIP
paradigm if CORBA/IIOP is to be used instead of CMIP. The arrow shown as (c) is
addressed by this Recommendation.

In developing the transformation from GDMO/ASN.1 definitions to CORB/IDL two
approaches are possible. In the first approach, every element of the syntax is translated to
CORBA/IDL using a well-specified algorithm or a prescriptive definition. This method,
is the one taken with Joint Inter-Domain Management (JIDM) where a gateway can be
used to support interoperability. The guidelines in this Recommendation address the
design phase for applications where the translation from the existing GDMO definitions
preserves the semantics and also uses the features of CORBA. The transformation is not
completely prescriptive. This approach is used not for inter-working using gateways but
to preserve the requirements and semantics of the models developed to meet the
telecommunication context. This is applied when the managing and managed systems are
designed to communicate using CORBA/IIOP.

In addition to the recommendations for translating from GDMO information models
defined here, Recommendation Q.816 defines recommendations for CORBA services to
be used for managing telecommunications networks. Q.816 aspects of the framework are
applicable irrespective of how CORBA based specifications are developed (i.e., using the
path designated as (b) or (c) in Figure 1).

ITU-T Recommendation X.780 Draft

4

In addition to taking advantage of CMIP information models, another purpose of the
guidelines is to take advantage of CORBA. The framework leverages the functions
defined in the CORBA specifications, including a set of Common Object Services. Also,
these guidelines re-use CORBA approaches and design patterns wherever they are
appropriate. Finally, while re-using existing models is important, it is equally important
that the framework support the development of new models. These guidelines do not
require a GDMO model to be developed prior to the development of an IDL model. In
fact, developing a new IDL information model for use within this framework is
straightforward and guidelines for doing so are provided.

ITU-T Recommendation M.3120 [19] provides a CORBA IDL version of the generic
network information model originally defined in Recommendation M.3100. The IDL
version follows the object modeling guidelines defined here and is designed to use
CORBA-based TMN services defined in ITU-T Recommendation Q.816.

1.3 Document Roadmap
This document has the following structure:

Section 1. Introduction, document roadmap, and updates.
Section 2. References.
Section 3. Definitions of abbreviations used throughout the rest of the document.
Section 4. Requirements for the object modeling guidelines. These are the design

goals the guidelines must meet.
Section 5. Description of the CORBA IDL module that defines interfaces to be

used and sub-classed in network management interface specifications.
The actual IDL is in Annexes A and B.

Section 6. Guidelines for defining CORBA-based TMN information models.
These guidelines are specifically designed for IDL objects using the
TMN CORBA-based services in Recommendation Q.816.

Section 7. Guidelines for translating GDMO information models to IDL models
suitable for use with the TMN CORBA-based services in
Recommendation Q.816.

Section 8. Style idioms for CORBA IDL network management interface
specifications.

Section 9. Compliance and conformance guidelines.
Annex A. The IDL module for the modeling guidelines specification. This

annex is normative.
Annex B. Additional IDL defining constants used by the modeling guidelines.

This annex is normative.

1.4 Document Conventions
A few conventions are followed in this document to make the reader aware of the
purpose of the text. While most of the document is normative, paragraphs succinctly
Editor’s note – This statement on normative aspect may need to be modified based on
ITU rules.

Draft ITU-T Recommendation X.780

5

stating mandatory requirements to be met by a management system (managing and/or
managed) are preceded by a boldface “R” enclosed in parentheses, followed by a short
name indicating the subject of the requirement, and a number. For example:

(R) EXAMPLE-1 An example mandatory requirement.

Requirements that may be optionally implemented by a management system are likewise
preceded by an “O” instead of an “R.” For example:

(O) OPTION-1 An example optional requirement.

The requirement statements are used to create compliance and conformance profiles.

Many examples of CORBA IDL are included in this document, and IDL specifying the
data types and base classes are included in normative annexes. The IDL is presented in a
9-point courier typeface:

// Example IDL
interface foo {

void operation1 ();
};

Instructions for extracting the IDL from an electronic version of this document and
compiling it are presented in the next section.

1.5 Compiling the IDL
An advantage of using IDL to specify network management interfaces is that IDL can be
“compiled” into programming code by tools that accompany an ORB. This actually
automates the development of some of the code necessary to enable network management
applications to interoperate. This document has two annexes that contain code that
implementers will want to extract and compile. Both Annex A and Annex B are
normative and should be used by developers implementing systems that conform with
this standard. The IDL in this document has been checked with two compilers to ensure
its correctness. A compiler supporting the CORBA 2.3 specification must be used.

The annexes have been formatted to make it simple to cut and paste them into plain text
files that may then be compiled. Below are tips on how to do this.

1. Cutting and pasting seems to work better from the Microsoft® Word® version of this
document. Cutting and pasting from the Adobe® Acrobat® file format seems to
include page headers and footers, which cannot be compiled.

2. All of Annex A, beginning with the line “/* This IDL code…” through the end should
be stored in a file named “itut_x780.idl” in a directory where it will be found by the
IDL compiler.

3. All of Annex B, beginning with the line “/* This IDL code…” through the end should
be stored in a file named “itut_x780Const.idl” in the same directory as the file
containing Annex A.

ITU-T Recommendation X.780 Draft

6

4. The headings embedded in these annexes need not be removed. They have been
encapsulated in IDL comments and will be ignored by the compiler.

5. Comments that begin with the special sequence “/**” are recognized by compilers
that convert IDL to HTML. These comments often have special formatting
instructions for these compilers. Those that will be working with the IDL may want
to generate HTML as the resulting HTML files have links that make for quick
navigation through the files.

6. The annexes have been formatted with tab spaces at 8-space intervals and hard line
feeds that should enable almost any text editor to work with the text.

2 References

2.1 Normative References
The following ITU-T Recommendations and other references contain provisions which,
through reference in this text, constitute provisions of this Recommendation. At the time
of publication, the editions indicated were valid. All Recommendations and other
references are subject to revision; all users of this Recommendation are therefore
encouraged to investigate the possibility of applying the most recent edition of the
Recommendations and other references listed below. A list of the currently valid ITU-T
Recommendations is regularly published.

[1] ITU-T Recommendation Q.816, CORBA-Based TMN Services.
[2] The Object Management Group (OMG), “The Common Object Request Broker:

Architecture and Specification”, OMG Document formal/99-10-07, Revision 2.3.1,
October, 1999.

[3] The Object Management Group (OMG), “JIDM Interaction Translation,” Edition
4.31, OMG TC Document telecom/98-10-10, October 1998.

2.2 Additional References
The following standards contain information that was used in the development of these
guidelines. As stated in the introduction, a primary design goal of these guidelines is to
enable the re-use of existing network management information models, at least without
significant semantic changes. These documents provide many of the details on the ITU-
T’s CMIP framework, and therefore define some of the functionality the CORBA object
modeling guidelines must support.

[4] ITU-T Recommendation X.703 (1997), Information Technology – Open Distributed
Management Architecture, October, 1997.

[5] CCITT Recommendation X.720 (1992) | ISO/IEC 10165-1 : 1992, Information
Technology – Open Systems Interconnections – Structure of Management
Information: Management Information Model.

Draft ITU-T Recommendation X.780

7

[6] CCITT Recommendation X.721 (1992) | ISO/IEC 10165-2 : 1992, Information
Technology – Open Systems Interconnections – Structure of Management
Information: Definition of Management Information.

[7] CCITT Recommendation X.722 (1992) | ISO/IEC 10165-4 : 1992, Information
Technology – Open Systems Interconnections – Structure of Management
Information: Guidelines for the Definitions of Managed Objects.

[8] ITU-T Recommendation X.720 Cor. 1, Corrigendum 1 to CCITT Recommendation
X.720, February, 1994.

[9] ITU-T Recommendation X.721 Cor. 1, Corrigendum 1 to CCITT Recommendation
X.721, February, 1994.

[10] ITU-T Recommendation X.721 Cor. 2, Corrigendum 2 to CCITT Recommendation
X.721, October, 1996.

[11] ITU-T Recommendation X.721 Am. 1, Amendment 1 to CCITT Recommendation
X.721, November, 1995.

[12] ITU-T Recommendation X.722 Cor. 1, Corrigendum 1 to CCITT Recommendation
X.722, October, 1996.

[13] ITU-T Recommendation X.722 Cor. 2, Corrigendum 2 to CCITT Recommendation
X.722, January, 2000.

[14] ITU-T Recommendation X.722 Am. 1, Amendment 1 to CCITT Recommendation
X.722, November, 1995.

[15] ITU-T Recommendation X.722 Am. 2, Amendment 2 to CCITT Recommendation
X.722, August, 1997.

[16] ITU-T Recommendation X.722 Am. 3, Amendment 3 to CCITT Recommendation
X.722, August, 1997.

[17] CCITT Recommendation X.733 (1992) | ISO/IEC 10164-4 : 1992, Information
Technology – Open Systems Interconnection – Systems Management: Alarm
Reporting Function.

[18] ITU-T Recommendation M.3010 (2000), Principles for a Telecommunications
management network, February, 2000.

[19] ITU-T Recommendation M.3120, CORBA-Based Generic Network Information
Model.

[20] ITU-T Recommendation Q.821 (2000), Stage 2 and Stage 3 description for the Q3
interface - Alarm Surveillance,(to be published).

3 Definitions
This section provides definitions for acronyms used throughout the rest of the document.

ASN.1 Abstract Syntax Notation #1.
ATM Asynchronous Transfer Mode.
CMIP Common Management Information Protocol.
CORBA Common Object Request Broker Architecture.
COS Common Object Services.

ITU-T Recommendation X.780 Draft

8

DN Distinguished Name.
EMS Element Management System.
GDMO Guidelines for the Definition of Managed Objects.
GIOP General Interoperability Protocol.
HTML Hypertext Markup Language.
ID Identifier.
IDL Interface Definition Language.
IIOP Internet Interoperability Protocol.
IOR Interoperable Object Reference.
ITU-T International Telecommunication Union – Telecom.
JIDM Joint Inter-Domain Management.
MO Managed Object.
NE Network Element.
NMS Network Management System.
OAM&P Operations, Administration, Maintenance, and Provisioning.
ORB Object Request Broker.
OID Object Identifier.
OMG Object Management Group.
OSI Open Systems Interconnection.
PDU Protocol Data Unit.
QoS Quality of Service.
RDN Relative Distinguished Name.
TMN Telecommunications Management Network.
TTP Trail Termination Point.
UID Universal Identifier.
UML Unified Modeling Language.
UTC Universal Time Code.

4 CORBA Modeling Goals and Requirements
This section describes the key goals for modeling TMN resources using CORBA, and the
requirements that the modeling guidelines must meet to support these goals. Section 4.1
introduces the goals of the modeling guidelines. Subsequent sub-sections then provide
terminology and requirements. The requirements in Section 4 are requirements that the
framework must satisfy. They are based on the telecommunications management needs.
Sections 5, 6, 7, and 8 then describe modeling guidelines that meet these needs and define
how to achieve the requirements of section 4 by using CORBA in a certain way. The
rules in Section 5, 6, 7, and 8 on how to use CORBA also are referred to as requirements.

4.1 Goals
This document specifies guidelines for defining CORBA managed objects for use on
interfaces supported by telecommunications network management systems and network
elements. Some key goals of the modeling guidelines are:

• Application Interoperability
• Common Usage of CORBA Common Object Services

Draft ITU-T Recommendation X.780

9

• Information Model Transparency

This section elaborates on these three goals.

4.1.1 Application Interoperability
A key goal of the TMN architecture, and in particular the information architecture, is to
promote a standard framework for providing interoperability and information exchange
between systems from a diverse set of network management system suppliers.
Interoperability between systems involves many aspects of development. At its lowest
layer, a common communication mechanism must be in place to support a common
syntax, the establishment of connectivity and the exchange of operation requests/replies
between systems. This aspect of interoperability is inherently supported by the CORBA
specification.

For TMN, there is the need to provide application interoperability. That is, management
systems from diverse suppliers will be utilized within a single administration's TMN to
support different functions necessary to support management of its networks. To
simplify integration of these various suppliers’ systems, they must agree on the semantics
of the information being exchanged. This is accomplished with the specification of an
information model. This document specifies the rules for defining these information
models.

4.1.2 Common Usage of CORBA Common Object Services
A second aspect of these guidelines is the reliance upon a common usage and profiling of
the distributed processing environment of choice. Rather than re-defining the interface
capabilities needed to support common network management functions such as object
naming and notification filtering with each information model, these guidelines rely upon
a set of support services. These support services enable the information models to be
simpler, and also enhance interoperability. The support services required for CORBA
based interfaces are specified in Recommendation Q.816.

4.1.3 Information Model Transparency
If CORBA is used in places within the TMN architecture where existing information
models (e.g. GDMO) are well established, then the framework must support the reuse of
those models without any major changes.

A single standard way to map these GDMO information models to OMG IDL is needed
so that the same models are always presented by the application protocol to the
application with the same set of services (capabilities).

4.2 Entities
An entity type describes a type of “thing” in the real world with an independent
existence. An entity type may be an object with a physical existence – a circuit pack,
managed element, or slot – or it may be an object with a conceptual existence – a
subnetwork, termination point, or link. Each entity type has particular properties, called
attributes that describe it.

ITU-T Recommendation X.780 Draft

10

An entity instance (or entity) describes a particular instance of an entity type (e.g.,
Circuit Pack #1). Each entity’s attributes are described by particular values that
represent the state of that instance. In addition, each entity must be uniquely identifiable.

In CORBA, an entity may have many manifestations. An entity may be represented by
an IDL data structure, a value type, an interface type or a component. This document
describes how CORBA is utilized to model entities.

4.2.1 Access Granularity
In the context of TMN operations, granularity defines the level of abstraction that is
exposed between systems. Access Granularity identifies the level at which entities may
be accessed (i.e., how information is exposed via an interface). For CORBA, each
CORBA object is provided a unique address known as an Interoperable Object Reference
(IOR). The IOR provides an address to the client system identifying which server system
to connect to for communication with the server side CORBA object.

In CORBA, it is possible to define different access abstractions (i.e., access granularity)
to the Entities defined for TMN (e.g., ITU-T Rec. M.3100). Two different access
abstractions are defined here:
1) Instance granularity: Each entity has its own IOR. For the creation of new Entities,

this implies the instantiation of a new CORBA object.
- 1 IOR / entity instance

For example, an entity type in the ATM domain is an atmLink. In the Instance
Grained approach, a CORBA object is defined that supports the same attributes as the
entity type which it represents. For each instance of the atmLink, an independent
CORBA object is created. Thus each atmLink can be uniquely addressed by its IOR.

2) Application-specific granularity: Instances of a well-defined set of entity types are
accessed via a single IOR (a single interface).
-1 IOR / Family (set of) entity types
Bulk operations are defined in application-specific CORBA IDL interfaces, which
pass identities and states of managed entities using operation parameters employing
lists of IDL structured types.

The CORBA object modeling guidelines defined in this specification are applicable to the
specification of managed object interfaces that support instance-grained access
granularity. TMN standards may also be defined using application-specific access
granularity. Such interface specifications, however, are outside the scope of this
Recommendation.

4.3 Principles of Containment and Naming
Containment is a logical representation of how entities of one type contain entities of
another type. A Containment Tree defines the relationship between the entity instances.
An entity instance is contained by one and only one containing entity instance.
Containing entity instances may themselves be contained in another entity instance

Draft ITU-T Recommendation X.780

11

forming a directed graph. The directed graph forms what is called the Naming (or
Containment) Tree.

The containment relationship can be used to model real-world hierarchies of parts (e.g.,
assembly, sub-assemblies and components) or real-world organizational hierarchies (e.g.,
company name, org. name).

An example of a possible containment tree is shown in Figure 2 below.

root

Managed
Element

Trail
Termination

Point
Equipment

Eq. Holder

Containing
Entity

Contained
Entity

Figure 2. Example of Containment

4.3.1 Naming
One purpose of containment relationships is for naming entities. Names are designed to
be unique in a specified context; for TMN, this context is determined by the containing
entity instance.

An entity that is named in the context of another entity is termed a "Subordinate Entity".
The entity that establishes the naming context (this term is used in general and should not
have the direct connotation of a COS Naming Service Naming Context) for other entities
is called the "Superior Entity".

A "Subordinate Entity" is named by the combination of:
− The name of its "Superior Entity".
− Information uniquely identifying this “Subordinate Entity” within the scope of its

superior entity.

The name of an entity that is unique in a local naming context may not be so in some
larger naming context. However, if the local naming context is unique in the larger
context, a local name can be made unique by qualifying it by its naming context; the
name of the naming context is used as the qualifier. This arrangement can be visualized
as a directed graph with each edge (or arrow) pointing from a named object to a naming
context.

ITU-T Recommendation X.780 Draft

12

The naming context can itself be recursively qualified by another naming context, so the
complete naming structure can be visualized as a single-rooted hierarchy. This hierarchy
is called the naming tree. Thus "Superior Entities" become the naming contexts and their
names become the names of the contexts. An object name need only be unique within
the context of its superior Entities; within a wider context its name is always qualified by
names of it superior Entities.

4.3.2 Entity Identification
Because a “Superior Entity” may contain multiple “Subordinate Entities” of the same
type, each of these contained entities of the same type must be distinguishable relative to
their containing entity. The relative name of an entity within its containing entity is
called an entity’s Relative Distinguished Name (RDN). For example, there may be
several equipment holders within a managed element. To uniquely identify each
equipment holder within the managed element, the equipment holders must be provided
an RDN. The RDN should identify the name of the entity type (e.g., equipment holder,
which is an entity type) and a unique value within the scope of the containing entity.

An RDN is a basic element of a Distinguished Name (DN), as specified in ITU-T Rec.
X.720. A DN is defined by a sequence of RDNs starting from a specific context. The
DN yields a unique name relative to this context.

4.4 Managed Object Classes
These modeling guidelines specify that each entity type maps one-to-one with a CORBA
operational interface. When an entity type is mapped in this manner, the CORBA object
representing the entity type is called a Managed Object Class. A Managed Object Class
must also exhibit the ability to emit notifications (see ITU-T Rec. X.703).

The term “Managed Object Class” is defined in ITU-T Rec. X.720. As explained in ITU-
T Rec. X.703, managed object classes and sub-classes map to interfaces and derived
interfaces.

4.5 Packages
It is necessary to capture the notion of packages in CORBA IDL. Packages are groups
of capabilities (attributes, actions, or notifications) that may be conditionally supported
by a Managed Object Instance. A managing system must have the capability to
determine which packages are supported by a Managed Object Instance. If any
operations are performed on a Managed Object, and those operations are contained by a
Conditional Package that is not instantiated for that Managed Object, then the Managed
Object must indicate an error.

4.6 Attributes
The guidelines must support the definition of attributes (i.e., visible properties) on
Managed Object Classes.

Draft ITU-T Recommendation X.780

13

4.6.1 GET and SET
The value of an attribute may be observable or modifiable across a standard interface. If
observable, the information modeler must define a "get" method for that attribute. If
modifiable, the information modeler must define a "set" method for that attribute.

4.6.2 Generic Attribute Get
CORBA-based TMN information models should allow a managing system the ability to
read arbitrary groups of attributes from a single managed object with a single operation.
This service allows many management tasks to be performed with a single operation.
Support of the Generic Attribute Get is required.

4.6.3 Set-valued Attributes
For attributes containing lists of values, a modeler should have to capability to allow
managing systems to add or remove individual values to/from lists without resending all
the information in the original list.

4.7 Creation and Deletion of Managed Objects
The existence of Managed Objects (MOs) is closely related to the containment
relationship between the MOs. A MO's existence is tied to the existence of that MO's
superior MO Instance. If the specified “Superior MO” does not exist for a “Subordinate
MO”, then that “Subordinate MO” can not be created. Similarly, if a MO's “Superior
MO” is deleted, then that “Subordinate MO” (and the “Subordinate MO's” subordinates)
can no longer exist. Given this, there are creation and deletion semantics that must be
enforced by the TMN CORBA framework.

The following sections define the high-level requirements that must be supported for
object creation and deletion. Recommendation Q.816 describes the generic services used
to carry out creation (i.e., the factory) and deletion (i.e., the factory in coordination with
the terminator service). Section 6 defines modeling guidelines for how the requirements
defined in this section are supported.

4.7.1 Creation
When creating a Managed Object, three aspects of the MO’s existence must be identified:
• The MO’s name
• The MO’s attribute values
• The conditional packages of the MO that are to be instantiated with the creation of the

new MO.

Note that definition of these aspects in the create request may be either explicit or
implicit. Options for identifying these aspects of a MO’s existence are defined in the
following three sections.

4.7.1.1 Identification of the MO Name
The name of the MO to be created can be determined in one of two ways:
1. The manager may specify, as a parameter of the create operation, a reference to an

existing MO which is to be the superior of the new MO and may specify the RDN of

ITU-T Recommendation X.780 Draft

14

the new MO in the create operation’s attribute list. This results in the complete
specification of the MO name being supplied by the manager.

2. The manager may specify, as a parameter of the creation operation, a reference to an
existing MO which is to be the superior of the new MO and may omit specifying the
RDN of the new MO. In this case, the RDN of the new MO is assigned by the
managed system.

If the associated information is not correct or for some other reason the create operation
can not be performed then the factory attempting to perform the operation shall indicate
an error.

4.7.1.2 Identification of the MO Attributes
When a MO is created, its attributes are assigned values that are valid for the type of
attribute. These values are derived from information in the Create operation and the MO
class definition in one of the two manners listed below:
1. The create request is permitted to specify an explicit value for each individual

attribute. When the MO is created, explicit values are assigned to attributes as
required by the MO class definition.

2. The MO class definition is permitted to specify how default values are assigned to
attributes that are not set by the create operation.

If default values are not specified for an attribute, then the managing system must supply
a value for that attribute in the create request. If no value is specified for that attribute,
then an error should occur.

