3GPP TSG-SA5 (Telecom Management)

Meeting #14, Milan, Italy, 11 ‑ 15 September 2000
SA5#14(00)0357

Agenda item:
6

ITU - Telecommunication Standardization Sector
WD-16R1
STUDY GROUP 4
Torrance, California CORBA Experts Meeting, 14-17 August 2000

Questions:
14/4, 15/4, 18/4, 19/4

SOURCE:
Rapporteurs Q14/4, Q15/4, Q18/4, Q19/4*
TITLE:
Report of Joint Meeting of Questions 14/4, 15/4, 18/4 and 19/4 on the use of CORBA in the TMN

--

1. Purpose of Meeting

This report is on a joint meeting of questions 14/4, 15/4, 18/4 and 19/4, proposed at the February, 2000 SG4 meeting on the topic of how to use CORBA as part of the TMN. In order to incorporate CORBA in the TMN aspects of framework (Q14/4), model (Q15/4) and protocol (Q19/4) need to be addressed.

The purpose of this experts meeting is to progress work towards August 2000 determination of the following three new Draft Recommendations:

· X.780 - TMN Guidelines for Defining CORBA Managed Objects

· Q.816.1 - CORBA Based TMN Services

· M.3120 - CORBA Generic Network and NE Level Information Model (which will use the Framework techniques to produce an IDL version of M.3100.

2. Approval of the agenda

The agenda (attachment 7) was reviewed and accepted by the meeting as input document WD-1. The agenda also lists the input documents to the meeting.

3. Recommendations for determination

3.1
Base Text for X.780 and Q.816

Keith Allen gave a summary of the changes made due to discussions at the London Meeting (from COM 4-158).

Discussions led the request that the joint Rapporteur-group maintain a list of potential future Framework Enhancements, Including the following:

· Defining interfaces for configuration/Startup of Managing Systems

· Translation of the rest of the Q.82x series.

It was agreed to highlight in this report that the use of WSTRING (Unicode) has been selected as the syntax for International Strings carried as parameters in this Framework. A temporary Note was added, and it was noted that the experts should check whether there are any problems with using UNICODE in the framework whenever International Characters need to be sent as operation or notification parameters. A major advantage is the growing use of UNICODE and its acceptance in modern languages, such as C++ and Java. UNICODE also allows characters from different languages to be presented together on a single transport connection, since UNICODE is an all-inclusive character set. Its only drawback is its reliance on "locale" setting procedures for setting sort order associated with different nation's use of the same character symbols.

An alternative approach, (which could be suggested by comments on the Recommendation for approval) would be to use IDL string for International Strings, which would allow a single (only one) international multi-byte character set to be used for all messages in a given IIOP TCP connection, as negotiated by the code-set negotiation procedures.

3.2 Base Text for M3120

A large number of editorial changes were applied by the editor (Kam Lam) to reflect the London meeting decisions made on the Framework itself.

3.2.1 Editorial Changes from WD-10

The input contribution, WD-10, was presented by the editor, Kam Lam. The changes proposed in WD-4 are indicated as changes in the editor's text in WD-4. They are listed here for completeness

1. The presence conditions should be added to the conditional packages of the interfaces.

2. The downstreamConnectivityPointer shall be mandatory in the CTP Sink and TTP Source object. And therefore, the NodownstreamConnectivityPointerPackage exception in Section 5.4.3 should be removed.

3. The upstreamConnectivityPointer attributes shall be mandatory in the CTP Source and TTP Sink objects. And therefore, the NoupstreamConnectivityPointerPackageexception in Section 5.4.3 should be removed.

After discussion the three items from WD-10 were resolved as follows:

· Item 1
accepted (with movement of notation to the prologue) to add these conditions into M.3020. X.780 currently states that rules for when conditions are supported are documented as comments in the interface definition, but gives no guidance on how to document these conditions. It was agreed to augment X.780, section 6.6, to describe how to translate present if conditions into comments organized by conditional package, at the prologue of the interface. The editor of M.3020 was instructed to use this notation in the Draft for translation, instead of the notation suggested in the diff-marked WD-4.

· Item 2
Accepted

· Item 3
Accepted

With the editing instruction from resolution of item 1 above, WD-4 was accepted as Baseline for M.3020.

4. Review of Input documents addressing Base Text

4.2 Modification of MOOS (Korea WD-7R1)

The Korean proposal is to return to a structured scope parameter, with a scope type enum followed by the depth parameter.

Extensibility of the scope parameter was not deemed to be a requirement. If a new semantic for scoping is required, a new MOO server operation can be added to a subclass.

Another proposal as found in WD7R0 was given, to use a union syntax, with an enum switch:

Union ScopeType switch(ScopeChoiceType)

{

case baseObjectOnly:; //depth not relevant

case wholeSubtree:; //depth not relevant

case individualLevel: short depth;

case baseToLevel: short depth;

}

The meeting agreed to use the union form for the MOO server.

4.3 T1M1 contribution on TMN CORBA Framework (WD-11)

The individual comment items (from WD-11 in attachment 6) were resolved by the following editing instructions for X.780 and Q.816.1:

Item 2.1
Include ITU-T X.721 ASN.1 Attributes Used In ITU Q.821

- agreed to include missing attribute types as proposed, with change of defaultStopTime from a constant to a comment in every interface where the default value is set by a setToDefault operation. In 7.3 of X.780, it was agreed to add clarification regarding setToDefault operations, if a constant can be defined (simple types) it will and that constant will be used in the comment explaining the default value. Otherwise, (e.g., for union or struct attribute syntax) the explanation of the default value must be written in english.

Item 2.2
Version compatibility escape agreed in principal, however change to be to 5.2 instead of 8.1.2. Specifically remove ",or any later release that is backwards compatible with it" in section 8.1.2. It was agreed to add the following to the introduction to 5.2 "and indicates the section where detailed requirements are placed on the service for this framework. A later version of any of the services in the following table which includes all the required capabilities of the stated version is considered to comply with this framework." Add a column to table in 5.2 pointing to detailed requirements. In 8.1.1 change "section 5" to "section 5.2". Delete the first bullet in item 4 of 8.1.1. In 8.1.2 it was agreed to change item 3 to be just the notification service, and to delete item 4, the security service. The references in that table in 5.2 should not be superscripts.

Item 2.3
Agreed to remove "support for typed events is optional" from notif-4, and to replace notif-5 with two new optional requirements "(O) NOTIF-5 Sequences of structured events (i.e., event batch) may be supported. (O) NOTIF-6 The use of typed events in optional." Also agreed to amend the conformance for Notification service to be a profile of Notification version 1 without the requirement for pull model interface support.

Item 2.4
It was agreed in principal, but the explanation proposed was changed. The text will state that the channelChange notification because it is emitted by channels (which are not managed objects) should never be listed in either the excluded or included event type lists.

Item 2.5
Agreed with four typedefs, but NotificationIdentifierType should have typedef as long.

Item 2.6
Agreed to add constants for notification names for X.780, and Q.816.

Item 2.7
Agreed to add notification parameter name constants, but they will be included in the existing Notifications modules of X.780 and Q.816, rather than in a new module.

Item 2.8
Agreed to add the Application Error exception to all seven operations cited in the comment. It was agreed to make it an issue for the living list and to add temporary notes invite comments on standard UIDs for each of these we are adding. The UID codepoints can be added to the modules that have operations that may generate the UIDs.

Item 2.9
Did not agree to constant for default scope type, since it was changed to be a union. agreed to default filter construct ("", or empty string, which will be clarified in the language definition that it always evaluates to true) and defaultFilterLanguage. Also added a getFilterLanguages supported operation to MOO server.

Item2.10
Agreed to add standby status type, as proposed

Item2.11
Accepted

Item2.12
Accepted with minor revision, and agreed to put it into the main body of X.780 (changing "Since" to "because". It was agreed to change:"this may not be possible" to "extra care must be taken to make this possible". Also change last sentence of 3 to "Alternatively the EMS could supply its own number and ignore potential collisions, thus allowing their rare occurrence."

Item2.13
Accepted these editorial fixes. Change item 3 to "The functionality of the Cancel Get CMIP operation is provided in this …"

Item2.14
It was agreed to change the Title of the section to "Versioning of CORBA IDL Specifications" and to add the paragraph "A similar approach shall be used when existing constant definitions, type definitions, and valuetype definitions. That is, the new definition is defined using a new name ending in "R" with a trailing integer. The use of "R" will also apply to operations. Change "action method" to "Operation" in the text.

Item2.15
Agreed to remove the document scope from the Kind fields. Guidance should be given to typically use the unscoped the IDL interface type name. Agreed to update 6.8 and M.3120.

Item2.16
Agreed to add application error to terminator operation. Also add a new UID for inappropriateState for use in the terminator delete operation behaviour and semantics.

Item2.17
Accepted. Extract explanatory text

Item2.18 Accepted.

Item2.19
Accepted. There is an issue related to separating information related to the MOO server not being able to access the remote object due to security concerns. It was agreed to add this to the living list of issues and future enhancements.

Item2.20
Extended discussion on the need for changing the semantics of the Iterator, by adding a more boolean. A point was made that the introduction of allowing less than the how many to be returned before the final fetch might also require a time-out period. The group agreed to keep the iterator's as is, since the client may change the batch size dynamically if the last batch took too long. Clarification on the case when iterator response contains less than requested number, it signifies the end of results.

4.4 Alcatel Verbal comments on framework

The meeting discussed comments introduced verbally by an Alcatel expert.

Regarding Q.816.1 and X.780:

Item a1
Typographic errors in Abbreviations for OSI, CORBA and ORB need to be fixed

Regarding Q816

Item a2 Terminator service there are problems in the text organization. It was agreed to change the usage of "ancestor and descendent" to "superior and subordinate" when talking about name bindings. It was agreed to have deletion be bottom up, with best efforts in a contained way, taking into consideration the delete policy information..

One possible algorithm would have the following general properties:

1. Check deletion policy from top of tree down

2. If all objects deleteable, then proceed, else stop

3. Start deletion attempts from bottom of tree

4. Stop at first failure to delete

Note that results in case of deletion failure are not completely predictable. This delete has properties of deleting safe things to delete, without leaving orphans.

Another possible algorithm for the terminator operation, which does true best effort, was discussed. It was agreed to modify the behaviour to require a true best effort, which would have consistent behaviour. The general properties agree are as follows:

1. Check policy from top down

2. if all objects may be deleted than proceed, else stop

3. Initiate deletion attempts from bottom of tree

4. If a deletion exception occurs then mark all superiors of this object as not able to delete

5. Continue deletion of all unmarked objects

A new annex was written, and distributed at the meeting as WD-14 to illustrate the best effort algorithm. It was agreed to instruct the editor to include this new annex in the framework.

5. Alignment of M.3120 with M.3100

5.1
Detailed Meeting Walk-Through Review of M.3120 Base Text (WD-4-r1)

It was agreed to have the editor and Lakshmi Raman to consult with the ITU-TSB regarding the use of special symbols used in the text to allow direct compilation of the document (e.g., the headings are placed within IDL comment statements). The impact of this usage on translation and final publication will be included in this consultation with the TSB.

