
ITU-Telecommunication Standardization Sector

STUDY GROUP 4

Contribution ______ (WP5/4)

Geneva, Switzerland, ? – ? January, 2001

Questions: 14/4, 15/4, 19/4

Title: Draft Rec. “CORBA-Based TMN Services.”

Source: Editors

Contact: Keith Allen
SBC Technology Resources
USA
Tel: +1 512 372 5741
Fax: +1 512 372 5791
E-mail: kallen@tri.sbc.com

Lakshmi Raman
Teraburst
USA
Tel: +1 408 541 1155 x322
Fax: +1 408 541 0439
E-mail: lraman@teraburst.com

ABSTRACT

This document defines a set of services that along with draft Recommendation X.780
composes a framework for CORBA-based TMN interfaces. It specifies protocol
requirements, CORBA Common Object Service usage requirements, and TMN-specific
support services. A CORBA IDL module defining the interfaces to the TMN-specific
support services is provided.

mailto:kallen@tri.sbc.com

DRAFT

Last Modification: 09/20/00 8:36 AM

Question: 19/4

STUDY GROUP 4 – CONTRIBUTION ____

SOURCE*: EDITORs

TITLE: DRAFT NEW RECOMMENDATION Q.816: CORBA Based TMN
Services

Summary
This document defines a set of services that along with draft Recommendation X.780
composes a framework for CORBA-based TMN interfaces. It specifies protocol
requirements, CORBA Common Object Service usage requirements, and TMN-specific
support services. A CORBA IDL module defining the interfaces to the TMN-specific
support services is provided

Source
ITU-T Recommendation Q.816 was developed by ITU-T Study Group 4 (1997-2000) and
was approved under the WTSC Resolution 1 procedure on the xx of xx xx.

Keywords
Common Object Request Broker Architecture (CORBA), Interface Definition Language
(IDL), CORBA services, Distributed Processing, TMN Interfaces, Managed Objects

Attention: This is not an ITU publication made available to the public, but an internal ITU Document intended only
for use by the Member States of the ITU and by its Sector Members and their respective staff and collaborators in their
ITU related work. It shall not be made available to, and used by, any other persons or entities without the prior written
consent of the ITU.

INTERNATIONAL TELECOMMUNICATION UNION

TELECOMMUNICATION
STANDARDIZATION SECTOR
STUDY PERIOD 1997 - 2000

COM 4-xxx-E
August 2000
Original: English

Foreword

ITU (International Telecommunication Union) is the United Nations Specialized Agency
in the field of telecommunications. The ITU Telecommunication Standardization Sector
(ITU-T) is a permanent organ of the ITU. The ITU-T is responsible for studying
technical, operating and tariff questions and issuing Recommendations on them with a
view to standardizing telecommunications on a worldwide basis.
The World Telecommunication Standardization Conference (WTSC), which meets every
four years, establishes the topics for study by the ITU-T Study Groups which, in their
turn, produce Recommendations on these topics.
The approval of Recommendations by the Members of the ITU-T is covered by the
procedure laid down in WTSC Resolution No. 1.
In some areas of information technology which fall within ITU-T's purview, the
necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to
indicate both a telecommunication administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS
The ITU draws attention to the possibility that the practice or implementation of this
Recommendation may involve the use of a claimed Intellectual Property Right. The ITU
takes no position concerning the evidence, validity or applicability of claimed Intellectual
Property Rights, whether asserted by ITU members or others outside of the
Recommendation development process.
As of the date of approval of this Recommendation, the ITU had/had not received notice
of intellectual property, protected by patents, which may be required to implement this
Recommendation. However, implementers are cautioned that this may not represent the
latest information and are therefore strongly urged to consult the TSB patent database.

� ITU 2000
All rights reserved. No part of this publication may be reproduced or utilized in any form
or by any means, electronic or mechanical, including photocopying and microfilm,
without permission in writing from the ITU.

DRAFT ITU-T Recommendation Q.816

vii

Table Of Contents
Foreword.. v
Table Of Contents ...vii
Table Of Figures... ix
Table Of Tables .. ix
1 Scope .. 1

1.1 PURPOSE .. 1
1.2 APPLICATION.. 2
1.3 DOCUMENT ROADMAP ... 3
1.4 DOCUMENT CONVENTIONS .. 4
1.5 COMPILING THE IDL .. 4

2 References.. 5
2.1 NORMATIVE REFERENCES .. 5
2.2 ADDITIONAL REFERENCES ... 6

3 Definitions ... 7
4 CORBA Based TMN Services Goals and Requirements .. 8

4.1 GOALS.. 8
4.1.1 Application Interoperability.. 9
4.1.2 Common Usage of CORBA Common Object Services.................................... 9
4.1.3 Information Model Transparency ... 9

4.2 INFORMATION MODELING DEPENDENCIES ... 10
4.2.1 Access Granularity.. 10
4.2.2 Representation of Containment and Naming .. 10
4.2.3 Object Creation and Deletion ... 10

4.3 SCOPING AND FILTERING.. 11
4.3.1 Scoping .. 11
4.3.2 Filtering... 11

4.4 NOTIFICATIONS .. 13
5 Framework Overview and Protocol Requirements... 13

5.1 FRAMEWORK OVERVIEW.. 13
5.2 FRAMEWORK PROTOCOL REQUIREMENTS .. 15

6 Framework Common Object Services Requirements... 16
6.1 THE NAMING SERVICE ... 16
6.2 NOTIFICATION SERVICE ... 22
6.3 TELECOM LOG SERVICE ... 27
6.4 MESSAGING SERVICE ... 28
6.5 SECURITY SERVICE .. 31
6.6 TRANSACTION SERVICE.. 32

7 Framework Support Services .. 32
7.1 THE FACTORY FINDER SERVICE ... 32
7.2 THE CHANNEL FINDER SERVICE... 34

7.2.1 Channel Finder Interface .. 34
7.2.2 Channel Finder Requirements .. 37

7.3 THE TERMINATOR SERVICE.. 38
7.4 THE MULTIPLE-OBJECT OPERATION SERVICE.. 40

ITU-T Recommendation Q.816 DRAFT

viii

7.4.1 The MOO Service Interface... 40
7.4.2 The Default Filter Language... 46
7.4.3 MOO Service Requirements .. 50

7.5 THE HEARTBEAT SERVICE.. 51
7.6 OTHER SUPPORT SERVICES .. 52

8 Compliance and Conformance.. 53
8.1 SYSTEM CONFORMANCE .. 53

8.1.1 Conformance Points.. 53
8.1.2 Basic Conformance Profile ... 54

8.2 CONFORMANCE STATEMENT GUIDELINES.. 54
Annex A Framework Support Services IDL... 55

// DATA TYPES AND STRUCTURES... 55
// CONSTANTS ... 59
// EXCEPTIONS .. 59
// INTERFACES... 59
// FACTORY FINDER INTERFACE.. 60
// CHANNEL FINDER INTERFACE ... 60
// HEARTBEAT SERVICE INTERFACE.. 62
// TERMINATOR SERVICE INTERFACE .. 62
// DELETERESULTSITERATOR INTERFACE ... 63
// GETRESULTSITERATOR INTERFACE... 63
// UPDATERESULTSITERATOR INTERFACE... 64
// BASICMOOSERVICE INTERFACE .. 64
// ADVANCEDMOOSERVICE INTERFACE.. 65
// NOTIFICATIONS INTERFACE ... 67

Appendix A Interworking Scenarios Between Models Using ITU Framework and
ADSL/ATMF Compliant Models... 69

A.1 INTRODUCTION... 69
A.2 TERMINOLOGY ... 69
A.3 INTERWORKING SCENARIOS ... 70

A.3.1 Grain Neutral Server migrating to ITU Framework Server 70
A.3.2 Grain Neutral Client migrating to ITU Framework Client 70

DRAFT ITU-T Recommendation Q.816

ix

Table Of Figures
Figure 1. Overview of Framework ... 14
Figure 2. Naming Graph of Managed Objects.. 18
Figure 3. Assigning Names to Root Naming Contexts .. 20
Figure 4. Moving a Local Root Naming Context and Contained Objects........................ 21
Figure 5. Architecture of the Notification Service ... 22
Figure 6. Mapping Notifications to Structured Events... 26
Figure 7. Telecom Log Service .. 28
Figure 8. Asynchronous-aware ORB.. 30
Figure 9. Event Channel Example .. 36
Figure 10. Interworking Scenarios ... 71

Table Of Tables
Table 1. CORBA Service Versions... 15

DRAFT ITU-T Recommendation Q.816

1

Recommendation Q.816

CORBA-Based TMN Services
(2001)

1 Scope
The TMN architecture defined in Recommendation M.3010 – 2000 introduces concepts
from distributed processing and includes the use of multiple management protocols. The
initial TMN interface specifications for intra- and inter-administration interfaces were
developed using the Guidelines for the Definition of Managed Objects (GDMO) notation
from OSI Systems Management with Common Management Information Protocol
(CMIP) as the protocol. The inter-administration interface (X) included both CMIP and
CORBA GIOP/IIOP as possible choices at the application layer.

CORBA, a distributed processing technology, is being considered for use in the TMN
communication architecture primarily due to its acceptance by the Information
Technology industry. This acceptance is expected to enhance the availability of
CORBA-based interfaces due to better development tools and wide-spread expertise in
developing CORBA-based interfaces. This technology, developed by the Object
Management Group (OMG), is also being considered by multiple industries.
Specifications using this technology provide support for standard application
programming interfaces (APIs) and language bindings to programming languages, and
they also facilitate software portability. The interoperability solutions offered by the
object request broker combined with the inter-ORB protocols address interoperability
between client and server. While CMIP and information models provide solutions for
interoperability between manager and agent systems, CORBA defines inter-object
interactions where the objects may be distributed.

1.1 Purpose
Several groups are developing network management specifications that use CORBA
modeling techniques with IDL as the notation along with CORBA services. The scope of
this standard is to define protocol requirements and common services suitable for use in
the specification of interoperable CORBA-based network management interfaces.
Previous standards for CORBA-based network management interfaces have mainly
focused on TMN “X” interfaces, which are interfaces between administrations (carriers).
The demands placed on these interfaces are different from those used “inside” an
administration, “Q” interfaces. The scope of this Recommendation covers all interfaces
in the TMN where CORBA may be used. It is expected that not all capabilities and
services defined here are required in all TMN interfaces. This implies that the framework

ITU-T Recommendation Q.816 DRAFT

2

can be used for interfaces between management systems at all levels of abstractions (inter
and intra-administration) as well as between management systems and network elements.

This Recommendation is intended for use by various groups specifying network
management interfaces. A number of factors are considered: the version of CORBA to
use, the set of CORBA Common Object Services employed, and additional services.
This Recommendation, along with the object modeling guidelines defined in ITU-T Rec.
X.780 form a framework for CORBA-based TMN interfaces. Use of a common
framework on telecommunications management interfaces has several advantages. Some
examples are: facilitating reuse of models that are developed to meet the generic
requirements of telecommunications; profiling CORBA services for use by the
telecommunications industry; easing the definition of new services for TMN, reusing the
semantics of the existing rich set of models; and harmonizing the modeling approach
across groups using a single source similar to Recommendations X.720, 721 and 722 for
CMIP. Re-using a common framework and generic information model for a variety of
network technologies and network management applications will speed the introduction
of new network services while keeping network management system development costs
down.

The telecommunications industry has invested a great deal of time and energy in the
development of information models for the CMIP network management protocol. A
primary goal of this framework is the re-use of these information models by enabling
their translation to CORBA Interface Definition Language (IDL) with little change in
semantics (see Recommendation X.780). As a result, initial IDL information models are
expected to be derived from CMIP models.

In addition to taking advantage of CMIP information models, another purpose of the
framework is to take advantage of CORBA. The framework leverages the functions
defined in the CORBA specifications, including a set of Common Object Services. Also,
the framework tries to re-use CORBA approaches and design patterns wherever they fit.
Finally, while re-using existing models is important, it is equally important that the
framework support the development of new models. This framework does not require a
GDMO model to be developed prior to the development of an IDL model. In fact,
developing a new IDL information model for use within this framework is
straightforward and guidelines for doing so are provided.

1.2 Application
As CORBA is introduced in TMN, different scenarios are possible that range from the
use of gateways performing translations between systems using different network
management protocols to cases where CORBA is natively supported by the
communicating systems. The application of this framework is intended for scenarios
where both the managed system and the managing system provide CORBA interfaces.

The framework does not address other inter-working scenarios requiring “gateway”
systems where protocol and information model conversions are necessary for achieving
interoperability. In particular, this framework is not specifically designed to support the

DRAFT ITU-T Recommendation Q.816

3

construction of gateways between CORBA and CMIP network management applications
even though the semantics of the existing models are retained by this framework. A
management system, however, might have to support multiple protocols, to inter-work in
different environments.

A gateway approach has already been developed and standardized by the Joint Inter-
Domain Management (JIDM) group. This gateway approach provides a one-to-one
mapping of all constructs and capabilities available with CMIP and GDMO. However,
many of the CORBA services and capabilities are not reused by this approach because
the problem solved is to facilitate inter-working with systems that have been deployed
using CMIP. In contrast, the problem domain for applying this framework is to support
standards-based native CORBA network management interfaces. Such an approach takes
advantage of the benefits offered by CORBA as a technology used by multiple industries.

ITU-T Recommendation X.780[1] accompanies this Recommendation and defines object
modeling guidelines, superclasses for all managed objects and managed object factories
for use with this framework, and a standard set of notifications. Together, X.780 and this
Recommendation define a framework for CORBA-based TMN interfaces. Also, ITU-T
Recommendation M.3120[30] provides a CORBA IDL version of the generic network
information model originally defined in Recommendation M.3100. The IDL version
follows the object modeling guidelines in X.780 and is designed to fit with the services
defined here.

1.3 Document Roadmap
This document has the following structure:

Section 1. Introduction, document roadmap, updates, and list of issues.
Section 2. References.
Section 3. Definitions of terms and abbreviations used throughout the rest of the

document.
Section 4. Requirements for the TMN CORBA-based services. These are the

design goals the services must meet.
Section 5. CORBA ORB and Service version requirements. Also provided is an

overview of the services.
Section 6. Requirements on the use of CORBA Common Object Services for

network management interfaces.
Section 7. Definition of TMN-specific support services. IDL interfaces for the

support services are defined in Annex A.
Section 8. Compliance and conformance guidelines.
Annex A. TMN-specific support service IDL.
Appendix A. Interworking Scenarios Between Models Using ITU Framework and

ADSL/ATMF Compliant Models

ITU-T Recommendation Q.816 DRAFT

4

1.4 Document Conventions
A few conventions are followed in this document to make the reader aware of the
purpose of the text. While most of the document is normative, paragraphs succinctly
stating mandatory requirements to be met by a management system (managing and/or
managed) are preceded by a boldface “R” enclosed in parentheses, followed by a short
name indicating the subject of the requirement, and a number. For example:

(R) EXAMPLE-1 An example mandatory requirement.

Requirements that may be optionally implemented by a management system are preceded
by an “O” instead of an “R.” For example:

(O) OPTION-1 An example optional requirement.

The requirement statements are used to create compliance and conformance profiles.

Many examples of CORBA IDL are included in this document, and IDL specifying the
TMN specific services, and supporting data types, included in a normative annex. The
IDL is written in a 9-point courier typeface:

// Example IDL
interface foo {

void operation1 ();
};

Instructions for extracting the IDL from an electronic version of this document and
compiling it are presented in the next section.

1.5 Compiling the IDL
An advantage of using IDL to specify network management interfaces is that IDL can be
“compiled” into programming code by tools that accompany an ORB. This actually
automates the development of some of the code necessary to enable network management
applications to interoperate. This document has one annex that contains code that
implementers will want to extract and compile. Annex A is normative and should be
used by developers implementing systems that conform with this standard. The IDL in
this document has been checked with two compilers to ensure its correctness. A compiler
supporting the CORBA version specified in Section 5.2 must be used.

The annex has been formatted to make it simple to cut and paste it into a plain text file
that may then be compiled. Below are tips on how to do this.

1. Cutting and pasting seems to work better from the Microsoft® Word® version of this
document. Cutting and pasting from the Adobe® Acrobat® file format seems to
include page headers and footers, which cannot be compiled.

2. All of Annex A, beginning with the line “/* This IDL code…” through the end should
be stored in a file named “itut_q816.idl” in a directory where it will be found by the
IDL compiler.

DRAFT ITU-T Recommendation Q.816

5

3. The headings embedded in the annex need not be removed. They have been
encapsulated in IDL comments and will be ignored by the compiler.

4. Comments that begin with the special sequence “/**” are recognized by compilers
that convert IDL to HTML. These comments often have special formatting
instructions for these compilers. Those that will be working with the IDL may want
to generate HTML as the resulting HTML files have links that make for quick
navigation through the files.

5. The annex has been formatted with tab spaces at 8-space intervals and hard line feeds
that should enable almost any text editor to work with the text.

2 References

2.1 Normative References
The following ITU-T Recommendations and other references contain provisions which,
through reference in this text, constitute provisions of this Recommendation. At the time
of publication, the editions indicated were valid. All Recommendations and other
references are subject to revision; all users of this Recommendation are therefore
encouraged to investigate the possibility of applying the most recent edition of the
Recommendations and other references listed below. A list of the currently valid ITU-T
Recommendations is regularly published.

[1] ITU-T Recommendation X.780, Guidelines for Defining CORBA Managed Objects.
[2] The Object Management Group (OMG), “The Common Object Request Broker:

Architecture and Specification”, OMG Document formal/99-10-07, Revision 2.3.1,
October, 1999.