If an explicit value is defined for a particular attribute in the create request, then the MO
will take that value for the specified attribute over any potential default value that may be
specified for that attribute.

4.7.1.3 Identification of MO Packages for Instantiation
To ensure that underlying resources can be instantiated with required capabilities, the
manager must be able to specify the capabilities (i.e., the conditional packages) that the
managed object should have instantiated.

Instantiation of a conditional package will occur if an associated condition is satisfied for
the managed object being instantiated. The manager may also request the instantiation of
a conditional package as part of the create request, by including it in the packages
attribute of the create request.

4.7.2 Deletion
For deletion, deletion semantics may support the deletion of all contained entities while
in other cases, the delete method immediately fails if there are contained subordinate
entities. These semantics must be maintained for each entity type.

Draft ITU-T Recommendation X.780

15

4.8 Inheritance
One "Managed Object Class" may be defined as a specialization of another "Managed
Object Class" by utilizing inheritance. Specialization of a "Managed Object Class"
implies that all methods and attributes defined on the superclass will also be supported by
the subclass.

In CORBA IDL, an attribute or operation cannot be inherited from more than one
interface, nor can an inherited operation or attribute be redefined by a subclass. (Note
that, in general, it is not expected that a CORBA information model would define a
method or attribute in a class, where that same method or attribute may also be defined in
the superclass. However, there are cases in the mapping from GDMO to IDL where this
may occur. For example, because GDMO attributes specify permitted and required
values, a subclass in GDMO may sometimes redefine the same attribute. Care must be
taken when mapping to IDL that the same attribute is not redefined.)

A subclass in CORBA can not inherit the same attribute or method (with the same name)
from more than one superclass (unless they in turn inherited it from the same base class).
Also, a subclass can not redefine the same attribute or method (with the same name)
defined in one of its superclasses.

These guidelines place no constraints over CORBA inheritance.

5 The Object Model IDL Module
Before describing the rules for defining TMN managed objects using CORBA Interface
Definition Language (IDL),[2] this section presents a network management module
containing a set of object interfaces and supporting data structures specified in CORBA
IDL. This IDL module is intended to play a role in CORBA-based network management
similar to that played by the GDMO and ASN.1 definitions in ITU-T Recommendation
X.721[6] for CMIP. It provides the basic set of IDL definitions on which information
models are then built.

The IDL is included in Annexes A and B of this document. Annex A contains the base
classes (interfaces), data structures, and notifications. Annex B is a separate file
containing just constant definitions. Both of these are based on the GDMO and ASN.1
definitions found in X.721.

X.721 is a convenient source for capabilities that must be provided in network
management information models. X.721 defines the following managed object classes
using GDMO:

• 9 types of records (Log Record, Event Log Record, Alarm Record, Attribute
Value Change Record, Object Creation Record, Object Deletion Record,
Relationship Record, Security Alarm Report Record, State Change Record)

• Discriminator and Event Forwarding Discriminator
• Log
• System

ITU-T Recommendation X.780 Draft

16

• Top

Each of these has attributes, actions, and supporting data types and parameters. In
addition, X.721 defines 15 notifications.

Looking at the managed object classes listed above, it is clear that many of these are
covered by the CORBA Common Object Services already included in the framework (see
ITU-T Recommendation Q.816 for details on the TMN CORBA Based TMN Services):

• The CORBA Telecom Event Log service defines a structure for holding log
records, so the record classes need not be redefined. (Note that by specifying the
use of the CORBA Telecom Event Log Service the TMN CORBA framework
treats log records as data structures, not objects.)

• The CORBA Notification Service defines a filtering capability, so the
discriminator and event forwarding discriminator need not be redefined.

• The CORBA Telecom Event Log Service defines the equivalent of X.721’s Log.

That leaves just System and Top, along with the notifications. System is not really a
framework class and belongs instead in a generic information model (if it is needed). The
IDL in Annex A, therefore, defines a “top” managed object interface, called “Managed
Object,” that is intended to be subclassed by all other managed object interfaces similar
to the way the managed object class named “Top” is subclassed by all CMIP managed
object classes. Also included is a generic “factory” object. Managed object factories are
used for object creation. (The CORBA based TMN services defined in ITU-T
Recommendation Q.816 includes a Terminator service that handles object deletions
independent of object type, but object creation is handled by class-specific factories so
that object creation operations may be strongly typed.) The notifications are defined on a
third IDL interface. In addition, a number of IDL data types are defined. Finally, some
IDL pre-compiler macros are defined to ease managed object interface specification.
Each of these is discussed below.

5.1 The Base (Top) Managed Object Interface
The first interface defined in Annex A is the ManagedObject interface, found after all the
data type definitions. It is intended to be the base managed object interface from which
all other interfaces inherit. It defines a set of capabilities that all managed object
instances must support. These capabilities are:

• A method that returns the name of the object.
• A method that returns the interface (actual class) name of the object.
• A method that returns the conditional packages supported by the object instance.
• A method that returns the creation source of the object (whether it was created

autonomously by the managed resource, in response to a management operation,
or unknown).

• A method that returns the delete policy for the instance. This is an enumerated
value and indicates if the object is not deletable, if it is deletable only if it contains
no objects, or if all contained objects will be deleted when it is deleted.

Draft ITU-T Recommendation X.780

17

• A method that returns a CORBA value type object containing all of the readable
attributes for the object.

• A destroy operation.

The IDL describing the ManagedObject interface (without comments) is:

interface ManagedObject {

NameType nameGet()
raises (ApplicationError);

ObjectClassType objectClassGet()
raises (ApplicationError);

StringSetType packagesGet()
raises (ApplicationError);

SourceIndicatorType creationSourceGet()
raises (ApplicationError);

DeletePolicyType deletePolicyGet()
raises (ApplicationError);

ManagedObjectValueType attributesGet (
inout StringSetType attributeNames)
raises (ApplicationError);

void destroy()
raises (ApplicationError, DeleteError);

}; // end of ManagedObject interface

5.1.1 The nameGet() Operation
The first operation, nameGet(), returns the CORBA name of the object. NameType is a
type definition for the CORBA Naming Service Name type. NameType is used to
conform to the IDL conventions defined later in this document. This method returns the
compound name of the object, beginning with the name assigned to the local root naming
context under which the object is contained. That is, the method returns the “globally
unique” name for the object. See ITU-T Recommendation Q.816 for details on assigning
a unique name to the root naming context of a managed system. The ApplicationError
exception is defined to be raised by any managed object operation if the operation cannot
be completed due to some resource problem. See Section 5.5 below for details on this
and all the other exceptions.

5.1.2 The objectClassGet() Operation
 The objectClassGet() operation returns the scoped interface name (actual class name) of
the object. Scoped interface names include the name(s) of the module(s) in which the
interface is defined. The return value type, ObjectClassType, is a type definition for
string. If the object’s class is a minor extension of another class (e.g., an “R1” class), the
string returned is the name of the actual class (with the “R1”). For example,
“EquipmentR1”.

ITU-T Recommendation X.780 Draft

18

5.1.3 The packagesGet() Operation
 The packagesGet() operation returns the list of conditional packages supported by an
object instance. The notion of conditional packages, each with a string name, is
supported by these guidelines. See Section 6.6 for details. StringSetType is a type
definition for a list of strings.

Note that this differs slightly from the packages attribute on CMIP objects because this
framework does not support the definition of mandatory packages, only conditional. In
CMIP it is possible for the packages attribute to list mandatory packages. Obviously,
since the definition of mandatory packages is not supported by this framework, they can’t
be listed in the packages attribute of a managed object.

5.1.4 The creationSourceGet() Operation
The creationSourceGet() operation returns a value indicating the system that caused the
object to be created. SourceIndicatorType is an enumerated type with three values:
resourceOperation, managementOperation, and unknown. It indicates if the object was
created autonomously by the resource, in response to a management operation, or if it is
unknown why the object was created.

5.1.5 The deletePolicyGet() Operation
 The deletePolicyGet() operation returns the delete policy for this object instance. This is
an enumerated value that indicates if the object is not deletable, if it is deletable only if it
contains no objects, or if all contained objects will be deleted when it is deleted.
(Deleting an object but not its contained objects is not allowed.) This policy is set when
the object is created by its factory based on the name binding information identified in
the create operation.

5.1.6 The attributesGet() Operation
The attributesGet() method is used to return all, or any subset, of an object’s attribute
values in one operation. For each managed object interface in an information model, a
CORBA valuetype containing data members for each of the readable attributes on that
interface will be defined. (Readable attributes are those with an <attribute name>Get()
operation.) This method may be used to retrieve this value type for any managed object.
The value types will be defined following the inheritance hierarchy of the managed
object interfaces (except that value types cannot support multiple inheritance), and each
will ultimately be derived from the ManagedObjectValueType defined for the
ManagedObject interface. The managed object must return a value type defined for its
interface in response to this method. Thus, when a client invokes the attributesGet()
operation on any managed object, it will receive back a reference to a
ManagedObjectValueType which it may then narrow (cast) to the value type defined for
the interface on which the operation was invoked.

Complicating this somewhat are the concerns that a client may not want to retrieve all of
the attribute values from an instance, and an instance may not support all of the attributes
that are in conditional packages. (The value types include attributes in conditional
packages.) This is accommodated through the use of the in/out attributeNames

Draft ITU-T Recommendation X.780

19

parameter. On invocation, the client may submit a list of the names of the attributes in
which it is interested, with a null list having the special meaning that all supported
attributes should be returned. Any names on the list that are not valid attribute names
should be ignored by the managed object. In its response the object will return the actual
list of attributes for which values are supplied. Note that this list may not match the
submitted list. The object must always return an accurate list, even if the submitted list
was null or had invalid names. If all the names on the submitted list are invalid, the
object should return a null list and an empty value type.

Because the structure of the value type is pre-defined, the object must fill in some value
for the attributes not requested or not supported. Basically, the object may return any
values for these attributes, but the values should be as short as possible for efficiency.
Thus, null values should be returned for strings, references, and lists of any kind. Any
value may be returned for integers and enumerated types. The client must consider any
value for an attribute not named in the list returned by the object to be invalid.

The base interface ManagedObject currently only has a method that returns a CORBA
value type containing all of the readable attributes for the object. It does not contain a
similar method for setting the attributes because not all attributes are settable.

5.1.7 The destroy() Operation
 The final operation on the object, the destroy() operation, is used to release any resources
associated with the managed object and to delete it. The DeleteError exception is raised
by the object if it has a delete policy of NotDeletable. The DeleteError exception is also
an extensible means of reporting problems destroying an object that are model-
dependent. For example, trying to delete a Trail Termination Point object before the
Trail is deleted might result in a DeleteError. ITU-T Recommendation Q.816 defines a
service called the “Terminator Service,” however, to implement the logic needed to
enforce delete policies and to maintain the integrity of the naming tree. The destroy
operation is actually intended to be used by this service, and should not be directly
invoked by a managing system. See ITU-T Recommendation Q.816 for details on the
Terminator Service.

(R) OBJECT-1. The interfaces used to model resources on a managed system shall
inherit (directly or indirectly) from the ManagedObject interface described above and
defined in the CORBA IDL in Annex A. The capabilities described above shall be
supported.

5.2 The Managed Object Factory
Sometimes managed objects are created automatically by the managed system,
sometimes they are created as a result of an action on another object (such as a cross-
connection object created in response to a connect action on a fabric), and sometimes
they are created in response to a request from a manager to create an object. In this last
case, on CMIP systems, the create operation is typically handled by the CMIP agent
framework. It can’t be handled by the object itself because it hasn’t been created yet. In
CORBA implementations there is no agent framework, so something needs to be present

ITU-T Recommendation X.780 Draft

20

on the managed system to enable the managing system to create objects. In CORBA
systems this is often handled by “factory” objects. The ManagedObjectFactory interface
is intended to be the base interface from which other factory interfaces inherit. It will
define capabilities that all managed object factories are expected to support. Currently,
no such capabilities have been identified, so the interface is null (inherits from nothing
and has no attributes or methods). It is a placeholder in which capabilities may be placed
in the future if needed. It also serves as a common superclass for all factories.

CORBA IDL information models are expected to include a factory interface per managed
object interface (unless the managed object class is not instantiable). The factories will
contain operations for creating managed objects. These operations will take a number of
parameters, such as the new object’s superior object, the new object’s name, and values
for each of the writeable or set-by-create attributes, etc. Upon successful creation of the
new object, the factory will return a reference to it.

In addition to creating objects, it is expected that factories will also create name bindings
in the CORBA Naming Service for the new objects. Though this functionality could be
implemented elsewhere, it is believed that implementing it in the factories will simplify
implementations by relieving the managed object implementation from this task, leaving
them to focus on representing resources. See ITU-T Recommendation Q.816 for details
on how the TMN CORBA framework makes use of the CORBA Naming Service.

To help clients find factories, ITU-T Recommendation Q.816 defines a Factory Finder
Service. This service acts as a broker between clients and factories. Basically, factories
register themselves with the service, then clients query the well-known service to find a
factory of a particular type. See ITU-T Recommendation Q.816 for details on the
Factory Finder Service.

(R) FACTORY-1. The factory objects used to create managed objects on a managed
system shall inherit (either directly or indirectly) from the ManagedObjectFactory
interface described above and defined in the CORBA IDL in Annex A.

(R) FACTORY-2. All factories shall be registered in the Factory Finder object(s)
instantiated on that system.

5.3 The Notifications Interface
The third interface defined in Annex A is the notifications interface. Each of the
notifications in X.721 has a corresponding operation on this interface. The notifications
are defined as typed method calls as required by ITU-T Recommendation Q.816. The
OMG Notification Service is used to filter and broadcast notifications. The typed
notification methods can be used directly with a notification service that supports typed
notifications. Mappings between these typed event methods and structured events are
provided in Q.816.

All of the notification operations defined in this interface pass a number of parameters,
some of which are common to all of the notifications. Several of the notifications have

Draft ITU-T Recommendation X.780

21

identical parameters, but are used for slightly different reasons. The notifications
interface IDL looks like this:

interface Notifications {

void equipmentAlarm (
in ExternalTimeType eventTime,
in NameType source,
in ObjectClassType sourceClass,
in NotifIDType notificationIdentifier,
in CorrelatedNotificationSetType correlatedNotifications,
in AdditionalTextType additionalText,
in AdditionalInformationSetType additionalInfo,
in ProbableCauseType probableCause,
in SpecificProblemSetType specificProblems,
in PerceivedSeverityType perceivedSeverity,
in BooleanTypeOpt backedUpStatus,
in NameType backUpObject,
in TrendIndicationTypeOpt trendIndication,
in ThresholdInfoType thresholdInfo,
in AttributeChangeSetType stateChangeDefinition,
in AttributeSetType monitoredAttributes,
in ProposedRepairActionSetType proposedRepairActions,
in BooleanTypeOpt alarmEffectOnService,
in BooleanTypeOpt alarmingResumed,
in SuspectObjectSetType suspectObjectList
);

…

}; // end of Notifications interface

The other fourteen notification operations are similar to the one above. The names of the
15 notifications defined are:

• Attribute Value Change • Physical Violation
• Communications Alarm • Processing Error Alarm
• Environmental Alarm • Quality of Service Alarm
• Equipment Alarm • Relationship Change
• Integrity Violation • Security Violation
• Object Creation • State Change
• Object Deletion • Time Domain Violation
• Operational Violation

This CORBA Framework requires the use of notification identifiers where they may not
be required in other interfaces (they are not required in ITU-T X.733). To illustrate,
below are four possible cases where the mapping of alarm notification identifiers from
the network element / EMS interface to the EMS / NMS interface must be done:

1. The network element always uses notification identifiers and the managed object is
represented in both interfaces. In this case, the EMS passes the alarm (with its
notification identifier) on to the NMS.

ITU-T Recommendation X.780 Draft

22

2. The network element never uses notification identifiers and the managed object is
represented in both interfaces. In this case, the EMS uses an internal counter,
includes this value as the notification identifier and passes the alarm onto the NMS.

3. The network element sometimes uses notification identifiers and the managed object
is represented in both interfaces. Because the notification identifier is required, the
EMS must define a value when one is not provided. It may be difficult to define a
value at the EMS because notification identifier values must be unique across all
notifications of a particular managed object instance throughout the time that
correlation is significant [17]. Thus, the EMS must choose a value that is not being
used in current alarms and will not be used in subsequent alarms. Extra care must be
taken when doing this, since the algorithm for choosing notification identifier values
is owned by the producing system (in this case, the network element).

In one possible solution, the EMS could supply its own value for notification
identifier for all alarms. This would also require the updating of each alarm’s
correlated notification lists, resulting in the EMS maintaining a complete mapping of
network element Notification Identifier values to EMS Notification Identifier values.

In another possible solution, the EMS and network element could agree on supporting
different subsets of notification identifier numbers.

Alternatively the EMS could supply its own number and ignore potential collisions,
thus allowing their rare occurrence.

4. An alarm is mapped from one network element / EMS interface object to a different
EMS / NMS interface object. Similar to the above item, the EMS must supply a
notification identifier value that is unique for the EMS / NMS managed object. The
correlated notification lists also must be updated.

5.4 The Data Type Definitions
Preceding the interface definitions in Annex A are a number of data structure and type
definitions. Most of these are used in the notifications. These were derived from the
ASN.1 module in X.721 with minor changes to simplify syntax. Where possible, modern
object-oriented concepts such as in/out parameters and exceptions have been employed
and are reflected in these types.

One data type to note is the time type. These guidelines adopt the universal time code
defined for CORBA’s Time Service. This data type consists of a large integer that counts
the hundreds of nanoseconds that have passed since midnight 15 October, 1582. To
account for worldwide time, the time is expressed relative to the time in the Greenwich
time zone using a signed short integer for the difference. This means systems based on
these guidelines must know their local time zone. This approach makes it easy to
compare times, though, because time is represented as an integer. Standard libraries for
converting between the integer representation and more familiar formats will likely be
widely available.

Draft ITU-T Recommendation X.780

23

5.5 Exceptions
The IDL Module in Annex A defines some exceptions for use by managed object
operations. These may be raised on some operations, as defined below. In addition, any
of the standard CORBA exceptions may be raised on any operation. For example, the
“CORBA:NO_PERMISSION” exception might be raised to signal a security violation.
The exceptions defined are:

valuetype ApplicationErrorInfoType {
public UIDType error;
public Istring details;

};

valuetype CreateErrorInfoType : ApplicationErrorInfoType {
public MOSetType relatedObjects;
public AttributeSetType attributeList;

};

valuetype DeleteErrorInfoType : ApplicationErrorInfoType {
public MOSetType relatedObjects;
public AttributeSetType attributeList;

};

valuetype PackageErrorInfoType : CreateErrorInfoType {
public StringSetType packages;

};

exception ApplicationError { ApplicationErrorInfoType info; };

exception CreateError { CreateErrorInfoType info; };

exception DeleteError { DeleteErrorInfoType info; };

1.1.1 The ApplicationError Exception
An ApplicationError exception is raised when an operation cannot be completed due to
some application-level condition at the managed system. Information returned with the
exception includes an identifier for a specific condition, and a string with additional
details or an explanation.

A few identifiers for specific error conditions are defined by the framework. These
should be used whenever possible. Information models, though, may define additional
error condition codes, or create their own exceptions.

The data returned with the application error exception is a value type, which means that it
may be extended. That is, for a certain error condition codes, the actual data type
returned might be an extension of the base application error info type. Because the error
code is in the base type, the client code can examine it, and if its value is one that is
passed back in a sub-class, the client can narrow (cast) the value type and access the
additional information.

The ApplicationError exception shall be included in the raises clause of every managed
object and managed object factory operation. A few error code values for the application

ITU-T Recommendation X.780 Draft

24

error exception have been defined for the framework. Each is discussed in sections
below.

5.5.1.1 invalidParameter
An application error exception with an error code of invalidParameter is raised when the
value of some operation parameter is not valid for the operation requested. The name of
the bad parameter is returned in the details field.

5.5.1.2 resourceLimit
An application error exception with an error code of resourceLimit is raised when an
operation cannot be completed due to some transient error on the managed system, such
as lack of memory. A string containing an explanation is returned in the details field.

5.5.1.3 downstreamError
An application error exception with an error code of downstreamError is raised when an
operation cannot be completed due to an error downstream from the managed system.
An example of this is when an operation can’t be completed because an EMS cannot
communicate with an NE.

1.1.2 The CreateError Exception
The CreateError exception is raised when an error occurs on a factory create operation.
It should be included in the raises clause of every managed object factory create
operation.

The data returned with this exception extends that of a general ApplicationError, and
adds a list of related object, and the attribute values the object would have had if it had
been created. The specific error codes defined for this exception by this framework are
presented below. Implementations should use these whenever possible. Information
models may add new values, or define new exceptions for special cases.

5.5.1.4 invalidNameBinding
A create error exception with an error code equal to invalidNameBinding is raised when
the name binding included in the create operation does not support the creation of the
object in this situation.

5.5.1.5 duplicateName
A create error exception with an error code equal to duplicateName is raised when the
name included in the create operation is a duplicate.

5.5.1.6 unsupportedPackages
A create error exception with an error code equal to unsupportedPackages is raised when
one or more of the requested packages is not supported by the implementation. Note that
when this error code is used, the returned data structure is actually a
PackagesErrorInfoType structure, which extends the CreateErrorInfoType structure. The

Draft ITU-T Recommendation X.780

25

PackagesErrorInfoType structure includes a list of packages, which in this case will be
the unsupported packages.

5.5.1.7 incompatiblePackages
A create error exception with an error code equal to incompatiblePackages is raised
when some of the requested packages are not compatible with each other or the resource
for which the object is being created. Note that when this error code is used, the returned
data structure is actually a PackagesErrorInfoType structure, which extends the
CreateErrorInfoType structure. The PackagesErrorInfoType structure includes a list of
packages, which in this case will be the incompatible packages.