Kam Lam presented an interim version of the edited base text, WD-4R1.

Several editorial changes were made to increase the readability of the text.

It was agreed that the editor shall remove all mandatory package indications throughout the document.

Throughout the document, the editor shall change "this action" to "the following action" to clarify the association of explanatory comment with IDL production.

The editor shall change "null" to "empty", for strings and sequences, or "nil" , for object references.

The editor shall make a separate list of alignment changes requiring defect report resolutions on M.3100 text.

Several objects were flagged as being potentials for including a usage cost. It was agreed to consult with Q.18 on this topic.

There must be a liaison to SG15 on the usage of a specific constant "tu12VC11CI" as codepoint. This liaison is found in Attachment 9.

5.2 Preparation of Draft Corrigenda for M.3100

A joint meeting of experts from the Q.18 meeting was held on Thursday Morning, to discuss the proposed changes to M.3100 from section 5.1, as well as the existing items on the status document for M.3100 defects.

The resulting defect resolution are documented in WD-15 (see attachment 10). The draft corrigendum is in WD 20 to be determined at the Working Party Plenary for January 2001 SG4.

The editor of M.3120 is instructed to make corresponding changes to M.3120 text for translation.

6.
Discussion of global Document Formatting

It was agreed that a short Document conventions subsection be added explaining how to extract machine processable IDL files from the document. Headings in section xx of level 2 and below are encapsulated in IDL comments. The symbol /** has special significance and shall remain.

M.3120 will have one module, with a primary file that includes constants in a second file.

Q.816 will have one module in its own file.

X.780 will have one module with a primary file that includes constants in a second file.

Note at the WP meeting Q.816.1 is changed to Q.816. The result of this change should be reflected in the edited document and references to the modules as well as the pragma statement. The editors are requested to make note of this prior to issung the documents for translation.

7.
Telecom Log Service Defect Report
WD-6 (attachment 4 to this report) presents a defect report on the OMG telecom log service.

The meeting agreed that there is a collision between the get_qos and set_qos named operations from log and qosAdmin, respectively. However, the return type for the get and the in parameter for the set have different syntaxes.

It was agreed to send this as an issue to the list issues@omg.org. This is the same as the issue posted by Mike Greenberg, of IONA, on July 20, 2000.

8. China Contribution on ITU-CORBA Interface ICS

The contribution was reviewed at the meeting.

It was noted that the part three of the Trader Function is no longer planned to be a standard, and the project has been withdrawn.

The first sentence in the second paragraph of 6.1 should be changed, since CORBA IDL is not a subset of C++, but is its own ISO|ITU Collaborative Standard.

In section 6.2.2, a question was raised on why the interface status should always be mandatory. Some specs are defined which have optional interfaces for the conformance to the specification

It should be clarified in 6.2.3 that these attribute tables are meant to be employed on per CORBA IDL interface type.

It should be clarified in 6.2.4 that these operation tables are meant to be used one per CORBA IDL interface type. It needs to be clarified what the status entry should be when the interface definition states the operation implementation may respond "NOT IMPLEMENTED". Perhaps a special status code should be defined for this purpose. In other cases (the CORBA TMN framework) an implementation may respond with one of the "conditionalPackageNotSupported" exceptions.

The use of the word "kind" in table 6.2.4-2 is confusing, since the Name service used the term "Kind" in a different manner.

This should be extended for CORBA 2.3. It does not include value types yet.

There is a field identifier type needed for object reference parameter types.

It was agreed to attach the input contribution to the meeting report, to allow review of the comments above by a wider audience.

9. Heartbeat Service for CORBA TMN

The input contribution WD-9 was presented for review.

It was pointed out that the contribution is missing a use case showing the heartbeat notification being delivered to all interested notification receivers.

After discussion, it was agreed that this solution meets the requirement given by ETSI. However, some concern was expressed that the sending of the heartbeat to every channel might be overkill.

Another possibility was raised, that of the channel finder having a name for each of the channels entered in its database. The heartbeat object could put the channel name in the notification before it is sent through a particular channel. After discussion it was agreed to add this feature.

A small team agreed to draft text with a new proposal incorporating the discussion points. This text was presented as WD-12. The meeting decided to add the modified draft WD-12-R1, with changes made on review by the meeting participants, to the Q.816 document for determination.

10.
Liaison Discussion

10.1 3GPP Liaison

The Liaison in WD-8 from 3GPP suggest that the feature of their work might be applicable for use in the ITU-T TMN CORBA Framework.. Our first answer is that we are using feature of CORBA 2.3, including value types.

321.106 series

Discussion of 321.106-1 - Configuration management concepts and requirements

Because we received no details of how the configuration management and object query capabilities are specified in IDL, we cannot comment on this high level of a document.

Discussion of 321.104- 2 and 3 - Notification Integration Reference Point

We note that this approach is an alternative to the OMG Notification Service. The ITU-T TMN CORBA framework is designed to use the OMG Notification Service, in the push mode. We do not think it to be appropriate for our general-purpose framework to invent new mechanisms for notification dispatch. We note that they are using the structured Event report format in a similar manner to our usage, and we should send them our latest draft to allow them to align with us.

Discussion of 321.106-8 - 3Gpp Naming conventions for managed objects:

This paper defines a stringified form for managed object names, based on X.500 DN. The restrictions on X.500 DN are only one attribute-value assertion allowed per RDN component. They have a stringified form, which does not explain how to deal with structured attributes. Perhaps they intended to restrict the syntax of naming attributes to primitive types, but this is not clear.

It was noted that their use of X.500 DNs allows direct mapping to our use of CORBA names for Managed objects. Their X.500 DNs could be mapped to our CORBA based names without actually using the CORBA naming service. The attributeId field would reside in the OMG Kind field of a name component, while the attributeValue field would reside in the OMG id field of a name component. Thus algorithmic mappings are possible between our managed object name forms and yours.

321.111 series

Discussion of 321.111-1 , 2, and 3 - Fault Management and Alarms

This functionality includes all of fault management, including what we call Alarm synchronization. We note that many of the capabilities in the 3GPP fault management information service are provided by the current TMN functions, however different operations are used (e.g., resend alarm report with new severity rather than sending a severity change notification).

We note that they have specified a new capability for the TMN, in what they call Alarm Acknowledgment state for an alarm (where the recipient of the alarm has indicated that the alarm is received and someone is looking at it). This is interesting, and we could incorporate this into future revisions of the TMN framework. We agreed to consider this for further Study for TMN Recommendations.

We also note that they have alarm summary operations that count outstanding alarms by severity level. We do not currently have this operation in any TMN function.

The Alarm Information ID reveals functionality that is present in all alarm OSS, but which have not been made visible on existing TMN interfaces.

10.2
Liaisons to various Fora on Progression of CORBA TMN Framework

It was pointed out that the ADSL forum has a CORBA Based network level model. It was agreed to send a liaison contribution (in attachment 3) to several organizations, DSL forum, ATM forum, and the TMF.

11. Recommendations for Determination of Documents

It was unanimously agreed to recommend to WP plenary on Friday that these document be determined as stable for approval for Resolution 1 processing for approval at the January SG4 Plenary.

In addition, a living list of issues and future enhancement possibilities is to be maintained, starting with attachment 2 to this report.

12. Meeting Output Documents

Output Documents for August 2000 Joint EG Meeting on CORBA

PRIVATE
Document
Source
File
Doc. Number

Revised Heartbeat
Rapporteur
wd12r1
WD-12r1

Liaison to 3GPP for the use of CORBA in the TMN
Rapporteur
wd13
Wd-13r1

Appendix: Example of Terminator Service Operation
Rapporteur
wd-14
Wd-14

Changes to M.3100
Rapporteur
wd-15
Wd-15

Joint Meeting Report
Rapporteurs
wd-16
Wd-16

Corrigendum to M.3100
Rapporteur
Wd 20
Wd-20

Attachment 1 - Attendance List

Ed White
WorldCom
edwhite@wcom.com

Tom Rutt
Lucent
terutt@lucent.com

Frank Van Mierlo
Alcatel
Frank.van_mierlo@alcatel.be

Knut Johannessen
Telenor
knut-haken.johannessen@telenor.com

Terje Henriksen
Telenor
terje-fredrik@telenor.com

Tatsiuhiko Yoshida
NTT
tyoshida@trans.ntt-at.co.jp

Young-Han Choe
ITU
youn-han.choe@itu.int

Ken Smith
Verizon
ken.smith@verizon.com

Ping Zhao
GSTA. P.R.C.
zhaop@gsta.com

Han Werizhan
CTI. P.R.C.
hanwz@ns.heb.cetin.nec.cn

Paul Hughes
AT&T Labs - BB
phughes@broadband.att.com

Bernd Zeuner
Deutsche Telekom
Bernd.zeuner@telekom.de

Kam Lam
Lucent
hklam@lucent.com

Tom Grim
SBC
tgrim@tri.sbc.com

Keith Allen
SBC
kallen@tri.sbc.com

Dave Matthews
AT&T
dlmatthews@att.com

Kisang Ok
Korea Telecom
ksok@kt.co.kr

Gunwoo Kim
DACOM
kgw@dacom.net

Andy Walsh
Telcordia
awalsh@telcordia.com

Lakshmi Raman
Telcordia/Teraburst
lraman@teraburst.com

Nobuo Fujii
NTT Labs
nobuo@exa.onlab.ntt.co.jp

Dave Sidor
Nortel Networks
djsidor@nortelnetworks.com

Attachment 2 - Living List of Issues and Potential Enhancements

1. There may be a need for additional services to support managing systems getting initial configuration data and discovering new managed systems. Contributions are invited.

2. The current set of standards provide a framework and a generic model for CORBA based TMN. To complete support for TMN functions other Recommendations need to be supported with this pradigm. In particular the functions of the Q.82X series need to be supported. Contributions are invited. (Note that these contributions should address the appropriate Questions (e.g. Q20/4 for Q.821).

3. The framework use Istring as the type for text. Istring is defined as wstring (wide string) that is Unicode. This is one way of supporting international character sets. Another way of doing this would be to define Istring as string. International character would then be handled by escapes. (See section 3.1 for more details). The experts should check whether there are any problems with using UNICODE in the framework whenever International Characters need to be sent as operation or notification parameters.

4. An Application Error has been defined for use in many operations to provide a general way for implementations to signal errors on operations. Application errors return a UID and an optional string and are designed to allow specific errors to be defined. In particular, should security violations be treated as standard application errors? Contributions are requested on application errors that can be defined as part of the standards. (See section 4.3 item 2.8).

5. When the MOOS interacts with managed objects, how should security be handled? The MOOS needs to only act with the permissions of its user. When security violation occurs how should they be handled? How can it be handled when the MOOS is distribute away from the managed system? (See section 4.1 item 2.19).