[3] The Object Management Group (OMG), “Naming Service Specification”, OMG
Document formal/2000-06-19, Version 1.0, April, 2000.

[4] The Object Management Group (OMG), “Notification Service Specification”, OMG
Document formal/2000-06-20, Version 1.0, June, 2000.

[5] The Object Management Group (OMG), “Telecom Log Service Specification”,
OMG Document formal/00-01-04, Version 1.0, January, 2000.

[6] The Object Management Group (OMG), “Security Services Specification”, OMG
Document formal/2000-06-25, Version 1.5, May, 2000.

[7] The Object Management Group (OMG), “Transaction Service Specification”, OMG
Document formal/2000-06-28, Version 1.1, May, 2000.

[8] The Object Management Group (OMG), “CORBA Messaging,” OMG TC
Document orbos/98-05-05, May, 1998.

[9] The Object Management Group (OMG), “JIDM Interaction Translation,” Edition
4.31, OMG Document telecom/98-10-10, October 1998.

[10] Internet Engineering Task Force (IETF), “The TLS Protocol Version 1.0,” RFC
2246, Version 1.0, January, 1999.

ITU-T Recommendation Q.816 DRAFT

6

[11] The Institute of Electrical and Electronics Engineers (IEEE), “Information
Technology – Portable Operating System Interface (POSIX) Part 2: Shell and
Utilities,” IEEE/ANSI Standard 1003.2-1992, 1992.

2.2 Additional References
The following standards contain information that was used in the development of this
framework. As stated in the introduction, a primary design goal of this framework is to
enable the re-use of existing network management information models, at least without
significant semantic changes. These documents provide many of the details on the ITU-
T’s CMIP framework, and therefore define some of the functionality the CORBA
framework must support.

[12] ITU-T Recommendation X.703 (1997), Information Technology – Open Distributed
Management Architecture, October, 1997.

[13] ITU-T Recommendation X.710 (1997), Common Management Service Definition
for ITU-T Applications, October, 1997.

[14] ITU-T Recommendation X.711 (1997), Common Management Information
Protocol Specification for ITU-T Applications, October, 1997.

[15] CCITT Recommendation X.720 (1992) | ISO/IEC 10165-1 : 1992, Information
Technology – Open Systems Interconnections – Structure of Management
Information: Management Information Model.

[16] CCITT Recommendation X.721 (1992) | ISO/IEC 10165-2 : 1992, Information
Technology – Open Systems Interconnections – Structure of Management
Information: Definition of Management Information.

[17] CCITT Recommendation X.722 (1992) | ISO/IEC 10165-4 : 1992, Information
Technology – Open Systems Interconnections – Structure of Management
Information: Guidelines for the Definitions of Managed Objects.

[18] ITU-T Recommendation X.711 Cor. 2, Corrigendum 2 to ITU-T Recommendation
X.711, January, 2000.

[19] ITU-T Recommendation X.720 Cor. 1, Corrigendum 1 to CCITT Recommendation
X.720, February, 1994.

[20] ITU-T Recommendation X.721 Cor. 1, Corrigendum 1 to CCITT Recommendation
X.721, February, 1994.

[21] ITU-T Recommendation X.721 Cor. 2, Corrigendum 2 to CCITT Recommendation
X.721, October, 1996.

[22] ITU-T Recommendation X.721 Am. 1, Amendment 1 to CCITT Recommendation
X.721, November, 1995.

[23] ITU-T Recommendation X.722 Cor. 1, Corrigendum 1 to CCITT Recommendation
X.722, October, 1996.

[24] ITU-T Recommendation X.722 Cor. 2, Corrigendum 2 to CCITT Recommendation
X.722, January, 2000.

DRAFT ITU-T Recommendation Q.816

7

[25] ITU-T Recommendation X.722 Am. 1, Amendment 1 to CCITT Recommendation
X.722, November, 1995.

[26] ITU-T Recommendation X.722 Am. 2, Amendment 2 to CCITT Recommendation
X.722, August, 1997.

[27] ITU-T Recommendation X.722 Am. 3, Amendment 3 to CCITT Recommendation
X.722, August, 1997.

[28] CCITT Recommendation X.733 (1992) | ISO/IEC 10164-4 : 1992, Information
Technology – Open Systems Interconnection – Systems Management: Alarm
Reporting Function.

[29] ITU-T Recommendation M.3010 (2000), Principles for a Telecommunications
management network, February, 2000.

[30] ITU-T Recommendation M.3120, CORBA-Based Generic Network Information
Model.

[31] ITU-T Recommendation Q.821 (2000), Stage 2 and Stage 3 description for the Q3
interface - Alarm Surveillance,(to be published).

3 Definitions
This section provides definitions for acronyms used throughout the rest of the document.

AMI Asynchronous Messaging Invocation.
API Application Programming Interface.
ASN.1 Abstract Syntax Notation #1.
ATM Asynchronous Transfer Mode.
AVA Attribute Value Assertion.
CMIP Common Management Information Protocol.
CORBA Common Object Request Broker Architecture.
COS Common Object Services.
DN Distinguished Name.
EMS Element Management System.
FIFO First In, First Out.
GDMO Guidelines for the Definition of Managed Objects.
GIOP General Interoperability Protocol.
HTML Hypertext Markup Language.
ID Identifier.
IDL Interface Definition Language.
IEEE The Institute of Electrical and Electronics Engineers.
IETF The Internet Engineering Task Force.
IIOP Internet Interoperability Protocol.
IOR Interoperable Object Reference.
ITU-T International Telecommunication Union – Telecom.
JIDM Joint Inter-Domain Management.
MO Managed Object.
MOO Multiple Object Operation.
NE Network Element.

ITU-T Recommendation Q.816 DRAFT

8

NMS Network Management System.
OAM&P Operations, Administration, Maintenance, and Provisioning.
ORB Object Request Broker.
OID Object Identifier.
OMG Object Management Group.
OSI Open Systems Interconnection.
PDU Protocol Data Unit.
POA Portable Object Adapter.
POSIX Portable Operating System Interface.
POP Point of Presence.
PM Performance Management.
QoS Quality of Service.
RDN Relative Distinguished Name.
SDH. Synchronous Digital Hierarchy.
SONET Synchronous Optical Network.
SSL Secure Socket Layer.
TII Time-Independent Invocation.
TLS Transport Layer Security.
TMN Telecommunications Management Network.
TTP Trail Termination Point.
UID Universal Identifier.
UML Unified Modeling Language.
UTC Universal Time Code.

4 CORBA Based TMN Services Goals and Requirements
This section describes the key goals of the services framework and the requirements that
help the CORBA Based TMN services support these goals. Section 4.1 introduces the
goals of the CORBA framework. Section 4.2 then provides terminology and
requirements. The requirements in Section 4 are requirements that the framework must
satisfy. They are based on the telecommunications management needs. Sections 5, 6, 7,
and 8 then describe a framework that meets these needs and define how to achieve the
requirements of section 4 by using CORBA in a certain way. The rules in Section 5, 6,
7, and 8 on how to use CORBA also are referred to as requirements.

4.1 Goals
This document sets out to define a framework for defining how interfaces supported by
management systems and network elements should be modeled. Some key goals of the
framework are identified here:

• Application Interoperability
• Common Usage of CORBA Common Object Services
• Information Model Transparency

This section elaborates on these three goals.

DRAFT ITU-T Recommendation Q.816

9

4.1.1 Application Interoperability
A key goal of the TMN architecture, and in particular the information architecture, is to
promote a standard framework for providing interoperability and information exchange
between systems from a diverse set of network management system suppliers.
Interoperability between systems involves many aspects of development. At its lowest
layer, a common communication mechanism must be in place to support a common
syntax, the establishment of connectivity and the exchange of operation requests/replies
between systems. This aspect of interoperability is inherently supported by the CORBA
specification.

For TMN, there is the need to provide application interoperability. That is, management
systems from diverse suppliers will be utilized within a single administration's TMN to
support different functions necessary to support management of its networks. To
simplify integration of these various suppliers’ systems, they must agree on the semantics
of the information being exchanged. This is accomplished with the specification of an
information model. Guidelines for the definition of CORBA-based information models
are specified in X.780, but the services defined here must support those guidelines.

4.1.2 Common Usage of CORBA Common Object Services
A second aspect of this framework is the definition of common usage and profiling of the
distributed processing environment of choice. This aspect of the framework should
indicate reasonable expectations network management system suppliers may have for one
another. Rather than re-defining the interface capabilities needed to support common
network management functions such as object naming and notification filtering with each
information model, the modeling guidelines in X.780 rely upon a set of support services.
These support services enable the information models to be simpler, and also enhance
interoperability.

In defining these services, special effort will be taken to make use of the CORBA
Common Object Services. Specifically, this Recommendation will address the use of the
CORBA ORB and CORBA Common Object Services (COS) that will impact system
interoperability (i.e., issues involving the use of CORBA within a single system are
outside the scope of this document). Where network management needs cannot be met
by CORBA COS, additional services will be defined.

4.1.3 Information Model Transparency
If CORBA is used in places within the TMN architecture where existing information
models (e.g., GDMO) are well established, then the framework must support the reuse of
those models without any major changes.

The focus of this Recommendation is on the set of services required to allow the existing
models to be used as they were originally intended with a reasonable amount of
efficiency.

ITU-T Recommendation Q.816 DRAFT

10

4.2 Information Modeling Dependencies
As described in the previous section, the explicit modeling of resources that are
manageable across an interface is central to application interoperability. The guidelines
for defining CORBA managed objects detailed in X.780 describe the rules for modeling
manageable resources. They also embody several decisions that must be supported by
the TMN CORBA-based services framework. This section summarizes those points.

4.2.1 Access Granularity
CORBA interface granularity refers to the relationship between the resources that are
modeled on an interface and the means by which they are accessed using CORBA.
X.780 uses an instance-grain modeling approach, which means each modeled resource is
accessible using a unique CORBA object reference, known as an interoperable reference
(IOR). The objects that represent manageable resources are called managed objects.

4.2.2 Representation of Containment and Naming
Containment is a logical representation of how modeled resources contain other modeled
resources. Containment has traditionally been a very important relationship in network
management applications because it is a convenient means of identifying the large
number of resources that typically must be managed. X.780 guidelines require that a
unique name be assigned to each managed object, based in part on the name of the object
that contains it. The TMN CORBA-based services must provide a means to store these
names (and hence the containment relationships they represent) as well as a means to find
the IOR of an object based on its name.

4.2.3 Object Creation and Deletion
The CORBA ORB does not provide clients with a means to create objects on remote
systems. Instead, typically factory objects are instantiated by remote systems, and these
factory objects provide operations that may be invoked by clients to create objects on the
remote system. For a number of information modeling purposes, X.780 specifies that a
factory IDL interface shall be defined for each managed object IDL interface in an
information model. So, object creation will be model-dependent and is not a good
candidate for a TMN CORBA service. However, a service for managing system seeking
a factory in order to request creation of an object in a managed system is defined in this
Recommendation.

Object deletion is also an area in need of support. Often, CORBA objects are deleted by
simply invoking some delete operation on the object, but this is not a good approach for
network management applications because of their reliance on containment relationships.
Deleting an object that contains other objects has impacts beyond the object being
deleted. Also, as described in the previous section, support is required for storing the
names of managed object instances, and this data must be updated when objects are
deleted. The TMN CORBA services therefore need to provide support for deleting
managed objects in an orderly fashion.

DRAFT ITU-T Recommendation Q.816

11

4.3 Scoping and Filtering
The ability to perform complex queries (i.e., GET operations), updates (i.e., SET
operations), and delete operations on a group of Entities with a single operation request is
a valuable component of TMN. Management systems may have to manage up to 107

instances of managed objects. Due to the size of the management information base, a
managing system can not efficiently perform ad-hoc queries on individual instances of
Managed Objects (i.e., Entities). Rather, the managing system expects a level of
intelligence to be supported by the managed system.

The intelligence in the managed system allows the managing system to select a group of
managed entities on which some operation will be performed. Managed entity selection
involves two phases: scoping and filtering. This managed entity selection process is
supported by a service defined later in this Recommendation. This service allows a
managing system to select a scope of objects to act on (scope is defined through
containment relationships, see Section 4.2.2). Once the scope of Entities is determined,
the operation (specified by the scope and filtered request) is performed only on those
Entities which meet criteria defined by a filter.

The use of scoping and filtering in this framework supports:
− Scoped and Filtered get: returns the values (for a list of attributes) from each of the

Entities that meet the scope and filter criteria.
− Scoped and Filtered update: replaces an attribute value or adds/removes values

to/from set-valued attributes, in the group of Entities meeting the scope and filter
criteria, to the values specified in the scoped and filtered request. May be used to
update one or multiple attributes in a single object or multiple objects.

− Scoped and Filtered deletion: deletes all Entities that meet the scope and filter
criteria.

4.3.1 Scoping
Scoping entails the identification of the Entities to which a filter is to be applied.
Scoping is applied based on the containment hierarchy as defined in Section 4.2.2. The
scope is applied from some base managed entity down to some depth in the containment
tree.

The base entity for the scope is defined as the root of the containment tree from which the
search is to commence. A scoped request must specify the base managed entity of the
scope. The depth of the scoping level can then be specified in one of four manners within
the scoped request:
1. the base entity.
2. the nth level subordinates of the base entity.
3. the base entity and all of its subordinates down to and including the nth level.
4. the base entity and all of its subordinates (i.e., the whole subtree).

4.3.2 Filtering
Filters allow for the specification of criteria that Entities must meet in order to have a
management operation performed. Together with scoping, filtering allows a single

ITU-T Recommendation Q.816 DRAFT

12

operation to be performed across multiple managed objects with a single operation
request.

A filter parameter is used to determine whether or not an operation should be performed
on a managed object. A filter parameter applies a test that is either satisfied or not by a
particular managed object. The filter is expressed in terms of assertions about the
presence or value of certain attributes of the managed object, and it is satisfied if and only
if it evaluates to TRUE.

4.3.2.1 Attribute Matching Rules
The following matching rules are defined that may be used in attribute value assertions
(AVAs). These rules are:

− Equality: evaluates to TRUE if and only if the value supplied in the AVA is equal
to the value of the attribute.

For SET valued attributes, the AVA evaluates to TRUE if and only if the set of
members supplied in the AVA is equal to the set of members in the attribute.

− Greater or equal: evaluates to TRUE if and only if the value supplied in the AVA
is greater than or equal to the value of the attribute.

For SET valued attributes, the value in the AVA shall contain exactly one member.
The AVA evaluates to TRUE if and only if that member is greater than or equal to
at least one of the members in the attribute value.

− Less or Equal: evaluates to TRUE if and only if the value supplied in the AVA is
less than or equal to the value of the attribute.

For SET valued attributes, the value in the AVA shall contain exactly one member.
The AVA evaluates to TRUE if and only if that member is less than or equal to at
least one of the members in the attribute value.

− Present: evaluates to TRUE if and only if such an attribute is present in the
managed object.

− Substrings: evaluates to TRUE if and only if all of the substrings specified in the
AVA appear in the attribute in the given order without overlapping and separated
from the ends of the attribute value and from one another by zero or more string
elements. In addition, for the AVA to evaluate to TRUE,

− The first element in the initial substring, if present, shall match the first
element in the attribute value;

− The other substrings, if present, shall appear in the attribute value in the order
that the substrings appear in the AVA; and

DRAFT ITU-T Recommendation Q.816

13

− The last element in the final substring, if present, shall match the last element
in the attribute value.

For SET valued attributes, each value in the AVA shall contain exactly one
member. The AVA evaluates to TRUE if and only if there is at least one of the
members of the attribute value in which all of the substrings supplied in the AVA
appear as described above.

(The remaining three matching tests apply to SET valued attributes only)
− subset of: evaluates to TRUE if and only if all asserted members are present in

the attribute.
− superset of: evaluates to TRUE if and only if all members of attribute are present

in the attribute value assertion.
− non-null set intersection: evaluates to TRUE if and only if at least one of the

asserted members is present in the attribute.

4.4 Notifications
The framework needs to support the ability to:
• Deliver notifications
• Subscribe for notification types
• Forward notifications to multiple destinations
• Filter notifications
• Uniquely identify the resource that emits the notification

The framework must also support the requirements on notification content, clearing, and
correlation algorithms found in ITU Rec. X.733[28] and ITU Rec. Q.821[31].

5 Framework Overview and Protocol Requirements
The previous section outlined the network management functions the framework must
support. This section and the rest of the document provide the details on how the
CORBA Based TMN Services will provide these functions. The aspects of the
framework related to modeling objects are included in Recommendation X.780. First, a
brief overview of the framework is presented, then some basic protocol requirements are
defined.

5.1 Framework Overview
This framework for CORBA-based TMN interfaces is a collection of capabilities. A
central piece of the framework is a set of CORBA Common Object Services. This
framework defines their role in network management interfaces, and defines conventions
for their use. The framework also defines support services that have not been
standardized as CORBA Common Object Services, but are expected to be standard on
network management interfaces conforming to this framework. IDL interfaces for these
services are defined later in Annex A.

ITU-T Recommendation Q.816 DRAFT

14

To support the software objects representing manageable resources, the framework
requires that they implement some common basic capabilities. Therefore, two base
classes are defined in Recommendation X.780 for use in modeling network management
resources. Managed object classes (or object classes) in information models must inherit
and implement a basic set of capabilities from these base classes in order to operate
within this framework. Finally, some rules and conventions are defined for information
modelers developing models for use with this framework. These consist of modeling
guidelines, rules for converting GDMO models for CMIP to CORBA IDL definitions,
and IDL style idioms. All of these are depicted graphically in Figure 1.