1.1.3 The DeleteError Exception
The DeleteError exception is raised when an error occurs on a delete operation. It is
included in the raises clause of the destroy operation on the base ManagedObject
interface, which is then inherited by every managed object.

The data returned with this exception extends that of a general ApplicationError, and
adds a list of related object, and the attribute values the object had when the delete
attempt was made. The specific error codes defined for this exception by this framework
are presented below. Implementation should use these whenever possible. Information
models may add new values, or define new exceptions for special cases.

5.5.1.8 notDeletable
A delete error exception with the constant value equal to notDeletable is raised when an
attempt is made to invoke the destroy() operation on a managed object that should not be
destroyed according to its delete policy. (Note that the destroy() managed object
operation is defined for use by other parts of the framework. Managing systems that
invoke it directly run the risk of corrupting data on the managed system.)

Also, the Terminator Service will raise this exception when a client tries to delete an
object with a delete policy of notDeletable.

5.5.1.9 containsObjects
A delete error exception with the constant value equal to containsObjects is raised when
an attempt is made to delete a managed object that has subordinates and a delete policy of
deleteOnlyIfNoContainedObjects.

Managed objects are not responsible for detecting this condition, but the Terminator
Service is.

5.6 Macro Definitions
Following the interfaces in Annex A are the definitions of some macros. These macros
simply provide shorthand notations for identifying which notifications are supported by
which objects. Due to the limited capability of CORBA IDL to accept information like
this, it was felt these macros would be useful.

ITU-T Recommendation X.780 Draft

26

The MandatoryNotification macro identifies notifications that must be supported by an
object, and the ConditionalNotification macro identifies notifications that must be
emitted by a managed object if it supports a particular package. Both macros take
arguments identifying the name of an operation (recall that operations are used to convey
notifications) and the scoped name of the interface on which the operation is defined.
The ConditionalNotification macro also accepts a third parameter, the name of the
package to which the notification belongs.

The notification macros expand into nothing. Unfortunately, IDL is simply too limited to
provide a way to capture this information. Comments could be generated, but they are
just immediately discarded by the compiler. Formatted comments, like those used to
generate HTML, unfortunately can’t be used because they require some IDL construct to
which they are associated. It was hoped that the upcoming CORBA Component Model
would provide a solution, but implementations won’t be available in time for these
guidelines. In the future it may be possible to modify the macros to generate IDL
consistent with the CORBA Component Model. For now, though, the information about
which notifications are emitted by which object classes is captured by these macros.

5.7 The Constant Definitions
Interface specifications always contain a number of constants whose values are agreed
upon by everyone to mean the same thing. For example, everyone agrees a “1” in a
certain field means a loss of signal, a “2” means a loss of frame, etc. X.721 is no
exception and defines a number of constants. These are reproduced in IDL form in
Annex B. For details on the mechanism used to convey pre-defined constants, see
Section 6.11.

6 Information Modeling Guidelines
This section presents guidelines for developing CORBA-based TMN information models.
Guidelines for the translation of existing models specified in GDMO are provided in the
next section.

6.1 Modules
IDL Modules are used to group together interfaces, type definitions, exceptions, and
other IDL constructs. Modules also provide name-space delineation; identifiers within a
module must be unique but may be re-used in other modules. In almost all cases, a
module shall be used to group the constructs used to specify an information model.
Modules may be nested within other modules, and modules may span multiple files. The
IDL specified in these guidelines is contained within a single module, named
“itut_x780”. For example:

module itut_x780 {
…
}; // end of module itut_x780

This module has sub-modules for constant definitions.

Draft ITU-T Recommendation X.780

27

6.2 Interfaces
Each entity accessible via the CORBA network management interface shall have an IDL
interface defined for it. Interfaces group together a set of attributes and methods that can
be thought of as being provided by a single software object. Interfaces may inherit
capabilities from other interfaces and interfaces defined to model an entity must inherit
(directly or indirectly) from the interface named ManagedObject defined in this
document. For example:

interface Equipment : ManagedObject {
…
}; // end of interface Equipment

Such interfaces are referred to as “managed object interfaces.” The objects that support
these interfaces are “managed objects.” Because the ManagedObject interface defined in
this document has a set of capabilities that are inherited by all managed object interfaces,
each managed object must implement a base set of functions to exist in the TMN
CORBA framework.

One issue information modelers may face is CORBA’s limited support for multiple
inheritance. An interface may inherit an operation or attribute from multiple super
classes only if they in turn inherited them from the same super class. This is known as
“diamond” inheritance, and is depicted in the figure below.

Class
A

Class
C

Class
B

Class
D

Figure 3. Diamond Inheritance

If an information modeler is faced with having to inherit the same capability from two
different classes that do not share a common super class, the modeler may have to modify
the classes and create a virtual super class from which the capability can be inherited.
For example, creating “D” from “B” and “C” above but where “A” does not exist, the

ITU-T Recommendation X.780 Draft

28

modeler may have to modify the super classes by creating a new virtual class (“A”) with
the common capability that is then inherited by “B” and “C.”

6.3 Attributes
Attributes are modeled within interfaces as operations used to access the attribute’s value.
The names of the operation, as well as the input and output types, indicate the name of
the attribute as well as the type of operation. (CORBA IDL does support attributes in
addition to operations, but at this time only operations are allowed to raise user-defined
exceptions. As will be seen, user-defined exceptions are needed on attribute accesses.
For this reason, operations are defined to access attributes rather than merely defining
attributes. Future versions of CORBA plan to allow user-defined exceptions on attribute
access, and these guidelines may change to take advantage of this.)

6.3.1 Readable Attributes
Managed objects should have an operation named “<attribute name>Get” on their
interface for each readable attribute. The type returned by this operation reflects the type
of the attribute. For example:

AdministrativeStateType administrativeStateGet()
raises (ApplicationError);

Attributes that are settable but not readable, which is rare, should not have a read
operation defined on the interface.

Attribute get operations that may return large amounts of data should define an iterator to
enable the client system to control the return flow of information. For an example of the
use of iterators, see ITU-T Q.816.

6.3.2 Settable Attributes
Managed object interfaces should have an operation named “<attribute name>Set” for
each settable attribute. The operation return type should be void and the input parameter
should reflect the type of the attribute. For example:

void administrativeStateSet (in AdministrativeStateType adminState)
raises (ApplicationError);

Attributes that are not settable should not have such an operation on the interface.

6.3.3 Set-valued Attributes
Many managed object attributes may contain sets of values. In these cases, the
operations defined above should still be supported (if the attribute is readable and/or
writeable). Because CORBA does not explicitly define a complex type for sets, the input
or return types for these operations will be CORBA sequences. Values returned for these
attributes should not contain duplicate values, and the order of the values is unimportant.
Also, it may be necessary to support the addition or removal of values to these attributes.
These operations should be named “<attribute name>Add” and “<attribute
name>Remove”. The return types for these operations should be void and the input
parameter to each should be a sequence reflecting the type of the attribute. For example:

Draft ITU-T Recommendation X.780

29

void supportedByObjectsAdd (in ManagedObjectSetType objects)
raises (ApplicationError);

void supportedByObjectsRemove (in ManagedObjectSetType objects)
raises (ApplicationError);

6.3.4 Exceptions
Attribute access operations may also raise exceptions. The following exceptions are
defined to be raised on attribute access operations:

1. ApplicationError. This exception shall be included in the raises clause of every
managed object operation, including attribute access operations. It may be used to
signal a number of conditions, such as a value that is out-of-range, a resource
limitation on the managed system, etc.

2. Conditional Package Exceptions. If the attribute is part of a conditional package, the
exception defined for that conditional package shall be included in the raises clause of
the attribute access operations. It is raised when an attempt to access the attribute is
made but the package to which it belongs is not supported by the instance. See more
on Conditional Packages in Section 6.6 below.

In addition to these, an implementation may also raise any of the standard CORBA
exceptions. Operations that raise exceptions shall not modify the value of the attribute.
An example of an attribute access operation that raises an exception is:

void supportedByObjectsRemove (in ManagedObjectSetType objects)
raises (ApplicationError);

6.3.5 Standard Attributes
Managed objects model resources, and often there is commonality among managed
objects. This is sometimes represented using an inheritance relationship among object
classes, but there may also be commonality between objects when no inheritance
relationship exists. A good example of this is similar attributes. Many managed objects
have similar attributes. To make the implementation of management interfaces easier,
these guidelines define some standard data types that should be used for attributes
whenever possible. That is, modelers should attempt to use these type definitions instead
of defining new types. Also, the attribute name, and the names of the operations to
access the operation should be used. In fact, when defining a new model, it is good
practice to re-use attribute types and names from existing models whenever possible.
The standard attributes defined are:

Data Type Attribute Name Access Method
AdministrativeStateType administrativeState administrativeStateGet()
AvailabilityStatusSetType availabilityStatus availabilityStatusGet()
BackedUpStatusType backedUpStatus backedUpStatusGet()
ControlStatusSetType controlStatus controlStatusGet()
SourceIndicatorType creationSource* creationSourceGet()

ITU-T Recommendation X.780 Draft

30

DeletePolicyType deletePolicy* deletePolicyGet()
ExternalTimeType externalTime externalTimeGet()
NameType name* nameGet()
ObjectClassType objectClass* objectClassGet()
OperationalStateType operationalState operationalStateGet()
StringSetType packages* packagesGet()
ProceduralStatusSetType proceduralStatus proceduralStatusGet()
StandbyStatusType standbyStatus standbyStatusGet()
UnknownStatusType unknownStatus unknownStatusGet()
UsageStateType usageState usageStateGet()
* These attributes are inherited by all managed objects.

Table 1. Standard Attributes

6.4 Actions
In addition to attributes, many managed objects will have actions – methods for purposes
other than accessing an attribute. The parameters and return types for these operations
are simply defined to meet the needs of the action. The name of the operation should
reflect the purpose of the operation. The following exceptions have been defined to be
raised on action operations:

1. ApplicationError. This exception shall be included in the raises clause of every
managed object operation, including action operations. It may be used to signal a
number of conditions, such as a parameter value that is out-of-range, a resource
limitation on the managed system, etc.

2. Conditional Package Exceptions. If the action is part of a conditional package, the
exception defined for that conditional package shall be included in the raises clause of
the action operations. It is raised when an attempt to invoke the action is made but
the package to which it belongs is not supported by the instance. See more on
Conditional Packages in Section 6.6 below.

In addition to these, an implementation may also raise any of the standard CORBA
exceptions. Other exceptions specific to the action may and should be defined for other
error conditions. Alternatively, an information model may extend the error code points
defined for the ApplicationError exception.

Actions that may return large amounts of data should define an iterator to enable the
client system to control the return flow of information. For an example of the use of
iterators, see ITU-T Q.816..

6.5 Notifications
Most managed objects are expected to emit notifications under certain conditions. In the
TMN CORBA framework, notifications are conveyed by method invocations from a
managed object back to a managing system, with the help of the Notification Service.

Draft ITU-T Recommendation X.780

31

Thus, the notification operation is actually defined for the managing system’s CORBA
interface, not the managed object’s interface. These guidelines define a number of
standard notifications, but if a new notification must be defined it should be defined as an
operation on an interface named “Notifications” within the information model’s module.
The name of the operation should be the name of the notification. The parameters to the
operation should reflect the data to be reported in the notification. The notification
operation’s return type must be void, and it must have only “in” parameters. Note that
the “oneway” keyword preceding the notification operation definition should not be used.
Notifications following these guidelines are confirmed. That is, when a managed object
sends a notification to a channel, the receipt of that notification will be confirmed back to
the managed object by the channel. Likewise, as the channel sends the notification to
each recipient, a confirmation is received by the channel. Quality of Service guarantees,
specified in ITU-T Recommendation Q.816 define the reliability of the channel itself.
Thus, the delivery of notifications to recipients can be guaranteed.

A means of documenting which managed objects emit which notifications is also needed.
Rather than simply noting this through comments in an IDL file, a macro statement is
used. Actually, these guidelines define two macros, one for use when the notification is
mandatory and the other when the notification is part of a conditional package. The
macros are intended to be used within a managed object interface and are defined as
follows:

MANDATORY_NOTIFICATION(<interface name>,
<notification operation name>);

CONDITIONAL_NOTIFICATION(<interface name>,
<notification operation name>, <package name>);

For example:

interface Equipment : ManagedObject {
…
MANDATORY_NOTIFICATION(itut_x780::Notifications, objectCreation);
CONDITIONAL_NOTIFICATION(itut_x780::Notifications,

equipmentAlarm, equipmentAlarmPackage);
…
}; // end of Equipment interface

The package name used in the conditional notification macro is the same as used
elsewhere. See Section 6.6 on packages for details. The macros actually expand into
nothing because there really isn’t a good alternative in CORBA IDL. Thus, the macros
are for documentation purposes and don’t actually result in code generation. An item for
further study is modifying the macros to generate IDL that would identify the
notifications supported by an object. The release of the CORBA Component Model
specification provides an opportunity to do this in a manner consistent with that model.
Only one notification may be listed in each macro. This is to make the possible future
modification of the macros simpler.

6.6 Conditional Packages
These information modeling guidelines support the notion that not all capabilities defined
for a class of managed objects need to be supported by all instances. In fact, groups of

ITU-T Recommendation X.780 Draft

32

capabilities can be defined so that either all or none of the capabilities are supported.
These groups of capabilities are referred to as packages. The choices for representing
packages in IDL are limited. Defining a separate interface for each package would result
in too many interfaces, so instead the approach described here is used.

Each operation that is part of a conditional package may raise an exception defined for
the package. The name of the exception shall be NO<package_name>. For example:

exception NOadministrativeStatePackage {};
…
AdmininstrativeStateType administrativeStateGet()

raises (NOadministrativeStatePackage);

Notifications that are emitted as part of a conditional package are denoted with the
CONDITIONAL_NOTIFICATION statement as described above.

Rules concerning when the capabilities included in a package should be supported and
when they shouldn’t are placed in comments related to the managed object interface. An
operation may be included in more than one conditional package by listing multiple
NO<package name> exceptions in its raises clause. An exception will be raised only if
none of the packages are present, and then any of the package exceptions may be raised.
If an operation is mandatory, it must list no package exceptions in its raises clause. A
notification may list multiple packages in the CONDITIONAL_NOTIFICATION macro.

6.7 Behavior
CORBA IDL lacks a formal means of capturing object behavior. In the future it is
possible that information models will be documented with UML and will include use
cases and object interaction diagrams. IDL, however, is limited to comments. Therefore,
when necessary or helpful, comments must be used to describe object behavior.

The IDL in this document contains a number of comments. They are formatted to be
parsed by compilers used to convert IDL to HTML for easier reading. A formatted
comment begins with /** and ends with */ and is associated with the next IDL construct.
HTML formatting tags are allowed with these comments, as are certain keywords
(preceded by a ‘@’ symbol) that are converted by the IDL-to-HTML compilers into
additional formatting. While viewing IDL with an HTML browser is convenient, note
that the use of the macros described above is impacted by this. Because macro expansion
is performed as a part of the conversion to HTML, the pre-expanded macro information
will be lost. Thus, the macros used to identify the notifications supported by each
managed object will have been expanded.

6.8 Name Binding Information
Containment is a very important relationship in network management. In the TMN
CORBA-based framework, containment is represented through names. This,
unfortunately, places no restrictions on the containment relationships that could possibly
exist. There is nothing to prevent, for example, a network object from being contained by
a connection object. Clearly, some means of restricting the possible containment

Draft ITU-T Recommendation X.780

33

relationships to only those that are sensible is desirable. These restrictions, however,
must be extensible under control of the information modeler.

To meet these needs, these guidelines require that IDL modules specifying CORBA-
based TMN information models also contain information defining the possible
containment relationships among the managed object classes. This containment
relationship information is referred to as managed object name binding information.
(Unfortunately, this may be easy to confuse with the name binding information stored in
the CORBA Naming Service. The two are not the same.)

Managed object name binding information is represented in CORBA IDL using the
following conventions:

1. Each information model IDL module shall contain a sub-module named
“NameBindings” for managed object name binding information.

2. Within this name binding module, sub-modules shall be defined for each allowed
containment relationship.

3. Each name binding sub-module shall assign values to these 7 constants;

const string superiorClass
const boolean superiorSubclassesAllowed
const string subordinateClass
const boolean subordinateSubclassesAllowed
const boolean managersMayCreate
const DeletePolicyType deletePolicy
const string kind

The superiorClass constant contains the scoped class name of the superior
(containing) object. If an object may be the “top-most” object on a managed system,
that is, if it may be contained directly under a local root naming context, the
superiorClass name binding value shall be an empty string. The
superiorSubclassesAllowed constant is a Boolean field that will have a value of true if
subclasses of the superior class type are acceptable using this name binding. The
subordinateClass constant contains the scoped class name of the subordinate object
(the object to be created). The subordinateSubclassesAllowed constant indicates if
subclasses of the subordinate object may be created using this name binding. The
managersMayCreate flag indicates if object creation is supported across the
management interface using this name binding. The value of setting this flag to false
is that it enables all containment relationship information to be documented in IDL,
even if the subordinate object is only created by the managed system. The
deletePolicy constant contains the value that will be assigned to the managed object’s
deletePolicy attribute when it is created. The kind constant contains the value that
will be assigned to the kind field in the CORBA Name Binding for the object when it
is created.

The value chosen for the kind field in a name binding will typically be the unscoped
subordinate class name. (Unscoped class names will typically be used to reduce the
length of names.) The main purpose of the kind field is to segment the naming space
to keep naming collisions from occurring. Name binding modules for new versions

ITU-T Recommendation X.780 Draft

34

of existing interfaces might reuse the kind values used for the older interfaces. For
example, name binding modules for Equipment and EquipmentR1 interfaces might
both use the value “Equipment”. Otherwise, though, it will probably be safest to use
a unique value for each class of interface.

4. The name of a name binding sub-module shall be
<subordinateClass>_<superiorClass>, where <subordinateClass> is the value
assigned to the subordinateClass constant and <superiorClass> is the value assigned
to the superiorClass constant in the module. If two name binding modules in the
same parent module share the same superiorClass and subordinateClass values but
differ in other values, the name of one of the modules shall be appended with a word
denoting a difference between the two. For example: “Equipment_Equipment” and
“Equipment_Equipment_NotDeleteabe”.

Some example managed object name bindings:

module itut_m3120 {
…

/** The following module contains name binding information */

module NameBindings {

/** This name binding module allows Equipment objects to be
created under Managed Element objects.
*/

module Equipment_ManagedElement {
const string superiorClass = “itut_m3120::ManagedElement”;
const boolean superiorSubclassesAllowed = TRUE;
const string subordinateClass = “itut_m3120::Equipment”;
const boolean subordinateSubclassesAllowed = TRUE;
const boolean managersMayCreate = TRUE;
const DeletePolicyType deletePolicy =

itut_x780::DeleteOnlyIfNoContainedObjects;
const string kind = “Equipment”;

}; // end of Equipment_ManagedElement name binding module

/** This name binding module allows Equipment objects to be
created under other Equipment objects.
*/

module Equipment_Equipment {
const string superiorClass = “itut_m3120::Equipment”;
const boolean superiorSubclassesAllowed = TRUE;
const string subordinateClass = “itut_m3120::Equipment”;
const boolean subordinateSubclassesAllowed = TRUE;
const boolean managersMayCreate = TRUE;
const DeletePolicyType deletePolicy =

itut_x780::DeleteOnlyIfNoContainedObjects;
const string kind = “Equipment”;

}; // end of Equipment_Equipment name binding module

}; end of name binding module
}; end of itut_m3120 module

Draft ITU-T Recommendation X.780

35

Note that the deletePolicy constant is of an enumerated type and according to CORBA
IDL constant definition rules, if this type is defined in another module, the value assigned
to the constant must be scoped to that module. The DeletePolicyType is defined in
module itut_x780, and the example IDL module is itut_m3120. Therefore, the
DeleteOnlyIfNoContained value must be scoped by preceding it with the string
“itut_x780::”. The type itself, DeletePolicyType, must also be scoped. This can be done
with a typedef statement at the beginning of the module.

6.9 Factories
The TMN CORBA-based framework defines a service for deleting objects, but objects
are created with class-specific factories. Factories are objects with interfaces distinct
from the objects they are used to create, but usually related. Each class of managed
objects will also have a factory class. This is done so that the factory create operations
may be strongly typed and specific to the class of objects they create. The result of this is
that the IDL modules defining managed object interfaces will also contain interfaces for
the factories used to create the objects. The name of the factory IDL interface shall be
“<Managed Object Class Name>Factory”.

This document defines a base managed object factory interface from which each factory
interface must inherit. Factories do not follow the same inheritance hierarchy as the
objects they create. Factories simply inherit from the ManagedObjectFactory interface.
An example of a factory interface definition is:

interface EquipmentFactory : ManagedObjectFactory {
…
}; // end of EquipmentFactory interface

Because factories cannot create subclasses of objects, new factories must be defined for
each subclass.

Every instantiable class shall have a factory defined for it, even if at the time no name
binding modules allowing managers to create instances are defined. This is to allow for
the future definition of name binding modules that do enable managers to create
instances.

6.9.1 Create Operations
Each factory interface shall define a single operation for clients to use to create objects.
The name of this operation shall be “create” and it shall return a reference to the type of
object created by the factory. The first four parameters to every create operation are
always the same. After these come parameters for each writeable or set-by-create
attribute defined for the managed object. (A set-by-create attribute is one for which the
object has no “set” operation, but for which a value is specified on the create operation.)
The names of these parameters are the same as the name of the attribute. (This is the
name of an attribute accessor operation minus the ending “Get” or “Set”.) Each create
operation also has to accept parameters to set the values of any writeable or set-by-create
attributes of all super-classes of the object created by the factory. Here is an example of a
create operation for an equipment factory:

ITU-T Recommendation X.780 Draft

36

Equipment create(
in NameBindingType nameBinding, // module name containing NB info.
in ManagedObject superiorObject,// Reference to containing object.
inout string name, // In/out, may be null if auto-create.
in StringSetType packages, // List of packages requested.
… // Writeable and set-by-create values

// for Equipment superclass attributes.
… // Writeable and set-by-create values

// for Equipment attributes.