Attachment 3 - Liaison to Several Organizations on Progress of CORBA TMN Framework

Questions:
14/4, 15/4, 19/4

SOURCE:
ITU Experts Meeting of Q14,15,19/4

TITLE:
PROGRESS ON THE USE OF CORBA IN THE TMN

Liaison Statement

TO:
OMG, ATM-Forum, ADSL Forum, Tele-Management Forum
APPROVAL:
Approved by WP 4/4 and 5/4

FOR:
Information and Action

CONTACT:
Dave Matthews

Tel: +1 732 420 1613

Q 19/4 Rapporteur

Fax: +1 732 368 1911

E-mail: dlmatthews@att.com
ITU-T SG 4 (Q.14/4, Q.15/4 and Q.19/4) is advancing the work on a Framework Document for CORBA-Based Telecommunications Management Network Interfaces, and version of M.3100 translated to IDL according the framework. Our objective is to approve these at the January 2001 SG4 meeting in Geneva.

We have Determined three new Draft Recommendations for January 2001 SG4 approval:

· X.780 - TMN Guidelines for Defining CORBA Managed Objects

· Q.816 - CORBA Based TMN Services

· M.3120 - CORBA Generic Network and NE Level Information Model (which will use the Framework techniques to produce an IDL version of M.3100 .

This Framework (X.780 and Q.816) is based on a fine-grain (instance-grain) access methodology and CORBA 2.3 infrastructure. The Generic Model document (M.3120) uses the Framework techniques to produce an IDL version of M.3100.

These three draft recommendations are attached for your review.

If you have comments on any of these documents, please send them to the ITU-T SG4 Secretariat in time for discussion at the January 2001 SG4 meeting in Geneva. If any of your members wish to attend the SG4 meeting, they should contact the Q.19/4 rapporteur.

<attach the three draft recs>

Attachment 4 - Defect Report on Telecom Log Service (WD-6)

I am a CORBA programmer, and a couple of day ago, we found there might be some errors in the Telecom Log Service Specification: OMG Document number: telecom/98-10-17, issued on Oct 27, 1998. Here are the problem we found:

In Telecom Log Service Specification, there are following definition for interface NotifyLog:

module DsNotifyLogAdmin

{

 interface NotifyLog :

 DsEventLogAdmin::EventLog,

 CosNotifyChannelAdmin::EventChannel

 {

 CosNotifyFilter::Filter get_filter();

 void set_filter(in CosNotifyFilter::Filter filter);

 };

……

};

From the above definition, we can see that interface NotifyLog inherit from two interfaces, which are DsEventLogAdmin::EventLog and CosNotifyChannelAdmin::EventChannel respectively. Then we look up these two interfaces in the IDL definition, and we can find that:

interface DsEventLogAdmin::EventLog inherit from the interface DsLogAdmin::Log, and interface CosNotifyChannelAdmin::EventChannel inherit from the interface CosNotification::QoSAdmin.

Then we continue to see the definition of interface DsLogAdmin::Log and interface CosNotification::QoSAdmin respectively，we can find the following definition parts:

interface Log

{

……

 QoSList get_qos();

 void set_qos(in QoSList qos) raises(UnImplementedQoS);

……

};

and,

interface QoSAdmin
{

 QoSProperties get_qos();

 void set_qos (in QoSProperties qos)

 raises (UnsupportedQoS);
 ……

}; // QosAdmin
Now, we can see clearly that both DsLogAdmin::Log and CosNotification::QosAdmin have defined the operations with the same name, “get_qos” and “set_qos”, which means that the interface DsNotifyLogAdmin::NotifyLog has inherited operations with the same name from its base interfaces.

What the problem is that from the CORBA Specification V2.3, with minor revision 2.3.1, issued on 1999-10-07, we found the following words in clause 3.7.5 on page 3-22:

Operation and attribute names are used at run-time by both the stub and dynamic

interfaces. As a result, all operations attributes that might apply to a particular object

must have unique names. This requirement prohibits redefining an operation or

attribute name in a derived interface, as well as inheriting two operations or attributes

with the same name.

To our understanding, the definition of interface DsNotifyLogAdmin::NotifyLog violates the above words in CORBA Specification V2.3.1. We want to see OMG’s explanation on this conflict, if it’s the case.

If this is an error, our suggestion is to rename the operation names of “get_qos” and “set_qos” in the definition of interface DsLogAdmin::Log，replace them with “get_log_qos” and “set_log_qos” or something else, so that the operation names will not conflict when they are inherited by a same interface.

__

Name: Wang Zhili

Dept: Beijing University of Posts and Telecommunications

 TMN R&D Center

 National Laboratory

Addr: BUPT Mail Box 198, 10 XI TU CHENG Road

 Beijing 100876, China

Tel: (86-10)86221199

Fax: (86-10)86221239

E-mail: y9872149@bupt.edu.cn

Attachment 5 - Working Draft CORBA ICS Paper

Question(s):
Q14, Q15, Q18, Q19

SOURCE*:
China

TITLE:
DRAFT NEW RECOMMENDATION: REQUIMENTS AND GUIDELINES FOR IMPLEMENTTATION CONFORMANCE STATEMENTS PROFORMAS ASSOCIATED WITH CORBA-BASED SYSTEMS

REQUIMENTS AND GUIDELINES FOR IMPLEMENTTATION CONFORMANCE STATEMENTS PROFORMAS ASSOCIATED WITH CORBA BASED SYSTEMS

Summary
This document specifies the Implement Conformance Statements (ICS) proforma of CORBA-based system interfaces which will be used in telecommunication network management, and also provides the testing methodology for CORBA-based interfaces.

Keywords

· CIICS

· CORBA
· ICS
1. Scope

This document provides the requirements and guidelines for CORBA Interface Implementation Conformance Statement (CIICS) proforma and the specification of this proforma. The CIICS is a statement made by an implementor to claim conformance to a CORBA/IDL based interface definition.

2. References

The following Recommendations and International Standards contain provisions which, through reference in this text, constitute provisions of this document. At the time of publication, the editions indicated were valid. All Recommendations and International Standards are subject to revision, and parties to agreements based on this document are encouraged to investigate the possibility of applying the most recent edition of the Recommendations and International Standards listed below.

–
OMG (1998), The Common Object Request Broker: Architecture and Specification, Revision 2.2

–
ITU-T Recommendation X.296 (1995), OSI conformance testing methodology and framework for protocol Recommendations for ITU-T applications – Implementation conformance statements.

ISO/IEC 9646-7:1995, Information technology – Open Systems Interconnection – Conformance testing methodology and framework – Part 7: Implementation Conformance Statements.

–
ITU-T Draft Rec.X.95x (1996), ODP Trading Function: ICS and Test Cases

ISO/IEC CD 13235-2(1996), Information technology – Open Distributed Processing – ODP Trading Function – Part : ICS and Test Cases, Revised pDAM text for CD ballot.

· ITU-T Rec.X.724 (1996), Information technology – Open Systems Interconnection – Structure of management information: Requirements and guidelines for implementation conformance statement proformas associated with OSI management

3. Definitions

For the purposes of this document, the following definitions apply.

3.1 Implementation conformance statements definitions

This Recommendation | International Standard makes use of the following terms defined in ITU-T Rec. X.296 and ISO/IEC 9646-7:

a)
(ICS) item;

b)
(ICS) question;

c)
status (value);

d)
(support) answer.

4. Abbreviations

CIICS

CORBA-based Interface Implementation Conformance Statement
CORBA

Common Object Request Broker Architecture

ICS

Implementation Conformance Statement
IDL

Interface Definition Language

IUT

Implementation Under Test

IXIT

Implementation Extra Information for Testing

ODP

Open Distributed Processing

5. Basis of conformance test methodology for CORBA-based management system interface

5.1 Overview

Conformance relates an implementation to a standard. It states in which way systems, implemented with respect to a standard, can vary without errors occurring in their cooperation. If an implementation fulfills these requirements, then it is conform to the standard. The check of the statements is the conformance test. The starting point is the definition of conformance requirements in implementation independent interface specifications on the bases of an identification of reference points. A management interface specification should define conformance reference points at which an object must be tested to check if it fulfills a set of conformance criteria. During the test, a number of stimuli and events are observed and evaluated at these conformance points.

Management interface specifications should include conformance statements which identify conformance reference points at every interface of the specified objects.

Because in general the information flow between two system components is realized through several reference points, the conformance test has to take into consideration

-
the test of such information flow at each reference point and

-
the test of consistency between the combinations.

So, a coordinated test at all identified reference points is necessary.

5.2 Methodology of conformance test for CORBA-base interfaces

There are static and dynamic conformance test requirements.

-
Static conformance test requirements state the functionality which is at least necessary for conformance testing. Basis of the static conformance test is a so-called ICS proforma in which functional limitations and possibilities of the standard are defined. It is a document in form of a questionnaire which has to be answered by the implementor.

-
Dynamic conformance test requirements specify the whole potential behaviours of an implementation visible at the identified reference points. The dynamic conformance test contains the realization of test cases in a test system.

Test cases include concrete test cases and abstract test cases. The concrete test cases are derived from abstract test cases which have to be given/defined by the standard. A basic precondition for the derivation of the test cases is the definition of test purposes by the standard.

Before starting the test in a test laboratory, the following steps must be processed:

a)
The implementor has to fill out the given ICS proforma. Information which makes the ICS proforma statements more precise or concerns the test realization is taken up in IXIT (implementation extra information for testing).

b)
The so-called real (concrete) test cases should be derived from the abstract test cases of the standard, or they can be derived from the test purposes directly, where generic things (types etc.) are realized depending on the individual implementation.

 The following figure illustrates this approach.

[image: image1.wmf]Interface specification

ICS proforma

definition of test

purposes

abstract test cases (can be

bypassed)

implementation

completed ICS

IXIT

real test cases

(dependent on the

implementation)

test

test report

defined by a standard

growth of information

[image: image2.wmf]type

attribute

context

operation

exception

constant

interface

module

IDL specification

containment relationship

6. CORBA based Management Interface ICS Proforma

The CORBA Interface Definition Language (IDL) is used to define interfaces of objects in CORBA based systems. The CIICS proforma must express the following IDL features such as IDL modules, interfaces and other IDL types. This section first introduces the features of CORBA IDL, then specifies the CIICS proforma according to these language features.

6.1 IDL overview

The OMG Interface Definition Language (IDL) is the language used to describe the interfaces that client objects call and object implementations provide. An interface definition written in OMG IDL completely defines the interface and fully specifies each operation’s parameters. An IUT may include an interface’s client function or an interface’s server function. So in the interface proforma there should be a space available to specify which side of function (client or server) the IUT implements.

The OMG IDL grammar is a subset of the proposed ANSI C++ standard. It has constructions such as module, interface, constant, type, operation, attribute, exception and context declarations. According to the IDL syntax specification, the containment relationship between these constructions can be illustrated as figure 5.2-1:

[image: image3.wmf]type

attribute

context

operation

exception

constant

interface

module

IDL specification

containment relationship

[image: image4.wmf]Interface specification

ICS proforma

definition of test

purposes

abstract test cases (can be

bypassed)

implementation

completed ICS

IXIT

real test cases

(dependent on the

implementation)

test

test report

defined by a standard

growth of information

The ICS proformas must represent the relationship shown above.