Superclasses: Managed
Object

Managed
Object
Factory

Std.
Data

Types

GDMO
to IDL

Con-
ven-
tions

Managed
Element

Connection
Network

Link

Inherit …

Managed
Element
Factory

Link
Factory

Network
Factory

Connection
Factory

…

Application-
specific Objects

Notification
Service

Telecom
Log Service

Notification
Specifications

Terminator
Service

Multiple Object
Operation Service

Naming
Service

Channel
Finder

Factory
Finder

Names

CORBA 2.3 ORB

Figure 1. Overview of Framework

The figure shows the framework in gray. In the middle are the application-specific
objects that are supported by the framework. Along the bottom is a box representing the
CORBA ORB. Above that are a number of boxes with names in them representing the
services that compose the framework. (Some also have icons depicting the databases
they would have to maintain to perform their functions.) Along the top of the figure are
icons representing two superclasses, one for managed objects and one for managed object
factories. Each of the managed objects and managed object factories supported by this
framework must ultimately inherit from these superclasses, respectively. Also shown on

DRAFT ITU-T Recommendation Q.816

15

the figure are icons of pages with up-turned corners representing standard object
modeling conventions.

The framework services, represented as boxes with square corners, are defined in this
document. The superclasses, notifications, and object modeling conventions are defined
in ITU-T Recommendation X.780.

5.2 Framework Protocol Requirements
This section defines the versions of the services that are required to support this
framework. CORBA services and protocol specifications are defined by the Object
Management Group (OMG). The table below shows which version of the applicable
OMG specification must be supported to comply with this framework and indicates the
section where detailed requirements are defined for the service. A later version of a
service that includes all the required capabilities of the stated version complies with this
framework.

Service Version Section
ORB 2.3.1 [2] 5.2
Naming Service 1.0 [3] 6.1
Notification Service 1.0 [4] 6.2
Telecommunications Logging Service 1.0 [5] 6.3
Asynchronous Messaging (determined by client system) 6.4
Security (if required) Either the "Secure IOP protocol",

or "CORBASecurity SSL
Interoperability", as defined in [6]

6.5

Transaction Service 1.1 [7] 6.6

Table 1. CORBA Service Versions

The choice of version 2.3.1 for the basic ORB capabilities is important. CORBA 2.3
includes support for the Portable Object Adapter (POA) as well as for passing objects by
value. POA is important to the framework because it enables implementations based on
this framework to scale up to millions of instantiated objects, a magnitude required for
network management applications. The framework also makes use of value type
inheritance (which supports polymorphism) to retain flexibility but reduce the usage of
CORBA “any” types, which can be inefficient and tedious for programmers.

The Naming, Notification, and Logging services are all the initial versions available from
the OMG.

Asynchronous Messaging is really only a client-side consideration. An ORB with
Asynchronous Messaging capabilities enables a client to use synchronous CORBA
interfaces (those that would normally cause the client to block) in an asynchronous
fashion. This capability is essential for clients that are single-threaded and cannot afford
to block during network management operations. The availability of Asynchronous
Messaging capabilities is important to this framework because it frees it from having to

ITU-T Recommendation Q.816 DRAFT

16

define both synchronous and asynchronous interfaces. Clients need not use an ORB with
Asynchronous Messaging if they are multi-threaded and therefore can afford to block
during synchronous CORBA calls.

If security is required, this framework condones the use of ORBs that use SSL 3.0 for
security until products supporting TLS become available, and the OMG migrates the
CORBA Security. Until the OMG CORBA Security Service specification references
TLS, the choice of which is supported in a product (if any) will have to be negotiated
between individual suppliers and users. So, for now, the use of either one (or none) is
compliant with this framework.

6 Framework Common Object Services Requirements
The CORBA ORB provides basic object-to-object interaction capabilities.[2] Additional
capabilities are defined as separate, “Common Object Services.” The CORBA Common
Object Services are general purpose, domain-independent services that are fundamental
for developing CORBA applications composed of distributed objects. They also provide
the basic building blocks for application interoperability. The services are defined with
object interfaces and can be combined in many different ways and put to many uses in
different applications. In a specific domain, CORBA Common Object Services can be
used to construct higher-level facilities and object frameworks that can inter-operate
across multiple platform environments.

Many of these CORBA Common Object Services have already been implemented and
are available as commercial, off-the-shelf software products. Also, programmers
working in many industries will likely have experience with them in the near future. Re-
using these Common Object Services instead of defining new ones strictly for the
telecommunications industry or re-implementing the functionality in application-specific
code will result in a quicker, more cost-efficient adoption of CORBA for network
management.

The following sub-sections specify requirements on the use of CORBA Common Object
Services to ensure interoperability between different network management systems and to
preserve the telecommunications context..

6.1 The Naming Service
The OMG Naming Service is CORBA’s directory service, or “white pages.”[3] It allows
a client to build a name-to-object association called a name binding that other clients can
then use to find the object. (CORBA object references are binary and difficult for use by
humans.) A name binding is always defined relative to a naming context. A naming
context is an object that contains a set of name bindings in which each name is locally
unique. A name binding is a data structure containing two strings and an object reference
(address). The ID string is the identifier for the binding. A second string, called “kind,”
is also part of the data structure. Together, the ID and kind uniquely identify an object
relative to a context. Different names can be bound to an object in the same or different
contexts at the same time. The naming context can also be bound to a name in another

DRAFT ITU-T Recommendation Q.816

17

naming context. Binding contexts in other contexts creates a naming graph – a directed
graph with nodes and labeled edges where nodes are contexts. Given a context in a
naming graph, a sequence of name components (ID-kind pairs) can reference an object.
This sequence of structures, called a compound name, defines a path in the naming graph
that may be navigated to resolve the name and find the object.

There is no requirement that CORBA name bindings represent a containment relationship
between objects, but the concept of containment is important in network management and
needs to be communicated across network management interfaces. The CORBA Naming
Service is the best way to accomplish this. The following paragraphs define a series of
requirements on using the CORBA Naming Service to represent the containment
relationships among managed object instances.

(R) NAME-1 Every managed object shall have one and only one name (DN). The
components of the name may be obtained from multiple federated servers. Although the
OMG Naming service supports multiple names per object, this framework restricts a
managed object to using a single name. Support for multiple names is outside the scope
of the framework.

(R) NAME-2 Since a simple name binding cannot identify an object and also contained
objects, each managed object must actually have a corresponding Naming Context. A
specially-named binding in each such context will bind the ID value “Object” with a
reference to the actual managed object. (The kind field of this binding will be null.)
Other naming contexts, representing contained managed objects, may also be bound to
names in this context.

(R) NAME-3 The ID field of a name binding for a naming context representing a
managed object will be application-dependent, and it may actually have semantic value
beyond uniquely identifying a managed object, for a particular class of objects. For
example, an ID value of “7” for an equipment holder object representing a slot in a shelf
may indicate that this object represents the 7th slot in the shelf. Special semantic value
attached to IDs will be documented for each class of managed objects as part of the
managed object interface specification. Note that the ID field is a string.

 (R) NAME-4 The kind field of a name binding for a naming context representing a
managed object shall be determined by managed object name binding information. This
is information defined as constants in IDL modules specifically for the purpose of
representing possible containment relationships. See ITU-T X.780 for details on the
representation of managed object name binding information. In short, however, a name
binding module will contain a constant string named “kind” that will be used as the value
for the kind field in CORBA name bindings. The value of this string will usually be the
unscoped class name of the managed object. This adds value by making it easier to
identify the type of an object and by reducing the likelihood of name collisions. One
factor complicating this is the release of new versions of an object, for example, an
equipmentR1 that extends an equipment object. When the new class merely extends the
capabilities of an existing class without changing its purpose (that is, it still represents the

ITU-T Recommendation Q.816 DRAFT

18

same managed resource), the kind field will usually be the original base class name.
This, however is ultimately up to the object modeler who defines the name binding IDL
module. Using the original value will enable existing applications to continue to use the
new class as if it was the old version.

The following figure gives an example of name bindings according to the above
requirements. In the figure, CORBA Naming Contexts are represented as folders. The
contents of the folders are name bindings. The convention for representing a name
component as a string with the format <ID>.<kind> is used. (Some example name
bindings do not have a pointer shown in the diagram to reduce the complexity of the
diagram.) The graph represents a Network object, named “CentralNet,” that contains a
Managed Element object named “Element9” and a Connection named “R5698.”

MO

CentralNet.Network
NorthernNet.Network
SouthernNet.Network

Object
Element9.ManagedElement
R5968.Connection
A549.Trail

Bay1.Equipment
Version7.Software
Object

Object

MO MO

(The local root
Naming Context)

(Naming Context
for the CentralNet
Managed Object)

(The CentralNet
Network Managed
Object)

(The Element9 ME
Managed Object)

(The R5698
Connection Managed
Object)

(The Naming Context for Element9) (The Naming Context for Connection
R5968)

Figure 2. Naming Graph of Managed Objects

(R) NAME-5 Each managed system shall provide at least one local root naming context.
Note on the figure above that the top-most naming context is referred to as a “local root”
naming context. This is the naming context in which names for the top-most managed
objects on the system will be bound, as well as names for certain support service objects.

A managed system may have multiple local root naming contexts. Since managed
objects cannot have multiple names, they may be bound under only one local root.
Support service objects, however, may have names bound under multiple root naming

DRAFT ITU-T Recommendation Q.816

19

contexts on the same system. One factor to consider when determining how many local
root naming contexts a managed system will have is if the possibility exists that some of
the managed objects might sometime have to be moved to another system. Moving an
entire tree of managed objects, including the local root naming context, will be simpler
than moving a subtree of objects.

(R) NAME-6 A managed system shall provide a local administrative procedure for
assigning a CORBA name to each local root naming context on the system. All names
exchanged across the managed interface will include the local root context name unless
otherwise noted. This includes operation parameters and notifications.

This feature is to enable an administration to make names globally unique. Since the
managed system must ensure that all names are unique relative to the local root naming
context, by assigning a globally unique name to the local root naming context an
administration can ensure that all names on a managed system are unique. The
mechanism used to choose a globally unique name for the local root context is up to the
administration. The format of the name will be the same as used by the CORBA Naming
Service, CosNaming::Name. Multiple components are allowed, but administrations will
likely want to keep local root context names short to reduce overhead.

In addition to making names unique, assigning a name to the local root naming context
will make it easier for a managing system to resolve names. This is because the
managing system can bind the local root naming contexts for all the systems it manages
into its own local naming service. The name it uses for this binding will be the same
name assigned to the root naming context on the managed system. See Figure 3 for an

ITU-T Recommendation Q.816 DRAFT

20

example.

A
B
C

Element1:Manag
edElement

Local Root = A

Object

Element1:Manag
edElement

Object

Element1:Manag
edElement

Object

Local Root = B Local Root = C

Managed System X Managed System Y

Managing System

Figure 3. Assigning Names to Root Naming Contexts

The figure shows two element management systems on the bottom. System “X” has two
objects of type ManagedElement, and System “Y” has 1. Each ManagedElement object
belongs to its own local root naming context, which means System X has two local roots
and System Y has one. There is also a network management system, and the local root
contexts of both EMSs have been bound into the naming service on this system. This
administration has chosen to assign the unique names “A” and “B” to the local root
contexts on System X, and “C” to the local root context on System Y. References to the
local root naming contexts have been bound with these names in the network
management System.

Say System Y emits a notification concerning its ManagedElement object. The full name
of that object (contained in the notification) will be “C/Element1.ManagedElement”.
Now let’s say the NMS wants to retrieve more data from the object. In order to do so, it
will have to resolve the name into a CORBA object reference. The NMS can accomplish
this by simply performing a resolve operation using the full name on the local context
where it bound the EMS local root contexts. Because the NMS’ naming service is
federated with the EMS naming services, the NMS’ naming service can automatically
forward the resolve operation to the naming service on the proper EMS, and return the
object reference to the NMS application.

DRAFT ITU-T Recommendation Q.816

21

It is anticipated that the local root naming context name will be assigned during the
initialization of a new system. Once in operation, it will be extremely difficult if not
impossible to change.

Once assigned a name, the local root context’s CORBA Interoperable Object Reference
(IOR) will have to be bound to a naming context on the managing system, since up to
now it has no idea the new system exists. This means the managed system will also have
to provide a means for accessing the “stringified” IOR of the local root naming context.
This value will then be transferred to the managing system by some means other than the
management interface (e-mail, ftp, etc.). The managing system will require a way to
accept this stringified IOR and bind it to a name on the managing system. As soon as the
local root context’s IOR is bound to a name on the managing system, the managing
system can begin discovering the objects on the new system (using the Multiple Object
Operation Service described later) and begin to manage it.

A
B
C

Element1:Manag
edElement

Local Root = A

Object

Element1:Manag
edElement

Object

Element1:Manag
edElement

Object

Local Root = B Local Root = C

Managed System X Managed System Y

Managing System

Figure 4. Moving a Local Root Naming Context and Contained Objects

Figure 4 shows how a local root naming context and all of the objects contained below it
can be moved to another system without changing the names of the objects. The only
change that might be required would be to change the object reference bound to the name
in the network management system(s). Also, any outstanding references to moved
objects would have to be refreshed. Moving only part of a tree contained below a local
root naming context would require re-naming those objects.

ITU-T Recommendation Q.816 DRAFT

22

6.2 Notification Service
The CORBA Notification Service supports the asynchronous exchange of event messages
between clients using a subscribe-and-publish paradigm.[4] The Notification Service
introduces event channels that broker event messages, notification suppliers that supply
event messages, and notification consumers that consume event messages. The CORBA
Notification Service preserves all of the semantics specified for the CORBA Event
Service, allowing for backward compatibility with Event Service clients. The extended
functionality that is important to the network management domain is the structured event,
event filtering, and QoS (Quality of Service). The figure below depicts the general
architecture of the Notification Service.

Notification
Service
Event

Channel

Supplier

Supplier

Supplier

Consumer

Consumer

Consumer

QoS

QoS QoS

QoS

QoSF

FQoS

F

F

F

F

= FilterF

Figure 5. Architecture of the Notification Service

(R) NOTIF-1 The Notification Service shall support the push interface model. The
managed object interface to the event channel shall be a push supplier.

(R) NOTIF-2 The managed system shall instantiate the Notification Service event
channel object(s) that it will use. A managed system must instantiate at least one channel
and may instantiate more than one. (These channels may either be Notification event
channels or Telecom Log event channels. See Section 6.3) The framework does not
support the creation or deletion of event channels across the management interface.
Local administrative procedures may be provided for this purpose. (Event channels do,
however, support the creation and deletion of filters across the management interface.)

(R) NOTIF-3 Each event channel shall be registered with the Channel Finder service.
The Channel Finder service is a support service defined by this framework in Section 7.2.
During registration the channel shall be associated with one or more managed objects that
each forms the base of a tree of managed objects that send their events to the channel.
Multiple channels may be associated with the same base managed object. A likely use of

DRAFT ITU-T Recommendation Q.816

23

this is to have different channels for different types of events. For example, one channel
might handle performance management events while another handles alarms. When the
channel is registered with the Channel Finder service it is also tied with a set of event
types it handles and a set of managed object types that send their events to it. A managed
object always sends its events to the channel associated with the nearest object above it
that accepts that type of event from that class of object. Every notification from every
managed object must go to at least one channel.

While this approach is quite flexible and enables complex arrangements of channels,
because channels cannot be created across the management interface the complexity is
under the control of the implementation of the managed system. It might be as simple as
a single channel monitoring all managed objects on the system. (Please note again that
while channels cannot be created across the interface, individual channels do support the
creation and deletion of filters across the management interface. Thus, any number of
clients may register for the events they wish to receive.)

(R) NOTIF-4 The Notification Service shall support structured events.

(O) NOTIF-5 The use of sequences of structured events is optional. Sequences of
structured events are defined in [4] and are used to send multiple events in one message.

(O) NOTIF-6 The use of typed events is optional.

The message interface between suppliers and consumers shall be defined in IDL as if
they were using typed events. This is done to enable capturing the notification in IDL
(which cannot be done for structured events except with comments) as well as to support
typed notifications for applications that wish to use them.

Rules for creating structured notifications based on these typed operations are provided
below.

The OMG Notification Service definition does define rules for channels to automatically
convert typed notifications to structured notifications. If the managed system natively
creates typed notifications, but the client wishes to receive structured notifications, these
rules shall be followed by the channel. Note, however, that this arrangement is likely less
efficient than both systems using typed events. If the managed system natively creates
structured notifications, it shall do so according to the rules below.

The structured notifications natively created by a managed system will differ slightly
from the structured notifications created by automatic conversion from typed
notifications. One reason for this is to make it possible for a managing system to tell the
difference, and accept typed notifications if they are supported by the managed system.
Another is to more efficiently use structured notifications. Managed systems that
natively create structured notifications may exclude optional parameters from those
notifications. Because a typed notification is created from a strongly-typed method
invocation, a commercial notification channel that translates this to a structured

ITU-T Recommendation Q.816 DRAFT

24

notification will include any null values as name-value pairs in the body of the structured
event rather than exclude them. Note that allowing managed systems that natively create
structured notifications to exclude optional parameters makes it unlikely that commercial
notification channels will be able to support the automatic conversion of structured events
to typed events.