);

6.9.1.1 Name Binding
The name binding parameter conveys the name of a module containing managed object
name binding information, as described in the Section 6.8. An example value might be
“itut_m3120::NameBindings::Equipment_Equipment”. Given this, the factory can check
to see if the value is a valid name binding identifier. (A factory might either be “hard-
coded” with name binding information available when the system is compiled, or it might
access the information in the CORBA Interface Repository at run-time.) If the name
binding information can not be found, the factory shall raise an invalidParameter
ApplicationError exception, returning “nameBinding” as an argument. (This is an
ApplicationError exception with the error code set to invalidParameter and the details
string set to “nameBinding”.) If the name binding information can be found, but is
incomplete, the factory shall raise an invalidNameBinding CreateError exception.

The factory must also check to see if the subordinate class type specified in the name
binding module matches the type of objects it creates. If it is doesn’t, the factory can
then check to see if the type of objects it creates is a subclass of the subordinate class
constant value. If it is, and if the subordinateSubclassesAllowed constant is true, it can
proceed to create the object. If not, it would reject the request by raising an
invalidNameBinding CreateError exception.

Finally, if the managersMayCreate constant in the name binding module is false, the
factory would also reject the request by raising an invalidNameBinding CreateError
exception. (Factories may have a second create operation for internal use by the
managed system that does not check this value and that is not exposed across the
management interface.) The inclusion of name binding modules with
managersMayCreate values set to false enables capturing all of the containment
information in IDL, as is possible with GDMO, even if the objects are created only by the
managed system itself.

The other information in the name binding module will be used by the factory when it
creates the object and its CORBA naming service name binding. The deletePolicy
constant will be assigned to the new managed object’s attribute of the same name. The
kind constant value will be used when the factory creates the managed object’s name
binding in the CORBA naming service.

6.9.1.2 Superior Object
The second parameter in the create operation is a reference to the superior object, under
which the new object is to be created. Using standard CORBA capabilities, the factory

Draft ITU-T Recommendation X.780

37

shall examine the class of the superior object to determine if it matches the type specified
in the superiorClass constant defined in the name binding module. If it doesn’t, the
factory must next check to see if the supplied reference is of a subclass of the type
specified in the superiorClass constant. If it is, and if the superiorSubclassesAllowed
constant in the name binding is true, the factory may proceed to create the object. If not,
the factory must reject the request by raising an invalidNameBinding CreateError
exception, returning “superiorObject” in the details.

If the superiorClass constant in the name binding module is an empty string, then objects
of the subordinate class may be created with no superior object (parent), and their name is
bound directly to a local root naming context. Usually, these objects will be created by
the managed system, but in these cases the superior object reference would be null.

6.9.1.3 Name
The third parameter is the name to be assigned to the new object. This string will become
the ID field of the CORBA Name Binding created in the CORBA naming service for the
new object. This will be relative to the superior object’s name. If the parameter is inout,
it indicates that the factory must support auto-naming. In this case, a client may submit a
null string for the name, and the factory will choose a suitable string and return the
chosen value. If instead the client submits a string, the factory shall use this value instead
(and return it as the out value). If the parameter is in only, auto-naming is not supported
and the client must supply a name. If it doesn’t, the factory shall raise a badName
CreateError exception. The factory raises a duplicateName CreateError exception if the
supplied name is a duplicate. (This means both the ID and kind fields match an existing
object contained by the superior object.)

6.9.1.4 Packages
The packages attribute is important. It tells the factory not only which packages an
instance must support, but which parameter values on the create operation it must ignore.
Because they are strongly-typed, create methods include a parameter for each writeable
or set-by-create attribute of an object, even if an attribute is part of a conditional package.
The factory must ignore the values for any attribute in packages that are not requested by
the client, even if the factory instantiates the object with the package anyway. (If the
factory instantiates an object with a package not requested by the client, the factory must
choose the initial values.) This frees the client from having to supply values for attributes
in packages it does not want. Instead, the client can submit any value. For efficiency, the
values submitted for attributes in packages not requested by the client should be short.

If the client supplies an invalid package name in the packages parameter, the factory shall
raise an unsupportedPackage CreateError exception and return the name of the package
as the argument. An incompatiblePackages CreateError exception may also be raised if
the client requests the creation of an instance but specifies packages that may not coexist
in the same instance.

ITU-T Recommendation X.780 Draft

38

6.9.1.5 Superclass Parameters
Following these first four parameters will be parameters for each of the writeable and set-
by-create attributes for any superclasses of the type of objects created by the factory.

6.9.1.6 Object Class Parameters
Finally, following the superclass parameters will parameters for each of the writeable and
set-by-create attributes for the managed object class created by the factory.

6.9.2 Factory Finder
To ease the task of finding a factory, ITU-T Recommendation Q.816 defines a factory
finder interface. (The factory finder is a common design pattern in CORBA
applications.) This enables a client to easily find a factory by interacting with a well-
know broker with knowledge of all the factories present on a managed system.

6.10 Managed Object Class Value Types
Each managed object class compliant with these guidelines inherits an operation from the
base Managed Object class that returns all or some subset of the object’s attributes in a
single valuetype. (CORBA 2.3 introduces the concept of value types, objects that are
passed by value instead of by reference.) Not only must the managed object
implementation support this feature, the IDL describing the managed object must include
a value type with public attributes for each of the attributes supported by the managed
object. These guidelines define a base ManagedObjectValueType, and the value types
defined for managed objects must ultimately derive from this base value type. The value
types defined for managed objects should usually follow the inheritance pattern of the
managed objects interface, but since CORBA’s value types support only single
inheritance, this won’t always be possible. This is not a serious limitation, though. It
simply means that the value types defined for interfaces using multiple inheritance will
have to singly inherit from one of the superior value types, and the other attributes will
have to be added and maintained by hand.

As an example, assume the Equipment managed object interface inherits directly from
the base ManagedObject class, and has, among others, an attribute access function called
userLabelGet that returns a type UserLabelType. The IDL describing the value type for
the Equipment managed object would look like this:

valuetype EquipmentValueType : ManagedObjectValueType {
public UserLabelType userLabel;
… // other attributes

};

The name of the value type is the name of the interface with “ValueType” appended.
Notice, too, that the name of the public attribute in the value type is the name of the
method on the managed object interface used to access the attribute without the appended
“Get.” This convention should be followed for all attributes in value types. The type of
the attribute is the same as the type returned by the attribute access function.

Draft ITU-T Recommendation X.780

39

Code on the client side wishing to retrieve the attribute values for an equipment object
might look something like this:

ManagedObjectValueType moValue;
EquipmentValueType eqValue;
Equipment eq;

eq = … // code that sets eq to a CORBA proxy representing an
// equipment object.

moValue = eq.getAttributes();
eqValue = (EquipmentValueType) moValue; // cast return to proper type
System.out.println(“User Label = “ + eqValue.userLabel); // print label

When the IDL is compiled into an object-oriented programming language, both the
interfaces (in this case, Equipment) and the value types (ManagedObjectValueType and
EquipmentValueType) will be translated into classes. For the interfaces, the classes are
actually proxies. When methods are invoked upon them they make use of the ORB to
send the request back to the server. The classes translated from value types, however, are
not proxies. They are simply local objects.

When the client invokes the call on the equipment proxy to get attributes, the response
from the server will be an EquipmentValueType. When the ORB receives this, it will
create a local instance of an EquipmentValueType object with the attribute values
received from the server. Because the return type to the attributesGet() method, defined
on the base Managed Object interface, is ManagedObjectValueType, the reference to the
EquipmentValueType instance is passed back as a reference of type
ManagedObjectValueType. This works because EquipmentValueType is derived from
ManagedObjectValueType. In order to access attributes that are specific to
EquipmentValueType, though, the client must narrow the reference by casting it to type
EquipmentValueType.

While the behind-the-scenes processing being done by the ORB is a bit complicated, the
alternative would be to use lists of CORBA any types to hold the attribute values. This
approach, though, would require even more processing. The any types would be much
more complicated for the programmer, too. As shown in the example above, using the
value types is actually quite simple.

6.11 Constants
Network management systems require the ability to exchange information with
previously agreed-upon meanings. For example, a state change notification with a
probable cause of “1” might mean it was likely caused by a loss of signal, while a “2”
means a loss of frame, etc. It’s simple enough to define an enumeration or set of integer
values to be passed across an interface in some field, but it is a little trickier to make this
mechanism extensible by multiple groups, likely acting in parallel. The mechanism used
by these guidelines for this is referred to as the “Universal Identifier (UID).”

A UID is a data structure with two fields. The first is a string meant to contain the scoped
name of an IDL module containing the constants defined for some field. The second is a

ITU-T Recommendation X.780 Draft

40

short (16 bit) signed integer containing the value. For example, to send a value of “loss
of signal” in a probable cause field, a system would construct a UID structure with a
moduleName string equal to “itut_x780::ProbableCauseConst” and an integer value equal
to 29. (Annex B contains the constants defined for these guidelines. In it is a module
named “ProbableCauseConst” which contains a constant named lossOfSignal with a
value of 29.)

Note that this is the only format for constant values used within this framework. There
are no “local” values used.

These conventions shall be followed when defining constants for an information model:

1. Constant values shall be defined in separate modules, one for each set of constants
defined for a particular field. These sub-modules shall be contained within the
top-level module that contains the other constructs defined for the information
model.

2. The name of the module shall be the name of the field appended with “Const”.
For example, values for the probableCause field (defined as type UIDType) are
contained within a module named “ProbableCauseConst”.

3. The constants defined within the sub-module must be of type const short. For
example:

const short lossOfSignal = 29;

4. Constants may be kept in a separate file, to reduce the length and complexity of
the main IDL file. Even if the constants are in a separate file, the sub-modules
shall be within an IDL module statement with the same name as the module in the
main file. The main file shall have a pre-compiler include statement at the top of
the file to include the constants in any compilation run.

5. The sub-module shall also contain a string constant named “moduleName” that
contains the scoped name for that module. For example:

module itut_x780 {
…
module ProbableCauseConst {

const string moduleName = “itut_x780::ProbableCauseConst”;
…

}; // end of module ProbableCauseConst
…

}; // end of module itut_x780

This is really just a courtesy to allow programmers to refer to the module’s name
by a constant rather than hard-coding module string names.

Note that other information models may extend the values for probable cause. There
could, for example, be a module “itut_m3120::ProbableCauseConst” with additional
values for the probable cause field. These modules can even re-use the value 29. The
UID will still be unique because the module names will differ.

Draft ITU-T Recommendation X.780

41

6.12 Registration
CORBA IDL requires that all the identifiers within a module must be unique. This
means that as long as a module name is unique, all of its contents will be uniquely
named. CORBA IDL also defines an IDL compiler pragma statement that may be used
to define a unique prefix to the module identifiers when they are registered in the
CORBA interface repository, a central directory of interface information used by
CORBA ORBs. This framework requires that IDL documents contain a pragma prefix
statement using the organization’s Internet domain name as a prefix for the contained
modules.

This eliminates the need to register each individual construct.

6.13 Versioning of CORBA/IDL Specifications
When using CORBA, a management interface is specified as one or more object
interfaces defined using IDL. Inevitably, management interfaces change. Adding a new
CORBA object interface to a management interface is straightforward. The new CORBA
interface simply needs to be defined in IDL, and added to the specification identifying the
object interfaces to be supported on that particular management interface.

Updating an existing CORBA object interface, however, is a little trickier. These
guidelines place a priority on backward compatibility. Therefore, the following rules
apply to extending an existing managed object interface. Note that these rules apply only
to extensions being made to a base class that do not result in changing the business
purpose of the object. That is, the new class models the same resource as the old class, it
simply has some additional capabilities.

1. The name of the new object interface shall be the same as the existing interface with
the letter “R” and a numeral appended, starting with “1.” Subsequent extensions will
increment the numeral. So, extending an interface for “Equipment” managed objects
would result in an interface named “EquipmentR1.”

2. The new interface shall be defined within the same module name as the existing
interface. (CORBA modules are really just name spaces, and may be spread across
multiple files.)

3. The new interface shall inherit from the existing interface.
4. Capabilities inherited from the existing interface cannot be removed or modified in

the new interface. If an operation definition must be modified, a new operation must
be defined. The name of the new operation shall be the same as the existing
operation with the letter “R” and a numeral appended, starting with “1.” Subsequent
extensions will increment the numeral.

5. The value for the kind field used in name bindings will continue to be determined by
a constant in the name binding modules referenced when the object is created. Any
name bindings valid for the existing interface shall be valid for the new interface.
That is, a name binding module for an Equipment object shall also be valid for an
EquipmentR1 object, even if the module’s value for subordinateSubclassesAllowed is
false.

ITU-T Recommendation X.780 Draft

42

6. References to the new interfaces should be of the most specific type. (If they aren’t,
the new capabilities can’t be accessed.) Also, the value of the objectClass attribute
reported by an object of the new class should be the most specific type. CORBA
provides some means for determining the actual class of a reference based on
information contained in the IOR.

For example, consider the following object interface:

interface Foo {
void action(in int A, in int B);

}

The action might be extended like this:

interface FooR1: Foo {
void actionR1(in int A, in int B, in int C);

}

The old action would still be a valid operation.

A similar approach, appending the name with “R” and an incremented number, shall be
used when other existing IDL definitions are revised, including constant definitions, type
definitions, and valuetype definitions.

7 GDMO Translation
This section provides guidelines for creating IDL information models from existing
information models described using GDMO. The sections below describe how each of
the GDMO templates is to be translated to CORBA IDL.

7.1 Managed Object Classes
Each Managed Object Class in a GDMO specification shall be translated into a managed
object interface. Translations of Managed Object Classes derived from the GDMO Top
class shall inherit from the ManagedObject CORBA IDL interface. Translations of
classes not derived directly from Top shall inherit from the translation of whatever class
they are derived from. All managed object interfaces must inherit directly or indirectly
from the ManagedObject interface. Multiple inheritance is allowed subject to the rules of
CORBA IDL. Note, however, that these rules do differ from CMIP. In particular,
CORBA does not allow an attribute or operation to be inherited from multiple sources
unless they in turn inherited it from the same common source. If a multiple-inheritance
translation from CMIP does not meet the CORBA rules, the translator will have to
choose to inherit from one superclass and manually add the other capabilities from the
other class. Another option is to modify the conflicting superclasses so that they inherit
the conflicting capability from a common source. This, of course, would require re-
definition of these superclasses.

The inability to inherit from a potential superclass also means manual work may be
required if the potential superclass or any of its super classes is modified. A more serious
issue is that CORBA polymorphism is based on inheritance. If the subclass does not

Draft ITU-T Recommendation X.780

43

inherit from a class, it can not be polymorphic to it. Unfortunately this is a limitation of
CORBA, not these guidelines.

Attributes, actions, and notifications in mandatory and conditional packages are
translated into operations on the interface according to the guidelines below. A comment
preceding the interface should describe the conditions under which the capabilities of a
conditional package are to be supported by an instance, based on the PRESENT IF clause
for that package. Note that CORBA does not allow the re-definition of a capability
present in a superclass. Therefore, if a capability is defined as conditional in a superclass,
it cannot be redefined as mandatory in a subclass. (As described above, capabilities are
denoted conditional when they raise a NO<package_name> exception. This exception
cannot be removed in a subclass. The best alternative will be a comment indicating that
the subclass should not raise the exception. Another alternative would be to forsake
inheritance and manually add the capability, making it mandatory while doing so. This
could lead to problems with polymorphism, however, and manual updating.)

Registration of individual interfaces is not required.

7.2 Packages
Unfortunately, IDL does not provide a means of defining packages in one place other
than by translating a package into an interface. This, though, would result in a large
number of extra interfaces and increase the complexity of the CORBA interface. Instead,
these guidelines include the concept of conditional support for groups of capabilities.

As described above, whenever a GDMO package is included in a Managed Object Class,
the translation of that class to an IDL interface includes a translation of each of the
templates in the package.

GDMO attributes that are part of a conditional package shall be translated into access
operations each with a raises clause that includes the exception defined for that package.
GDMO actions that are part of a conditional package shall be translated into an operation
that also has a raises clause that includes the exception defined for that package. GDMO
notifications that are part of a conditional package shall be translated into a
CONDITIONAL_NOTIFICATION macro statement.

The present if clause in the GDMO object’s conditional package statement shall be
translated to a comment preceding the IDL translation of the object.

Translations from CMIP can also encounter problems when the same capability is
included in different conditional packages. These rules shall be followed:

1. If the capability is mandatory in one source and conditional in another, it must be
mandatory in the translated class.

2. If the capability is part of multiple conditional packages, the translated operation will
include an exception for each package. An exception will be raised only if none of
the packages is present, and then any one of the exceptions may be raised.

ITU-T Recommendation X.780 Draft

44

3. If the same conditional package is included from multiple super classes, the condition
under which the packages is included in the new class is a logical “OR” of the
conditions in the super classes.

4. Notifications that are part of multiple packages are translated into just a single macro
statement. If any of the packages are mandatory, the
MANDATORY_NOTIFICATION macro statement is used. Otherwise, the
CONDITIONAL_NOTIFICATION macro statement is used, and all of the package
exceptions are listed.

If a GDMO template occurs in multiple conditional packages included in a single object,
the modeler may want to consider making the capability mandatory or defining a new
conditional packages for the capability.

Note that using exceptions to represent packages only supports conditional packages. If
multiple mandatory packages are present in a GDMO class, they won’t be distinguishable
on the translated interface

Behavior statements accompanying a package definition shall be translated to comments
in the interface definitions of the IDL objects translated from the GDMO objects that
include the package.

Registration of packages is not required.

7.3 Attributes
As described above, GDMO managed object classes list the packages that are to be
included in the class definition. The package then lists the attributes, actions, and
notifications that make up that package. When translating a managed object class, each
template in the included packages will be translated to an operation on the managed
object interface, and most of these will include attribute definitions.

Attributes that support GET capabilities shall have an <Attribute Name>Get operation
defined for them. The return type for the operation shall be a translation of the attribute’s
ASN.1 syntax.

Attributes that support REPLACE capabilities shall have an <Attribute Name>Set
operation defined for them. The input parameter type for the operation shall be a
translation of the attribute’s ASN.1 syntax.

Attributes that support ADD capabilities shall have an <Attribute Name>Add operation
defined for them. Attributes that support REMOVE capabilities shall have an <Attribute
Name>Remove operation defined for them. The input parameter type for these
operations shall be IDL sequences translated from the attribute’s ASN.1 syntax.

Attributes that support the set-by-create capability shall accept an initial value for the
attribute on factory create methods but shall not have a SET operation. (The factory

Draft ITU-T Recommendation X.780

45

create method will also accept values for attributes that are settable, but not attributes that
are merely readable.)

Default values are defined as constants within an interface. The identifier of the constant
shall be <AttributeName>Default. The interface may also have an operation for setting
the attribute to its default, or the client can just use the SET operation with the default
constant. The set-to-default operation shall be named <AttributeName>SetDefault and it
shall accept no parameters and return void. CORBA IDL allows constants to be defined
for only base types and enumerated types, so if the attribute’s type is complex, no default
can be defined for it. In these cases, a set-to-default operation must be defined and a
comment associated with the set-to-default operation shall describe the default value.

A few other attribute-related GDMO capabilities cannot be re-created with IDL. GDMO
attributes with a DERIVED-FROM clause will have to have the capabilities of the other
attribute manually added to the interface specification. (The syntax of the derived-from
attribute will be used.) Matching rules are defined by the Multiple-Object Operation
Service constraint language, which is part of the TMN CORBA services defined in ITU-
T Rec. Q.816. These matching rules simply depend on the basic type of the attribute.
There are no matching rules per attribute. Initial values, permitted values, and required
values are not supported.

It will often make sense to define an IDL type for each attribute. Even if the attribute is a
simple type, an IDL typedef statement may be used to define a type for it. A comment
preceding the type definition for an attribute is the best place to put a translation of an
attribute’s behavior statement. Otherwise, the behavior statement may be translated to a
comment preceding the attribute’s access operation on the object interface.

The standard attributes defined by these guidelines shall be used whenever possible. See
Section 6.3.5.

Registration of attributes is not required.

7.4 Attribute Groups
These guidelines do not support the concept of attribute groups. GDMO attribute groups
have no equivalent translation.

7.5 Actions
Actions shall be translated to IDL operations. The input parameters, output parameters,
and return type for the operation shall be translated from the action’s input and output
ASN.1 syntax. That is, the input syntax should be translated to IDL in parameters, while
the output syntax is translated to a mix of out parameters and the return value. IDL inout
(in/out) parameters may be used where appropriate. Also, exceptions should be defined
to return values for error conditions rather than returning unions of normal and error
values.

ITU-T Recommendation X.780 Draft

46

GDMO actions with a mode of unconfirmed (those that lack the MODE CONFIRMED
clause) may be translated to methods with the IDL keyword oneway preceding the return
type. Such operations must have a return type of void and no out or inout parameters,
though. IDL operations without the oneway keyword are confirmed.

7.6 Notifications
These guidelines define the IDL equivalent of the 15 notifications found in ITU-T Rec.
X.721, which are the notifications used in most GDMO information models. Typically,
notifications in GDMO packages will simply be translated to a notification macro
statement on each interface that includes the package. A
MANDATORY_NOTIFICATION statement is used if the notification is part of a
mandatory package and a CONDITIONAL_NOTIFICATION statement is used if it is part
of a conditional package.

The mapping of object attributes to notification fields within a notification statement is
not supported. If some special mapping is required it should be documented with a
comment. Replies to notifications are not supported.