6.2 Requirements and guidelines for specification of CIICS proformas

Proforma specifications shall follow the style as documented in the following clauses. Proforma specifications shall provide the information required by this document. Additional tables may be included for other information, if needed.

There are three levels of documentation pertaining to CIICS, namely:

a)
guidelines or Recommendation | International Standard tools for the production of CIICS proformas;

b)
a CIICS proforma, associated with a standard related to CORBA based network management, which is to be filled in by a supplier of the implementation and when filled in is a CIICS;

c)
a CIICS prepared by a supplier of the implementation as part of a conformance claim to a standard related to CORBA based network management.

6.2.1 General instructions for CIICS proforma specification

This document provides instructions to construct CORBA-based management system ICS proforma specification. CIICS proformas include four sub proformas: interface support proforma, attribute support proforma, operation support proforma and data type support proforma. All these proformas are in a tabular form which are similar as the proformas specified in ITU Recommendation X.724.

Clause 6.2.2 describes the CIICS proforma for interfaces. Clause 6.2.3 describes the CIICS proforma for attributes. Clause 6.2.4 describes the CIICS proforma for operations. Clause 6.2.5 describes the CIICS proforma for complex data types. Annex A and B provide examples of CIICS proforma specification, which is to be filled in by a supplier of an implementation.

The following common notations, defined in CCITT Rec. X.291 and ISO/IEC 9646-2 and ITU-T Rec. X.296 and ISO/IEC 9646-7, are used for the “status” value column in this document:

m
Mandatory

o
Optional

- Not applicable or out of scope

NOTES

The notations “m”, “o” are prefixed by a “c:” when nested under a optional item of the same table.

The following common notations, defined in CCITT Rec. X.291 and ISO/IEC 9646-2 and ITU-T Rec. X.296 and ISO/IEC 9646-7 are used for the support answer column:

Y
Implemented

N
Not implemented

-
No answer required

Ig
The item is ignored (i.e. processed syntactically but not semantically)

The CIICS proforma specification is formed by copying Clause 6.2.2, 6.2.3 6.2.4 and 6.2.5, completing the tables except for the “Support” and “Additional information” columns, and extending the remaining tables to meet the requirements of the specification. CIICS proforma shall provide tables for all the attributes, operations, parameters, exceptions and contexts defined in IDL information model, no matter derived from super-classes or added by redefinition.

To form a CIICS from a CIICS proforma, the supplier of the implementation shall fill in the “Support” and, if appropriate, “Additional information” columns of all the tables in the CIICS proforma.

6.2.2 Interface support proforma

The purpose of the proforma for interface is to provide a mechanism for a supplier of an implementation who claims conformance to an interface specification to provide conformance information in a standard form.

The interface support proforma is like the following table:
 Table 6.2.2-1 Interface support table

Index
Interface identifier
Derived interface
Status
Support
Additional information

where:
-
“Index” field is made up a consecutive number for readers of the CIICS to refer to each item. Each interface defined in an IDL information model is given a unique number as its index.

-
“Interface identifier” field is the absolute name of the interface, which consists of the name space and the interface name.

-
“Derived interface” field is provided for the direct parent interface(s) the current interface derived from, if there are any.

-
For each instantiable interface, the “Status” should be filled with ‘m’, meaning mandatory.

-
The “Additional Information” field is used to indicate in which side (client or server) function the IUT is implemented.1
6.2.3 Attribute support proforma
The purpose of the proforma for attribute is to provide a mechanism for a supplier of an implementation who claims conformance to attributes specification in an interface to provide a standard form.

The attribute support proforma is like the following table:

Table 6.2.3-1 Attribute support table

Get
Set

Index
Attribute identifier
Constraints and values
Status
Support
Status
Support
Additional information

where :

-
“Index” is the unique reference within an interface.

-
The “Attribute identifier” is the relative name of the attribute.

-
The “constraints and values” field is the data type description of the attribute.

-
Both “Get” and “Set” fields contain “Status” and “Support”. The “Status” of “Get” column should always be filled with ‘m’. If the attribute is a normal attribute, the “Status” of “Set” should be filled with ‘m’; while the attribute is a “readonly” one, the “Status” should be filled by ‘-’, meaning not applicable.

-
The “Additional Information” field is to provide a space for the implementor to add more specific information about this attribute, such as default values when the object is created.

For any attributes of complex types, the detailed information about the type is expanded in a table under the “attribute support table”, which is called “data type support table” and will be discussed in clause 6.2.5.
6.2.4 Operation support proforma
The purpose of the proforma for operation is to provide a mechanism for a supplier of an implementation who claims conformance to operations specification in an interface to provide conformance information in a standard form.

The operation support proforma is formed by the following two tables:

Table 6.2.4-1 operation support table

Index
Operation identifier
Status
Support
Additional information

where

-
The “Operation identifier” field is the relative name of the operation.
-
The “Additional Information” is to provide a space for the implementor to add more specific information about the operation.
-
Other columns have the similar meaning as described in 6.2.2

Table 6.2.4-2 operation support table (continued)
Index
Subindex
Operation field identifier
Constraints and values
Kind
Field property
Status
Support
Additional information

where :

-
“Index” field is provided for the index of each operation specified in Table 6.2.4-1.

-
“Subindex” field is to describe the reference of each related item of the operation, which is formed by connecting the index of operation and a unique number with a separator ‘.’.

-
The “Operation field identifier” field is to describe any identifiers which are related to the operation, including parameter names, context identifiers and exception names.

-
The “Constraints and values” field is the data type description of each parameter, return value and exception defined in this operation. And the detailed information will be expanded in “data type support proforma”, as will be describedin clause 6.2.5.

-
The “Kind” field is to distinguish different operation field types, which are classified into two types: “parameter” and “termination”, which will be described later in clause 7.8.

-
The “Field property” field is a further description of the “Kind” field, which describes the mode or detailed types of the operation field, as will be seen in clause 7.9.

-
The “Additional Information” field is to specify some specific information the implemetor will specify.

6.2.5 Data type support proforma
Data type support proforma is the description for all the user-defined data types used in the IDL information model. It is an expansion of “Attribute support proforma” and “Operation support proforma”. “Data type support table” is subdivided into three kind of tables, which are “Parameter support subtable ”, “Return value support subtable” and “Exception support subtable” respectively, which have the same format shown as the following table:

Table 6.2.5-1 Data type support proforma

Index
Subindex
Field identifier
Constraints and values
Status
Support
Additional information

where :

-
Index is the reference to each operation field identifier occurred in Table 6.2.4-2 or in Table 6.2.3-1
-
Subindex is the reference to the child field contained in the super data type.
-
The “Field identifier” field is to describe each child field name of a constructed data type.

-
The “Constraints and values” field is the data type description of each child field. If the type of the field is a complex one, there will be more comments to show its nested child fields just under the row it occupies, this process will be continued until the field types become basic types predefined in CORBA Specification.
7 Instructions for completing the CIICS Proforma

This section gives the instructions for completing each column defined in clause 6.2 and its sub-clauses.

7.1 Definition of supported
A capability is said to be supported if the Implementation Under Test is able to realize the specified functionality.

7.2 The status column
This column indicates the level of support required for conformance to a specific IDL specification. The values are the ones defined in clause 6.2.1.

Guidelines for completing this field is as follows:

a) For “interface support table”, this field should be field with ‘m’.

b) For “Attribute support table”, ‘m’ should be filled in the “status column” for all the “Get”, and also for “Set” if the attribute is a normal one; ‘-’ should be filled in this field for “Set” if the attribute has the proceeding keyword “readonly”.

c) For “Operation support table”, ‘m’ should be filled in this field if the operation is necessary for the management functionality; otherwise it could be filled with ‘o’. If the operation is mandatory, for each “operation field” of this operation the “status” column should be filled with ‘m’, otherwise it should be field with ‘c:m’.

d) For “data type support table”, only when a type is of the type “union”, could the “status” column of its child fields be filled with ‘o’, and there must be at least one child field of type “union” be filled with “m” as the mandatory one. For all the other types ‘m’ should be filled in this column. Of course, when an item containing other types is optional, all the items it contains should add “c:” as a prefix for this field, as mentioned in clause 6.2.1.

7.3 The Support column

This column shall be completed by the supplier or implementor to indicate the level of implementation of each item. The available selections for this field is listed in clause 6.2.1.

The following are the guidelines for completing this field:

a) If an item is claimed as “supported”, all the mandatory items it contains must also be supported. Otherwise, the “support” column can just be filled with ‘N’.

b) If the “state” column of an item is filled with ‘-’, the only selection for the corresponding “support” column is ‘-’.

c) In the CIICS Proforma tables, every item marked with ‘m’ should be supported by the IUT.

7.4 The “Constraints and Values” column

The "Constraints and values" columns of the tables (which are to be filled in the proforma specification if applicable) contain the constraints and values of the specific item (e.g. attribute, operation field). This information may include, if applicable:

a) any constraints regarding support of the specific item;

b) specific values for attribute or operation parameters which are supported;

c) the allowed types according to the standard specification.

When the item denotes a type, the type name of this item must be filled in this column. This rule is suitable for “Attribute support table”, “Operaiton Support Table” and “Data Type support table”.

The type name used to fill the column can be described using the following generating expression:

<type name>

::=
<basic type name> | <user-defined type name>

<basic type name>
::=
void | short | unsigned short | long | unsigned long | long long |

unsigned long long | float | double | long double | char | boolean |

octet | string | TypeCode | objref | any | wchar | wstring | fixed

<user-defined type name>::=
string that denotes an absolute type name

For each user defined data types, the “type kind” is also suggested to be filled in this column, enclosed in a pair of bracket.

Type kind is the abstract description of the IDL types. The kind of each basic type has the same name as its type name. The type names of all the user-defined types are: “struct”, “union”, “sequence”, “array”, “enum”, “interface”, “exception” “bstring”
.

7.5 The “Additional information” column

This column shall be completed by the supplier or implementor to explain some specific information about the implementation which is not included in other columns. This document gives some general rules which are to be followed by suppliers.

a) For “Interface support table”, server or client role should be explicitly specified in this field. When acting as a server, “As server” shall be filled in this field; otherwise “As client” shall be filled in this field. When the role of an interface is determined, all the operations and attributes contained in this interface will act in the same role.

b) For “Attribute support table”, if an attribute has default values when the object is created, it is suggested to add the value in this field. If an attribute is readonly, and its initial value is given when the object is created, “set by create” is to be filled in this field. If an attribute is inherited from another interface, “Inherited” shall be filled in this field.

c) For “Operation support table”, if an operation is inherited from another interface, “Inherited” shall be filled in this field. If some parameter has default values, it shall be stated in the corresponding row of this field for the parameter. For each user-defined exception, the condition of throwing the exception shall be stated in this field.

d) For “Attribute support table” and “Operation support table”, if an attribute or operation is overloaded in a child interface, “overload” should be pointed out in this field.

e) For every CIICS table, If the supplier has something special to claim, this field could be used. And if the space is not enough, expanded tables could be added as part of the CIICS proforma.