To recap, a managed system shall send notifications either as structured events or typed
events. If the managed system natively creates structured events, it shall do so according
to the rules below. Because, for efficiency, these rules allow managed systems to
exclude optional parameters from structured notifications, support for automatic
conversion of these structured notifications to typed notifications by commercial
notification channels is not expected. Thus, the managing system must accept structured
events. If the managed system natively creates typed events, the managing system may
rely on the notification channel to automatically convert them to structured events based
on the OMG Notification Service’s rules. Structured notifications rely upon the heavy
use of CORBA “any” data types, however, which can be inefficient. Thus in this case
managing system will likely prefer to accept typed notifications.

(R) NOTIF-7 The suppliers and consumers of structured events shall follow these rules
for constructing and receiving the structured events. (See the figure below which depicts
the Notification Structure and how elements from the IDL notification definition are to be
mapped into it):

• The domain_type string in the fixed header of the structured event shall be set
to "Telecommunications".

• The type_name string in the fixed header of the structured event shall be set to
the scoped name of the operation defining the notification in IDL, for example,
"itut_x780::Notifications::attributeValueChange".

• The event_name string in the fixed header of the structured event shall be
null.

• Optional header fields may be included to support features like Quality of Service
as appropriate.

• Each parameter in the operation shall be placed in a name-value pair in the
filterable body portion of the structured event. The fd_name string of this pair
shall be set to the name of the parameter and the type placed in the associated
fd_value will be the type specified for the parameter. Using as an example the
equipmentAlarm notification from the IDL presented later in this document,
the first fd_name string would be set to "eventTime" and the first fd_value
would contain an ExternalTimeType data type. Although all notification
parameters go in the filterable body of the notification structure, depending on the
data type of the parameter it may be difficult or even impossible to create a useful
filter utilizing that parameter. Filter “matching rules” are based on the
capabilities of the channel.

• Parameters that are denoted “optional” may optionally be excluded from the
notification structure. If typed notifications are used, these parameters are
included, but will usually have a special null value if not supported. For types for

DRAFT ITU-T Recommendation Q.816

25

which there is no special null value (such as integers) a special type consisting of
a union between the base type (such as integer) and the null type is usually
defined. These union types may be excluded from structured notifications when
they have a null value, but if they are included, the union type must be used. This
is to enable the same filters to be used for both structured and typed notifications.

• The remainder of the body of the structured event (the non-filterable part) shall be
null.

• Parameters named “operation” shall be avoided in notification operations to
potentially support the use of typed notifications. (When converting typed
notifications to structured notifications, the parameters of an operation are
automatically placed into a notification structure by the event channel.
Unfortunately, the rules developed for doing this state that the name of the
operation used to issue the notification goes not in the header of the event, but in
the body of the of the structure as the first name-value pair. The fd_name string
is set to “operation” and the fd_value is set to a string containing the name of
the operation. Using a parameter named “operation” would then result in a
second name-value pair with the name “operation,” and the two could be
confused.)

ITU-T Recommendation Q.816 DRAFT

26

domain_type

type_name

event_name

ohf_name1

ohf_name2

…

ohf_namen

fd_name1 =
“eventTime”

fd_name2 =

“source”

…

fd_namen

remainder_of_body

ohf_value1

ohf_value2

ohf_valuen

fd_value1 =
value of

eventTime

fd_value2 =

value of source

fd_valuen

Event Header

Event Body

Fixed Header

Variable Header

Filterable Body
Fields

Remaining Body

“Telecommunications”

<null>

Optional header fields
may be included to
support features like
Quality of Service

void equipmentAlarm (
in ExternalTimeType eventTime,
in NameType source,
in ObjectClassType sourceClass,
…

);

One name-value pair for
each parameter in the
operation goes in the
filterable body.

Figure 6. Mapping Notifications to Structured Events

(R) NOTIF-8 The Notification Service specification supports filter expressions that are
used to determine if the event is to be forwarded. It also supports filter expressions that
“map” values in the notification to parameters used to impact the operation of the event
channel, such as the QoS used in delivering the event. For example, a mapping filter
might be used to map a “severity=major” field from an event (which means nothing to an
event channel) to a QoS parameter “priority=1” (which does mean something to the
channel). The Notification Service shall support event filtering with filter objects that
support constraints expressed in the default constraint grammar specified by the OMG.
The Notification Service shall also support mapping filters.

(R) NOTIF-9 The Notification Service reliability QoS shall support EventReliability =
Persistent & ConnectionReliability = Persistent.

Each event is guaranteed to be delivered to all consumers registered to receive it
at the time the event was delivered to the channel, within expiry limits. If the
connection between the channel and a consumer is lost for any reason, the

DRAFT ITU-T Recommendation Q.816

27

channel will persistently store any events destined for that consumer until each
event time out due to expiry limits, or the consumer once again becomes available
and the channel is subsequently able to deliver the events to all registered
consumers. In addition, upon start from a failure the notification channel will
automatically re-establish connections to all clients that were connected to it at
the time the failure occurred.[4]

(R) NOTIF-10 The Notification Service order policy QoS shall allow the events to
be delivered in the order of their arrival, i.e. FIFO. The Notification Service may also
optionally support a priority-order QoS in which events could be buffered in priority
order, such that higher priority events will be delivered before lower priority events.

(R) NOTIF-11 The Notification Service implementation deployed shall be
compliant to the conformance statements of the OMG Notification Service specification
with the exception of the pull interface model.

6.3 Telecom Log Service
The CORBA Telecom Log Service[5] is a CORBA-based log service that fully supports
the ITU-T Recommendation X.735. The log is implemented as an Event Service or
Notification Service event channel. The Log Service supports the following
functionality:

• Writing to the log: Events supplied to the log are persistently stored as log
records.

• Forwarding from the log: Events supplied to the log are also forwarded to other
logs or to any application that wishes to receive them.

• Log generated events: The log itself will generate events.

Also the Log Service provides functions of log control and management, log record
manipulation, log lifecycle management. The following figure gives a graphic
representation of the Log Service.

ITU-T Recommendation Q.816 DRAFT

28

Notification
Service

Event Channel

Supplier

Supplier

Supplier

Consumer

Consumer

Consumer

QoS

QoS

QoS QoS

QoS

QoS

Log
Persistent Store

Log Filter

Non-Event
Writer

F

F

F

F

F

F

= FilterF

Figure 7. Telecom Log Service

By manipulating the Log Filter, a managing system is able to control which events are
logged and which aren’t, in exactly the same way it is able to control which events are
forwarded and which aren’t. The only exception is the “Non-event Writer,” which is an
application that writes data directly to the log.

Note that the definition of the OMG’s Telecom Log pre-dates this framework. The
notifications from the Telecom Log are structurally different from the other notifications
in this framework even though some of the names of the notifications and parameters are
semantically the same.

(R) LOG-1 The Log Service shall support all the Notification Service requirements.
Log Event Channels must be registered with the Channel Finder service.

(R) LOG-2 The Log Record supported by the Log Service shall be the normal
struct LogRecord. The support of struct TypedLogRecord is optional.

(R) LOG-3 The Log Service implementation shall be compliant with the conformance
statement in the OMG Telecom Log Service specification with the exception of the pull
interface model.

6.4 Messaging Service
The CORBA Messaging Service covers three areas: Asynchronous Method Invocation
(AMI), Time Independent Invocation (TII), and Messaging Quality of Service (QoS).[8]

DRAFT ITU-T Recommendation Q.816

29

Of the three areas, the AMI has a significant role in the network management domain
because it allows clients to make non-blocking requests on a CORBA object.

Note that CORBA is designed to enable an application to invoke a method on an object
as if the object was local to the application, regardless of the object’s actual location.
Typically, when a method is invoked on an object in a non-distributed application,
control passes to that object and the calling routine blocks until the method completes and
control is passed back. These semantics are maintained in CORBA. In a distributed
application, however, network latency can lead to poor performance. There are five
possible solutions to consider:

1. Applications simply live with the delays.
2. TMN IDL interfaces are defined to be asynchronous. That is, management operations

are always defined to return no results. Thus, invocations can be made without
blocking. (This is supported by CORBA.) Results are returned later when the
managed system performs a “callback” on the managing system.

3. TMN IDL interfaces always have two sets of operations, one that is asynchronous,
and the other synchronous.

4. TMN IDL interfaces are defined to be synchronous, and manager applications
improve performance by being multi-threaded and capable of blocking on multiple
outstanding requests while continuing to process other work..

5. TMN IDL interfaces are defined to be synchronous, and manager applications
improve performance by using the Asynchronous Method Invocation service, and an
ORB that supports it.

This framework chooses a combination of 4 and 5. TMN IDL interfaces are defined to
be synchronous. Manager applications that are multi-threaded can use these interfaces
directly and experience good performance. Manager applications that cannot be multi-
threaded shall use the AMI service to improve performance. Since multi-threaded
managers do not need the AMI service, its use is optional.

The AMI is treated as a client side language mapping issue only. In most cases, server
side implementations are not required to change. In certain situations, such as with a
transactional server, the asynchrony of a client does matter and requires server side
changes if it is expected to handle transactional asynchronous requests. Transactional
asynchronous requests, however, will not be addressed in this document. The following
figure depicts the basic concept of the OMG AMI model.

ITU-T Recommendation Q.816 DRAFT

30

Async-aware ORB

Sync Client Async Client

Servant

IDL - Stub (sync) Implied-IDL -
Stub (async)

IDL - Skeleton (sync)

Figure 8. Asynchronous-aware ORB

The AMI specification provides two models of asynchronous requests: callback and
polling. In the callback model, the client passes an object reference for a
ReplyHandler object as a parameter when it invokes a two-way asynchronous
operation on a server. When the server responds, the client ORB receives the response
and dispatches it to the appropriate method on the ReplyHandler servant so the client
can handle the reply. In other words, the ORB turns the response into a request on the
client’s ReplyHandler. The ReplyHandler is a normal CORBA object that is
implemented by the programmer as with any object implementation. In the polling
model, the client makes the request passing in all the parameters needed for the
invocation, and is returned a Poller object which can be queried to obtain the results of
the invocation. This Poller is an instance of a valuetype, which is a new IDL type
introduced by the new Objects-by-Value specification. A valuetype has both data
members and methods, which when invoked are just local function calls and not
distributed CORBA operation invocations.

The value of the Asynchronous Method Invocation capability in network management
applications is that it enables managing systems that wish to use asynchronous method
calls to inter-operate with managed systems using the same interface definitions as those
used by synchronous clients. No changes are required in the interface definition or the
implementation of the managed system. The following requirements are proposed for
implementations that optionally wish to support asynchronous method invocations (but
not transactions with “ACID” capabilities).

(O) AMI-1 The AMI-aware CORBA implementation shall at least support the
callback programming model.

(O) AMI-2 For each operation in an IDL interface, the AMI-aware CORBA
implementation shall generate corresponding asynchronous callback method signatures.

DRAFT ITU-T Recommendation Q.816

31

These signatures are described in implied-IDL which is used to generate language-
specific operation signatures.

(O) AMI-3 The AMI-aware CORBA ORB shall pass a type-specific
ExceptionHolder value instance that contains the marshaled exceptions as its state
to the ReplyHandler when exception replies are returned from the CORBA object.
The AMI-aware IDL compiler would generate a type-specific ExceptionHolder for
each IDL interface.

(O) AMI-4 The AMI-aware IDL compiler shall generate a type-specific reply handler
for each IDL interface. The client will implement and register a reply handler with each
asynchronous request and receive a callback when the reply is returned for that request.
This reply handler is derived from the generic Messaging::ReplyHandler.

6.5 Security Service
The CORBA Security Service comprises the security functionality of authentication of
principals (human users and objects), authorization of access to objects by principals,
security auditing, communication security, non-repudiation, and administration.[6] All of
this may be overkill for many applications, though. Instead, applications might require
only the communication security and system-level authentication functionality based on
Transport Layer Security (TLS) technology (and its precursor, SSL) for availability and
simplicity reasons. Finally, some applications might require no security. The optional
requirements below, therefore, reflect three possible choices:

1. No security.
2. ORBs use SSL to provide communications security and system-level authentication,

which is essentially “session” security.
3. ORBs use the CORBA Security Service to provide communications security,

authentication, non-repudiation, access control lists for groups or individuals
accessing individual objects and operations, etc.

The actual level of service to be provided on an interface is left as a matter to be
negotiated between the parties supplying the managed and managing systems.

(O) SEC-1 The CORBA interface may optionally support either the “Secure IOP
protocol,” or “CORBA Security SSL Interoperability,” as defined in the CORBA
Security Service Specification.[6]

(O) SEC-2 The CORBA Security Service may be used to support its wide range of
capabilities.

(O) SEC-3 Support for the exchange of authentication certificates shall be an option
left up to the administration.

ITU-T Recommendation Q.816 DRAFT

32

6.6 Transaction Service
In a distributed computing environment such as CORBA, it is possible that updates from
some clients could be overwritten by concurrent (or near concurrent) updates from other
clients unless suitable safeguards are provided. Even though the Notification Service and
Telecom Log Service provide a basis for making a client aware that its update has been
overwritten, they do not provide a locking mechanism to prevent the occurrence of such
overwrites. The OMG Transaction Service[7] provides a comprehensive locking
mechanism for preventing the overwriting of one client’s update by a concurrent update
from a different client. This solution is designed for high reliability. However, the OMG
Transaction Service may not be required in all applications and the additional overhead
incurred may not be justified. If consistency of data after concurrent updates must be
supported, the transaction service from the OMG should be considered.

(O) TRANS-1The CORBA interface may optionally support the OMG Transaction
Service to guarantee data consistency.

7 Framework Support Services
This section defines common support services included in the framework that are not
standard OMG CORBA Common Object Services. Many network management
applications perform functions that are not commonly required by general-purpose
business applications, so it is not reasonable to expect the standard CORBA framework to
supply all the necessary services for network management. This section defines services
that will be broadly used by network management applications but are not as likely to be
used by many other types of applications and are therefore unlikely to become CORBA
Common Object Services. These services also provide functionality required to enable
the re-use of existing information models without significant changes in semantics.

The advantages of placing this functionality in common support services is that it
unburdens the managed object implementations from providing these services and allows
the services to evolve to provide greater functionality without changing the managed
object interfaces or implementations. The IDL describing the interfaces to these services
can be found in Annex A.

7.1 The Factory Finder Service
The Factory Finder Service enables clients to find factories. A client finds a factory by
querying this service with the class name of a factory. The service responds with a
reference to a factory of that type. Note that the class name supplied by the client is the
factory’s class, not the class of the object to be created.

The Factory Finder Service is found by looking it up in the Naming Service.

Before factories can be found in the service, the service must know about them.
Therefore, the Factory Finder Service also provides a means for factories to register and
unregister themselves with the service. While it is not necessary to expose this capability
across the management interface, these operations are defined to enable the

DRAFT ITU-T Recommendation Q.816

33

implementation of the Factory Finder Service as a component, separate from the objects
comprising a specific information model. Thus, once implemented, the Factory Finder
Service implementation will not have to be changed when new information models with
new factories are defined. The Factory Finder Service could even be acquired from a
third party.

The operations used to register and unregister channels are in a separate interface that is
subclassed from the Factory Finder interface. Only the Factory Finder interface needs to
be implemented to conform with this framework. The subclassed interface is provided
for implementations that wish to use it to construct the Factory Finder service as a
separate component.

This is the IDL that defines the interface to the Factory Finder Service (without
comments):

interface FactoryFinder {

ManagedObjectFactory find (in ObjectClassType factoryClass)
raises (FactoryNotFound, ApplicationError);

FactoryInfoListType list()
raises (ApplicationError);

}; // end of FactoryFinder interface

interface FactoryFinderComponent : FactoryFinder {

void register (in ObjectClassType factoryClass,
in ManagedObjectFactory factoryRef)
raises (ApplicationError);

void unregister (in ObjectClassType factoryClass,
in ManagedObjectFactory factoryRef)
raises (FactoryNotFound, ApplicationError);

}; // end of FactoryFinderComponent interface

The find operation on the FactoryFinder interface is used by a client to find a factory of a
particular type. The list operation returns a list of all the factories registered with the
Factory Finder. The register operation on the FactoryFinderComponent interface is used
by a factory to register itself with the service, and the unregister operation is used by a
factory to delete its registration. These last two operations should not be used by
managing systems.

(R) FACTORY_FINDER-1. A managed system shall instantiate at least one Factory
Finder Service object. Also, each local root naming context on a system shall have at
least one name binding for a Factory Finder Server Object. The value of the ID string in
this binding shall simply identify the server, perhaps with a value similar to
“FactoryFinder1”. The kind string in the binding shall identify the class of the object
(“itut_q816::FactoryFinder”).

ITU-T Recommendation Q.816 DRAFT

34

(R) FACTORY_FINDER-2. The Factory Finder server object(s) shall support the
Factory Finder interface described above and defined in the CORBA IDL in Annex A.
The Factory Finder server object(s) may support the Factory Finder Component
interfaces defined above. The functionality described above shall be supported.

7.2 The Channel Finder Service
It is anticipated that a large network management system might have multiple event
channels. These channels might handle different types of events, or they might handle
events from different sets of objects. To ensure that a client does not miss any of the
events in which it is interested, a means of identifying the channels present on a managed
system, and the events they are handling, is needed. The Channel Finder Service
performs this function. A client can invoke an operation on this service to list all of the
event channels present on a managed system, along with the events they are handling.
Once the client knows about the channels, it can interact with them to arrange to receive
notifications.