If a new notification must be defined it should be defined as an operation on an interface
named “Notifications” within the information model’s module. The name of the
operation shall be the name of the notification. The parameters to the operation shall be
translated from the notification’s information syntax. The notification operation’s return
type must be void, and it must have only in parameters. ITU-T Recommendation Q.816
provides information on how the data is placed into a structured notification. Note that
attribute IDs are not needed. Instead, parameters are identified with a name and data
type. The scoped interface name and notification operation may then be used within
notification macro statements.

If a notification needs to be extended, it must be done by defining a new operation. The
new operation should contain the same parameters as the old. For example, the IDL
below extends the equipment alarm by adding a parameter named “newData” of type
“newType.”

module newModule {
…

interface Notifications {

void equipmentAlarm (
in ExternalTimeType eventTime,
…
in SuspectObjectSetType suspectObjectList,
in newType newData);

}
}

7.7 Behaviors
GDMO behavior templates shall be translated to formatted IDL comments immediately
preceding the IDL construct with which each behavior is associated. Attribute behaviors
shall be translated to IDL comments preceding the type definition for the attribute type.

Draft ITU-T Recommendation X.780

47

Package behaviors shall be translated to IDL comments preceding the exception defined
for the comment.

7.8 Name Bindings
Each GDMO name binding shall be translated into an IDL name binding module as
defined in Section 6.8. The various constructs in the GDMO name binding shall be
translated as follows.

The superior class name in the name binding shall be assigned to the value of the
superiorClass constant in the name binding module. If the GDMO superior class clause
has an AND SUBCLASSES modifier, the value of the IDL name binding constant
superiorSubclassesAllowed shall be true. Otherwise, it shall be false.

The subordinate class name in the name binding shall be assigned to the value of the
subordinateClass constant in the name binding module. If the GDMO subordinate class
clause has an AND SUBCLASSES modifier, the value of the IDL name binding constant
subordinateSubclassesAllowed shall be true. Otherwise, it shall be false.

If the GDMO name binding has a CREATE clause, the value of the IDL name binding
constant managersMayCreate shall be true. Otherwise, it shall be false.

If the GDMO name binding has no DELETE clause, the value of the IDL name binding
constant deletePolicy shall be notDeletable. If it has a DELETE clause with either no
modifier or an ONLY-IF-NO-CONTAINED-OBJECTS modifier, the value of deletePolicy
shall be deleteOnlyIfNoContainedObjects. If it has a DELETE clause with a
CONTAINED-OBJECTS modifier, the value of deletePolicy shall be
deleteContainedObjects.

If the name binding create clause has a WITH-AUTOMATIC-INSTANCE-NAMING
modifier, the managed object factory create operation should define the name parameter
as inout, and include a comment indicating that the client may submit a null name, and if
so the factory will choose a name and return it.

Creating an object by copying a partial set of attribute values from a reference object is
not possible with a strongly-typed factory method because there is no way for the factory
to tell which values it should copy and which it should use from the operation’s
parameters. A strongly-typed operation that copies all values from a reference could be
defined, but the utility of this is limited. A weakly-typed operation that accepted a
reference object as well as a partial list of attributes could also be defined on a factory,
but the difficulty of implementing this does not seem to be worth the benefit. Therefore,
the translation of the WITH-REFERENCE-OBJECT modifier in a name binding create
clause is not supported.

Parameters on create clauses shall be translated to CreateError exceptions. This may
require defining a new value for the error ID. A comment should be placed in the name
binding IDL module noting which CreateError exception error IDs apply to objects

ITU-T Recommendation X.780 Draft

48

created with that name binding. If it is not possible to translate a create clause parameter
to a CreateError exception, another, less desirable, alternative is to define a new factory,
and translate the parameter to an exception on a create operation on that factory. Because
of the general-purpose nature of the CreateError exception, though, the need for this
should be rare. (See more on parameters, below.)

7.9 Parameters
GDMO parameters provide extensibility for GDMO information models. Parameter
templates are used to augment an existing specification in the areas of notifications,
actions (requests, responses, and failures), and specific errors when defining subclasses.
The GDMO definitions of all notifications and many actions contain an extensibility field
that is further defined by the subclasses (if required). In the case of specific errors, class-
specific errors are used to augment the general “processing failure” error in CMIP. The
format of this information is often a list of name-value pairs, where the name defines the
data type of the value.

Translating GDMO parameters to IDL provides a good opportunity to make the currently
defined extensions that have been found useful with many object classes a “normal,”
strongly-typed part of the model. For example, three GDMO parameters that have been
defined for alarms have been included in the notifications defined in the IDL. (The three
parameters are “Alarm Effect On Service,” “Suspect Object List,” and “Alarming
Resumed.”)

There are several key words used in GDMO parameter templates to specify the semantics
of the extensions. The translation of the various extension capabilities available with
parameter templates based on these keywords is discussed below.

7.9.1 ACTION-INFO and ACTION-REPLY
In keeping with the strong typing recommended in the framework, GDMO parameters
with the keywords “ACTION-INFO” in the template are not translated as an extension
field. Instead, a new interface is subclassed from an existing interface that specifies the
action but adds the extensions as regular “in” parameters of that method. The name of
the IDL parameter should be taken from the name of the parameter, and the data type of
the parameter should be translated from the GDMO parameter’s syntax. “ACTION-
REPLY” parameters would likewise be translated to “out” parameters on the operation.

The above method implies that subsequently adding a parameter to an already-existing
IDL operation is not supported. Instead, the information modeler may use the more
conventional approaches provided by CORBA for extending an interface, such as
subclassing an object interface and defining a new method there, with additional in and/or
out parameters, or additional exceptions. See Section 6.13 for guidelines on this.

7.9.2 EVENT-INFO and EVENT-REPLY
In cases where the “EVENT-INFO” parameters have already been defined, they are
translated to regular “in” parameters on the IDL operations used to convey a notification.

Draft ITU-T Recommendation X.780

49

These guidelines do not support responses to notifications, so there is no translation for
“EVENT-REPLY” parameters.

Since this framework already defines a set of notifications, translating EVENT-INFO
parameters could mean redefining one of the notification operations. See Section 7.6.

In most cases, however, re-using an existing notification definition will be preferred In
cases where the GDMO extensions are predefined, as for alarm information, they should
be included in the translated notification IDL specifications. The framework notification
IDL, however, also supports an “additional information” field, which is a weakly typed
name-value pair list. This can be used to add information to these previously-defined
notifications. The notification event type will not change. The new managed object
interface that needs to use the extension for a specific parameter must note the use of this
parameter in comments, though. Unfortunately, there is no other mechanism except
using the macros shown above to specify which notifications are supported by which
objects, and this does not support also specifying parameters. The advantage of using the
same notification type is to allow the managers to receive the notifications and not be
concerned with having to register for a new notification type. If the extensions are not
understood because of different versions of manager and agent, then the additional
information is discarded.

The specification of the extensions for the additional information is described below.

The notifications defined by this framework include a field named
“additionalInformation” that closely resembles the “additionalInformation” field in CMIP
notifications. The IDL syntax of the “additionalInformation” field in the notifications is
type “AdditionalInformationSetType”:

struct ManagementExtensionType {
UIDType id; // identifies the type of info
any info; // type will depend on id

};

typedef sequence <ManagementExtensionType> AdditionalInformationSetType;

Parameters with the EVENT-INFO keywords are translated by defining a Unique
Identifier (UID) for each parameter. See Section 6.11 for details on this. In short,
though, the modeler defines a sub-module named “AdditionalInformationConst” in which
a constants of value type “short” is defined. The names of these constants are the names
of the GDMO parameters. The value of each constant could also be derived from the
GDMO, based perhaps on the last number of the parameter’s registration. Otherwise, an
integer unique to the constants in that module should be chosen. This definition must
also include a comment indicating the data type of the value that accompanies the UID in
the “additionalInformation” field. As an example, if the Alarm Effect On Service
parameter had not been made a normal member of the Alarm Info data structure used by
alarms in this framework, it might have been translated like this:

module itut_m3100 {
…

ITU-T Recommendation X.780 Draft

50

module AdditionalInformationConst {

/** Alarm effect on service parameters are accompanied by a boolean
value in the “any” field indicating if service has been affected. */

const short alarmEffectOnService = 1;
…
}; // end of module AdditionalInformationConst

}; // end of module itut_m3100

A managed object’s IDL interface can then identify the notifications it supports as usual,
but a comment should indicate the parameters that will be included in the notifications.

7.9.3 Context-Keyword
Context-keyword parameters identify information that is to be passed in a named field in
a CMIP PDU. This named field is usually a sequence of data structures consisting of an
identifier and an “any” data type which holds a value whose type depends on the
identifier. In CMIP, these context-keyword parameters may be passed in action
parameters or in notifications. The translation of context-keyword parameters for actions
is not supported by this framework due to the preference for strong typing. Instead,
additional information for actions should be translated to regular operation parameters.
(See ACTION-INFO parameters above.)

For notifications, except for extensions (explained above), if fields are defined to be of a
weak type, then the same approach as for the extension field can be used. However, this
approach has not been used in most of the GDMO standards. The distinction in the case
with EVENT-INFO keyword versus context-keyword is the former is designed for
extensibility where one or more parameters can be added. The recommended approach in
the case of multiple extension is the use of EVENT-INFO and therefore all standards
have defined parameters using this keyword.

7.9.4 SPECIFIC-ERROR
 “SPECIFIC-ERROR” parameters are returned in CMIP processing failure messages.
They indicate an abnormal outcome of an operation. There are two options for
translating these parameters. First, they may be translated to IDL exceptions raised by
the operation for which the specific error parameter is defined. The name of the
exception should be taken from the GDMO parameter name, and the data type returned
with the exception should be derived from the GDMO parameter’s syntax. Since
specific-error parameters may be defined for different kinds of GDMO templates,
specific error parameters on actions should be translated to exceptions raised by the
action and specific error parameters on attributes should be translated to exceptions raised
by the attribute access operation. Also, specific error parameters on the “Create” clause
of a name binding should be translated to exceptions on the create operation on the
factory interface. There is no translation of a specific-error parameter on a notification
supported by this framework since responses to notifications are not allowed.

The second option for translating specific-error parameters is to translate the parameter
into a new code point for one of the standard exceptions defined by the framework. The

Draft ITU-T Recommendation X.780

51

framework defines three standard exceptions: the CreateError exception, raised on
factory create operations, the DeleteError exception, raised on managed object delete
operations, and ApplicationError exceptions, raised on all other managed object
operations. The ApplicationError exception returns a unique identifier that identifies the
specific application error, and a text explanation. The create and delete error exceptions
extend this information by adding a list of related objects that may be involved, and the
attributes of the object on which the object was attempted. The list of related objects
might show, for example, some objects that must be deleted before the target object can
be deleted. The attributes might contain object state information pertinent to the error.

Translating a specific-error to a code point used by one of these standard exceptions
should be used whenever possible. Since the data types returned in the exceptions are
value types, they may be extended for specific code points. Because the delete operation
is inherited from the base managed object interface specific-error parameters appearing in
GDMO name binding delete clauses must be translated to DeleteError exception code
points. This is done similarly to the EVENT-INFO parameters described above.
Basically, the modeler defines a delete error sub-module for UID constants. The constant
definitions must include a comment indicating what data will be placed in the
“relatedObjects” and “attributeList” fields accompanying an error with that identifier.
Also, if the modeler has extended the standard value type returned for the code point, a
comment must note the actual data type returned so that the managing system may
narrow the type and access the additional information. The framework, in fact, includes
some delete error code points that extend the standard delete error value type.

Finally, a comment on the managed object’s IDL interface indicates the delete error
values that might be raised in an exception when an incorrect attempt to delete the object
is made. An example translation is:

module itut_m3100 {
…
module DeleteErrorConst {

/** Network TTP Terminates Trail delete errors are raised when an
attempt is made to delete a TTP before the trail has been deleted.
It includes a reference to the Trail in the “relatedObjects” field. */

const short networkTTPTerminatesTrail = 54;
…
}; // end of module DeleteErrorConst

}; // end of module itut_m3100

7.10 ASN.1 Data Types
GDMO uses the ASN.1 language to define the syntax of attributes as well as operation
and notification parameters, so when converting GDMO templates to IDL, these syntax
definitions will also have to be translated. This section gives guidelines on translating
ASN.1 syntax to CORBA IDL.

ITU-T Recommendation X.780 Draft

52

7.10.1 Basic Types
CORBA IDL defines the following basic types to which ASN.1 basic types may be
translated: any, boolean, char, double (for double-precision floating-point numbers),
enum (for enumerated types), fixed, float (for single-precision floating-point numbers),
long (for large integers), object (for object references), octet, short (for small integers),
string, wchar (for “wide” characters), and wstring (for strings of “wide” characters).

This framework uses the string type for all strings, and defines a typedef called “Istring”
for cases where the string may contain escaped international characters. Istring is a
typedef of wstring, or “wide” strings. These are string composed of “wide” (16-bit)
characters.

Temporary Note - Contributions are solicited on using the alternative typedef of
Istring to string instead of wstring since strings can carry international character sets
when codeset negotiation, supported by GIOP version 1.1 and greater, is used.
Wstring types are mapped by CORBA language bindings to the programming
language wstring type, which is often tied to just Unicode.

In addition, the CORBA Time service defines a time type referred to a “UtcT” that is
used by this framework.

7.10.2 Sequence
CORBA IDL supports the definition of data structures using the struct keyword, similar
to ASN.1 sequence types.

7.10.3 Sequence of
CORBA IDL supports the definition of sequences of types, both basic and complex, in
much the same way as the ASN.1 sequence of type.

7.10.4 Set of
CORBA IDL does not support the definition of complex set types as does ASN.1.
Instead, sets are translated to IDL sequences. The convention of ending the type name
with “SetType” shall be followed. When handling set values, duplicates should be
eliminated and order ignored.

7.10.5 Choice
CORBA IDL supports the definition of discriminated unions, which serve the same
purpose as ASN.1 choice types.

In the interest of simplifying the implementation of CORBA-based TMN standards, this
framework recommends the conservative use of discriminated unions. Often when
translating from ASN.1 to CORBA IDL, the translated type can be simplified with no
loss of semantics. For example, usually a choice between a string and null can simply be
translated to a string. A comment that the string may possibly be null can be added to
identify this possibility. A choice between a sequence of (or set of) and null can likewise
be translated to just the sequence.

Draft ITU-T Recommendation X.780

53

7.10.6 Object Identifier (OID)
This framework defines a type called “Universal Identifier” (UID) that is designed to be a
replacement for ASN.1 OIDs.

7.10.7 Object Instance
The framework supports two possible translations for ASN.1 object instance types. Since
each managed object has a name, the name type defined by the CORBA Naming Service
can be used. (This framework defines a typedef for the CORBA Naming Service names,
called NameType.) Also, CORBA object references may be used. Since all managed
object interfaces must inherit from the ManagedObject interface, the type
ManagedObject should be used whenever a general reference to an object is required.
The modeler may also use a type specific to a class of managed objects, such as
Equipment. This has the advantage of making a model more strongly typed.

8 Style Idioms for CORBA IDL Specifications
This section defines a set of style idioms for the Interface Definition Language (IDL) of
the Common Object Request Broker Architecture (CORBA) to be used in interface
specifications. Having a set of style idioms will result in CORBA/IDL specifications
with a consistent style. This may require some additional work by editors, but this extra
effort is worth the increased readability of the CORBA/IDL specifications. It is
important to keep in perspective that style conventions are for the benefit of the reader,
not necessarily to the benefit of the author.

8.1 Use Consistent Indentation
This section demonstrates the indentation style that may be used in the IDL modules. As
an example, an excerpt from the CORBA Security Service non-repudiation module is
shown below:

enum EvidenceType {
SecProofofCreation,
SecProofofReceipt,
SecProofofApproval,
SecProofofRetrieval,
SecProofofOrigin,
SecProofofDelivery,
SecNoEvidence // used when request-only token desired

};

interface NRPolicy {
void get_NR_policy_info (

out Security::ExtensibleFamily NR_policy_id,
out unsigned long policy_version,
out Security::TimeT policy_effective_time,
out Security::TimeT policy_expiry_time,
out EvidenceDescriptorListType supported_evidence_types,
out MechanismDescriptorListType supported_mechanisms

);
};

ITU-T Recommendation X.780 Draft

54

8.2 Use Consistent Case for Identifiers
Several languages enforce case rules (such as ASN.1) while others have de-facto rules.
These rules allow readers to easily distinguish identifiers of different type leading to
increased readability. IDL does not enforce case, so the following rules are proposed.

• Operations, parameters, attributes, members and constants shall have every
embedded word capitalized except for the first word capitalized.

• All other identifiers shall have the first letter of every embedded word capitalized.

8.3 Follow JIDM Approach for IMPORT

At the beginning of a module that imports a type from another module, create a local
typedef. This explicitly lists the type that the importing module is dependent upon from
the exporting module. (Note: the name of the local identifier need not be the same name

module CarModule {

struct EngineType {
PistonType piston;
RodType pistonRod;

};

typedef string KeyType;

enum WontStartReasonType {
BatteryIsDead,
NoGas

};

exception WontStart {
WontStartReasonType reasonEngineWontStart;

};

interface FordRanger {

void startEngine(
in KeyType key

)
raises (

WontStart;
);

attribute EngineType engine;

};
};

module ImportingModule {

// Imports
typedef ExportingModule::SomeType SomeType;
typedef ExportingModule::SomeOtherType SomeOtherType;
typedef ExportingModule::SomethingElse SomethingElseType;

...
};

Draft ITU-T Recommendation X.780

55

as the identifier in the exporting module).

8.4 Use JIDM Approach for OPTIONAL and CHOICE
For enumerated and numeric (integer and floating) types, use the ASN OPTIONAL and
CHOICE mappings to IDL as prescribed in the Open Group and Open-Network
Management Forum Joint Inter-domain Management (JIDM) group’s Inter-Domain
Management: Specification Translation.[3] An example is given below:

For strings, sequences, and object references, a null value can usually be used to
represent optional cases where no value is present. In cases where there is a semantic
difference between a null and a not present, the above method may be used.

For structures and unions, the above method may be used or a decision may be made to
use null values within the structure to represent optional values that are not present. For
example, for a structure composed of two strings, two nulls could represent an optional
value that is not present. If a value is optional it should be marked as optional with a
comment.

As always, guidelines need to be used with common sense. The resulting translation
should be evaluated for clarity and usability. If the translation is too complex, the
modeler may want to try to simplify it.

8.5 Use a Consistent Type Suffix
Append the suffix “Type” to all IDL types. This allows type identifiers and members to
use the same name without collisions since IDL is case insensitive. In addition, this
idiom increases readability by clearly separating type identifiers from other identifiers.

8.6 Use a Consistent Suffix for Sequence Types.
For sequences (ordered, duplicates allowed) use a suffix of “SeqType” to distinguish
sequences from singulars.

// Choice
enum CarChoiceType {

Ford,
Cheverolet,
Chrysler

};

union CarType switch (CarChoiceType) {
case Ford: FordType fordValue;
case Cheverolet: ChevroletType chevroletValue;
case Chrysler: ChryslertType chryslerValue;

}

// Optional
union SunRoofTypeOpt switch(boolean) {case TRUE: SunRoofType the_value};

ITU-T Recommendation X.780 Draft

56

8.7 Use a Consistent Suffix for Set Types.
For sets (unordered, duplicates disallowed) use a suffix of “SetType” to distinguish sets
from singulars.

8.8 Use a Consistent Suffix for Optional Types
For optional types use a suffix of “TypeOpt” to distinguish them from the non-optional
type.

8.9 Arrange Operation Parameters in a Consistent Manner
A consistent ordering of parameters increases readability. Arrange parameters to
operations by in, out, then inout.

8.10 Assume No Global Identifier Spaces
To reduce name collisions and promote reuse, all identifiers shall be scoped to a
particular context (e.g., module, and interface).

8.11 Module Level Definitions
All type definitions shall be at the module level. Nesting type definitions within a lower
context leads to difficulties in reuse and duplication.

8.12 Use of Exceptions and Return Codes
Exceptions shall be used for exceptional conditions such as error conditions. Normal
returns shall be handled though return codes and output parameters.

8.13 Explicit vs. Implicit Operations
An operation should perform an explicit function. Using parameters as a flag to
implicitly change the behavior of the operation can be confusing. Factor each behavior
into a separate explicit operation.

8.14 Don’t Create a Large Number of Exceptions
Having a large number of exceptions increases the difficulty of understanding an
interface definition. Group exceptions by category, or make use of the standard
exceptions (ApplicationError, CreateError, and DeleteError) by defining new error code
points for them, if necessary.

9 Compliance and Conformance
This section defines the criteria that must be met by other standards documents claiming
compliance to these guidelines and the functions that must be implemented by systems
claiming conformance to this specification.

9.1 Standards Document Compliance
Any specification claiming compliance with these guidelines shall:

Draft ITU-T Recommendation X.780

57

1. Derive (directly or indirectly) all interfaces that model resources from the
ManagedObject interface described in Section 5.1 and defined in the CORBA IDL in
Annex A.

2. Define, for each managed object class that can be instantiated, a factory interface
derived (directly or indirectly) from the ManagedObjectFactory interface described
in Section 5.2 and defined in the CORBA IDL in Annex A.

3. Use the constants defined in the CORBA IDL in Annex B whenever appropriate.
4. Use the notifications described in Section 5.3 and defined in the CORBA IDL in

Annex A whenever appropriate.
5. Adhere to the conventions for defining CORBA TMN managed objects specified in

Section 6.
6. Adhere to the IDL conventions specified in Section 8
7. Specify notifications as methods on a “Notifications” interface if none of the

notifications defined in this document are applicable.
8. Define and use a NO<package name> exception for identifying the attributes and

actions that are parts of a conditional package.
9. Use the macros defined in this document for identifying the notifications that are to

be supported by a managed object.
10. Use the definitions for generic attribute types found in Section 6.3.5 wherever

applicable.
11. Define IDL name binding modules to identify allowable containment relationships.
12. State in its compliance clause a reference to the module(s) from which other generic

attributes are used.
13. Follow the GDMO to IDL mapping rules defined in Section 7 if the IDL model is a

translation from GDMO.