7.6 The “Index” column

Each line within the CIICS proforma is numbered at the left-hand edge of the line. This numbering is included as a means of uniquely identifying all possible implementation details within the CIICS proforma.

The means of referring to individual responses is done by the following sequence.

a) a reference to the super-clause of the item;

b) the separating character “.”

c) a unique number;

An example of the use of this notation is illustrated in Annex A.

The “index” column exhibits the containment relationship between IDL syntax structures. The containment relationship is illustrated in clause 6.1 “IDL overview”.

7.7 The “Subindex” column

This column has the same meaning and format as the “Index” column. It is also made up of consecutive numbers.

a)
For “Operation support table”, the super-clause of “Subindex” is the prepositive column “Index” in the same row.

b)
For “Data type support table”, the super-clause of “Subindex” is the index of its direct containing item, which could be either in the “Index” column or the “Subindex” column.

7.8 The “Kind” column

This column in the “Operation support proforma” can be filled in using two kinds of choices, which are “parameter” and “termination”. The “parameter” indicates that the “Operation field” is an operation’s invocation parameter (including context), while the “termination” indicates that the “Operation field” is a type of termination situations.

7.9 The “Field property” column

This column corresponds to the “Kind” column. If the “Kind” field is “parameter”, this column could be “in”, “out”, “inout” or “context”, indicating the mode of the parameter. If the “Kind” field is “termination”, this column could be “success reply” or “exception”. Where, “success reply” is the desired reply of the operation, which can be either a return value or “void”; “exception” indicates the operation is abort for some particular reason.

7.10 The “Interface identifier”, “Attribute identifier”, “Operation identifier” columns

These columns are to be filled in the names of corresponding interfaces, attributes, or operations.

Note: “Interface identifier” is the absolute name of the interface, which can be uniquely identified within the name space of the whole IDL information model. “Attribute identifier”, “Operation identifier” are just relative names of the item, which has the name space just in its containing interface.

7.11 The “Derived interface” column

IDL Specification supports the inheritance relationship. This column leaves the space to the derived interfaces, if any.

Note: only the direct parent interfaces are to be filled in this column, the ancestor interfaces are not required to be filled in this field.

1 Annex
A: An example of CIICS Proforma Specification

In this Annex, the CIICS proforma for “Interface support”, “Attribute support” and “Operation support” will be illustrated. The following is a simple example of IDL definition:

According to the above IDL definition, the CIICS for this simple IDL information model can be illustrated as following tables:

Table 1:

Interface BankModule::bank support

Index
Interface identifier
Derived interface
Status
Support
Additional information

1
BankModule::bank

m
 Y
As server

Table 1.1:

BankModule::bank attribute support

There is no attribute definition in bank interface.

Table 1.2:

BankModule::bank operation support (as server)

Index
Operation identifier
Status
Support
Additional information

1.2.1
newAccount
m
Y

1.2.2
newCurrentAccount
m
Y

1.2.3
deleteAccount
m
Y

Index
Subindex
Operation field identifier
Constraints and values
kind
Field property
Status
Support
Additional information

1.2.1
1.2.1.1
name
string
parameter
in
m
Y

1.2.1.2

BankModule::account (interface)
termination
success reply
m
Y

1.2.1.3
reason

termination
exception
m
Y
when the account object with the same name has existed

1.2.2
1.2.2.1
name
string
parameter
in
m
Y

1.2.2.2
limit
float
parameter
in
m
Y

1.2.2.3

BankModule::currentAccount (interface)
termination
success reply
m
Y

1.2.2.4
reason

termination
exception
m
Y
when the current- Account object with the same name has existed

1.2.3
1.2.3.1
a
BankModule::account (interface)
parameter
in
m
Y

1.2.3.2

void
termination
success reply
m
Y

Note: if the invocation parameter has default value, it is illustrated in the “Constraints and values” column.

Table 2:

Interface BankModule::account support

Index
Interface identifier
Derived interface
Status
Support
Additional information

2
BankModule::account

m
Y
As server

Table 2.1:

BankModule::account attribute support

 Get
 Set

Index
Attribute identifier
Constraints and values
Status
Support
Status
Support
Additional information

2.1.1
balance
float
m
Y
-
-
default value is 0 when the object is created.

Note: because the “balance” attribute is a “readonly” attribute, only the “Get Status” is mandatory, the “Set Status” is not applicable.

Table 2.2:

BankModule::account operation support (as server)

Index
Operation identifier
Status
Support
Additional information

2.2.1
makeLogement
m
Y

2.2.2
makeWithdrawal
m
Y

Index
Subindex
Operation field identifier
Constraints and values
Kind
Field property
Status
Support
Additional information

2.2.1
2.2.1.1
f
float
parameter
in
m
Y

2.2.1.2

void
termination
success reply
m
Y

2.2.2
2.2.2.1
f
float
parameter
in
m
Y

2.2.2.2

void
terminator
success reply
m
Y

Table 3:

Interface BankModule::currentAccount support

Index
Interface identifier
Derived interface
Status
Support
Additional information

3
BankModule::currentAccount
BankModule::account
m
Y
As server

Table 3.1:

BankModule::currentAccount attribute support

 Get
 Set

Index
Attribute identifier
Constraints and values
Status
Support
Status
Support
Additional information

3.1.1
balance
float
m
Y
-
-
Inherited

3.1.2
overdraftLimit
float
m
Y
-
-
the value is set by create

Note:

Because the “balance” attribute is Inherited from BankModule::account interface, “Inherited” is specified in the “Additional information”

If an attribute or operation is overloaded in a child interface, “overload” should be pointed out in the “Additional information” field.

Table 3.2:

BankModule::currentAccount operation support (as server)

Index
Operation identifier
Status
Support
Additional information

3.2.1
makeLogement
m
Y
Inherited

3.2.2
makeWithdrawal
m
Y
Inherited

Index
Subindex
Operation field identifier
Constraints and values
Kind
Field property
Status
Support
Additional information

3.2.1
3.2.1.1
f
float
parameter
in
m
Y

3.2.1.2

void
termination
success reply
m
Y

3.2.2
3.2.2.1
f
float
parameter
in
m
Y

3.2.2.2

void
termination
success reply
m
Y

The above is a very simple example which shows the CIICS proforma specification for “Interface support proforma”, “Attribute support proforma” and “Operation support proforma”. In Annex B, an example will be shown to illustrate the “Data type support proforma”.

2 Annex
B: An example showing “Data type support proforma” specification

module typeExample {

typedef short shortArray[2][3];

typedef sequence<short,4> shortSequence;

enum Color { red, blue, green};

exception ExceptionType {

short
number;

string
reason;

};

typedef short short_alias;

struct DataStructure {

short_alias
s;

float

f;

};

union UN_DS {

short s;

DataStructure ds;

};

interface typeInterface {

UN_DS op (
in

shortArray

p1_sA,

in

shortSequence

p2_sS,

inout
Color

p3_color,

out

DataStructure

p4_UT

)

raises (ExceptionType)

context ("key1", "key2") ;

};

};

This Annex illustrates an IDL example containing several IDL user-defined complex data types, which could be used to show the format of “Data type support proforma”. Here is the IDL definition:

According to the above IDL definition, the CIICS for this example information model can be illustrated in the following tables:

I1. typeExample::typeInterface

Table 1: typeExample::typeInterface interface support
Index
Interface identifier
Derived interface
Status
Support
Additional information

1
typeExample::typeInterface

m
Y
As server

Table 1.1 : typeExample::itypeInterface attribute support

The interface typeExample::typeInterface hasn't defined attribute!

Table 1.2 : typeExample::typeInterface operation support
Index
Operation identifier
Status
Support
Additional information

1.2.1
op
m
Y

Index
Subindex
Operation field identifier
Constraints and values
kind
Field property
Status
Support
Additional information

1.2.1
1.2.1.1
p1_sA
::typeExample::shortArray (array[2][3])
parameter
in
m
Y

1.2.1.2
p2_sS
::typeExample::shortSequence (sequence<4>)
parameter
in
m
Y

1.2.1.3
p3_color
::typeExample::Color (enum)
parameter
inout
m
Y

1.2.1.4
p4_UT
::typeExample::DataStructure (struct)
parameter
out
m
Y

1.2.1.5

key1
parameter
context
m
Y

1.2.1.6

key2
parameter
context
m
Y

1.2.1.7

::typeExampl::UN_DS (union)
termination
success reply
m
Y

1.2.1.8
ExceptionType
::typeExample::ExceptionType (exception)
termination
exception
m
Y
……

Parameter support subtable

Index
Subindex
Field identifier
Constraints and values
Status
Support
Additional information

1.2.1.1
1.2.1.1.1

short
m
Y

1.2.1.2
1.2.1.2.1

short
m
Y

1.2.1.4
1.2.1.4.1
s
::typeExample::short_alias (short)
m
Y

1.2.1.4.2
f
float
m
Y

Note: the child field of a union type must contain at least one item as its mandatory child field. Here we suppose the “f” field is mandatory, and “str” is optional. In fact, whether a child field of type “union” is mandatory or optional depends on the semantics of the implementation.

Return value support subtable

Index
Subindex
Field identifier
Constraints and values
Status
Support
Additional information

1.2.1.7
1.2.1.7.1
s
short
m
Y

1.2.1.7.2
ds
::typeExample::DataStructure (struct)
o
Y

1.2.1.7.2.1
s
::typeExample::short_alias (short)
c:m
Y

1.2.1.7.2.2
f
float
c:m
Y

Note : The child field of a union type must contain at least one item as its mandatory child field. In fact, whether a child field of type “union” is mandatory or optional depends on the semantics of the implementation. Here the “f” field is supposed to be mandatory, and “ds” field is optional. So the “Status” of the items contained in “ds” is all prefixed by “c:”, meaning that only when “ds” is supported, could the items “s” and “f” child field be mandatory.

Exception support subtable
Index
Subindex
Field identifier
Constraints and values
Status
Support
Additional information

1.2.1.8
1.2.1.8.1
number
short
m
Y

1.2.1.8.2
reason
string
m
Y

Attachment 6 - T1M1 Comments on CORBA TMN Framwork (WD-11)

Torrance, 14 – 16 August, 2000
Questions:
14/4, 15/4, 19/4 ,18/4

Title:
TMN CORBA Framework Changes from London to Torrance

Source:
T1M1

Contact:
T1M1.5 Management Services

Contact – Keith Allen, Randy Sheer and Lakshmi Raman

kallen@tri.sbc.com
rsheer@lucent.com
lraman@teraburst.com

ABSTRACT

The contribution contains the proposed changes to both Q.816R1 and X.780R1. These comments are based on the work in T1M1 where the default ballot comments on the revised CORBA documents (framework and model). Because the meeting on ballot resolution completed the week before, we apologize for not separating the comments in terms of X.780 versus Q.816. These are combined together in one document in T1.