A client finds a Channel Finder object by looking it up in the Naming Service.

Before channels can be listed by the service, the service must know about them.
Therefore, the Channel Finder Service also provides a means for channels to be registered
and unregistered with the service. While it is not necessary to expose this capability
across the management interface, these operations are defined to enable the
implementation of the Channel Finder Service as a component, separate from the objects
comprising a specific information model. Thus, once implemented, the Channel Finder
Service implementation will not have to be changed when new information models are
defined. The Channel Finder Service could even be acquired from a third party.

The operations used to register and unregister channels are in a separate interface that is
subclassed from the Channel Finder interface. Only the Channel Finder interface needs
to be implemented to conform with this framework. The subclassed interface is provided
for implementations that wish to use it to construct the channel finder service as a
separate component.

7.2.1 Channel Finder Interface
This is the IDL that defines the interface to the Channel Finder Service (without
comments):

interface ChannelFinder {

ChannelInfoListType list()
raises (ApplicationError);

}; // end of ChannelFinder interface

interface ChannelFinderComponent : ChannelFinder {
void register (in string channelID,

in ObjectClassType channelClass,
in NameSetType baseObjects,
in EventSetType eventTypes,

DRAFT ITU-T Recommendation Q.816

35

in EventSetType excludedEventTypes,
in ScopedNameSetType sourceClasses,
in ScopedNameSetType excludedSourceClasses,
in EventChannel channel)
raises (ChannelAlreadyRegistered, ApplicationError);

void unregister (in string channelID)
raises (ChannelNotFound, ApplicationError);

}; // end of ChannelFinderComponent interface

The list operation on the ChannelFinder interface can be used by a managing system to
discover all the channels present on a managed system. The information returned is the
same information included when a channel is registered, which is discussed below. The
two operations on the ChannelFinderComponent interface are used by the managed
system to register and unregister its channels with the service. These operations are not
intended for use by a managing system.

When a channel is registered seven pieces of data are associated with the reference to the
channel. First, a string identifier for the channel is specified. Second, the type of channel
is identified (the framework has two types of channels, Notification channels and Log
channels). After that, the set of objects covered by the channel is specified by the names
of managed objects at the bases of trees of objects. These trees of objects are the sets of
objects that send events to this channel, except that trees do not overlap. (A channel
bound lower in the tree receives events from the objects “below” it. These events are not
sent to the channels bound higher in the tree.) Multiple base objects may be associated
with one channel. An empty set has the special meaning that all managed objects directly
bound to the local root naming context that also contains this channel finder are covered
by the channel.

Next, the types of events sent to this channel are identified. This is done with two sets of
strings. The eventTypes set explicitly includes the name of each type of event sent to this
channel. An example event type is “itut_x780::Notifications::equipmentAlarm”. An
empty set has the special meaning that all types of events are sent to this channel. The
excludedEventTypes set lists the types of events that are not sent to this channel. If the
eventTypes string set is null, then all events except those listed in the excludedEventTypes
set are sent to the channel. If the eventTypes string set is not null, the
excludedEventTypes parameter should be empty and is ignored.

Finally, the types of objects sending events to this channel are identified. This is also
done with two sets of strings. The sourceClasses set explicitly includes the name of each
managed object class that sends events to this channel. An example object class name is
“itut_m3120::Equipment”. An empty set has the special meaning that all types of
managed objects send events to this channel. The excludedSourceClasses set lists the
names of managed object classes that do not send events to this channel. If the
sourceClasses string set is null, then all managed object classes except those listed in the
excludedSourceClasses set send events to the channel. If the sourceClasses string set is
not null, the excludedSourceClasses parameter should be empty and is ignored.

ITU-T Recommendation Q.816 DRAFT

36

The combination of the base objects, list of event types, and source classes identifies the
events handled by a channel. This can lead to some confusing combinations. While not
all of these are expected to be implemented in systems, they are explained below just in
case.

1. A channel may be registered with multiple base objects.
2. Multiple channels may be registered with the same base object. If the event lists and

source object types associated with these channels overlap, the events must be made
available at all channels listing the matching event and source object types.

3. An attempt to re-register a channel will result in an update to that channel
registration. The new information will be associated with the channel and the old
information will be discarded.

4. A managed object always sends an event to the channel with the associated base
object that is the managed object’s closest superior and that also handles that type of
event from that class of object.

The figure below also graphically depicts some examples for further clarification.

Channel 1
Event types = all
Source classes = all

Channel 2
Event types =
equipmentAlarm
Source classes =
circuitPack

Managed Object

Containment
Relationship

Equipment alarms from circuit packs in
this subtree go to Channel 2. All other
notifications go to Channel 1.

Channel
Finder
Association

Figure 9. Event Channel Example

A special notification has been defined that must be sent whenever a channel registration
is added, removed, or modified. This notification must be sent on all channels registered

DRAFT ITU-T Recommendation Q.816

37

immediately before the change occurred. Since this notification is emitted by the channel
finder instead of a managed object, and since it is sent to all channels, the channel finder
shall not list the channel change notification along with the other notifications handled by
a channel. The IDL describing this notification is:

void channelChange (
in ChannelModificationType channelModification,
in ChannelInfoType channelInfo

);

The channel modification parameter indicates if a channel has been added, deleted, or
modified (in terms of the event types it handles). The channel information parameter
provides a string describing the type of channel, a reference to the channel, the base
object(s) with which it is associated, and the source object classes and event types it
handles.

It should be noted that while this approach to supporting multiple event channels is quite
flexible and therefore complicated, the degree of complication is under the control of the
managed system implementation. The creation and registration of event channels across
the management interface is not supported. A complex managed system might support a
local administrative procedure for adding, modifying, or removing channels to tune
performance, or it might just update channels through software releases. A simple
system will likely have one or perhaps two channels (one for high-priority events like
equipment alarms and the other for everything else) associated with the root managed
object. Also, please note that precluding a managing system from creating event
channels does not preclude it from creating filters and “proxy suppliers” on existing
channels. This gives the client capabilities equal to creating event forwarding
discriminators in OSI network management systems.

7.2.2 Channel Finder Requirements
(R) CHANNEL_FINDER-1. A managed system shall instantiate at least one Channel
Finder Service object. Also, each local root naming context on a system shall have at
least one name binding for a Channel Finder Service object. The value of the ID string in
this binding shall simply identify the server, perhaps with a value similar to
“ChannelFinder1”. The kind string in the binding shall identify the class of the object
(“itut_q816::ChannelFinder”).

(R) CHANNEL_FINDER-2. The Channel Finder server object(s) shall support the
Channel Finder interface described above and defined in the CORBA IDL in Annex A.
The Channel Finder server object(s) may support the Channel Finder Component
interfaces defined above. The functionality described above shall be supported.

(R) CHANNEL_FINDER-3. Whenever a change to the channel registrations is made,
the Channel Finder shall send a channel change notification on all channels registered
immediately before the change.

ITU-T Recommendation Q.816 DRAFT

38

(R) CHANNEL_FINDER-4. The network of event channels reported by a managed
system shall handle all alarms from all managed objects on the system. A system that
lists a set of channels that does not cover all events from all managed objects on the
system does not comply with this framework.

7.3 The Terminator Service
The purpose of the Terminator Service is to provide a place in the framework to
implement common functionality that would otherwise have to be implemented in the
managed objects. The Terminator Service is used by managing systems to delete
managed objects. It does so according to the delete policy of the managed object. (ITU-
T Recommendation X.780 requires that every managed object have a deletePolicy
attribute with one of three values: notDeletable, deleteOnlyIfNoContainedObjects, and
deleteContainedObjects.) If the delete policy of the managed object is notDeletable, the
Terminator Service does not delete the object, and instead raises an exception. If the
delete policy is deleteOnlyIfNoContainedObjects, and the object does not contain any
objects, then the Terminator Service deletes the object. Otherwise, it raises an exception.
Finally, if the delete policy of the object is deleteContainedObjects, then the Terminator
Service will delete the object as well as all of its contained objects, pursuant to some
rules defined below.

ITU-T Recommendation X.780 also defines a destroy operation to be supported by all
managed objects that is intended for use by the Terminator Service for actually deleting
the managed object and releasing its resources. In addition to following the delete
policies and actually deleting the managed objects, though, the Terminator Service is also
a good place to implement code to maintain the integrity of the naming tree by removing
name bindings for managed objects that are being deleted. Implementations may choose
to implement this function elsewhere, but a goal of the framework is to enable
implementations of managed objects that focus on representing network resources. It is
believed that a service like this will help to make the implementation of managed objects
simpler.

The IDL describing the Terminator Service provides two methods for deleting a managed
object. One identifies the managed object by name, the other by reference. This is the
IDL that defines the delete service interface:

interface TerminatorService {

void deleteByName (in NameType name)
raises (ApplicationError, DeleteError);

void deleteByRef (in ManagedObject mo)
raises (ApplicationError, DeleteError);

}; // end of TerminatorService interface

(R) TERM-1. A managed system shall instantiate at least one Terminator Service
object. Also, each local root naming context on a system shall have at least one name
binding for a Terminator Service object. The value of the ID string in this binding shall

DRAFT ITU-T Recommendation Q.816

39

simply identify the server, perhaps with a value similar to “Terminator1”. The kind string
in the binding shall identify the class of the object (“itut_q816::TerminatorService”).

(R) TERM-2. The interface supported by the Terminator Server object(s) shall be the
Terminator interface described above and defined in the CORBA IDL in Annex A. The
functionality described above must be supported.

(R) TERM-3. The Terminator Service shall delete objects according to the objects’
delete policy attribute, which is set at creation and cannot be changed. Note that the
Terminator Service is not a scoped service. The Terminator Service may actually delete
multiple objects in response to a single request, but its focus is on the single object
requested to be deleted. The Terminator Service shall implement the following rules
when deleting an object:

1. No object shall ever be “orphaned.” That is, no object may be deleted without
deleting its subordinates.

2. If the object has a delete policy of notDeletable, the object shall not be deleted,
nor are any of its subordinates if it has any. The DeleteError exception shall be
raised with the error identifier set to the value notDeletable.

3. If the object has a delete policy of deleteOnlyIfNoContainedObjects, and it does
not have any subordinates, the object shall be deleted. If the object has
subordinates, regardless of their delete policies, it shall not be deleted nor shall
any of its subordinates. The DeleteError exception shall be raised with the
error identifier set to the value containsObjects.

4. If the object has a delete policy of deleteContainedObjects, and it does not have
any subordinates, the object shall be deleted. If the object has subordinates, the
Terminator Service shall check the delete policies of all the subordinates. If
any are notDeletable, no objects are deleted. If any are
deleteOnlyIfNoContained and they contain subordinates, no objects are deleted.
Otherwise, the object and its subordinates are deleted.

5. The Terminator Service shall delete contained objects from the bottom up. If
any contained object raises an exception during deletion, the Terminator
Service shall not remove that object’s name and shall not delete any of its
superiors. The Terminator Service shall, however, continue trying to delete
other contained objects. When all objects that can be deleted are deleted, the
Terminator Service shall raise a DeleteError exception with the error identifier
set to the value undeletableContainedObject. This best-effort approach to
deleting contained objects is required to make the results deterministic. The
client can identify the undeletable objects because they will be at the leaves of
the tree remaining beneath the target object.

6. If the base object raises a DeleteError exception, the Terminator Service shall
return the same exception (and included data). The object is not deleted and the
object’s name is not removed from the naming tree.

ITU-T Recommendation Q.816 DRAFT

40

7.4 The Multiple-Object Operation Service
With potentially millions of entities to manage, there is a need for the framework to
support operations on multiple objects with a single method invocation or perhaps a small
number of invocations. The Multiple-Object Operation (MOO) Service provides this
capability.

It is expected that each network management platform supporting a CORBA interface
will provide at least one instance of the MOO Service. (For performance reasons, it is
recommended that the MOO Service, Naming Service, and the managed objects be
located on the same computing platform.) Managers will interact with the service using a
limited number of interactions requiring relatively low bandwidth. The service will in
turn interact with managed objects using either their published CORBA interfaces or
some proprietary means. This high number of interactions is expected to require higher
bandwidth, thus the need to co-locate the service with the managed objects.

Note that the MOO service is an example of application-specific access granularity
discussed earlier in the introduction.

7.4.1 The MOO Service Interface
The MOO Service’s interface, defined in Annex A, is weakly-typed. It provides a set of
generic capabilities that may be invoked on sets of any kinds of managed objects, even
objects of different types. The operations supported are:

• Scoped get: Returns the values from each of the objects for a list of attributes.
• Scoped update: Used to replace an attribute value or to add or remove values

to/from set-valued attributes. May be used to update one or multiple attributes
in a single object or multiple objects.

• Scoped delete: Deletes multiple objects.

The scoped get operation is defined on the BasicMooService interface. The scoped
update and delete operations are defined on the AdvancedMooService interface, which
inherits the scoped get operation from the basic service interface. This was done to allow
for some flexibility in the implementation of multiple-object operation services. A basic
service need only implement the scoped get operation.

Each of the scoped operations requires four parameters to define the set of objects on
which the operation will be performed:

• Base object name: The name of the object at the root of a tree of objects on which
the operation will potentially be performed.

• Scope: A discriminated union identifying the objects contained under the base
object on which the operation potentially will be performed. The union has four
cases. Two of the cases include an integer specifying a level of objects contained
below the base object. The four choices are:

− Base Object Only. If the scope is baseObjectOnly then only the named target
(base) object is included in the scope.

DRAFT ITU-T Recommendation Q.816

41

− Whole Subtree. If the scope is wholeSubtree the scope is all of the objects
contained below the base object, along with the base object.

− Individual Level. If the scope is individualLevel, the scope will also include
an integer-valued level. All of the objects contained at a level below the base
object equal to this value are in the scope. The objects directly contained by
the base object are level one. If level equals zero, the scope is the base object.

− Base to Level. If the scope is baseToLevel, the scope will also include an
integer-valued level. The scope will be all of the objects down to the given
level, including the base object and the object at the given level. If level
equals zero, the scope is the base object only.

Note that because this framework uses some unique naming conventions, the
service has to do a little work to determine the actual depth for containment-
based scopes. The goal is to make it as simple as possible for the client. First,
the base object name will be the entire compound name including the final
component with an ID value of “Object”. The service will have to “back up” to
the naming context that contains this binding and start counting from there.
Also, the service shall automatically follow the “Object” bindings in the
managed object naming contexts within the scope. This last hop will not count
towards the depth.

• Filter: An expression written in a constraint language that is used to evaluate the
attributes of an object. The operation is applied to those objects within the scope
for which the filter expression evaluates to true.

• Language: a string indicating the language in which the filter expression is
written.

The object names are the same as the Name type defined by the CORBA Naming
Service. The scope is a signed short integer with values as described above. Finally, the
filter and language parameters are strings.

Each of the operations may raise one of these exceptions:
• an InvalidParameter exception if one of the parameters has an invalid value. The

name of the invalid parameter is returned. Here are some conditions under which this
exception would be raised:
• The base object name is not valid.
• An unrecognized filter language value is supplied

• an InvalidFilter exception if the syntax of the filter is incorrect. This exception
returns the text near the syntax error for trouble-shooting purposes.

• a FilterComplexityLimit exception if the syntax of the filter is correct, but the filter is
too complex to be processed by the managed system.

• an ApplicationError exception to relate other problems on the server (such as a lack
of resources) that make it impossible to carry out the requested operation.

ITU-T Recommendation Q.816 DRAFT

42

Note that if an expression cannot be evaluated for a particular object because the types of
its attributes do not match the expression, the filter is not invalid. That object may simply
fail to pass the filter.

The other parameters for the operations as well as the return types are specific to the
operation. For example, the scoped get operation takes a list of attribute names and
returns a sequence of results, one from each object.

The object’s name is associated with the results from that object. Because each of the
operations could potentially return large amounts of data, the iterator design pattern is
used for returning the results. An iterator is an object that is created to contain the results
of an operation so that they may be returned to the client at a rate determined by the
client. The client receives a reference to the iterator as part of the information returned
by the method. The client may then invoke operations on the iterator to receive batches
of results in sizes determined by the client. The iterator keeps track of how far through
the results the client has progressed.

Note that the iterators are used to pace the return of information from the operations only,
and should not control when the operations are actually invoked on individual objects. A
scoped operation should be invoked on the objects and the results queued as soon as
possible. Delaying the invocation of the operation on the individual managed objects
until the results are requested through the iterator may be more efficient, but could lead to
incorrect results or race conditions. Also, if the client requests more results than are
currently available, the iterator must wait until it can return the requested number or until
all results are ready. This is because in this frequently-used design pattern the client
assumes it has retrieved all of the results when it gets fewer than requested. If a batch
takes too long the client may reduce the batch size on subsequent requests.

The following sub-sections give additional details on each of the scoped operations.