9.2 System Conformance
An implementation claiming conformance to this document shall:

1. Support all of the capabilities of the ManagedObject interface described in Section
5.1

2. Support the create operation behavior described in Section 6.9.

9.3 Conformance Statement Guidelines
The users of these guidelines must be careful when writing conformance statements.
Because IDL modules are being used as name spaces, they may, as allowed by OMG IDL
rules, be split across files. Thus, when a module is extended its name won’t change.
Instead, a new IDL file will simply be added. Simply stating the name of a module in a
conformance statement, therefore, will not suffice to identify a set of IDL interfaces. The
conformance statement must identify a document and year of publication to make sure
the right version of IDL is identified.

Draft ITU-T Recommendation X.780

59

Annex A The Object Model CORBA IDL Module
(Normative)

/* This IDL code is meant to be stored in a file named “itut_x780.idl”
located in the search path used by IDL compilers on your system. */

#ifndef ITUT_X780_IDL
#define ITUT_X780_IDL

#include <CosNaming.idl>
#include <CosTime.idl>
#include <itut_x780Const.idl>

#pragma prefix “itu.int”

/* Most comments in this file are formatted to be parsed by an IDL-to-HTML
converter such as idldoc or orbacus hidl. */

// MODULE itut_x780
/** This module provides the fundamental capabilities for implementing network
management interfaces and defines the "managed object" interface. The
interfaces below are modeled after the managed object specifications
found in the ITU-T CMIP specification document X.721. */

module itut_x780 {

// IMPORTED TYPES
// Types imported from CosNaming
typedef CosNaming::Name NameType;

// Types imported from CosTime
typedef TimeBase::UtcT UtcT;

// FORWARD DECLARATIONS AND TYPEDEFS
/** International strings are strings of wide (16 bit unicode)
characters. */

typedef wstring Istring;

/** Istring Sets are just sets of Istrings */

typedef sequence <Istring> IstringSetType;

/** Additional Text Type is often used in notifications to convey a
text explanation for the notification.
*/

typedef Istring AdditionalTextType;

/** Avalibility Type is used in a sequence to indicate the
availability of a resource. Zero or more of these conditions may be
indicated.
*/

typedef short AvailabilityStatusType;

ITU-T Recommendation X.780 Draft

60

const AvailabilityStatusType inTest = 0;
const AvailabilityStatusType failed = 1;
const AvailabilityStatusType powerOff = 2;
const AvailabilityStatusType offLine = 3;
const AvailabilityStatusType offDuty = 4;
const AvailabilityStatusType dependency = 5;
const AvailabilityStatusType degraded = 6;
const AvailabilityStatusType notInstalled = 7;
const AvailabilityStatusType logFull = 8;

/** Availability status is used to indicate the availability of a
resource. It is represented as a sequence of integers because several
of the conditions may exist at once.
*/

typedef sequence<AvailabilityStatusType> AvailabilityStatusSetType;

/** Backed Up Status Type is used to indicate if an object has a back
up. */

typedef boolean BackedUpStatusType;

/** Control Status Type is used in a sequence to indicate the
control status of a resource. Zero or more of these may be indicated.
*/

typedef short ControlStatusType;

const ControlStatusType subjectToTest = 0;
const ControlStatusType partOfServicesLocked = 1;
const ControlStatusType reservedForTest = 2;
const ControlStatusType suspended = 3;

/** Control status set is used to indicate the control status of a
resource. It is represented as a sequence of integers because several
of the conditions may exist at once.
*/

typedef sequence<ControlStatusType> ControlStatusSetType;

/** Generalized time is a basic ASN.1 type. It is usually represented
as a string in computing languages but it has certain, parseable
formats. The 3 possible forms are:

Local time only. "YYYYMMDDHHMMSS.fff", where the optional fff is
accurate to three decimal places,
Universal time (UTC time) only. "YYYYMMDDHHMMSS.fffZ", and
Difference between local and UTC times. "YYYYMMDDHHMMSS.fff+-HHMM".

The options for representing this in IDL seem to be either a string or
the UtcT structure from the CORBA Time Service. UtcT makes it a little
easier to compare times from different zones, but requires managed
systems to know their time zones. UtcT was picked.
*/

typedef UtcT GeneralizedTimeType;

/** External Time is generalized time. */

typedef GeneralizedTimeType ExternalTimeType;

/** Forward declaration. */

Draft ITU-T Recommendation X.780

61

interface ManagedObject;

/** MO is shorthand for Managed Object. CORBA uses object references
of type "object" to identify objects. These are used instead of ASN.1
object instances. For network management interfaces, all objects will
inherit from the "ManagedObject" interface. */

typedef ManagedObject MO;

/** MO Set is a set of MO references. */

typedef sequence <MO> MOSetType;

/** MO Seq is a sequence of MO references. */

typedef sequence <MO> MOSeqType;

/** A set of names is definded as a sequence of names. */

typedef sequence <NameType> NameSetType;

/** Notification IDs are long integers. */

typedef long NotifIDType;

/** This defines a set of notification IDs. */

typedef sequence <long> NotifIDSetType;

/** Procedural Status Type is used in a sequence to indicate the
procedural status of a resource. Zero or more of these may be
indicated.
*/

typedef short ProceduralStatusType;

const ProceduralStatusType initializationRequired = 0;
const ProceduralStatusType notInitialized = 1;
const ProceduralStatusType initializing = 2;
const ProceduralStatusType reporting = 3;
const ProceduralStatusType terminating = 4;

/** Procedural Status Set is used to indicate the procedural status of
a resource. It is represented as a sequence of integers because
several of the conditions may exist at once.
*/

typedef sequence<ProceduralStatusType> ProceduralStatusSetType;

/** ScopedName is just a string. */

typedef string ScopedNameType;

/** Scoped Name Sets are simply sets of Scoped Names. */

typedef sequence <ScopedNameType> ScopedNameSetType;

/** In CORBA, strings containing scoped names are used to identify
object classes (actually, "interfaces"). */

typedef ScopedNameType ObjectClassType;

/** Object Class Set is a set of object classes */

ITU-T Recommendation X.780 Draft

62

typedef sequence <ObjectClassType> ObjectClassSetType;

/** Name Binding Modules are identified with scoped names. */

typedef ScopedNameType NameBindingType;

/** StartTimeType is used to specify a time when something starts.
It is often paired with a StopTimeType to control the activation of
some function.
*/

typedef GeneralizedTimeType StartTimeType;

/** String sets are sets of strings. */

typedef sequence <string> StringSetType;

/** Unknown status is used to indicate if the status of a resource is
not known. A value of true indicates the status is unknown. */

typedef boolean UnknownStatusType;

// ENUMERATED TYPES
/* The following state objects are used in many interfaces and parallel
the state objects in CMIP standards. */

/** Administrative State is read/write. A "locked" object is usually
one that may not be changed or one which is not providing service.
Setting the Admininstrative State of an object to "shuttingDown" begins
the shutdown process for that object. */

enum AdministrativeStateType {locked, unlocked, shuttingDown};

/** Operational State is read only. It simply reports the current
capability of the object to provide service. */

enum OperationalStateType {disabled, enabled};

/** Usage state is read only. If "idle," the resource is completely
unused. If "busy," the total capacity of the resource is in use.
"Active" is in between. */

enum UsageStateType {idle, active, busy};

/** Delete Policy indicates if an object can be deleted and if so if
any contained objects should automatically be deleted. Since objects
must not be orphaned, if an object has a delete policy of
“deleteOnlyIfNoContainedObjects” the object must not be deleted if it
has contained objects. A value of “deleteContainedObjects” means if
the object is deleted its contained objects should also be deleted. */

enum DeletePolicyType {notDeletable, deleteOnlyIfNoContainedObjects,
deleteContainedObjects};

/** PerceivedSeverity reports the severity of an alarm. "Indeterminate"
is used when it is not possible to assign one of the other values */

enum PerceivedSeverityType {indeterminate, critical, major, minor,
warning, cleared};

Draft ITU-T Recommendation X.780

63

/** Source Indicator is used in many notifications. It identifies
whether the notification is a result of a management operation or
something that occurred on the managed system. */

enum SourceIndicatorType {resourceOperation, managementOperation,
unknown};

/** The standby status attribute is single-valued and read-only.
The value is only meaningful when the back-up relationship role exists.
If "hot standby" the resource is not providing service, but is
operating in synchronism with another resource that is to be backed-up.
If "cold standby" the resource is to back-up another resource, but is
not synchronized with that resource. If "providing service" the back-up
resource is providing service and is backing up another resource.
*/

enum StandbyStatusType {hotStandby, coldStandby, providingService};

/** Stop times are used to specify when some function should cease.
There are normally two choices, the function runs continually (in
which case no actual time is specified) or the function ends at
a specified time.
*/

enum StopTimeChoice {specific, continual};

/** Threshold indication describes if the threshold crossed was in the
up or down direction. */

enum ThresholdIndicationType {up, down};

/** TrendIndication values indicate if some observed condition is
getting better, worse, or not changing. */

enum TrendIndicationType {lessSevere, noChange, moreSevere};

// STRUCTURES AND UNIONS
/* The structures defined below are used to pass values that may be
optionally included. For some types of values, like strings, lists,
and pointers, it is easy to tell if the value is included. For others,
like enumerations, numbers, and structures, it is not. */

/** AdministrativeStateTypeOpt is an optional type. If the
discriminator is true the value is present, otherwise the value is
null. */

union AdministrativeStateTypeOpt switch (boolean) {
case TRUE: AdministrativeStateType value;

};

/** BooleanTypeOpt is an optional type. If the discriminator is
true the value is present, otherwise the value is null. */

union BooleanTypeOpt switch (boolean) {
case TRUE: boolean value;

};

/** FloatTypeOpt is an optional type. If the discriminator is
true the value is present, otherwise the value is null. */

union FloatTypeOpt switch (boolean) {

ITU-T Recommendation X.780 Draft

64

case TRUE: float value;
};

/** LongTypeOpt is an optional type. If the discriminator is
true the value is present, otherwise the value is null. */

union LongTypeOpt switch (boolean) {
case TRUE: long value;

};

/** OperationalStateTypeOpt is an optional type. If the discriminator
is true the value is present, otherwise the value is null. */

union OperationalStateTypeOpt switch (boolean) {
case TRUE: OperationalStateType value;

};

/** ShortTypeOpt is an optional type. If the discriminator is
true the value is present, otherwise the value is null. */

union ShortTypeOpt switch (boolean) {
case TRUE: short value;

};

/** TrendIndicationTypeOpt is an optional type. If the discriminator
is true the value is present, otherwise the value is null. */

union TrendIndicationTypeOpt switch (boolean) {
case TRUE: TrendIndicationType value;

};

/** UnsignedShortTypeOpt is an optional type. If the discriminator is
the value is present, otherwise the value is null. */

union UnsignedShortTypeOpt switch (boolean) {
case TRUE: unsigned short value;

};

/** UsageStateTypeOpt is an optional type. If the discriminator is
true the value is present, otherwise the value is null. */

union UsageStateTypeOpt switch (boolean) {
case TRUE: UsageStateType value;

};

/** Many times interface specifications need to define standard values
to be passed across the interface. Also, often the scheme used to
define these values needs to be extensible as new interfaces are
subclassed, so enumerations don't work well. CMIP uses OIDs, strings
of numbers that are often appended, in standards. To serve this
purpose, the Unique ID is used. It consists of two parts, a string
containing a scoped module name, and an integer value defined as a
constant within that module. These UIDs, and the ObjectClass type
defined above, replace ASN.1 OIDs. It is expected that each module
will contain a constant string named "moduleName" that contains the
name of the module for error-free use by the programmer. A null module
name will indicate a null value for the UID. <p>

Code to interpret a UID might look like the following code snippet:

<code><pre>
UIDType pc; // probable cause
...
if (pc.moduleName ==

Draft ITU-T Recommendation X.780

65

itut_x780::ProbableCauseConst::moduleName) //string compare
switch (pc.value) {
case itut_x780::ProbableCauseConst::adapterError:
...
case
itut_x780::ProbableCauseConst::applicationSubsystemFailure:
...
case itut_x780::ProbableCauseConst::bandwidthReduced:
...
}

else if (pc.moduleName == MyLocal::ProbableCauseConst::moduleName)
switch (pc.value) {
...
}

</pre></code>
@member moduleName The scoped module name where values are

defined.
@member value The value defined as a constant within the

module.
*/

struct UIDType {
string moduleName; // module where value is defined
short value; // constant within the module

};
typedef sequence <UIDType> UIDSetType;

/** Management Extension is a structure for flexibly reporting
information. It is typically used in the Additional Information field
of notifications.
@see
AdditionalInformationSetType
@member id identifies the type of information
@member any contains the actual information, type will depend on

the value of the id member.
*/

struct ManagementExtensionType {
UIDType id; // identifies the type of info
any info; // type will depend on id

};

/** Additional Information is a flexible way to report information that
does not fit into the structure of a notification. It contains a
sequence of a structure called "Management Extension". */

typedef sequence <ManagementExtensionType>
AdditionalInformationSetType;

/** An Attribute Value structure is used in a notification to report
the value of any attribute. The string used for the attribute’s name
is the same as the name of the data member in the value object defined
for the object. In other words, it is the name of an attribute accessor
method minus the “get” or “set”.
@member attributeName the name of the attribute
@member value contains the value of the attribute, type will

depend on the attributeName.
*/

struct AttributeValueType {
string attributeName;
any value; // type will depend on the attribute

};

ITU-T Recommendation X.780 Draft

66

/** Attribute Value Sets are used to report attributes generically,
in a batch mode. */

typedef sequence <AttributeValueType> AttributeSetType;

/** An Attribute Value Change structure is used in a notification to
report an attribute that has been changed.
@see AttributeValueType
@member attributeName the name of the attribute
@member oldValue the old value, type will depend on the

attributeName
@member newValue the new value, type will depend on the

attributeName.
*/

struct AttributeValueChangeType {
string attributeName;
any oldValue; // type depends on attribute
any newValue; // type depends on attribute

};

/** An Attribute Change Set is used to report the attributes that have
been changed in an attribute value change notification. */

typedef sequence <AttributeValueChangeType> AttributeChangeSetType;

/** A Correlated Notification is identified by the object that emitted
the notification and the notification ID. Both are included in case
the Notification IDs are not unique across objects.
@member source Reference to object that emitted the correlated

notification. If null, the correlated notifications
are from the same source as the notification containing
this data structure.

@member notifIDs IDs of the correlated notifications. Notification
identifiers must be chosen to be unique across all
notifications from a particular managed object
throughout the time that correlation is significant.

*/

struct CorrelatedNotificationType {
NameType source;
NotifIDSetType notifIDs;

};

/** Correlated Notification sets are sets of Correlated Notification
structures. */

typedef sequence <CorrelatedNotificationType>
CorrelatedNotificationSetType;

/** ProbableCause, in CMIP standards, may be either an integer or GDMO
OID, a dot-notation string. The UID type is used instead. */

typedef UIDType ProbableCauseType;

/** Proposed Repair Actions are sets of unique identifiers. */

typedef UIDSetType ProposedRepairActionSetType;

/** Security Alarm Causes are unique identifiers. */

typedef UIDType SecurityAlarmCauseType;

Draft ITU-T Recommendation X.780

67

/** Security Alarm Detector can indicate either a mechanism or a
specific object. According to X.721 a choice is made between one or
the other, though it is not clear why. (Actually, X.721 adds a third
choice for an AE-title which has no equivalent here.) Unless otherwise
indicated, then, at most one of the members will be non-null. Two
nulls may be sent if the managed system does not support this property.
@member mechanism the scheme or function detecting the alarm, may

be null
@member obj the object detecting the alarm, may be null
*/

struct SecurityAlarmDetectorType {
UIDType mechanism; // may be null
NameType obj; // may be null

};

/** Service User
@member id the id of the service user
@member details details about the service user, type will depend on id
*/

struct ServiceUserType {
UIDType id;
any details; // value will depend on id

};

/** Service Providers share the same representation as Service Users.
*/

typedef ServiceUserType ServiceProviderType;

/** Specific Problems are sets of unique identifiers. */

typedef UIDSetType SpecificProblemSetType;

/** A Stop Time Type is used to indicate when some function should
cease. In the specific case, an actual time is given. In the
continual case, the function runs continually and no value is
carried in this union.
*/

union StopTimeType switch (StopTimeChoice) {
case specific: GeneralizedTimeType time;
/* case continual carries NULL value */

};

/** A SuspectObject identifies an object that may be the cause of a
failure. It is usually a component of a SuspectObjectList.
@member objectClass Object class of the suspect object
@member suspectObjectInstance Object instance of the suspect object
@member failureProbability Optional failure responsibility

probability from 1 to 100
*/

struct SuspectObjectType {
ObjectClassType objectClass;
MO suspectObjectInstance;
UnsignedShortTypeOpt failureProbability;

};

/** Suspect Object Lists are used to identify objects that may be the
cause of a failure.

ITU-T Recommendation X.780 Draft

68

*/

typedef sequence<SuspectObjectType> SuspectObjectSetType;

/** Threshold Level Indication describes multi-level threshold
crossings. Up is the only permitted choice for a counter. In ASN.1,
if indication is “up”, low value is optional.
@member indication indicates up or down direction of crossing.
@member low the low observed value.
@member high the high observed value.
*/

struct ThresholdLevelIndType {
ThresholdIndicationType indication;
FloatTypeOpt low; // observed value
float high; // observed value

};

/** Threshold Level Ind Type Opt is an optional type. If the
discriminator is true the value is present, otherwise the value is
null. */

union ThresholdLevelIndTypeOpt switch (boolean) {
case TRUE: ThresholdLevelIndType value;

};

/** Threshold Information indicates some guage or counter attribute
passed a set threshold. The structure differs from X.721 some to
simplify the syntax.
@member attributeID Identifies the attribute that crossed the

threshold. Actually, it is an operation name
on an interface minus the "get" or "set". The
interface on which the operation is defined is
included elsewhere in the notification as
ObjectClass. A Null value indicates the entire
structure is null.

@member observedValue Attributes that are of type integer will be
converted to floats.

@member thresholdlevel This parameter is for multi-level threhsolds.
Optional.

@member armTime May be null(0). */

struct ThresholdInfoType {
string attributeID;
float observedValue;
ThresholdLevelIndTypeOpt thresholdLevel;
ExternalTimeType armTime;

};

// EXCEPTIONS
/** Application error info types are passed back in managed object
exceptions.
@member error A unique identifier identifying the problem.
@member details A text message with additional information about the
problem.
*/

valuetype ApplicationErrorInfoType {
public UIDType error;
public Istring details;

};

Draft ITU-T Recommendation X.780

69

/** Create error info types are passed back in managed object create
exceptions. They extend application error info types.
@member relatedObjects objects that have some relationship to the

object to be created that somehow prevented the
creation.

@member attributeList the values that would have been assigned to the
created object. These may hold some key to why
the object could not be created.

*/

valuetype CreateErrorInfoType : ApplicationErrorInfoType {
public MOSetType relatedObjects;
public AttributeSetType attributeList;

};

/** Delete error info types are passed back in managed object delete
exceptions. They extend application error info types.
@member relatedObjects objects that have some relationship to the

object to be deleted that somehow prevented the
deletion.

@member attributeList the attribute values assigned to the object to
be deleted. These may hold some key to why the
object could not be deleted.