7. REFERENCES

[1]. ITU-T, M.3210 – CORBA Generic Network And Network Element Level Information Model, Draft, May, 2000.

[2]. ITU-T, Q.816 – CORBA Bases TMN Services, Draft, May, 2000.

[3]. ITU-T, Q.821 – Stage 2 And Stage 3 Description For The Q3 Interface – Alarm Surveillance, Draft, February, 2000.

[4]. ITU-T, X.711 - Common Management Information Protocol: Specification, October, 1997.

[5]. ITU-T, X.721 – Definition Of Management Information, 1992.

[6]. ITU-T, X.722 – Guidelines For The Definition Of Managed Objects, 1992.

[7]. ITU-T, X.731 – State Management Function, January, 1992.

[8]. ITU-T, X.733 – Alarm Reporting Function, 1992.

[9]. ITU-T, X.734 – Event Report Management Function, 1993.
[10]. ITU-T, X.735 – Log Control Function, September, 1992.

[11]. ITU-T, X.780 - TMN Guidelines for Defining CORBA Managed Objects, Draft, May, 2000.

[12]. OMG, Notification Service, August, 1999.

[13]. OMG, Telecom Log Service Specification, Version 1.0, January, 2000.

[14]. T1M1.5, Proposal for New Addendum To Recommendation Q.821, July, 2000.

[15]. T1M1.5, Working Document For Draft Standard ANSI T1.2xx-2000, CORBA Generic Network And NE Level Information Model, July, 2000.

[16]. T1M1.5, Working Document For Draft Standard ANSI T1.2xx-2000, Framework For CORBA-Based Telecommunications Management Network Interfaces, July, 2000.

8. Recommendations

3.1 Include ITU-T X.721 ASN.1 Attributes Used In ITU Q.821

The StopTime and StartTime ASN.1 definitions are defined in ITU-T X.721 [5]. These definitions are used in ITU-T Q.821 [3] (and potentially among other standards) and are needed for the CORBA version of ITU-T Q.821 [14].

T1M1 recommends that the following StopTime, Default Stop Time and StartTime ASN.1 definitions be added to X.780.

/

StartTimeType and StopTimeType are used in ITU-T Q.821 (among others)

*/

typedef GeneralizedTimeType StartTimeType;

enum StopTimeChoice

{

specific,

continual

};

union StopTimeType switch (StopTimeChoice)

{

case specific:

GeneralizedTimeType time;

case continual:

/**

NULL value

*/

};

const StopTimeType defaultStopTime continual.value;
3.2 Version Compliance

Section 5.2 of reference [16] states the service versions that must be supported. Using specific versions means that this document must be updated each time the OMG updates its services. T1M1 recommends that these versions be listed as X or later, e.g., ORB version 2.3.1 or backward compatible later version.

T1M1 recommends in 8.1.2 the statement “, or any later release that is backwards-compatible with it” be added to the 2nd, 3rd and 4th bullet items in section 8.1.2 as already stated in the 1st bullet item.

3.3 Clarification On Structured Event And Event Batch

Section 6.2 requirement NOTIF-5 discusses the use of OMG Notification Service [12] Structured Events. However, the section does not clarify between Structured Events or Event Batches (i.e., sequences of structured events). The OMG Notification Service supports both single Structured Events and multiple Structured Events (i.e., Event Batches), however, there are different supplier and consumer interfaces for the different methods.

T1M1 recommends that both Structured Events and Event Batches be supported. It also recommends that the following sentence be added to the middle of NOTIF-5 in section 6.2:

Both structured events and sequences of structured events (i.e., event batch) shall be supported.

3.4 Registration Of Channel Change Notification

Section 8.2 of reference [16] states that the Channel Change notification must be sent on all channels registered immediately before the change occurred. In this case, all Event Channels must have the Channel Change notification registered as an Event Type.

Should the CORBA framework require applications to always include the “itut_q.816::Notifications::channelChange” when the Event Channel is registered in the Channel Finder Component interface or should it be done automatically by the Channel Finder Component application?

In addition, “itut_q.816::Notifications::channelChange” must not be an Excluded Event Type, since it can’t be excluded from an Event Channel. Also, there currently is not an InvalidEventType (or similar) exception on the Channel Finder Component interface register method.

T1M1 proposes that section 7.2.2 Finder – 3 describing the special channelChange notification be changed as follows:

… before the change occurred. The channelChange notification will automatically be registered in the ChannelFinderComponent for all event channels. Re-registering the channelChange notification will have no effect. The channel Change notification will not be allowed to be an excluded event type.

The IDL …

3.5 Producing Reference Types

As a framework document, Q.816 should include definitions that can be referenced by other standards.

T1M1 recommends the following changes to Annex A of Q.816:

Develop and use the following typedefs:

typedef Istring AdditionalTextType;
typedef LongTypeOpt NotificationIdentifierType;
T1M1 recommends the following changes to Annex A.:

Develop and use the following typedefs:

typedef string FilterType;

typedef string LanguageType;

3.6 Notification Type Name Strings

Annex A of X.780 defines strings of the format “itut_x780::Notifications::<notification>” to be used as the OMG Notification Service Type Names. These Type Names are very important because they tell the notification consumer how to make sense of the Structured Event. Since these notification Type Name strings are heavily used by both managing and managed system, it is recommended that constants be defined to reduce both consumer and supplier errors.

T1M1 recommends the following additions to Annex A in X.780:

/**

This module contains the constant values used for the Type Names for Notifications defined in this standard

*/
module NotificationTypeNameConst {

const string moduleName = "itut_x780::NotificationTypeNameConst";

const string attributeValueChangeTypeName =

"itut_x780::Notifications::attributeValueChange";

const string communicationsAlarmTypeName =

"itut_x780::Notifications::communicationsAlarm";

const string environmentalAlarmTypeName =

"itut_x780::Notifications::environmentalAlarm";

const string equipmentAlarmTypeName =

"itut_x780::Notifications::equipmentAlarm";

const string integrityViolationTypeName =

"itut_x780::Notifications::integrityViolation";

const string objectCreationTypeName =

"itut_x780::Notifications::objectCreation";

const string objectDeletionTypeName =

"itut_x780::Notifications::objectDeletion";

const string operationalViolationTypeName =

"itut_x780::Notifications::operationalViolation";

const string physicalViolationTypeName =

"itut_x780::Notifications::physicalViolation";

const string processingErrorAlarmTypeName =

"itut_x780::Notifications::processingErrorAlarm";

const string qualityOfServiceAlarmTypeName =

"itut_x780::Notifications::qualityOfServiceAlarm";

const string relationshipChangeTypeName =

"itut_x780::Notifications::relationshipChange";

const string securityViolationTypeName =

"itut_x780::Notifications::securityViolation";

const string stateChangeTypeName =

"itut_x780::Notifications::stateChange";

const string timeDomainViolationTypeName =

"itut_x780::Notifications::timeDomainViolation";

}; // end of NotificationTypeNameConst module

T1M1 recommends the following additions to Annex A of Q.816:

#ifndef ITU_Q816Const_IDL

#define ITU_Q816Const_IDL

#pragma prefix "itut.org"

module itut_q816 {

/**

This module contains the constant values used for the Type Names for Notifications defined in this standard

*/
module NotificationTypeNameConst {

const string moduleName = "itut_q816::NotificationTypeNameConst";

const string channelChangeTypeName =

"itut_q816::Notifications::channelChange";

}; // end of NotificationTypeNameConst module

}; // end of itut_q816 module

#endif // end of #ifndef ITU_Q816Const_IDL
3.7 Notification Parameter Strings

Section 6.2 of Q.816 defines strings of the format “<parameter name>” to be used as the OMG Notification Service Filterable Event Body parameter names. These names are very important because they tell the notification consumer how to make sense of the Structured Event. It is recommended that constants be defined to reduce both consumer and supplier errors.

T1M1 recommends the following additions to Annex A in X.780:

/**

This module contains the constant values used for the Filterable Event Body parameter names for Notifications defined in this standard

*/
module NotificationParameterNameConst {

const string moduleName = "itut_x780::NotificationParameterNameConst";

const string AdditionalInfoName = "additionalInfo";

const string AdditionalTextName = "additionalText";

const string AlarmEffectOnServiceName = "alarmEffectOnService";

const string AlarmingResumedName = "alarmingResumed";

const string AttributeChangesName = "attributeChanges";

const string AttributeListName = "attributeList";

const string BackedUpStatusName = "backedUpStatus";

const string BackUpObjectName = "backUpObject";

const string CorrelatedNotificationsName =

"correlatedNotifications";

const string EventTimeName = "eventTime";

const string MonitoredAttributesName = "monitoredAttributes";

const string NotificationIdentifierName =

"notificationIdentifier";

const string PerceivedSeverityName = "perceivedSeverity";

const string ProbableCauseName = "probableCause";

const string ProposedRepairActionsName = "proposedRepairActions";

const string RelationshipChangesName = "relationshipChanges";

const string SecurityAlarmCauseName = "securityAlarmCause";

const string SecurityAlarmDetectorName = "securityAlarmDetector";

const string SecurityAlarmSeverityName = "securityAlarmSeverity";

const string ServiceProvider Name = "serviceProvider";

const string ServiceUserName = "serviceUser";

const string SourceName = "source";

const string SourceClassName = "sourceClass";

const string SourceIndicatorName = "sourceIndicator";

const string SpecificProblemsName = "specificProblems";

const string StateChangeDefinitionName = "stateChangeDefinition";

const string StateChangesName = "stateChanges";

const string SuspectObjectListName = "suspectObjectList";

const string ThresholdInfoName = "thresholdInfo";

const string TrendIndicationName = "trendIndication";

}; // end of NotificationParameterNameConst module

T1M1 recommends the following additions to Annex A in Q.816:

/**

This module contains the constant values used for the Filterable Event Body parameter names for Notifications defined in this standard

*/
module NotificationParameterNameConst {

const string moduleName = "itut_q816::NotificationParameterNameConst";

const string ChannelModificationName = "channelModification";

const string ChannelInfoName = "channelInfo";

}; // end of NotificationParameterNameConst module

3.8 Application Errors

Application errors (especially resource limitations) may occur by virtually any method. However, many of the CORBA Framework methods do not allow Application Error exceptions.

It is especially important to have exceptions on methods that currently have no supported exceptions, when they perform complex operations or data base look-ups. As an example, the Channel Finder list method may require an application to look in a persistent data base to find the currently defined channels. Accessing the Channel Finder list may result in an error.

T1M1 recommends the following methods in Annex A of Q.816 to include the Application Error exception:

1. scopedDelete

2. scopedUpdate

3. scopedGet

4. getNext (in UpdateResultsIterator, GetResultsIterator and DeleteResultsIterator) [currently no exceptions]

5. register (in ChannelFinderComponent and FactoryFinderComponent) [currently no exceptions]

6. list (in ChannelFinder) [currently no exceptions]

7. find (in FactoryFinder) [currently no exceptions]

3.9 Default Scope, Language And Filter

ITU-T X.711 [4] provides default values for scope and filter and it seems reasonable to provide similar defaults in this framework.