7.4.1.1 Scoped Get
The IDL signature for the scoped get operation on the basic MOO service is:

GetResultsSetType scopedGet (
in NameType baseName,
in ScopeType scope,
in FilterType filter,
in LangaugeType language,
in StringSetType attributes,
in unsigned short howMany,
out GetResultsIterator resultsIterator)
raises (InvalidParameter,

InvalidFilter,
FilterComplexityLimit,
ApplicationError);

As described above, the first four parameters are used to select a set of object on which to
perform the get operation. For each of these the service will try to return a value for each
of the attributes named in the “attributes” parameter, which is just a list of strings. A
submitted null attribute list, however, has the special meaning that all attribute values for

DRAFT ITU-T Recommendation Q.816

43

the objects that pass the filter should be returned. The types involved in the return value
are:

struct AttributeValueType { // from itut_x780 framework
string attributeName;
any value; // type will depend on the attribute

};

typedef sequence <AttributeValueType> AttributeSetType; // framework

struct GetResultsType {
NameType name;
boolean notFilterable;
AttributeSetType attributes;
StringSetType failedAttributes;

};

typedef sequence <GetResultsType> GetResultsSetType;

The first two types form a name-value pair list. The return type is a sequence of
structures, one for each object that passed the filter. In that structure is an object’s name,
a flag that will be true if the object could not be evaluated to see if it passed the filter, the
list of attribute values from that object, and the names of any attributes that could not be
retrieved from that object. Objects that could not be filtered are flagged as a special case
because they may be objects in which the client was not even interested. If the object
could not be filtered, the client will know the MOO server could not retrieve any
attributes for that object, so the other two data members shall be empty. If an object
passes the filter but an attribute value could not be retrieved either because the object did
not have a matching attribute or some exception was raised on access, that attribute’s
name should be put on the failed attribute list for that object.

The howMany parameter indicates to the service how many objects’ results should be
included in the first batch of responses. (Zero is allowed, forcing all results to be
returned through the iterator.) The resultsIterator output parameter is a reference to an
iterator object that may be used to retrieve additional results in batches. If all the results
were returned by the scopedGet operation, this reference will be null. The client must
destroy this object when it is finished with it, and may do so before all the results are
retrieved. The functionality of the CMIP Cancel Get operation is provided in this
framework by destroying the results iterator.

7.4.1.2 Scoped Update
The IDL signature for the scoped update operation on the advanced MOO service is:

UpdateResultsSetType scopedUpdate (
in NameType baseName,
in ScopeType scope,
in FilterType filter,
in LanguageType language,
in ModificationSeqType modifications,
in boolean failuresOnly,
in unsigned short howMany,
out UpdateResultsIterator resultsIterator)
raises (InvalidParameter,

ITU-T Recommendation Q.816 DRAFT

44

InvalidFilter,
filterCoplexityLimit,
ApplicationError);

Again, the first four parameters are used to select the set of objects on which the update is
performed. The modifications list is a list of structures, each with the name of an
attribute, a value for that attribute, and an enumerated value indicating if the value should
replace the attribute’s current value, be added to the attribute’s current value, or removed
from it. The add and remove options are valid only if the attribute’s type is a CORBA
sequence and if the interface has add and remove operations for the attribute. The values
in the modification list structures are passed across as CORBA any types. If the
attribute’s type is a CORBA sequence, a sequence of the proper type should be put in the
any field, even if it contains only a single value. The IDL describing the modification list
is:

enum ModificationOpType {set, add, remove};

struct ModificationType {
string attribute;
ModificationOpType op;
any value;

};

typedef sequence <ModificationType> ModificationSeqType;

The failuresOnly flag is used to indicate if the client wants the service to return results for
all objects meeting the scope and filter, or just those objects for which at least one of the
modifications could not be performed even though the scope and filter are satisfied.

The return value is a list of structures, each containing an object’s name along with a
Boolean value indicating if the object could not be evaluated to see if it passed the filter
and a list of any attributes that could not be modified. If the service cannot interact with
the object to determine if it passes the filter, the results for that object will have the
notFilterable set to true and the failedAttributes data member will be empty. (This is
flagged as a special case because the object may be one in which the client was not even
interested.) The service will try to perform all the modifications in the list, in order,
continuing to try the rest even if one modification fails. If any operation fails on an
attribute, that attribute’s name is added to the list of failures. If the notFilterable flag is
false, and the failedAttributes data member is empty, the client will know all updates
were performed on that object. The new types involved in the return value are:

struct UpdateResultsType {
NameType name;
boolean notFilterable;
StringSetType failedAttributes;

};

typedef sequence <UpdateResultsType> UpdateResultsSetType;

The howMany parameter indicates to the service how many objects’ results should be
included in the first batch of responses. (Zero is allowed, forcing all results to be

DRAFT ITU-T Recommendation Q.816

45

returned through the iterator.) The resultsIterator output parameter is a reference to an
iterator object that may be used to retrieve additional results in batches. If all the results
were returned by the scopedUpdate operation, this reference will be null. The client must
destroy this object when it is finished with it, and may do so before all the results are
retrieved.

7.4.1.3 Scoped Delete
The IDL signature for the scoped delete operation on the advanced MOO service is:

DeleteResultsSetType scopedDelete (
in NameType baseName,
in ScopeType scope,
in FilterType filter,
in LanguageType language,
in boolean failuresOnly,
in unsigned short howMany,
out DeleteResultsIterator resultsIterator)
raises (InvalidParameter,

InvalidFilter,
FilterComplexityLimit,
ApplicationError);

Rather than accessing attribute values, this operation simply attempts to delete each
object in the scope that passes the filter.

The failuresOnly flag is used to indicate if the client wants the service to return results for
all objects meeting the scope and filter, or just those objects that could not be deleted.
Because object deletion notification are typically sent, clients may often want to choose
to receive results for only those objects that could not be deleted.

The return value lists the name of each object along with two flags that might indicate
that the object could not be deleted. The notFilterable flag shall be true if the MOO
service could interact with the object to even determine if it passed the filter. The
notDeletable flag shall be true if the object passed the filter, but could not be deleted,
either due to its delete policy, or because it raised an exception. An object that cannot be
evaluated against the filter is flagged as a special case to let the client know it may be an
object that it did not even intend for deletion.

struct DeleteResultsType {
NameType name;
boolean notFilterable;
boolean notDeletable;

};

typedef sequence <DeleteResultsType> DeleteResultsSetType;

The howMany parameter indicates to the service how many objects’ results should be
included in the first batch of responses. (Zero is allowed, forcing all results to be
returned through the iterator.) The resultsIterator output parameter is a reference to an
iterator object that may be used to retrieve additional results in batches. If all the results
were returned by the scopedDelete operation, this reference will be null. The client must

ITU-T Recommendation Q.816 DRAFT

46

destroy this object when it is finished with it, and may do so before all the results are
retrieved.

Because many objects cannot be deleted if they contain other objects, for scopes based on
containment relationships the service must begin deleting the “leaf” objects that are
within scope and work toward the “root” object. When deleting objects, the MOO
service must follow the rules for deleting an object based on the object’s delete policy as
described in Section 7.3. Because the rules are being applied to each of the objects in the
scope, starting from the bottom up, however, the effect will be different than simply
trying to delete the object at the root of a sub-tree. Also, the MOO service is best-effort.
Therefore, it is possible for some of the objects in a scoped sub-tree to be deleted while
others aren’t. These are the rules that must be applied to scoped delete operations:

1. No objects may be “orphaned.” That is, an object may not be deleted without
deleting all of its contained (child) objects.

2. Performing a scoped delete on an entire sub-tree results in all of the objects in
that sub-tree being deleted unless an object has a delete policy of
notDeletable, the object raised an exception on the destroy operation, or an
object has a subordinate that is not deletable.

3. Performing a scoped delete on part of a sub-tree requires evaluating each of
the objects at the lowest scoped layer using the delete rules in Section 7.3. If
an object at the lowest-layer of the scope may be deleted according to these
rules, it and any subordinates are deleted. If a lowest-layer object cannot be
deleted, it is not deleted nor are any of its superior objects. Other objects in
the scope may be deleted, however, if the delete rules allow it. The service
then moves up to the next layer, and so on.

7.4.2 The Default Filter Language
This section describes the default filtering constraint language that must be supported by
all conformant implementations of the MOO Service. Conformant implementations may
support other constraint grammars in addition to the grammar described here. An
operation is provided on the Basic MOO Service interface to enable a client to retrieve
the languages supported by a service. The grammar used in a request is indicated by a
string-valued parameter named “language” on each scoped operation. A value of “MOO
1.0” (one space between “MOO” and “1.0”) shall indicate the grammar described here.
(A constant named defaultLanguage with this value is provided in the IDL module.)

The default grammar supported by each conformant implementation shall be the default
constraint grammar defined for version 1.0 of the Notification Service[4] with changes as
described in the following sub-sections. Note that by taking this approach, the
framework fixes the support for comparison rules (or “matching rules”) with the filter
grammar. New rules (e.g., a case-insensitive string match) cannot be added with the
addition of a new data type or attribute type. Instead, the grammar will have to be
updated if new capabilities are required.

DRAFT ITU-T Recommendation Q.816

47

7.4.2.1 Applying the Constraint Language to Object Attributes
The default Notification Service constraint grammar introduced the special token ‘$’ to
denote the current event and run-time variables. For multiple-object operations, the ‘$’
token shall denote the “current” object as well as run-time variables. That is, one can
think of the MOO Service as selecting a set of objects based on the supplied base name
and scope parameter, then applying the filter expression individually to each of the
objects in that set. The “current” object is the object against which the expression is
being evaluated. The following examples illustrate the use of the ‘$’ token:

$.administrativeState The administrative state attribute of the current object.
$curtime A “built-in” variable named “curtime”.

The identifiers that come after the “$.” (dollar-sign period) are names of the attributes of
the current object as found in the value object defined to return the attributes of an object.
(See ITU-T X.780 for details on managed object attributes.) That is,
“$.administrativeState” refers to the member named “administrativeState” in the value
type returned by a call to the getAttributes() operation on the current object. (It is
assumed that many implementations of the MOO Service will use the getAttributes()
operation to retrieve the attributes from an object before evaluating the filter.)

The Notification Service constraint language, on which the MOO Service constraint
language is built, has a “dot” operator (“.”) that can be used to access the individual
members within a data structure, and data structures can be nested. Thus, an identifier
like this one may be used to access a value within an attribute that has a data structure
value:

$.systemTimingSource.primaryTimingSource

A comparison with an attribute name that is not present in an object always evaluates to
false. To illustrate, in the expression “(A == 0) || (A != 0)” if there is no attribute named
“A” present in the object both comparisons will evaluate to false and the expression will
actually evaluate to false. The default Notification Service language does support an
“exists” operation that can be used to test the existence of an attribute before including it
in a comparison. Also, a comparison always evaluates to false if the types of the
operands do not match. In the example above, if “A” is a string, the expression will be
false.

Notice that the default Notification Service constraint grammar defines a set of runtime
variables (which may be better thought of as “built-in” or “pre-defined” variables) but
does not allow user-defined variables in filter expressions. In fact, there is no assignment
operator that would support the use of user-defined variables. There are currently no
built-in variables defined for the Scoping and Filtering Service and user-defined variables
are not supported.

NOTE - Since the Notification Service evaluates objects based on the names of their
attributes, care must be taken when defining attribute names (the names of the members

ITU-T Recommendation Q.816 DRAFT

48

of the attribute value object defined for an interface). An attribute of type
AdministrativeStateType named “adminState” with a value of “unlocked” will fail a filter
of “administrativeState == unlocked” because the name does not match.

7.4.2.2 Support for Regular Expressions
The default Notification Service constraint language defines a substring operator to work
like this: “A ~ B” is true if A is a substring of B. The default MOO Service constraint
language extends this to allow A to be a regular expression. That is, “A ~ B” evaluates to
true if A is a substring of B or if the regular expression defined in A is matched in B. For
this framework, regular expressions are “modern” regular expressions as defined in
Section 2.8 of POSIX 1003.2.[11]

A regular expression is a pattern that describes a set of strings. The inclusion of special
characters known as “meta-characters” enables one string to describe a set of strings.
The manual page for the “grep” command on most POSIX-compliant systems gives a
complete description of regular expressions and their use.

Regular expression matching is added to the constraint language to satisfy the
requirement to match sub-strings at the beginning, middle, or end of a string. POSIX
regular expressions support this capability by using meta-characters that represent the
beginning or end of a string(“^” and “$”). Matching in the middle of a string is done by
excluding these characters from the regular expression. Certainly, this requirement could
have been met by only adding a couple of meta-characters to the string matching
function. It was felt, however, that since regular expression matching is supported as a
utility on POSIX-compliant systems, it made sense to go ahead and use this capability,
which adds rich pattern matching to the language, rather than to require developers to
implement a special capability offering far less functionality.

7.4.2.3 Support for Testing Set-valued and Sequence-Valued Attributes
Network management applications tend to rely heavily on the attributes of the managed
objects, and often these attributes are actually sets or sequences of values. (Sets and
sequences differ. Sets should not contain duplicates and the order of the elements is
unimportant. In sequences, duplicate elements are allowed and order is important.) To
support the use of set-valued and sequence-valued attributes in filter expressions, the
default Notification Service constraint language needs to be extended. Two groups of
extensions are required to support the use of sets and sequences. The first enables sets
and sequences of literal values to be included in filter expression. The second defines
operators for sets and sequences.

7.4.2.3.1 Sets and Sequences of Literal Values
Sets and sequences of literal values are included in filter expressions by enclosing a
comma-separated list of literal values in curly braces. For example:

{1, 16, 21} A set or sequence of integers
{5.2, 6.8, 7.01} A set or sequence of floating-point numbers
{‘apple’, ‘orange’} A set or sequence of strings

DRAFT ITU-T Recommendation Q.816

49

{Critical, Major, Minor} A set or sequence of enumerated values
{} A null set or sequence.

The literal values must be of the “simple” types defined for the Notifications Service
constraint language (Boolean, short, unsigned short, long, unsigned long, float, double,
char, wchar, string, wstring), or enumerated values. All values in a set or sequence must
be of the same type.

Obviously, in this constraint language, literal sets and sequences are defined in the same
way. Actually, this matches the case with CORBA interface attribute types. Unlike
some other interface syntax languages, OMG IDL has only a sequence structure, and no
set type. To account for this, different operations for sets and sequences are defined.
When a sequence operator is applied to a pair of sequences (either literal or attribute
values), the sequences are treated as true sequences. That is, order is taken into account.
When two sequences are involved in a set operation, however, the sequences are actually
treated as sets. That is, the order of the values in the set does not matter. Also, while
managed objects should never return duplicates in the value of a set-valued attribute, any
duplicates should be ignored.

7.4.2.3.2 Set Operators
In order to include set-valued attributes in filter expressions, operators that work on sets
are needed. This section extends the Notification Service constraint language by defining
how the operators already defined for that service are to be applied to sets. One new
operator, using the caret symbol (‘^’), is defined for testing the intersection of two sets.
Also, two built-in functions that take sets as arguments are defined.

Note that the default Notification Service constraint language already defines one
operator that works on sets, the “in” operator. The expression “A in B” can only be
applied if A is a simple type as defined above and B is a sequence of the same simple
type. The expression evaluates to true if the value represented by A is equal to a value in
B. Also, the default Notification Service constraint language supports the use of the
“exist” operation on set-valued parameters. This behavior will also be supported for
multiple object operations.

In general, to use any of the set operators in an expression such as “A <operator> B” one
or both operands must be a sequence of one of the types listed above in the section on
sets of literal values. If one operand is a sequence of type X, the other must either be a
sequence of type X or a value of type X. Because one or both of the operands are
actually sequences, not sets, the operations must ignore any duplicate values within a
sequence and must not depend on any order of the values in a sequence. The operators
extended to work on set-valued attributes are defined below:

A == B True if all the values in each operand are present in the other.
A != B False if all the values in each operand are present in the other.
A < B True if all the values in A are in B and B contains at least one other

value not in A.

ITU-T Recommendation Q.816 DRAFT

50

A <= B True if all the values in A are in B. (If A is a singly-valued attribute this
is the same as “A in B”.)

A > B True if all the values in B are in A and A contains at least one other
value not in B.

A >= B True if all the values in B are in A.
A ^ B True if any value in A is present in B (the intersection is not null).

In addition to these operations, two built-in functions that take a set as an argument and
return a single value from that set are defined:

MAX(<set of values>) Returns the highest value in the set.
MIN(<set of values>) Returns the lowest value in the set.

If no maximum or minimum can be derived from the set (because the values are not
numeric) the returned value should be indeterminate and any comparison to this
indeterminate value should evaluate to false.

7.4.2.3.3 Sequence Operators
To support the inclusion of sequence-valued attributes in filter expressions, operators that
work on sequences are needed. This section extends the Notification Service constraint
language by defining operators that work on sequences.

Only a pair of operators are defined for sequences, since the only requirement was to do
equality matching on sequences. The operators defined to work on sequence-valued
operators are:

A % B True if A and B have the same number of values and all the values in A
match those in B, in order.

A !% B False if A and B have the same number of values and all the values in A
match those in B, in order.

7.4.3 MOO Service Requirements
This section summarizes the Multiple Object Operation Service requirements.

(R) MOO-1. A managed system shall instantiate at least one MOO Server object. Also,
each local root naming context on a system shall have at least one name binding for a
MOO Service object. The value of the ID string in this binding shall simply identify the
server, perhaps with a value similar to “MOO1”. The kind string in the binding shall
identify the class of the object (“itut_q816::BasicMooService” or a sub-class).

(R) MOO-2. The interface supported by the MOO Server object(s) shall be the “Basic”
MOO Service interface described above and defined in the CORBA IDL in Annex A.

(O) MOO-3. Optionally, the interface supported by the MOO Server object(s) may be
the “Advanced” MOO Service interface described above and defined in the CORBA IDL
in Annex A.

DRAFT ITU-T Recommendation Q.816

51

(R) MOO-4. The MOO Server object(s) shall at least support the default constraint
language defined above for the specification of filters, and may support other grammars.
The default constraint language, identified as “MOO 1.0”, is the default constraint
language defined by the CORBA Notification Service but extended as described above to
support:

• Filtering on object attribute values rather than notification structure member
values.