*/

valuetype DeleteErrorInfoType : ApplicationErrorInfoType {
public MOSetType relatedObjects;
public AttributeSetType attributeList;

};

/** A package error info type is a special create error. It will be
passed back in a managed object create exception as a create error. If
the UID error code matches the package error info type, the client
application may narrow the value type from create error info type to
package error info type to access the additional information.
@member packages the list of requested packages that conflicted

or could not be supported.
*/

valuetype PackageErrorInfoType : CreateErrorInfoType {
public StringSetType packages;

};

/** Application error exceptions may be raised on any managed object
operation to identify a problem preventing the operation from being
completed. */

exception ApplicationError { ApplicationErrorInfoType info; };

/** Create error exceptions may be raised on any managed object create
operation to identify a problem preventing the object from being
completed. */

exception CreateError { CreateErrorInfoType info; };

/** Delete error exceptions may be raised by a managed object in
response to an attempt to delete the object. They may also be raised
by the terminator service. */

exception DeleteError { DeleteErrorInfoType info; };

ITU-T Recommendation X.780 Draft

70

// MANAGED OBJECT INTERFACE
/** This valuetype object contains members for each of the attributes
accessible on this interface. */

valuetype ManagedObjectValueType {
public NameType name;
public ObjectClassType objectClass;
public StringSetType packages;
public SourceIndicatorType creationSource;
public DeletePolicyType deletePolicy;

};

/** The Managed Object interface is intended to be the base interface
from which all other managed object interfaces inherit. It is a
central place to specify basic functions which all managed objects are
expected to support. */

interface ManagedObject {

/** This method returns the fully-qualified name for the
object. This method is used rather than having a "get*ID"
method defined for each interface, as is done in CMIP
specifications. This will ensure that objects have only a
single operation to retrieve names when they are sub-classed.
<p>

The response is a sequence of name component structures,
starting with the name assigned to the “local root” naming
context under which this object is contained. The client may
find the superiors of this object by removing components from
the tail end of this sequence and performing a resolve
operation on the first part of the name. */

NameType nameGet()
raises (ApplicationError);

/** This method returns the scoped name of the most-specific
class of the interface (e.g. “EquipmentR1”). */

ObjectClassType objectClassGet()
raises (ApplicationError);

/** This method returns a list of all the conditional packages
supported by this instance. */

StringSetType packagesGet ()
raises (ApplicationError);

/** This method returns an indication of how the object was
created. */

SourceIndicatorType creationSourceGet()
raises (ApplicationError);

/** This method returns a value indicating if the object may be
deleted and if it may, if all contained objects are
automatically deleted. */

DeletePolicyType deletePolicyGet ()
raises (ApplicationError);

/** This method may be used to generically get all of the

Draft ITU-T Recommendation X.780

71

attributes supported by an instance. Each interface is
expected to sub-class the Managed Object value type and add the
other attributes supported by that interface. The managed
object must return a value object of that type. The client
must then narrow the reference to access all the attributes.
<p>

The client may also submit a list of names indicating the
attributes it wishes to receive. These names must match the
member names in the value object. For members not on the list,
and for members that are part of packages that are not
supported, the server may return any value but it should be as
short as possible. The server also returns the list of
attributes, which may be shorter due to exclusion of attributes
in unsupported packages. The client must regard the value of
any member not in the list as garbage. <p>

A null attribute names list indicates that all supported
attributes are to be returned. The server must return the
actual list. */

ManagedObjectValueType attributesGet (
inout StringSetType attributeNames)
raises (ApplicationError);

/** This method destroys the object. It is used to simply
release any resources associated with the managed object. It
does not check for contained objects or remove name bindings
from the naming tree. <p>

The intent of this operation is to allow support services to
destroy the managed object. <p>

NOTE: Direct invocation of this operation from a managing
system could corrupt the naming tree and is recommended only
under extraordinary circumstances. Clients wishing to delete
an object should instead use the terminator service. */

void destroy()
raises (ApplicationError, DeleteError);

}; // end of ManagedObject interface

// MANAGED OBJECT FACTORY INTERFACE
/** This interface defines the generic managed object factory
interface. All Managed Object factories should inherit from this
interface. <p>

In addition to providing the means for creating objects by management
operation, the factories are assumed to take responsibility for
maintaining the integrity of the naming tree by creating name bindings
for the objects they create. <p>

Currently, this interface is null. It is included, however, as a
placeholder for capabilities that must be supported by all managed
object factories.
*/

interface ManagedObjectFactory {

ITU-T Recommendation X.780 Draft

72

}; // end of ManagedObjectFactory interface

// NOTIFICATIONS INTERFACE
/** This interface contains the definitions of notifications emitted by
many managed objects. <p>

The use of "typed" notifications is done here so that the notifications
can be documented in IDL and to support typed notifications for those
manager and managing systems that wish to use them. Note that the
OMG's Notification Service supports both structured and typed
notifications. It is not clear if implementations of the Notification
Service will support translation between them. It is expected that the
implementation agreement between the managing and managed system will
specify the use of structured or typed notifications. <p>

Notification users wishing to use typed notifications need only support
the interfaces below. Notification publishers and subscribers wishing
to use structured notifications based on the operations defined below
should follow these rules for constructing and reading the notification
structure:

The domain_type string in the fixed header of the structure should be
set to "telecommunications".

The event_type string in the fixed header of the structure should be
set to the scoped name of the operation. For example, for the
Attribute Value Change notification defined below this field would be
"itut_x780::Notifications::attributeValueChange".

The event_name string in the fixed header of the structure should be
null.

Optional header fields may be included to support features like Quality
of Service as appropriate.

Each parameter in the operation should be placed in a name-value pair
in the filterable body portion of the notification. The fd_name string
of this pair shall be set to the name of the parameter and the type
placed in the associated fd_value will be the type specified for the
parameter. For example, each of the notifications defined below has a
parameter named “eventTime” that is an “ExternalTimeType.” This
parameter would be placed in the filterable data portion of the event.
The fd_name string of this pair would be set to "eventTime" and
fd_value would contain an ExternalTimeType value.

The remainder of the body of the notification (the unfilterable part)
should be null.

Unfortunately, typed notifications are mapped to notification
structures differently, so if one system wants to use typed
notifications and the other structured, the structured notification
user must be aware of how the CORBA Notification Service translates
typed notifications to structured notifications. See the specification
for details. In short, however, each of the parameters in the
operations below will be converted into a name-value pair in the
filterable data protion of the structured notification. Also, the
event_type field in the fixed header of the structured notification
will be set to the special value "%TYPED" and the domain_type field
will be an empty string. Finally, a name-value pair will be added as
the first element in the filterable data portion of the notification
with the name "operation". The value associated with this name will be

Draft ITU-T Recommendation X.780

73

a string with the value set to the scoped name of the operation used to
emit the notification
(e.g. itut_x780::Notifications::attributeValueChange). <p>

Also, structured notification publishers may exclude notification
parameters that are marked “optional” or are of an optional type (a
type name ending in “TypeOpt.” This should be done for efficiency.
This will, however, preclude the automatic conversion of structured
notifications to typed, so managers must be capable of accepting
structured notifications. (They do not strictly have to support typed
notifications, but if managed systems emit typed notifications managers
should accept them rather than translations because it will be more
efficient.) If an “optional” parameter is included in a notification,
the “optional” type (discriminated union) must be used. <p>

Parameters named "operation" should be avoided in notification
operations to support the use of typed notifications. While the
notification channel should be able to differentiate the real parameter
from the one added based on their positions in the filterable data
list, it could have an impact on filtering as the default filtering
language does not have a way to differentiate parameters based on
position. <p>

Because the scoped operation name is placed in either the type_name
string (when structured notifications are used) or a filterable body
name-value pair with the name "operation" (when typed notifications are
used), there is no "event type" parameter explicitly included in any of
the notification data structures. */

interface Notifications {

/** An Attribute Value Change notification is used to report changes to
the attributes of an object such as addition or deletion of members to
one or more set-valued attributes and replacement of the value of one
or more attributes.
@param eventTime Managed system's current time.
@param source Object emitting notification.
@param sourceClass Actual class of source object.
@param notificationIdentifier A unique identifier for this

notification. Must be unique for
an object instance. (Optional in X.721
but not here. See text for
discussion of possible implications)

@param correlatedNotifications List of correlated notifications.
Optional. Zero length sequence
indicates absence of this parameter.

@param additionalText Text message. Optional. Zero length
string indicates absence of this
parameter.

@param additionalInfo Optional. Zero length sequence
indicates absence of this parameter.

param sourceIndicator Cause of event. Optional. Use
"unknown" if not supported.

@param attributeChanges Changed attributes
*/

void attributeValueChange (
in ExternalTimeType eventTime,
in NameType source,
in ObjectClassType sourceClass,
in NotifIDType notificationIdentifier,
in CorrelatedNotificationSetType correlatedNotifications,
in AdditionalTextType additionalText,

ITU-T Recommendation X.780 Draft

74

in AdditionalInformationSetType additionalInfo,
in SourceIndicatorType sourceIndicator,
in AttributeChangeSetType attributeChanges

);

/** A Communications Alarm notification is used to report when an
object detects a communications error.
@param eventTime Managed system's current time.
@param source Object emitting notification.
@param sourceClass Actual class of source object.
@param notificationIdentifier A unique identifier for this

notification. Must be unique for
an object instance. (Optional in X.721
but not here. See text for
discussion of possible implications)

@param correlatedNotifications List of correlated notifications.
Optional. Zero length sequence
indicates absence of this parameter.

@param additionalText Text message. Optional. Zero length
string indicates absence of this
parameter.

@param additionalInfo Optional. Zero length sequence
indicates absence of this parameter.

@param probableCause
@param specificProblems Optional. Zero length sequence

indicates absence of this parameter.
@param perceivedSeverity
@param backedUpStatus "True" if backed up
@param backUpObject Will be null if backedUpStatus is

"false"
@param trendIndication Optional. See type for details.
@param thresholdInfo Optional. See type for details.
@param stateChangeDefinition Optional. Zero length sequence

indicates absence of this parameter.
@param monitoredAttributes Optional. Zero length sequence

indicates absence of this parameter.
@param proposedRepairActions Optional. Zero length sequence

indicates absence of this parameter.
@param alarmEffectOnService True if alarm is service effecting.
@param alarmingResumed True if alarming was just resumed,

possibly resulting in delayed reporting
of an alarm

@param suspectObjectList Objects possibly involved in failure.
*/

void communicationsAlarm (
in ExternalTimeType eventTime,
in NameType source,
in ObjectClassType sourceClass,
in NotifIDType notificationIdentifier,
in CorrelatedNotificationSetType correlatedNotifications,
in AdditionalTextType additionalText,
in AdditionalInformationSetType additionalInfo,
in ProbableCauseType probableCause,
in SpecificProblemSetType specificProblems,
in PerceivedSeverityType perceivedSeverity,
in BooleanTypeOpt backedUpStatus,
in NameType backUpObject,
in TrendIndicationTypeOpt trendIndication,
in ThresholdInfoType thresholdInfo,
in AttributeChangeSetType stateChangeDefinition,
in AttributeSetType monitoredAttributes,
in ProposedRepairActionSetType proposedRepairActions,

Draft ITU-T Recommendation X.780

75

in BooleanTypeOpt alarmEffectOnService,
in BooleanTypeOpt alarmingResumed,
in SuspectObjectSetType suspectObjectList

);

/** An Environmental Alarm notification is used to report a problem in
the environment.
@param eventTime Managed system's current time.
@param source Object emitting notification.
@param sourceClass Actual class of source object.
@param notificationIdentifier A unique identifier for this

notification. Must be unique for
an object instance. (Optional in X.721
but not here. See text for
discussion of possible implications)

@param correlatedNotifications List of correlated notifications.
Optional. Zero length sequence
indicates absence of this parameter.

@param additionalText Text message. Optional. Zero length
string indicates absence of this
parameter.

@param additionalInfo Optional. Zero length sequence
indicates absence of this parameter.

@param probableCause
@param specificProblems Optional. Zero length sequence

indicates absence of this parameter.
@param perceivedSeverity
@param backedUpStatus "True" if backed up
@param backUpObject Will be null if backedUpStatus is

"false"
@param trendIndication Optional. See type for details.
@param thresholdInfo Optional. See type for details.
@param stateChangeDefinition Optional. Zero length sequence

indicates absence of this parameter.
@param monitoredAttributes Optional. Zero length sequence

indicates absence of this parameter.
@param proposedRepairActions Optional. Zero length sequence

indicates absence of this parameter.
@param alarmEffectOnService True if alarm is service effecting.
@param alarmingResumed True if alarming was just resumed,

possibly resulting in delayed reporting
of an alarm

@param suspectObjectList Objects possibly involved in failure.
*/

void environmentalAlarm (
in ExternalTimeType eventTime,
in NameType source,
in ObjectClassType sourceClass,
in NotifIDType notificationIdentifier,
in CorrelatedNotificationSetType correlatedNotifications,
in AdditionalTextType additionalText,
in AdditionalInformationSetType additionalInfo,
in ProbableCauseType probableCause,
in SpecificProblemSetType specificProblems,
in PerceivedSeverityType perceivedSeverity,
in BooleanTypeOpt backedUpStatus,
in NameType backUpObject,
in TrendIndicationTypeOpt trendIndication,
in ThresholdInfoType thresholdInfo,
in AttributeChangeSetType stateChangeDefinition,
in AttributeSetType monitoredAttributes,
in ProposedRepairActionSetType proposedRepairActions,

ITU-T Recommendation X.780 Draft

76

in BooleanTypeOpt alarmEffectOnService,
in BooleanTypeOpt alarmingResumed,
in SuspectObjectSetType suspectObjectList

);

/** An Equipment Alarm notification is used to report a failure in the
equipment.
@param eventTime Managed system's current time.
@param source Object emitting notification.
@param sourceClass Actual class of source object.
@param notificationIdentifier A unique identifier for this

notification. Must be unique for
an object instance. (Optional in X.721
but not here. See text for
discussion of possible implications)

@param correlatedNotifications List of correlated notifications.
Optional. Zero length sequence
indicates absence of this parameter.

@param additionalText Text message. Optional. Zero length
string indicates absence of this
parameter.

@param additionalInfo Optional. Zero length sequence
indicates absence of this parameter.

@param probableCause
@param specificProblems Optional. Zero length sequence

indicates absence of this parameter.
@param perceivedSeverity
@param backedUpStatus "True" if backed up
@param backUpObject Will be null if backedUpStatus is

"false"
@param trendIndication Optional. See type for details.
@param thresholdInfo Optional. See type for details.
@param stateChangeDefinition Optional. Zero length sequence

indicates absence of this parameter.
@param monitoredAttributes Optional. Zero length sequence

indicates absence of this parameter.
@param proposedRepairActions Optional. Zero length sequence

indicates absence of this parameter.
@param alarmEffectOnService True if alarm is service effecting.
@param alarmingResumed True if alarming was just resumed,

possibly resulting in delayed reporting
of an alarm

@param suspectObjectList Objects possibly involved in failure.
*/

void equipmentAlarm (
in ExternalTimeType eventTime,
in NameType source,
in ObjectClassType sourceClass,
in NotifIDType notificationIdentifier,
in CorrelatedNotificationSetType correlatedNotifications,
in AdditionalTextType additionalText,
in AdditionalInformationSetType additionalInfo,
in ProbableCauseType probableCause,
in SpecificProblemSetType specificProblems,
in PerceivedSeverityType perceivedSeverity,
in BooleanTypeOpt backedUpStatus,
in NameType backUpObject,
in TrendIndicationTypeOpt trendIndication,
in ThresholdInfoType thresholdInfo,
in AttributeChangeSetType stateChangeDefinition,
in AttributeSetType monitoredAttributes,
in ProposedRepairActionSetType proposedRepairActions,

Draft ITU-T Recommendation X.780

77

in BooleanTypeOpt alarmEffectOnService,
in BooleanTypeOpt alarmingResumed,
in SuspectObjectSetType suspectObjectList

);

/** An Integrity Violation notification is used to report that a
potential interruption in information flow has occurred such that
information may have been illegally modified, inserted or deleted.
@param eventTime Managed system's current time.
@param source Object emitting notification.
@param sourceClass Actual class of source object.
@param notificationIdentifier A unique identifier for this

notification. Must be unique for
an object instance. (Optional in X.721
but not here. See text for
discussion of possible implications)

@param correlatedNotifications List of correlated notifications.
Optional. Zero length sequence
indicates absence of this parameter.

@param additionalText Text message. Optional. Zero length
string indicates absence of this
parameter.

@param additionalInfo Optional. Zero length sequence
indicates absence of this parameter.

@param securityAlarmCause
@param securityAlarmSeverity Clears allowed? X.721 appears to

restrict the "cleared" value on this
alarm but clears should be allowed.

@param securityAlarmDetector
@param serviceUser
@param serviceProvider
*/

void integrityViolation (
in ExternalTimeType eventTime,
in NameType source,
in ObjectClassType sourceClass,
in NotifIDType notificationIdentifier,
in CorrelatedNotificationSetType correlatedNotifications,
in AdditionalTextType additionalText,
in AdditionalInformationSetType additionalInfo,
in SecurityAlarmCauseType securityAlarmCause,
in PerceivedSeverityType securityAlarmSeverity,
in SecurityAlarmDetectorType securityAlarmDetector,
in ServiceUserType serviceUser,
in ServiceProviderType serviceProvider

);

/** An Object Creation notification is used to report the creation of a
managed object to another open system. Note that the source field
should be set to the created object, not the factory.
@param eventTime Managed system's current time.
@param source Object emitting notification.
@param sourceClass Actual class of source object.
@param notificationIdentifier A unique identifier for this

notification. Must be unique for
an object instance. (Optional in X.721
but not here. See text for
discussion of possible implications)

@param correlatedNotifications List of correlated notifications.
Optional. Zero length sequence
indicates absence of this parameter.

@param additionalText Text message. Optional. Zero length

ITU-T Recommendation X.780 Draft

78

string indicates absence of this
parameter.

@param additionalInfo Optional. Zero length sequence
indicates absence of this parameter.

@param sourceIndicator Cause of event. Optional. Use
"unknown" if not supported.

@param attributeSet Attribute values. Optional. Zero length
sequence indicates absence of this
parameter.

*/

void objectCreation (
in ExternalTimeType eventTime,
in NameType source,
in ObjectClassType sourceClass,
in NotifIDType notificationIdentifier,
in CorrelatedNotificationSetType correlatedNotifications,
in AdditionalTextType additionalText,
in AdditionalInformationSetType additionalInfo,
in SourceIndicatorType sourceIndicator,
in AttributeSetType attributeList

);

/** An Object Deletion notification is used to report the deletion of a
managed object. Note that the source field should be set to
the object being deleted.
@param eventTime Managed system's current time.
@param source Object emitting notification.
@param sourceClass Actual class of source object.
@param notificationIdentifier A unique identifier for this

notification. Must be unique for
an object instance. (Optional in X.721
but not here. See text for
discussion of possible implications)

@param correlatedNotifications List of correlated notifications.
Optional. Zero length sequence
indicates absence of this parameter.

@param additionalText Text message. Optional. Zero length
string indicates absence of this
parameter.

@param additionalInfo Optional. Zero length sequence
indicates absence of this parameter.

@param sourceIndicator Cause of event. Optional. Use
"unknown" if not supported.

@param attributeSet Attribute values. Optional. Zero length
sequence indicates absence of this
parameter.

*/

void objectDeletion (
in ExternalTimeType eventTime,
in NameType source,
in ObjectClassType sourceClass,
in NotifIDType notificationIdentifier,
in CorrelatedNotificationSetType correlatedNotifications,
in AdditionalTextType additionalText,
in AdditionalInformationSetType additionalInfo,
in SourceIndicatorType sourceIndicator,
in AttributeSetType attributeList

);

/** An Operational Violation notification is used to report that the
provision of the requested service was not possible due to the

Draft ITU-T Recommendation X.780

79

unavailability, malfunction or incorrect invocation of the service.
@param eventTime Managed system's current time.
@param source Object emitting notification.
@param sourceClass Actual class of source object.
@param notificationIdentifier A unique identifier for this

notification. Must be unique for
an object instance. (Optional in X.721
but not here. See text for
discussion of possible implications)

@param correlatedNotifications List of correlated notifications.
Optional. Zero length sequence
indicates absence of this parameter.

@param additionalText Text message. Optional. Zero length
string indicates absence of this
parameter.

@param additionalInfo Optional. Zero length sequence
indicates absence of this parameter.

@param securityAlarmCause
@param securityAlarmSeverity Clears allowed? X.721 appears to

restrict the "cleared" value on this
alarm but clears should be allowed.

@param securityAlarmDetector
@param serviceUser
@param serviceProvider
*/

void operationalViolation (
in ExternalTimeType eventTime,
in NameType source,
in ObjectClassType sourceClass,
in NotifIDType notificationIdentifier,
in CorrelatedNotificationSetType correlatedNotifications,
in AdditionalTextType additionalText,
in AdditionalInformationSetType additionalInfo,
in SecurityAlarmCauseType securityAlarmCause,
in PerceivedSeverityType securityAlarmSeverity,
in SecurityAlarmDetectorType securityAlarmDetector,
in ServiceUserType serviceUser,
in ServiceProviderType serviceProvider

);

/** A Physical Violation notification is used to report that a physical
resource has been violated in a way that indicates a potential security
attack.
@param eventTime Managed system's current time.
@param source Object emitting notification.
@param sourceClass Actual class of source object.
@param notificationIdentifier A unique identifier for this

notification. Must be unique for
an object instance. (Optional in X.721
but not here. See text for
discussion of possible implications)

@param correlatedNotifications List of correlated notifications.
Optional. Zero length sequence
indicates absence of this parameter.

@param additionalText Text message. Optional. Zero length
string indicates absence of this
parameter.

@param additionalInfo Optional. Zero length sequence
indicates absence of this parameter.

@param securityAlarmCause
@param securityAlarmSeverity Clears allowed? X.721 appears to

restrict the "cleared" value on this

ITU-T Recommendation X.780 Draft

80

alarm but clears should be allowed.
@param securityAlarmDetector
@param serviceUser
@param serviceProvider
*/

void physicalViolation (
in ExternalTimeType eventTime,
in NameType source,
in ObjectClassType sourceClass,
in NotifIDType notificationIdentifier,
in CorrelatedNotificationSetType correlatedNotifications,
in AdditionalTextType additionalText,
in AdditionalInformationSetType additionalInfo,
in SecurityAlarmCauseType securityAlarmCause,
in PerceivedSeverityType securityAlarmSeverity,
in SecurityAlarmDetectorType securityAlarmDetector,
in ServiceUserType serviceUser,
in ServiceProviderType serviceProvider

);

/** A Processing Error Alarm notification is used to report a
processing failure in a managed object.
@param eventTime Managed system's current time.
@param source Object emitting notification.
@param sourceClass Actual class of source object.
@param notificationIdentifier A unique identifier for this

notification. Must be unique for
an object instance. (Optional in X.721
but not here. See text for
discussion of possible implications)

@param correlatedNotifications List of correlated notifications.
Optional. Zero length sequence
indicates absence of this parameter.

@param additionalText Text message. Optional. Zero length
string indicates absence of this
parameter.

@param additionalInfo Optional. Zero length sequence
indicates absence of this parameter.