In addition, there needs to be a default constant that defines the name of the language grammar defined in this framework. This is similar to the default language constant provided with the OMG Telecom Log Service [13].

T1M1 recommends the following additions to Annex A in Q.816:

/**

Default scope is for base object only

*/

const ScopeType defaultScopeType = 0;

/**

Default filter is to allow everything

*/

const FilterType defaultFilter = "";

/**

Default language is the grammar described in this document

*/

const LanguageType defaultLanguage = "MOO 1.0";
3.10 Missing ITU-T X.731 Referenced Attributes

In Table 1 of section 6.3.5 in X.780 lists standard attributes. However, it is missing an attribute that is defined in ITU-T X.721 [5] and referenced in ITU-T X.731 [7] – Standby Status.

T1M1 recommends that Table 1 of section 6.3.5 in Q.816 be updated and the following attributes added to Annex A:

/**

The standby status attribute is single-valued and read-only. The value is only meaningful when the back-up relationship role exists. If "hot standby" the resource is not providing service, but is operating in synchronism with another resource that is to be backed-up. If "cold standby" the resource is to back-up another resource, but is not synchronized with that resource. If "providing service" the back-up resource is providing service and is backing up another resource.

*/

enum StandbyStatusType {hotStandby, coldStandby, providingService};

3.11 Update Suspect Object Type

Appendix A in X.780 lists the Failure Probability in the Suspect Object Type as required and not optional as specified in ITU-T Q.821 [3]. This parameter needs to be changed to be optional.

T1M1 recommends the following changes to the Suspect Object Type in Annex A of X.780:

/** UnsignedShortTypeOpt is an optional type. If the discriminator is

true the value is present, otherwise the value is null. */

union UnsignedShortTypeOpt switch (boolean) {

case TRUE:
unsigned short value;

};

/** A SuspectObject identifies an object that may be the cause of a failure. It is usually a component of a SuspectObjectList.

@member objectClass

Object class of the suspect object

@member suspectObjectInstance
Object instance of the suspect object

@member failureProbability
Optional failure responsibility probability from 1 to 100

*/

struct SuspectObjectType {

ObjectClassType objectClass;

ManagedObject suspectObjectInstance;

UnsignedShortTypeOpt failureProbability;

};

3.12 Clarification On Mandatory Notification Identifiers

The Notifications Interface in Annex A of X.780 states that the Notification Identifier parameter is mandatory in notifications. However, ITU-T X.733 [8] defines Notification Identifier as optional. There are a couple of issues with making this parameter mandatory.

One scenario that we need to understand is with a network element to EMS interface based on ITU-T X.733 and an EMS to NMS interface based on this CORBA Framework. We have three possible cases to handle the mapping of alarms from the network element / EMS interface to the EMS / NMS interface (assuming the simplest case of an alarm on an object represented in both interfaces):

1. Network element always uses Notification Identifier – In this case, the EMS passes the alarm (with its Notification Identifier) onto the NMS.

2. Network element never uses Notification Identifier – In this case, the EMS uses an internal counter, includes this value as the Notification Identifier and passes the alarm onto the NMS.

3. Network element sometimes uses Notification Identifier – Since Notification Identifier is required, the EMS must define a value when one is not provided. This is a very difficult task, because Notification Identifier values must be unique across all notifications of a particular managed object instance throughout the time the correlation is significant [8]. Thus, the EMS must choose a value that is not being used in current alarms and will not be used in subsequent alarms. This may not be possible, since the algorithm for choosing Notification Identifier values is owned by the producing system (in this case, the network element).
The EMS also can’t use its own value for Notification Identifier for all alarms without also having the responsibility of updating the Correlated Notifications lists. Updating Correlation Notifications lists would require the EMS to persistently maintain a complete mapping list of network element Notification Identifier values to EMS Notification Identifier values.
The reason that Notification Identifiers have unique values based on a particular managed object class (instead of unique values based on agent) is so intermediate systems (like an EMS) do not have to edit the Notification Identifier and Correlated Notifications fields when passing the notification onto another system.

T1M1 recommends the following be added to AnnexA Notification Interface comments in Q.816:

This CORBA Framework requires the use of Notification Identifiers where they may not be required in other interfaces (they are not required in ITU-T X.733). As an example, we have four possible cases to handle the mapping of alarm Notification Identifiers from the network element / EMS interface to the EMS / NMS interface:

1. Network element always uses Notification Identifier (managed object represented in both interfaces) – In this case, the EMS passes the alarm (with its Notification Identifier) onto the NMS. <p>

2. Network element never uses Notification Identifier (managed object represented in both interfaces) – In this case, the EMS uses an internal counter, includes this value as the Notification Identifier and passes the alarm onto the NMS. <p>

3. Network element sometimes uses Notification Identifier (managed object represented in both interfaces) – Since Notification Identifier is required, the EMS must define a value when one is not provided. It may be difficult to define a value at the EMS because Notification Identifier values must be unique across all notifications of a particular managed object instance throughout the time the correlation is significant [8]. Thus, the EMS must choose a value that is not being used in current alarms and will not be used in subsequent alarms. This may not be possible, since the algorithm for choosing Notification Identifier values is owned by the producing system (in this case, the network element).
In one possible solution, the EMS could supply it’s own value for Notification Identifier for all alarms. This would also require the updating of the alarms Correlated Notifications lists. To update Correlated Notifications lists, would result in the EMS maintaining a complete mapping list of network element Notification Identifier values to EMS Notification Identifier values.

In another possible solution, the EMS and network element could agree on supporting different subsets of Notification Identifier numbers.

The EMS could also supply it’s own number; ignoring potential collisions and allow their rare occurrence.<p>

4. Alarm being mapped from network element / EMS interface object to EMS / NMS interface object – Similar to above item, the EMS must supply a Notification Identifier value that is unique for the EMS / NMS managed object. The Correlated Notifications lists also must be updated. <p>

3.13 Miscellaneous

1. Section 4.7.1.2 of X.780, “values” -> “value”.

2. Use “Correlated Notifications” instead of “Correlated Notification”.

3. Section 8.4.1.1 (at the end), “The Cancel Get CMIP operation is provided by this Framework by destroying the results iterator.”

4. Section 9.14, “Adding a new object to an interface” -> “Adding a new interface to a module”.

3.14 Versioning

Section 6.13 of X.780 defines interface versioning for CORBA IDL, but does not define how versioning should be handled with types, constants, valuetypes and other IDL components.

T1M1 recommends that the versioning discussion be extended to include all IDL components.

3.15 Shorten the kind Field Values

Currently, the X.780 6.8 guidelines direct object modelers to use the scoped name in the kind field of name bindings. Because the name binding kind field value is specified by the object modeler in a name binding module constant, this value is completely under the control of the information modeler. There should be no problem with information modelers using shorter kind fields, which would shorten names significantly. Our proposed approach is to use the unscoped class name. Note if this is accepted, it will require changes to M.3120 draft.

3.16 The Terminator Service Should Raise ApplicationError Exceptions

In Q.816, exceptions raised on managed object operations were modified to include application error. The interfaces on some of the support services need to be changed accordingly. With the recent changes, the destroy() method on the ManagedObject class raises both the ApplicationError exception and the DeleteError exception. The Terminator Service delete operations, however, raise only the DeleteError exception. The ApplicationError exception should be added to the raises clause of each delete operation. .

While there is an inheritance relationship between the objects returned on the ApplicationError exception and the DeleteError exception, it will probably be better if both exceptions are included in each destroy and delete operation.

3.17 Add 2 Fields to the MOO Service Scoped Get Results

The MOO Service will also have to deal with ApplicationError exceptions that could be raised by managed objects. We anticipate a MOO server working something like the following, using a scoped get operation as an example: the service will scan the filter expression and list all the attributes involved in the filter. It is also given a list of attributes to retrieve from the objects by the client. Next, given the base object name and scope, the service will start cycling through all the objects in the scope, based on their name (containment relationship). For each object in the scope, the service will use the attributesGet() operation to retrieve multiple attributes. It might only get the attributes it needs to evaluate the filter expression, or it might get both the attributes involved in the filter and the attributes requested for retrieval. (It could get each attribute value separately as it evaluates the filter expression, but this could have too much overhead). If the object passes the filter, and the service did not retrieve all of the requested attributes, it will now have to do a second attributesGet() operation to retrieve an attribute values it does not have. (It is very unlikely that the service would retrieve the remaining attributes individually at this point. Recall that the attributesGet() operation allows the client to select the attributes it wants to retrieve.)

So, the object may do a single retrieval, for all required attributes, or it might do two, one for the filterable attributes and one for the retrievable attributes if the object passes the filter. It could also do multiple retrievals during the filter evaluation, but that is not important for this discussion. If the managed object raises an exception on the first retrieval, then the service won’t even know if the object passes the filter. If the managed object raises an exception on the second retrieval (if one is performed), then the service knows the object passed the filter, but it may be missing some or all of the attributes requested by the client. (The filter may have included some of the requested attributes, so their values may already be known to the service.) The results returned by the service need to reflect these possible outcomes.

T1M1 proposes adding two fields to the GetResultsType, returned by the MOO service in response to a scoped get operation. The first would be a boolean field to indicate when an object could not even be evaluated for the filter. The second would be a list of attributes that could not retrieved, since it is reasonable that some implementation might at times be able to retrieve only some attributes. We should probably discuss whether this list should include attributes that are in conditional packages that are not supported by the instance.

The changes to the get results data structure would be (new text is underlined):

struct GetResultsType {

NameType

name;

boolean

unabletoFilter;

AttributeSetType
attributes;

StringSetType

failedAttributes;

};

/* Note that if the Boolean is set to true this implies that the MOO server was

/* unableto filter on that object. This is different from filter condition was not met.*/

Appropriate changes to the text describing the MOO service would also be required.

3.18 Change the success Field on the MOO Service Scoped Update Results

Following the reasoning presented in the previous section, the success field in the structures returned by the scoped update operation should be changed to match. The changes to the set results data structure would be (deleted text is shown with a line through it):

struct UpdateResultsType {

NameType
name;

boolean

unabletoFilter;

StringSetType
failedAttributes;

};

With these changes, if the unabletoFilter field is false and the failedAttributes list is empty, the client knows all modifications were successful.

3.19 Add a unabletoFilter Field to the MOO Service Scoped Delete Results

Again, following the same reasoning as with the other scoped operations, it is possible that an object could not be evaluated for a filter on a scoped delete operation. The results returned by the scoped delete operation should reflect this possibility. Because the current results are just a list of object names that could not be deleted, the changes to the IDL are slightly more extensive:

typedef NameSetType DeleteResultsSetType;

struct DeleteResultsType {

NameType

name;

boolean

notFilterable;

boolean

notDeletable;

];

typedef sequuence <DeleteResultsType> DeleteResultsSetType;
Add a boolean failuresOnly parameter to the scoped delete operation, giving the client the option to receive the names of all objects deleted or attempted, or just those that either could not be filtered or could not be deleted.