• Regular expression matching.
• Filtering on attributes containing sets or sequences of values.

7.5 The Heartbeat Service
The Heartbeat Service is used to verify the operation of the notification channels on a
managed system, as well as the communications network between the managed system
and managing system. It periodically sends a small notification to a managing system
interested in receiving it that identifies the system that emitted the heartbeat, as well as
the notification channel through which it was emitted. After configuring this service, a
managing system can then set a filter for heartbeat notifications on any of the channels it
is interested in assuring are functioning. Since these notifications flow through the same
channels, software, and networks as notifications from other resources, they periodically
verify the operation of these resources.

The Heartbeat Service is found by looking it up in the Naming Service.

The following IDL (without comments) describes the Heartbeat Service interface:

interface Heartbeat {

attribute string systemLabel;

unsigned short periodGet();

void periodSet(in unsigned short period);

}; // end of Heartbeat interface

interface Notifications {
…

void heartbeat (
in string systemLabel,
in string channelID,
in unsigned short period,
in UtcT timeStamp

);
…
}; // end of Notifications interface

As can be seen, the Heartbeat service has an attribute named systemLabel, and operations
to set and get the period between heartbeats. SystemLabel is a user-supplied identifier.

ITU-T Recommendation Q.816 DRAFT

52

The intended use is to allow a managing system to insert a label to identify the system
providing the heartbeat.

The Heartbeat service periodically emits a notification on each event channel that it can
find in the Channel Finder Service. The Channel Finder Service provides a listing of
each channel on the system, with a channel ID for each, as well as additional information
on the use of the channel. (The Channel Finder shall not list the Heartbeat notification as
one of the notifications it handles. Heartbeat notifications are not sent by managed
objects, and are sent to all channels.) At the end of each period, the Heartbeat Service
sends a notification on each of the channels listed. The notification sent to each channel
includes the channel ID of that channel.

The period between heartbeats is controlled using the periodSet operation. The value
submitted to this operation is the period, in seconds, that the Heartbeat Service waits
between emitting notifications. Updating the period causes the service to immediately
emit a notification with the new period value, and begin a new period. Setting the period
to zero causes the service to emit one final notification with a period value of zero, then
no more (until the period is reset).

Each notification includes the value of the systemLabel attribute, the ID of the channel
through which the notification was sent, the current value for the period, and a
timestamp.

(R) HEARTBEAT-1. A managed system may instantiate at least one Heartbeat Service
object. If the Heartbeat Service is supported, each local root naming context on a system
shall have at least one name binding for a Heartbeat Service Object. The value of the ID
string in this binding shall simply identify the server, with a value similar to
“Heartbeat1”. The kind string in the binding shall identify the class of the object
(“itut_q816::Heartbeat”).

(R) HEARTBEAT-2. The Heartbeat server object(s) shall support the Heartbeat
interface described above and defined in the CORBA IDL in Annex A. The functionality
described above shall be supported.

(R) HEARTBEAT-3. Updating of the period shall cause the service to deliver a
notification to all channels with the new period value and then begin a new period.
Setting the period to zero shall cause the service to emit one final notification with a
period value of zero, then no more (until the period is reset).

 (R) HEARTBEAT-4. Until the period is changed, the heartbeat notifications shall be
sent to all the channels once within each period. The time between heartbeat
notifications being sent to a channel shall never be greater than twice the period.

7.6 Other Support Services
This framework anticipates the need for other network management support services but
recognizes it is impractical to make them all part of one framework document. Exactly

DRAFT ITU-T Recommendation Q.816

53

where the line gets drawn is a bit arbitrary, though. Because of its focus on TMN and the
need to support existing information models, this framework includes services that equate
to those provided by the CMIP protocol and the most basic TMN management
information capabilities. Just as with CMIP, it is expected that additional support
services will be defined, most likely in separate documents.

8 Compliance and Conformance
This section defines the criteria that must be met by other standards documents claiming
compliance to this framework and the functions that must be implemented by systems
claiming conformance to this specification.

8.1 System Conformance

8.1.1 Conformance Points
This section summarizes the individual functions described earlier in this document.
These conformance points are then combined in profiles that must be supported by
systems claiming conformance to this specification.

1. An implementation claiming conformance to the Naming Service requirements must:
• Support the CORBA Naming Service version specified in Section 5.2.
• Support all of the Naming Service requirements specified in Section 6.1.

2. An implementation claiming conformance to the Notification Service requirements
must:
• Support the CORBA Notification Service version specified in Section 5.2.
• Support all of the Notification Service requirements specified in Section 6.2.

3. An implementation claiming conformance to the Telecom Logging Service
requirements must:
• Support the CORBA Telecom Logging Service version specified in Section 5.2.
• Support all of the Logging Service requirements specified in Section 6.3.

4. An implementation claiming conformance to the Security Service requirements must:
• Support the Security Service version specified in Section 5.2.
• Support all of the Security Service requirements specified in Section 6.5.

5. An implementation claiming conformance to the Transaction Service requirements
must:
• Support the CORBA Transaction Service version specified in Section 5.2.
• Support the Transaction Service requirements specified in Section 6.6.

6. An implementation claiming conformance to the Factory Finder Service must:
• Support the Factory Finder service interface described in Section 7.1 and defined

in the CORBA IDL in Annex A.
7. An implementation claiming conformance to the Channel Finder Service must:

• Support the Channel Finder service interface described in Section 7.2 and defined
in the CORBA IDL in Annex A.

8. An implementation claiming conformance to the Terminator Service must:

ITU-T Recommendation Q.816 DRAFT

54

• Support the Terminator Service interface described in Section 7.3 and defined by
the CORBA IDL in Annex A.

9. An implementation claiming conformance to the Basic MOO Service must:
• Support the mandatory MOO service requirements described in Section 7.4.3.

10. An implementation claiming conformance to the Advanced MOO Service must:
• Support the mandatory and optional MOO service requirements described in

Section 7.4.3.
11. An implementation claiming conformance to the Heartbeat Service must:

• Support the Heartbeat Service interface described in Section 7.5 and defined in
the CORBA IDL in Annex A.

8.1.2 Basic Conformance Profile
A system claiming conformance to the ITU.Q.816 Basic Profile shall support:
1. The version of CORBA specified in Section 5.2.
2. The Naming Service requirements. (See conformance point 1.)
3. The Notification Service requirements. (See conformance point 2.)
4. The Factory Finder Service (See conformance point 6.)
5. The Channel Finder Service (See conformance point 7.)
6. The Terminator Service. (See conformance point 8.)
7. The Basic MOO Service. (See conformance point 9.)

8.2 Conformance Statement Guidelines
The users of this framework must be careful when writing conformance statements.
Because IDL modules are being used as name spaces, they may, as allowed by OMG IDL
rules, be split across files. Thus, when a module is extended its name won’t change.
Instead, a new IDL file will simply be added. Simply stating the name of a module in a
conformance statement, therefore, will not suffice to identify a set of IDL interfaces. The
conformance statement must identify a document and year of publication to make sure
the right version of IDL is identified

DRAFT ITU-T Recommendation Q.816

55

Annex A Framework Support Services IDL
(Normative)

/* This IDL code is intended to be stored in a file named “itut_q816.idl”
located in the search path used by IDL compilers on your system. */

#ifndef ITUT_Q816_IDL
#define ITUT_Q816_IDL

#include <CosNotifyChannelAdmin.idl>
#include <CosTime.idl>
#include <itut_x780.idl>

#pragma prefix “itu.int”

module itut_q816 {

// Types imported from CosNotifyChannelAdmin
typedef CosNotifyChannelAdmin::EventChannel EventChannel;

// Types imported from CosTime
typedef TimeBase::UtcT UtcT;

// Types imported from itut_x780
typedef itut_x780::AttributeSetType AttributeSetType;
typedef itut_x780::ManagedObject ManagedObject;
typedef itut_x780::ManagedObjectFactory ManagedObjectFactory;
typedef itut_x780::NameType NameType;
typedef itut_x780::NameSetType NameSetType;
typedef itut_x780::ObjectClassType ObjectClassType;
typedef itut_x780::ObjectClassSetType ObjectClassSetType;
typedef itut_x780::ScopedNameType ScopedNameType;
typedef itut_x780::ScopedNameSetType ScopedNameSetType;
typedef itut_x780::StringSetType StringSetType;

// Exceptions imported from itut_x780 (exceptions can’t be typedeffed)
#define ApplicationError itut_x780::ApplicationError
#define DeleteError itut_x780::DeleteError

// Data Types and Structures
/** EventSetType is a list of event types. It is actually just a list
of strings. The values of the strings are the names of the event types
(the strings that go in the “type_name” field of the structured event),
which are the same as the scoped names of the operation defined on the
Notifications interfaces to send the events. For example:
itut_x780::Notifications::objectCreation */

typedef sequence <ScopedNameType> EventSetType;

/** A channel info structure contains information about an event
channel.
@member channelID A string identifier for the channel.
@member channelClass the channel’s scoped class name.
@member baseObjects The objects at the bases of the trees of

managed objects sending events to this channel.
A null list indicates that all base managed
objects on the system are covered by this
channel.

ITU-T Recommendation Q.816 DRAFT

56

@member eventTypes The list of event types handled by this
channel. A null list indicates all event types
are handled by this channel.

@member excludedEventTypes If the eventTypes parameter is null, this
can be used to exclude event types. If
eventTypes is not null, this should be null
and is ignored.

@member sourceClasses The list of types of objects that send events
to this channel. A null list indicates all
types of managed objects send events to this
channel.

@member excludedSourceClasses If the sourceClsses parameter is null,
this can be used to exclude source classes.
If sourceClasses is not null, this should be
null and is ignored.

@member channel a reference to the channel.
*/

struct ChannelInfoType {
string channelID;
ObjectClassType channelClass;
NameSetType baseObjects;
EventSetType eventTypes;
EventSetType excludedEventTypes;
ObjectClassSetType sourceClasses;
ObjectClassSetType excludedSourceClasses;
EventChannel channel;

};

/** A channel info set contains a list of channel references and the
data associated with them. */

typedef sequence <ChannelInfoType> ChannelInfoSetType;

/** Channel Modification indicates the type of event channel
modification. */

enum ChannelModificationType {ChannelCreate, ChannelDelete,
ChannelUpdate};

/** The DeleteResultsType holds, for a single object, the results
of a scoped delete operation. If both boolean flags in the result
are false, the object was deleted.
@member name The name of the object to which these results

apply.
@member notFilterable This flag will be true if the service could not

interact with the object to see if it even
passed the filter.

@member notDeletable This flag will be true if the object could not
be deleted due to its delete policy or because
it raised an exception.

*/

struct DeleteResultsType {
NameType name;
boolean notFilterable;
boolean notDeletable;

};

/** The DeleteResultsSetType is a set of results returned by the
scoped delete operation. */

typedef sequence <DeleteResultsType> DeleteResultsSetType;

DRAFT ITU-T Recommendation Q.816

57

/** A factory info structure contains information about a managed
object factory.
@member factoryClass the factory’s scoped class name
@member factoryRef a reference to the factory
*/

struct FactoryInfoType {
ObjectClassType factoryClass;
ManagedObjectFactory factoryRef;

};

/** A factory info set contains a list of factory references and
their class names. */

typedef sequence <FactoryInfoType> FactoryInfoSetType;

/** A Filter Type parameter conveys the filter expression used in a
scoped and filtered operation.
*/
typedef string FilterType;

/** Get Results structures hold a list of attribute values per object.
@member name The CORBA name of the object
@member notFilterable This flag will be true if the service could not

interact with the object to see if it even
passed the filter. If true, the attributes and
failedAttributes members will be empty.

@mebmer attributes The list of attributes retrieved from the
object.

@member failedAttributes The list of attributes whose values could
not be retrieved from the object.

*/

struct GetResultsType {
NameType name;
boolean notFilterable;
AttributeSetType attributes;
StringSetType failedAttributes;

};

/** The Get Results Set is a set of results returned by a scoped get
operation. */

typedef sequence <GetResultsType> GetResultsSetType;

/** A Language Type parameter conveys the filter expression language
used in a scoped and filtered operation.
*/

typedef string LanguageType;

/** A Language Set Type parameter contains a sequence of Languages. */

typedef sequence <LanguageType> LanguageSetType;

/** ModificationOp is used to indicate the type of update to be made to
an attribute. */

enum ModificationOpType {set, add, remove};

/** Modification structures identify an attribute and a modification to
be made to it. Multiple updates may be made to a single attribute by

ITU-T Recommendation Q.816 DRAFT

58

including multiple structures with the same attribute name in the
modification Set.
@member attrib The name of the attribute to update.
@member op The operation to be performed on the attribute.
@member val The value to be used for the update operation.

It’s type will depend on the attribute.
*/

struct ModificationType {
string attrib; // the name of the attribute
ModificationOpType op; // operation to be performed
any value; // value used to update attrib.

};

/** The Modification Sequence contains a sequence of modifications to
be made (in order) to each object in a scoped update operation. */

typedef sequence <ModificationType> ModificationSeqType;

/** Scope Choice enumerates four possible choices for a scope. A
scope may include just the named base object, the entire subtree
of object below and including the base object, the objects at a certain
level below the base object (level 1 objects are directly contained by
the base object), or all of the objects down to a level, including the
base object and the level.
*/
enum ScopeChoiceType {baseObjectOnly, wholeSubtree, individualLevel,

baseToLevel};

/** Scope is used to convey which objects contained under the base
object, if any, are to be included in the scope of a scoped and
filtered operation. A level does not make sense for the baseObjectOnly
and wholeSubtree choices, but does for the other two. To illustrate
the difference between the two options that include a level, a
scope choice of individualLevel with level = 1 would include all
of the objects directly contained by the base object. A scope choice
of baseToLevel with level = 1 would include all of the objects
directly contained by the base object, and the base object.
*/

union ScopeType switch (ScopeChoiceType)
{

/* The baseObjectOnly and wholeSubtree cases carry no value. */
case individualLevel: /* fall through */
case baseToLevel: short level;

};

/** Update Results structures hold the name of an object, a boolean
flag indicating if all modifications to that object were successful,
and a list of the attributes that could not be updated on that object.
The list will be null if the success flag is true.
@member name the CORBA name of the object
@member notFilterable This flag will be true if the service could not

interact with the object to see if it even
passed the filter. If true, the client will
know no attributes could be set, so
the failedAttributes member will be empty.

@member failedAttributes the list of attributes that were not
correctly updated.

*/

struct UpdateResultsType {

DRAFT ITU-T Recommendation Q.816

59

NameType name;
boolean notFilterable;
StringSetType failedAttributes;

};

/** An Update Results Set is returned in response to a scoped update
operation (one that sets, adds to, or removes from the value of an
attribute). */

typedef sequence <UpdateResultsType> UpdateResultsSetType;

// Constants
/** Default filter is to allow everything through the filter*/

const FilterType defaultFilter = "TRUE";

/** Default language is the grammar described in this document */

const LanguageType defaultLanguage = "MOO 1.0";

// Exceptions
/** A channel already registered exception is returned when an attempt
is made to register a channel with multiple channel IDs. */

exception ChannelAlreadyRegistered {};

/** A channel not found exception is returned when an event channel
cannot be found. */

exception ChannelNotFound {};

/** A FactoryNotFound exception is raised when a requested factory
can’t be found. */

exception FactoryNotFound {};

/** A Filter Complexity Limit is raised when a filter expression in a
scoped operation is valid, but too complex to be processed. */

exception FilterComplexityLimit {};

/** An invalid filter exception is raised when a client includes a
filter expression that cannot be parsed. The text surrounding the
syntax error should be returned for trouble-shooting purposes. */

exception InvalidFilter {string badText;};

/** An Invalid Parameter exception is raised when the value of a
parameter is not valid for the operation.
@param parameter the name of the bad parameter
*/

exception InvalidParameter {string parameter;};

// Interfaces

ITU-T Recommendation Q.816 DRAFT

60

// Factory Finder Interface
/**
This interface defines a simple service for locating a managed object
factory.
*/

interface FactoryFinder {

/** This method is used to find a managed object factory.
@param factoryClass The scoped class name of the factory,

NOT the managed object to be created.
*/

ManagedObjectFactory find (in ObjectClassType factoryClass)
raises (FactoryNotFound, ApplicationError);

/** This method returns the list of factories registered
with the factory finder. */

FactoryInfoSetType list()
raises (ApplicationError);

}; // end of FactoryFinder interface

/**
This interface extends the FactoryFinder interface to add methods
to support the registration and unregistration of factories.
*/

interface FactoryFinderComponent : FactoryFinder {

/** This method is used by factories to register themselves.
It should not be used by managing systems.
@param factoryClass The scoped class name of the factory,

NOT the managed object to be created.
@param factoryRef A reference to the factory.
*/

void register (in ObjectClassType factoryClass,
in ManagedObjectFactory factoryRef)
raises (ApplicationError);

/** This method is used by factories to unregister themselves,
if necessary. It should not be used by managing systems.
@param factoryClass The scoped class name of the factory,

NOT the managed object to be created.
@param factoryRef A reference to the factory.
*/

void unregister (in ObjectClassType factoryClass,
in ManagedObjectFactory factoryRef)
raises (FactoryNotFound, ApplicationError);

}; // end of FactoryFinderComponent interface

// Channel Finder Interface
/**
This interface defines a simple service for locating event channels.