@param probableCause
@param specificProblems Optional. Zero length sequence

indicates absence of this parameter.
@param perceivedSeverity
@param backedUpStatus "True" if backed up
@param backUpObject Will be null if backedUpStatus is

"false"
@param trendIndication Optional. See type for details.
@param thresholdInfo Optional. See type for details.
@param stateChangeDefinition Optional. Zero length sequence

indicates absence of this parameter.
@param monitoredAttributes Optional. Zero length sequence

indicates absence of this parameter.
@param proposedRepairActions Optional. Zero length sequence

indicates absence of this parameter.
@param alarmEffectOnService True if alarm is service effecting.
@param alarmingResumed True if alarming was just resumed,

possibly resulting in delayed reporting
of an alarm

@param suspectObjectList Objects possibly involved in failure.
*/

void processingErrorAlarm (
in ExternalTimeType eventTime,

Draft ITU-T Recommendation X.780

81

in NameType source,
in ObjectClassType sourceClass,
in NotifIDType notificationIdentifier,
in CorrelatedNotificationSetType correlatedNotifications,
in AdditionalTextType additionalText,
in AdditionalInformationSetType additionalInfo,
in ProbableCauseType probableCause,
in SpecificProblemSetType specificProblems,
in PerceivedSeverityType perceivedSeverity,
in BooleanTypeOpt backedUpStatus,
in NameType backUpObject,
in TrendIndicationTypeOpt trendIndication,
in ThresholdInfoType thresholdInfo,
in AttributeChangeSetType stateChangeDefinition,
in AttributeSetType monitoredAttributes,
in ProposedRepairActionSetType proposedRepairActions,
in BooleanTypeOpt alarmEffectOnService,
in BooleanTypeOpt alarmingResumed,
in SuspectObjectSetType suspectObjectList

);

/** A Quality of Service Alarm notification is used to report a failure
in the quality of service of the managed object.
@param eventTime Managed system's current time.
@param source Object emitting notification.
@param sourceClass Actual class of source object.
@param notificationIdentifier A unique identifier for this

notification. Must be unique for
an object instance. (Optional in X.721
but not here. See text for
discussion of possible implications)

@param correlatedNotifications List of correlated notifications.
Optional. Zero length sequence
indicates absence of this parameter.

@param additionalText Text message. Optional. Zero length
string indicates absence of this
parameter.

@param additionalInfo Optional. Zero length sequence
indicates absence of this parameter.

@param probableCause
@param specificProblems Optional. Zero length sequence

indicates absence of this parameter.
@param perceivedSeverity
@param backedUpStatus "True" if backed up
@param backUpObject Will be null if backedUpStatus is

"false"
@param trendIndication Optional. See type for details.
@param thresholdInfo Optional. See type for details.
@param stateChangeDefinition Optional. Zero length sequence

indicates absence of this parameter.
@param monitoredAttributes Optional. Zero length sequence

indicates absence of this parameter.
@param proposedRepairActions Optional. Zero length sequence

indicates absence of this parameter.
@param alarmEffectOnService True if alarm is service effecting.
@param alarmingResumed True if alarming was just resumed,

possibly resulting in delayed reporting
of an alarm

@param suspectObjectList Objects possibly involved in failure.
*/

void qualityOfServiceAlarm (
in ExternalTimeType eventTime,

ITU-T Recommendation X.780 Draft

82

in NameType source,
in ObjectClassType sourceClass,
in NotifIDType notificationIdentifier,
in CorrelatedNotificationSetType correlatedNotifications,
in AdditionalTextType additionalText,
in AdditionalInformationSetType additionalInfo,
in ProbableCauseType probableCause,
in SpecificProblemSetType specificProblems,
in PerceivedSeverityType perceivedSeverity,
in BooleanTypeOpt backedUpStatus,
in NameType backUpObject,
in TrendIndicationTypeOpt trendIndication,
in ThresholdInfoType thresholdInfo,
in AttributeChangeSetType stateChangeDefinition,
in AttributeSetType monitoredAttributes,
in ProposedRepairActionSetType proposedRepairActions,
in BooleanTypeOpt alarmEffectOnService,
in BooleanTypeOpt alarmingResumed,
in SuspectObjectSetType suspectObjectList

);

/** A Relationship Change notification is used to report the change in
the value of one or more relationship attributes of a managed object,
that result through either internal operation of the managed object or
via management operation.
@param eventTime Managed system's current time.
@param source Object emitting notification.
@param sourceClass Actual class of source object.
@param notificationIdentifier A unique identifier for this

notification. Must be unique for
an object instance. (Optional in X.721
but not here. See text for
discussion of possible implications)

@param correlatedNotifications List of correlated notifications.
Optional. Zero length sequence
indicates absence of this parameter.

@param additionalText Text message. Optional. Zero length
string indicates absence of this
parameter.

@param additionalInfo Optional. Zero length sequence
indicates absence of this parameter.

@param sourceIndicator Cause of event. Optional. Use
"unknown" if not supported.

@param relationshipChanges Changed relationship attributes
*/

void relationshipChange (
in ExternalTimeType eventTime,
in NameType source,
in ObjectClassType sourceClass,
in NotifIDType notificationIdentifier,
in CorrelatedNotificationSetType correlatedNotifications,
in AdditionalTextType additionalText,
in AdditionalInformationSetType additionalInfo,
in SourceIndicatorType sourceIndicator,
in AttributeChangeSetType relationshipChanges

);

/** A Security Violation notification is used to report that a security
attack has been detected by a security service or mechanism.
@param eventTime Managed system's current time.
@param source Object emitting notification.
@param sourceClass Actual class of source object.

Draft ITU-T Recommendation X.780

83

@param notificationIdentifier A unique identifier for this
notification. Must be unique for
an object instance. (Optional in X.721
but not here. See text for
discussion of possible implications)

@param correlatedNotifications List of correlated notifications.
Optional. Zero length sequence
indicates absence of this parameter.

@param additionalText Text message. Optional. Zero length
string indicates absence of this
parameter.

@param additionalInfo Optional. Zero length sequence
indicates absence of this parameter.

@param securityAlarmCause
@param securityAlarmSeverity Clears allowed? X.721 appears to

restrict the "cleared" value on this
alarm but clears should be allowed.

@param securityAlarmDetector
@param serviceUser
@param serviceProvider
*/

void securityViolation (
in ExternalTimeType eventTime,
in NameType source,
in ObjectClassType sourceClass,
in NotifIDType notificationIdentifier,
in CorrelatedNotificationSetType correlatedNotifications,
in AdditionalTextType additionalText,
in AdditionalInformationSetType additionalInfo,
in SecurityAlarmCauseType securityAlarmCause,
in PerceivedSeverityType securityAlarmSeverity,
in SecurityAlarmDetectorType securityAlarmDetector,
in ServiceUserType serviceUser,
in ServiceProviderType serviceProvider

);

/** A State Change notification is used to report the change in the the
value of one or more state attributes of a managed object, that result
through either internal operation of the managed object or via
management operation.
@param eventTime Managed system's current time.
@param source Object emitting notification.
@param sourceClass Actual class of source object.
@param notificationIdentifier A unique identifier for this

notification. Must be unique for
an object instance. (Optional in X.721
but not here. See text for
discussion of possible implications)

@param correlatedNotifications List of correlated notifications.
Optional. Zero length sequence
indicates absence of this parameter.

@param additionalText Text message. Optional. Zero length
string indicates absence of this
parameter.

@param additionalInfo Optional. Zero length sequence
indicates absence of this parameter.

@param sourceIndicator Cause of event. Optional. Use
"unknown" if not supported.

@param stateChanges Changed state attributes.
*/

void stateChange (

ITU-T Recommendation X.780 Draft

84

in ExternalTimeType eventTime,
in NameType source,
in ObjectClassType sourceClass,
in NotifIDType notificationIdentifier,
in CorrelatedNotificationSetType correlatedNotifications,
in AdditionalTextType additionalText,
in AdditionalInformationSetType additionalInfo,
in SourceIndicatorType sourceIndicator,
in AttributeChangeSetType stateChanges

);

/** A Time Domain Violation notification is used to report that an
event has occurred at an unexpected or prohibited time.
@param eventTime Managed system's current time.
@param source Object emitting notification.
@param sourceClass Actual class of source object.
@param notificationIdentifier A unique identifier for this

notification. Must be unique for
an object instance. (Optional in X.721
but not here. See text for
discussion of possible implications)

@param correlatedNotifications List of correlated notifications.
Optional. Zero length sequence
indicates absence of this parameter.

@param additionalText Text message. Optional. Zero length
string indicates absence of this
parameter.

@param additionalInfo Optional. Zero length sequence
indicates absence of this parameter.

@param securityAlarmCause
@param securityAlarmSeverity Clears allowed? X.721 appears to

restrict the "cleared" value on this
alarm but clears should be allowed.

@param securityAlarmDetector
@param serviceUser
@param serviceProvider
*/

void timeDomainViolation (
in ExternalTimeType eventTime,
in NameType source,
in ObjectClassType sourceClass,
in NotifIDType notificationIdentifier,
in CorrelatedNotificationSetType correlatedNotifications,
in AdditionalTextType additionalText,
in AdditionalInformationSetType additionalInfo,
in SecurityAlarmCauseType securityAlarmCause,
in PerceivedSeverityType securityAlarmSeverity,
in SecurityAlarmDetectorType securityAlarmDetector,
in ServiceUserType serviceUser,
in ServiceProviderType serviceProvider

);

/** These constants define the names of the notifications declared
above and are provided to help reduce errors. */

const string attributeValueChangeTypeName =
"itut_x780::Notifications::attributeValueChange";

const string communicationsAlarmTypeName =
"itut_x780::Notifications::communicationsAlarm";

const string environmentalAlarmTypeName =
"itut_x780::Notifications::environmentalAlarm";

const string equipmentAlarmTypeName =

Draft ITU-T Recommendation X.780

85

"itut_x780::Notifications::equipmentAlarm";
const string integrityViolationTypeName =

"itut_x780::Notifications::integrityViolation";
const string objectCreationTypeName =

"itut_x780::Notifications::objectCreation";
const string objectDeletionTypeName =

"itut_x780::Notifications::objectDeletion";
const string operationalViolationTypeName =

"itut_x780::Notifications::operationalViolation";
const string physicalViolationTypeName =

"itut_x780::Notifications::physicalViolation";
const string processingErrorAlarmTypeName =

"itut_x780::Notifications::processingErrorAlarm";
const string qualityOfServiceAlarmTypeName =

"itut_x780::Notifications::qualityOfServiceAlarm";
const string relationshipChangeTypeName =

"itut_x780::Notifications::relationshipChange";
const string securityViolationTypeName =

"itut_x780::Notifications::securityViolation";
const string stateChangeTypeName =

"itut_x780::Notifications::stateChange";
const string timeDomainViolationTypeName =

"itut_x780::Notifications::timeDomainViolation";

/** These constants define the names of the parameters used in the
notifications declared above and are provided to help reduce errors.
*/

const string additionalInfoName = "additionalInfo";
const string additionalTextName = "additionalText";
const string alarmEffectOnServiceName = "alarmEffectOnService";
const string alarmingResumedName = "alarmingResumed";
const string attributeChangesName = "attributeChanges";
const string attributeListName = "attributeList";
const string backedUpStatusName = "backedUpStatus";
const string backUpObjectName = "backUpObject";
const string correlatedNotificationsName = "correlatedNotifications";
const string eventTimeName = "eventTime";
const string monitoredAttributesName = "monitoredAttributes";
const string notificationIdentifierName = "notificationIdentifier";
const string perceivedSeverityName = "perceivedSeverity";
const string probableCauseName = "probableCause";
const string proposedRepairActionsName = "proposedRepairActions";
const string relationshipChangesName = "relationshipChanges";
const string securityAlarmCauseName = "securityAlarmCause";
const string securityAlarmDetectorName = "securityAlarmDetector";
const string securityAlarmSeverityName = "securityAlarmSeverity";
const string serviceProviderName = "serviceProvider";
const string serviceUserName = "serviceUser";
const string sourceName = "source";
const string sourceClassName = "sourceClass";
const string sourceIndicatorName = "sourceIndicator";
const string specificProblemsName = "specificProblems";
const string stateChangeDefinitionName = "stateChangeDefinition";
const string stateChangesName = "stateChanges";
const string suspectObjectListName = "suspectObjectList";
const string thresholdInfoName = "thresholdInfo";
const string trendIndicationName = "trendIndication";

}; // end of Notifications interface

}; // end of itut_x780 module

ITU-T Recommendation X.780 Draft

86

// MACROS
/* The following macros are provided for quickly and concisely defining
the notifications to be supported by an object. Example usage (within an
interface):

MANDATORY_NOTIFICATION(itut_x780::Notifications, objectCreation);
CONDITIONAL_NOTIFICATION(itut_x780::Notifications, stateChange, statePackage);

The macros simply expand into nothing, as CORBA IDL doesn’t really have
anything for them to expand into that makes sense. Eventually, these
may be changed to expand into IDL supporting the CORBA Component Model.
*/

#undef MANDATORY_NOTIFICATION
#define MANDATORY_NOTIFICATION(InterfaceName, NotificationName)

#undef CONDITIONAL_NOTIFICATION
#define CONDITIONAL_NOTIFICATION(InterfaceName, NotificationName, PackageName)

#endif // end of ifndef itut_x780_IDL

Draft ITU-T Recommendation X.780

87

Annex B Network Management Constant Definitions
(Normative)

/* This IDL code is intended to be stored in a file named “itut_x780Const.idl”
and located in the same directory as the file containing Annex A */

#ifndef ITUT_X780Const_IDL
#define ITUT_X780Const_IDL

#pragma prefix “itu.int”

module itut_x780 {

// ApplicationErrorConst Module
/** This module contains the constants defined for the error code contained in
Application Error Info structures returned with Application Error exceptions.
*/

module ApplicationErrorConst {

const string moduleName = "itut_x780::ApplicationErrorConst";

/** This application error exception code indicates the operation
failed due to a problem downstream from the managed system,
possibly a communication problem between the managed system
and the resource */

const short downstreamError = 1;

/** An application error exception returining this code will return
the name of the offending paramter in the details field. */

const short invalidParameter = 2;

/** This application error exception code indicates the operation
failed due to a transient problem on the managed system. */

const short resourceLimit = 3;

}; // end of module ApplicationErrorConst

// CreateErrorConst Module
/** This module contains the constants defined for the error code contained in
Create Error Info structures returned with Create Error exceptions.
*/

module CreateErrorConst {

const string moduleName = "itut_x780::CreateErrorConst";

/** This create error exception code indicates that the name included
in the create operation is not valid. */

const short badName = 1;

/** This create error exception code indicates that the name included

ITU-T Recommendation X.780 Draft

88

in the create operation is a duplicate. */

const short duplicateName = 2;

/** This create error exception code indicates some packages requested
in the create operation are incompatible with each other. It must
be included in a PackageErrorInfoType structure (subclass of
CreateErrorInfoType). The packages list contains the names of the
unsupported packages. */

const short incompatiblePackages = 3;

/** This create error exception code indicates that the name binding
referenced in the create operation is not valid. */

const short invalidNameBinding = 4;

/** This create error exception code indicates a package requested in
the create operation is not supported. It must be included in a
PackageErrorInfoType structure (subclass of CreateErrorInfoType).
The packages list contains the names of the unsupported packages.
*/

const short unsupportedPackages = 5;

}; // end of module CreateErrorConst

// DeleteErrorConst Module
/** This module contains the constants defined for the error code contained in
Delete Error Info structures returned with Delete Error exceptions.
*/

module DeleteErrorConst {

const string moduleName = "itut_x780::DeleteErrorConst";

/** This delete error exceptin code indicates the object has both
subordinates and a delete policy of deleteOnlyIfNoContained. */

const short containsObjects = 1;

/** This delete error exception code indicates the object has a delete
policy of notDeletable, and cannot be deleted. */

const short notDeletable = 2;

/** This delete error exception code indicates the object had a
subordinate object that could not be deleted, so the superior
object(s) could not be deleted. */

const short undeletableContainedObject = 3;

/** This delete error exception code indicates the object is in
a state in which it cannot be deleted. */

const short invalidStateForDestroy = 4;

}; // end of module DeleteErrorConst

Draft ITU-T Recommendation X.780

89

// ProbableCauseConst Module
/** This module contains the constant values defined for the
ProbableCause UID. These values were borrowed from X.721. */

module ProbableCauseConst {
const string moduleName = "itut_x780::ProbableCauseConst";

const short indeterminate = 0;
const short adapterError = 1;
const short applicationSubsystemFailure = 2;
const short bandwidthReduced = 3;
const short callEstablishmentError = 4;
const short communicationsProtocolError = 5;
const short communicationsSubsystemFailure = 6;
const short configurationOrCustomizationError = 7;
const short congestion = 8;
const short corruptData = 9;
const short cpuCyclesLimitExceeded = 10;
const short dataSetOrModemError = 11;
const short degradedSignal = 12;
const short dTE_DCEInterfaceError = 13;
const short enclosureDoorOpen = 14;
const short equipmentMalfunction = 15;
const short excessiveVibration = 16;
const short fileError = 17;
const short fireDetected = 18;
const short floodDetected = 19;
const short framingError = 20;
const short heatingOrVentilationOrCoolingSystemProblem = 21;
const short humidityUnacceptable = 22;
const short inputOutputDeviceError = 23;
const short inputDeviceError = 24;
const short lANError = 25;
const short leakDetected = 26;
const short localNodeTransmissionError = 27;
const short lossOfFrame = 28;
const short lossOfSignal = 29;
const short materialSupplyExhausted = 30;
const short multiplexerProblem = 31;
const short outOfMemory = 32;
const short ouputDeviceError = 33;
const short performanceDegraded = 34;
const short powerProblem = 35;
const short pressureUnacceptable = 36;
const short processorProblem = 37;
const short pumpFailure = 38;
const short queueSizeExceeded = 39;
const short receiveFailure = 40;
const short receiverFailure = 41;
const short remoteNodeTransmissionError = 42;
const short resourceAtOrNearingCapacity = 43;
const short responseTimeExcessive = 44;
const short retransmissionRateExcessive = 45;
const short softwareError = 46;
const short softwareProgramAbnormallyTerminated = 47;
const short softwareProgramError = 48;
const short storageCapacityProblem = 49;
const short temperatureUnacceptable = 50;
const short thresholdCrossed = 51;
const short timingProblem = 52;
const short toxicLeakDetected = 53;
const short transmitFailure = 54;

ITU-T Recommendation X.780 Draft

90

const short transmitterFailure = 55;
const short underlyingResourceUnavailable = 56;
const short versionMismatch = 57;

}; // end of ProbableCauseConst module

// SecurityAlarmCauseConst Module

/** This module contains the constant values defined for the
SecurityAlarmCause UID. These values were borrowed from
X.721. */

module SecurityAlarmCauseConst {
const string moduleName = "itut_x780::SecurityAlarmCauseConst";

const short authenticationFailure = 1;
const short breachOfConfidentiality = 2;
const short cableTamper = 3;
const short delayedInformation = 4;
const short denialOfService = 5;
const short duplicateInformation = 6;
const short informationMissing = 7;
const short informationModificationDetected = 8;
const short informationOutOfSequence = 9;
const short intrusionDetection = 10;
const short keyExpired = 11;
const short nonRepudiationFailure = 12;
const short outOfHoursActivity = 13;
const short outOfService = 14;
const short proceduralError = 15;
const short unauthorizedAccessAttempt = 16;
const short unexpectedInformation = 17;
const short unspecifiedReason = 18;

}; // end of SecurityAlarmCauseConst module

}; // end of itut_x780 module

#endif // end of ifndef ITUT_X780Const_IDL

	Foreword
	Table Of Contents
	Table Of Figures
	Table Of Tables
	Scope
	Purpose
	Application
	Document Roadmap
	Document Conventions
	Compiling the IDL

	References
	Normative References
	Additional References

	Definitions
	CORBA Modeling Goals and Requirements
	Goals
	Application Interoperability
	Common Usage of CORBA Common Object Services
	Information Model Transparency

	Entities
	Access Granularity

	Principles of Containment and Naming
	Naming
	Entity Identification

	Managed Object Classes
	Packages
	Attributes
	GET and SET
	Generic Attribute Get
	Set-valued Attributes

	Creation and Deletion of Managed Objects
	Creation
	Identification of the MO Name
	Identification of the MO Attributes
	Identification of MO Packages for Instantiation

	Deletion

	Inheritance

	The Object Model IDL Module
	The Base (Top) Managed Object Interface
	The nameGet() Operation
	The objectClassGet() Operation
	The packagesGet() Operation
	The creationSourceGet() Operation
	The deletePolicyGet() Operation
	The attributesGet() Operation
	The destroy() Operation

	The Managed Object Factory
	The Notifications Interface
	The Data Type Definitions
	Exceptions
	The ApplicationError Exception
	invalidParameter
	resourceLimit
	downstreamError

	The CreateError Exception
	invalidNameBinding
	duplicateName
	unsupportedPackages
	incompatiblePackages

	The DeleteError Exception
	notDeletable
	containsObjects

	Macro Definitions
	The Constant Definitions

	Information Modeling Guidelines
	Modules
	Interfaces
	Attributes
	Readable Attributes
	Settable Attributes
	Set-valued Attributes
	Exceptions
	Standard Attributes

	Actions
	Notifications
	Conditional Packages
	Behavior
	Name Binding Information
	Factories
	Create Operations
	Name Binding
	Superior Object
	Name
	Packages
	Superclass Parameters
	Object Class Parameters

	Factory Finder

	Managed Object Class Value Types
	Constants
	Registration
	Versioning of CORBA/IDL Specifications

	GDMO Translation
	Managed Object Classes
	Packages
	Attributes
	Attribute Groups
	Actions
	Notifications
	Behaviors
	Name Bindings
	Parameters
	ACTION-INFO and ACTION-REPLY
	EVENT-INFO and EVENT-REPLY
	Context-Keyword
	SPECIFIC-ERROR

	ASN.1 Data Types
	Basic Types
	Sequence
	Sequence of
	Set of
	Choice
	Object Identifier (OID)
	Object Instance

	Style Idioms for CORBA IDL Specifications
	Use Consistent Indentation
	Use Consistent Case for Identifiers
	Follow JIDM Approach for IMPORT
	Use JIDM Approach for OPTIONAL and CHOICE
	Use a Consistent Type Suffix
	Use a Consistent Suffix for Sequence Types.
	Use a Consistent Suffix for Set Types.
	Use a Consistent Suffix for Optional Types
	Arrange Operation Parameters in a Consistent Manner
	Assume No Global Identifier Spaces
	Module Level Definitions
	Use of Exceptions and Return Codes
	Explicit vs. Implicit Operations
	Don’t Create a Large Number of Exceptions

	Compliance and Conformance
	Standards Document Compliance
	System Conformance
	Conformance Statement Guidelines

	Annex A 	The Object Model CORBA IDL Module
	Annex B Network Management Constant Definitions