3.20 Add an Attribute to Signal End of Results when using iterators

Typically, a client knows there are no more results remaining in an iterator when the iterator returns fewer results than were requested. For scoped operations, though, there may be a possibility that the client could request results from the iterator faster than they can be generated by the MOO service, especially if communication with a remote resource is involved. So, an iterator returning fewer results than requested might not mean there are no more results, just no more results yet. A more explicit indication that there are no more results is needed. To meet this requirement, the following proposal is made. In the getNext operation an out parameter is to be added called more which has the syntax of Boolean. When the getNext returns value of false this implies that there are no more results.

interface GetResultsIterator {

/** This method is used to retrieve the next “howMany” results

in the result set and whether there are more results to come. */

GetResultsSetType getNext(in unsigned short howMany out boolean more);

/** This method is used to destroy the iterator and release its

resources. */

void destroy();

}; // end of Get Results Iterator interface

Attachment 7 - Meeting Agenda (WD-1)

Torrance, California CORBA Experts Meeting, 14-17 August 2000

Questions:
14/4, 15/4, 18/4, 19/4

SOURCE:
Rapporteurs Q14/4, Q19/4*
TITLE:

Proposed Agenda of Joint Meeting of Questions 14/4, 15/4, 18/4 and 19/4 on the use of CORBA in the TMN

9. Introduction of Participants and approval of Agenda

10. Meeting Objectives

This is a joint meeting of questions 14/4, 15/4, 18/4 and 19/4 , proposed at the February, 2000 SG4 meeting on the topic of how to use CORBA as part of the TMN. In order to incorporate CORBA in the TMN aspects of framework (Q14/4), model (Q15/4) and protocol (Q19/4) need to be addressed.

The purpose of this experts meeting is to progress work towards August 2000 determination of the following three new Draft Recommendations:

· X.780 - TMN Guidelines for Defining CORBA Managed Objects

· Q.816.1 - CORBA Based TMN Serviceds

· M.3120 - CORBA Generic Network and NE Level Information Model (which will use the Framework techniques to produce an IDL version of M.3100 .

11. Input Documents

The report of the May meeting held in London is in COM 4-158.

The base texts are the output of that meeting found as follows:

X.780
WD-2

Q.816.1
WD-3

M.3120
WD-4

These have been provided by the editors.

The documents to be considered at the meeting are listed below:

Document Log for August 2000 Joint EG Meeting on CORBA

PRIVATE
Document
Source
File
Doc. Number

Agenda
Rapporteurs

WD-1

Draft Rec. X.780
Editor
x.780r1
WD-2

Draft Rec. Q.816.1
Editor
q.816r1
WD-3

Draft Rec. M.3120
Editor
m3120_000709
WD-4

ICS for CORBA
China
ITU-CIICS
WD-5

Telecom Log Defect
China
Question for Log Service
WD-6

Modificaton of MOOS
Korea
Contr_Modjifcation OfMOOService ...
WD-7

Modificaton of MOOS
Korea
ModificationOf MOOServiceInterface_ Finial
WD-7R1

3GPP OA&M Interface Specifications based on CORBA technology
Ericsson, Motorola
3GPP-contribution
WD-8

Proposal for Heartbeat
T1M1
Heartbeat
WD-9

Additional Changes to M.3120
T1M1
Additionalchanges
WD-10

TMN CORBA Framework Changes from London to Torrance
T1M1
0m15251
WD-11

Attachment 8 - Liaison to 3GPP (WD-13R1)

Questions:
14/4, 15/4, 19/4

SOURCE:
ITU Experts Meeting of Q14,15,19/4

TITLE:
Liaison to ETSI for forwarding to 3GPP on the use of CORBA in the TMN
Liaison Statement

TO:
3GPP
APPROVAL:
Approved by WP 4/4 and 5/4

FOR:
ACTION

CONTACT:
Dave Matthews

Tel: +1 732 420 1613

Q 19/4 Rapporteur

Fax: +1 732 368 1911

E-mail: dlmatthews@att.com
Thank you for your liaison and the referenced documents containing the 3GPP specifications. Your liaison suggested that we use these documents and incorporate them in our CORBA framework. We reviewed the documents briefly and the group generated the following comments. The CORBA framework documents X.780 and Q.816 are approved for determination and are expected to be approved in the January meeting of ITU-T SG4. The drafts are attached. We look forward to working with you more closely as you develop your Release 2000 specifications.

One of the issues we identified in using the work from 3GPP is the difference in the version of CORBA being used in our framework relative to the version referenced in the 3GPP. We have utilized several features of CORBA 2.3 in order to maximize the application of CORBA for network management. One example is the use of value types where type inheritance offers a mechanism for defining new attributes(in the sense of managed object class definitions in GDMO)when subclassing the interfaces (MO class). We recommend you to consider the use of 2.3 in your specification in the future (e.g. 2000 version).

Other comments are noted below identifying the documents in your liaison.

32.106 series

a) 32.106-1 - Configuration management concepts and requirements

Because we received no details of how the configuration management functions and object query capabilities are specified in IDL, no specific comments are noted in this high level document.

b) 32.106- 2 and 3 - Notification Integration Reference Point.

We note that the approach in 32.106-3 is an alternative to the OMG Notification Service. The ITU-T TMN CORBA framework is designed to use the OMG Notification Service, in the push mode. In developing the framework, we applied the philosophy of using CORBA services as defined and where appropriate profile it for TMN use. We believe that from product availability perspective, it is more effective to use OMG notification service instead of creating a new service. We note that you are using the structured Event report format in a similar manner to our usage, and we are attaching our latest drafts to allow you to align with the international standards.

c) 32.106-8 - 3GPP Naming conventions for managed objects:

This document defines a stringified form for managed object names, based on X.500 DN. The restrictions on X.500 DN are only one attribute-value assertion allowed per RDN component. They have a stringified form, which does not explain how to deal with structured attributes. If this approach is to restrict the syntax of naming attributes to primitive types, this is not clear.

It was noted that your use of X.500 DNs allows direct mapping to the use of CORBA names for Managed objects. Your X.500 DNs could be mapped to CORBA based names without actually using the CORBA naming service. The attributeId field would reside in the OMG Kind field of a name component, while the attributeValue field would reside in the OMG id field of a name component. Thus algorithmic mappings are possible between our managed object name forms and yours.

d) 32.111 series

32.111-1, 2, and 3 - Fault Management and Alarms

This functionality includes all of fault management, including what we call Alarm synchronization. We note that many of the capabilities in the 3GPP fault management information service are provided by the current TMN functions, however different operations are used (e.g., resend alarm report with new severity rather than sending a severity change notification).

In addition, we noted that you have included a new capability for the TMN, called Alarm Acknowledgment state for an alarm (where the recipient of the alarm has indicated that the alarm is received and someone is taking ownership for acting on it). We also note that you have an alarm summary operations which count outstanding alarms by severity level. We do not currently have this operation in any TMN function. We plan to consider incorporating this function in our future revisions of the TMN Recommendations (M.3400 and Q.821).

Attachment 9 - Liaison to Q9/15 ,13/15, 14/15

ITU - Telecommunication Standardization Sector

STUDY GROUP 4
Torrance, California WP 4/4 18 August 2000

QUESTIONS: 15/4, 9/15, 13/15, 14/15

SOURCE:
Rapporteur Q15/4
TITLE:
Clarification of characteristic information (tu12VC11CI)

LIAISON STATEMENT
TO:
15/4, 9/15, 13/15, 14/15
APPROVAL:
Approved by WP 4/4
FOR:
Action
DEADLINE:
December 2000

CONTACT:
Knut Johannessen
Tel:
+47 23 25 09 29

Telenor AS
Fax:
+44 23 25 05 06

NORWAY
Email:
knut-hakon.johannessen@telenor.com

Q15/4 in joint work with Q14/4, Q18/4 and Q19/4 has identified a characteristic information value definition in Rec. M.3100 that Q15/4 would like SG15 experts to clarify.

The following ASN.1 definition is found in M.3100 based on previous input from SG15:

tu12VC11CI CharacteristicInformation ::= {characteristicInfo 16}
Q15/4 is looking for a precise description of this characteristic information. Does this mean that a VC11 is carried by a TU12? Further, is this standardised by SG15 or applicable in real world configurations?

We would like to incorporate clarifications from SG15 in M series recommendations.

Figure 5.2-1 Testing Process of CORBA based systems

� EMBED Visio.Drawing.4 ���

� EMBED Visio.Drawing.4 ���

Figure 5.2-1 Containment relationship in IDL specification

// DESCRIPTION:

//

// source IDL file for simple BANK example

//

//**

module BankModule {

//

// a simple description of a bank account

//

 interface account {

 readonly attribute float balance;

 void makeLodgement (in float f);

 void makeWithdrawal (in float f);

};

//

// a simple description of a bank current account

//

 		interface currentAccount : account {

 			readonly attribute float overdraftLimit;

 	};

//

// a bank simply manufactures accounts

//

// bank::reject is raised if a duplicate account name is seen

//

 	interface bank {

 		exception reject {};

 		account newAccount (in string name) raises (reject);

 		currentAccount newCurrentAccount (in string name, in float limit)

							raises (reject);

 		void deleteAccount (in account a);

};

};

Figure A.1 Example of IDL Definition

*�
David Matthews (Q.19/4)

dlmatthews@att.com�
 Terje Henrikson (Q.18/4)

terje-fredrikhenriksen @telenor.com�
Knut Johannessen (Q.15/4)

knut-hakon.johannessen @telenor.com�
Tom Rutt (Q.14/4)

terutt@lucent.com�
�

1 In most cases the IUT acts in a server role, but when reporting a notification or something, it may act as a client and send information through invoking an operation provided by another server located in the tester side.

� “bstring” means “bounded string”. In IDL, bounded string” specifies a string with length limitation. In CIICS, bstring <n> is used to describe this type, where “n” string.

*�
David Matthews (Q.19/4)

dlmatthews@att.com�
 Terje Henrikson (Q.18/4)

terje-fredrikhenriksen @telenor.com�
Knut Johannessen (Q.15/4)

knut-hakon.johannessen @telenor.com�
Tom Rutt (Q.14/4)

terutt@lucent.com�
�

�PAGE \# "'Page: '#'�'" �� If this RG Temporary document (Tdoc) should not be submitted to the SA5 plenary, please delete this text (i.e. the SA5 reference).

The Rapporteur should clearly indicate to the SA5 secretary which RG Tdocs should be submitted to the SA5 plenary.

NOTE:	- The Rapporteur will deliver e.g. S5P000015.doc

- The SA5 secretary will allocate the SA5 number and will rename the file to S5-000xyz_S5P000015.doc &

 will compress the file to S5-000xyz.ZIP for storage on the server.

�PAGE \# "'Page: '#'�'" �Page: 4���A: GDMO	Guidelines for the Definition of Managed Objects

1
19

_1018536200.vsd

_1018502830.vsd