DRAFT ITU-T Recommendation Q.816

61

*/

interface ChannelFinder {

/** This method returns the list of channels registered
with the channel finder. */

ChannelInfoSetType list()
raises (ApplicationError);

}; // end of ChannelFinder interface

/**
This interface extends the ChannelFinder interface to add methods
to support the registration and unregistration of channels.
*/

interface ChannelFinderComponent : ChannelFinder {

/** This method is used by channels to register themselves.
It should not be used by managing systems. Re-registering
a channel (re-using an existing channelID) results in
updating that entry. The other information previously
associated with that entry is overwritten. A
ChannelAlreadyRegistered exception may be raised when an
attempt is made to register a channel with multiple channelIDs.
This should not be done. (The service cannot guarantee that
because two object references differ, they do not reference
the same object. It is therefore required that the managed
system ensure that the same channel is not registered twice.)
A channel change notification is sent whenever calling this
method results in a change.
@param channelID A string identifier for the channel.
@param channelClass The scoped class name of the event

channel.
@param baseObjects The objects at the bases of the trees

of managed objects sending events to
this channel. A null list indicates
that all base managed objects on the
system are covered by this channel.

@param eventTypes The list of event types handled by
this channel. A null list indicates all
event types are handled by this
channel.

@param excludedEventTypes If the eventTypes parameter is null,
this can be used to exclude event
types. If eventTypes is not null, this
should be null and is ignored.

@param sourceClasses The list of types of objects that send
events to this channel. A null list
indicates all types of managed objects
send events to this channel.

@param excludedSourceClasses If the sourceClsses parameter is
null, this can be used to exclude
source classes. If sourceClasses is
not null, this should be null and is
ignored.

@param channel A reference to the channel.
*/

void register (in string channelID,
in ObjectClassType channelClass,

ITU-T Recommendation Q.816 DRAFT

62

in NameSetType baseObjects,
in EventSetType eventTypes,
in EventSetType excludedEventTypes,
in ScopedNameSetType sourceClasses,
in ScopedNameSetType excludedSourceClasses,
in EventChannel channel)
raises (ChannelAlreadyRegistered, ApplicationError);

/** This method is used by managed systems to unregister
channels, if necessary. It should not be used by managing
systems.
@param channel A reference to the channel.
*/

void unregister (in EventChannel channel)
raises (ChannelNotFound, ApplicationError);

}; // end of ChannelFinderComponent interface

// Heartbeat Service Interface
/**
This interface defines a service used to periodically test the
operation of the notification channels on a system. The service
supporting this interface periodically emits a short “heartbeat”
notification on each channel on the system.
*/

interface Heartbeat {

/** The systemLabel attribute is sent in heartbeat
notifications. It is used to identify the heartbeat service
instance from which the notification came. Resetting this does
not cause the service to immediately emit a notification, but
the new value will be sent with the next notification. */

attribute string systemLabel;

/** The period is the interval, in seconds, at which the
heartbeat service emits the heartbeat notification. If it is
zero, the service does not emit notifications. */

unsigned short periodGet();

/** Updating of the period shall cause the service to deliver a
notification to all channels with the new period value and then
begin a new period. Setting the period to zero shall cause the
service to emit one final notification with a period value of
zero, then no more (until the period is reset). An attempt to
set the period to a value outside the range supported will
result in an ApplicationError with the error code set to
invalidParameter. */

void periodSet(in unsigned short period)
raises(ApplicationError);

}; // end of Heartbeat interface

// Terminator Service Interface
/**

DRAFT ITU-T Recommendation Q.816

63

This interface defines a service that supports the deletion of managed
objects by clients. A goal of the framework is to enable
implementations in which the managed objects do not have to maintain
the naming tree information. The factories are one place to implement
the functions needed to create name bindings, and this service can be
used to clean up the naming tree after object deletion. <p>

Also, this service can implement the rules for deleting objects based
on the delete policy of the managed objects.
*/

interface TerminatorService {

/** This method is used to delete a managed object by
specifying its name. */

void deleteByName (in NameType name)
raises (ApplicationError, DeleteError);

/** This method is used to delete a managed object by
reference. */

void deleteByRef (in ManagedObject mo)
raises (ApplicationError, DeleteError);

}; // end of TerminatorService interface

// DeleteResultsIterator Interface
/** The Delete Results Iterator interface is used to retrieve the
results from a scoped delete operation using the iterator design
pattern. */

interface DeleteResultsIterator {

/** This method is used to retrieve the next “howMany” results
in the result set. */

DeleteResultsSetType getNext(in unsigned short howMany)
raises (ApplicationError);

/** This method is used to destroy the iterator and release its
resources. */

void destroy();

}; // end of Delete Results Iterator interface

// GetResultsIterator Interface
/** The Get Results Iterator interface is used to retrieve the results
from a scoped get operation using the iterator design pattern. */

interface GetResultsIterator {

/** This method is used to retrieve the next “howMany” results
in the result set. */

GetResultsSetType getNext(in unsigned short howMany)
raises (ApplicationError);

ITU-T Recommendation Q.816 DRAFT

64

/** This method is used to destroy the iterator and release its
resources. */

void destroy();

}; // end of Get Results Iterator interface

// UpdateResultsIterator Interface
/** The Update Results Iterator interface is used to retrieve the
results from a scoped update (set, add, remove) operation using the
iterator design pattern.
*/

interface UpdateResultsIterator {

/** This method is used to retrieve the next “howMany” results
in the result set. */

UpdateResultsSetType getNext(in unsigned short howMany)
raises (ApplicationError);

/** This method is used to destroy the iterator and release its
resources. */

void destroy();

}; // end of Update Results Iterator interface

// BasicMooService Interface
/** The basic scoping and filtering interface provides a common service
for performing attribute retrieval operations on multiple objects.
*/

interface BasicMooService {

/** This operation is used to retrieve the list of filter
languages supported by the service. At the least, the
list must include the value of the defaultLanguage constant
defined above. */

LanguageSetType getFilterLanguages()
raises (ApplicationError);

/** This operation is used to retrieve attributes from multiple
objects using a small number of method invocations. The method
returns the first batch of results, one per object. Each
result has the name of the object and a list of name-value
pairs indicating the attributes that could be retrieved with
their values.

@param baseName The name of the object at the base of the scope
tree.

@param scope A value indicating the contained objects to
include in the scope of the operations. See
ScopeType for details.

@param filter A string containing an expression to be
evaluated with attribute values from each

DRAFT ITU-T Recommendation Q.816

65

object in the scope. Attribute values are
returned only for those objects for which the
expression evaluates to true.

@param language A string identifying the language in which the
filter expression is written.

@param attributes The names of the attributes for which values
should be returned. If this list is null, all
attributes are to be returned.

@param howMany The maximum number of objects for which results
should be returned in the first batch.

@param resultsIterator A reference to an iterator that can be
used to retrieve the rest of the results. This
reference will be null if all results were
returned in the first batch.

*/

GetResultsSetType scopedGet (
in NameType baseName,
in ScopeType scope,
in FilterType filter,
in LanguageType language,
in StringSetType attributes,
in unsigned short howMany,
out GetResultsIterator resultsIterator)
raises (InvalidParameter,

InvalidFilter,
FilterComplexityLimit,
ApplicationError);

}; // end of BasicMooService interface

// AdvancedMooService Interface
/** The advanced scoping and filtering interface provides a common
service for performing multiple-attribute updates on multiple objects,
and for deleting multiple objects.
*/

interface AdvancedMooService : BasicMooService {

/** This operation is used to modify multiple attributes in
multiple objects using a small number of method invocations.
The method returns the first batch of results, a list of
objects for which one or more modifications failed. Each
result indicates the attribute(s) on that object that could not
be updated.

@param baseName The name of the object at the base of the scope
tree.

@param scope A value indicating the contained objects to
include in the scope of the operations. See
ScopeType for details.

@param filter A string containing an expression to be
evaluated with attribute values from each
object in the scope. Updates are performed
only on those objects for which the expression
evaluates to true.

@param language A string identifying the language in which the
filter expression is written.

@param modifications The list of modifications to be made to
each object.

@param failuresOnly If true only results for failed objects

ITU-T Recommendation Q.816 DRAFT

66

will be returned.
@param howMany The maximum number of objects for which results

should be returned in the first batch.
@param resultsIterator A reference to an iterator that can be

used to retrieve the rest of the results. This
reference will be null if all results were
returned in the first batch.

*/

UpdateResultsSetType scopedUpdate (
in NameType baseName,
in ScopeType scope,
in FilterType filter,
in LanguageType language,
in ModificationSeqType modifications,
in boolean failuresOnly,
in unsigned short howMany,
out UpdateResultsIterator resultsIterator)
raises (InvalidParameter,

InvalidFilter,
FilterComplexityLimit,
ApplicationError);

/** This operation is used to delete multiple objects using a
small number of method invocations. The method returns the
first batch of results, a list of the objects that could not be
deleted.

@param baseName The name of the object at the base of the scope
tree.

@param scope A value indicating the contained objects to
include in the scope of the operations. See
ScopeType for details.

@param filter A string containing an expression to be
evaluated with attribute values from each
object in the scope. Only those objects for
which the expression evaluates to true are
deleted.

@param language A string identifying the language in which the
filter expression is written.

@param failuresOnly If true only results for failed objects
will be returned.

@param howMany The maximum number of objects for which results
should be returned in the first batch.

@param resultsIterator A reference to an iterator that can be
used to retrieve the rest of the results. This
reference will be null if all results were
returned in the first batch.

*/

DeleteResultsSetType scopedDelete (
in NameType baseName,
in ScopeType scope,
in FilterType filter,
in LanguageType language,
in boolean failuresOnly,
in unsigned short howMany,
out DeleteResultsIterator resultsIterator)
raises (InvalidParameter,

InvalidFilter,
FilterComplexityLimit,
ApplicationError);

DRAFT ITU-T Recommendation Q.816

67

}; // end of AdvancedMooService interface

// Notifications Interface
/** The notifications interface defines the notifications emitted by
the framework services, not the managed objects themselves.
*/

interface Notifications {

/** The Channel Change notification is a special notification
because it is emitted by the framework (the Channel Finder) and
not a managed object. It reports the addition, deletion, or
change of a registered event channel.
@param channelModification indicates if a channel has been

added, removed, or updated.
@param channelInfo provides the information about

the affected channel.
*/

void channelChange (
in ChannelModificationType channelModification,
in ChannelInfoType channelInfo

);

/** This operation signature defines the notification emitted
by the heartbeat service.
@param systemLabel the current value of the Heartbeat

service systemLabel attribute.
@param channelID the ID of the channel through which the

notification was sent.
@param period the current value of the Heartbeat

service period attribute.
@param timeStamp the current time when the notification

is emitted.
*/

void heartbeat (
in string systemLabel,
in string channelID,
in unsigned short period,
in UtcT timeStamp

);

/** These constants defines the names of the notification
declared above and are provided to help reduce errors. */

const string channelChangeTypeName =
"itut_q816::Notifications::channelChange";

const string heartbeatTypeName =
"itut_q816::Notifications::heartbeat";

/** These constants define the names of the parameters used in
the notifications declared above and are provided to help
reduce errors. */

const string channelIDName = "channelID";
const string channelModificationName = "channelModification";
const string channelInfoName = "channelInfo";
const string periodName = "period";
const string systemLabelName = "systemLabel";

ITU-T Recommendation Q.816 DRAFT

68

const string timeStampName = "timeStamp";

}; // end of Notifications interface

}; // end of module itut_q816

#endif // end of #ifndef ITUT_Q816_IDL

DRAFT ITU-T Recommendation Q.816

69

Appendix A Interworking Scenarios Between Models Using ITU
Framework and ADSL/ATMF Compliant Models

A.1 Introduction
This appendix describes how systems designed using the approach in this framework may
interwork with systems designed using the approach specified in the ATM Forum and the
ASDL Forum.

The following approaches have been used to define interfaces for CORBA Based
managed objects:
− A fine-grained model has a one-to-one relationship between CORBA interface

instances (i.e., having their own Interoperable Object Reference, IOR) and managed
object instances.

− A class-grained model has one CORBA interface for each managed object class.
Some other mechanism (such as managed object name placed as an input parameter
for every operation in that interface) has to be supported by the CORBA class grained
interface to allow management of each managed object instance.

A, so called, Grain-neutral approach uses a structure holding both the managed object
name and the IOR used to provide access to each managed objects. Note that the grain-
neutral approach, while requiring the client to pass the managed object instance as a
parameter to each operation (i.e., looks like class grained to the client), allows the
implementation in the server to be either class grain or fine grain.

The framework in this Recommendation uses a fine-grained approach, along with a
value-type based attributesGet operation, for defining CORBA based managed objects.
The value type associated with a CORBA managed object subclass uses value type
inheritance to extend the elements of the value type associated with its superclass.

The ATM Forum and ASDL Forum specifications includes the IOR for the class and the
name of the managed object as a paired list of parameters for the operations (i.e., they are
grain neutral). The client uses the name to reference the specific entity and does not
require a separate IOR to be for each entity. These specifications also use structures (i.e.,
they do not employ inheritance) for their attributesGet operations.

A.2 Terminology
The following terms are introduced for the purpose of discussion:
− Grain Neutral Server – A managed system which implements objects defined using a

grain neutral model with CORBA 2.1
− ITU Framework server - A managed system which implements objects defined using

the Framework in this Recommendation, thus supporting CORBA 2.3 features
− Grain Neutral Managing System - A client capable of managing CORBA objects

defined using grain neutral model with CORBA 2.1

ITU-T Recommendation Q.816 DRAFT

70

− ITU Framework Managing System – A client capable of managing CORBA objects
defined according to the Framework in this recommendation, thus supporting
CORBA 2.3 features

A.3 Interworking Scenarios

A.3.1 Grain Neutral Server migrating to ITU Framework Server
Upon migration from a grain neutral server, an ITU Framework server may add new
capabilities; however it must preserve the old capabilities as found in the grain neutral
version

The new server should implement an adapter function. This function should present the
grain neutral interfaces to existing Grain neutral managing systems. An implementation
approach can employ delegation of operations invoked on grain neutral objects to the
objects built according to the framework. Such a delegation approach will issue the same
operations on the individual objects as would be invoked by an ITU Framework based
managing system.

The class specific grain-neutral get all attribute operation parameters should be converted
to the value type structured as per the framework in this specification.

There are functions to be performed by the interworking software beyond the differences
resulting from the use of POA and value object. The delegation software needs to be
customized to address the differences in the naming structure, including this Framework's
use of the kind field. For example explain how the context object reference used in
constructing the name needs to be replaced with kind field of COS naming structure.

A.3.2 Grain Neutral Client migrating to ITU Framework Client
Such an ITU Framework Client needs to manage both grain neutral servers as well as
ITU Framework servers.

ITU framework client with CORBA 2.3 needs, in addition to using the naming tree for
ITU Framework serves, to use the naming tree for grain neutral servers. CORBA 2.3
implementation may require an adaptation function where the application issuing the
request to an object has to be converted to be appropriate for the grain neutral server. If
the application uses the value type it has to be decomposed into the object specific get
operation for the old server.

For an ITU Framework based client to manage both ITU Framework based servers and
pre-ITU Framework servers, the ITU client will need to support stubs for both the ITU
and pre-ITU servers. In addition, some interworking function may be needed, as
discussed above and as shown in the figure below.

DRAFT ITU-T Recommendation Q.816

71

Grain
neutral
client

ITU
Framework
client

Grain
neutral
server

ITU
Framework
server

Adaptation
Function

Grain Neutral
Stubs, e.t.c.

ITU Stubs,
 e.t.c.

IWF

Figure 10. Interworking Scenarios

	Foreword
	Table Of Contents
	Table Of Figures
	Table Of Tables
	Scope
	Purpose
	Application
	Document Roadmap
	Document Conventions
	Compiling the IDL

	References
	Normative References
	Additional References

	Definitions
	CORBA Based TMN Services Goals and Requirements
	Goals
	Application Interoperability
	Common Usage of CORBA Common Object Services
	Information Model Transparency

	Information Modeling Dependencies
	Access Granularity
	Representation of Containment and Naming
	Object Creation and Deletion

	Scoping and Filtering
	Scoping
	Filtering
	Attribute Matching Rules

	Notifications

	Framework Overview and Protocol Requirements
	Framework Overview
	Framework Protocol Requirements

	Framework Common Object Services Requirements
	The Naming Service
	Notification Service
	Telecom Log Service
	Messaging Service
	Security Service
	Transaction Service

	Framework Support Services
	The Factory Finder Service
	The Channel Finder Service
	Channel Finder Interface
	Channel Finder Requirements

	The Terminator Service
	The Multiple-Object Operation Service
	The MOO Service Interface
	Scoped Get
	Scoped Update
	Scoped Delete

	The Default Filter Language
	Applying the Constraint Language to Object Attributes
	Support for Regular Expressions
	Support for Testing Set-valued and Sequence-Valued Attributes
	Sets and Sequences of Literal Values
	Set Operators
	Sequence Operators

	MOO Service Requirements

	The Heartbeat Service
	Other Support Services

	Compliance and Conformance
	System Conformance
	Conformance Points
	Basic Conformance Profile

	Conformance Statement Guidelines

	Annex A Framework Support Services IDL
	Appendix A Interworking Scenarios Between Models Using ITU Framework and ADSL/ATMF Compliant Models
	A.1	Introduction
	A.2	Terminology
	A.3	Interworking Scenarios
	A.3.1	Grain Neutral Server migrating to ITU Framework Server
	A.3.2	Grain Neutral Client migrating to ITU Framework Client

