
3GPP TSG-SA5 (Telecom Management)

Meeting #14, Milan, Italy, 11 ‑ 15 September 2000
SA5#14(00)0xyz

Tdoc S5C000113

CHANGE REQUEST
Please see embedded help file at the bottom of this
page for instructions on how to fill in this form correctly.

32-106-3
CR
xx
Current Version:
V3.1.0

GSM (AA.BB) or 3G (AA.BBB) specification number (

(CR number as allocated by MCC support team

For submission to:
SA#14
for approval
X

strategic

(for SMG

list expected approval meeting # here (
for information

non-strategic

use only)

Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc

Proposed change affects:
(U)SIM

ME

UTRAN / Radio

Core Network
X

(at least one should be marked with an X)

Source:
Lucent Technologies
Date:
10 September 2000

Subject:
Suggested Updates To TS 32.106-3 Notification IRP CORBA Solution Set

Work item:

Category:
F
Correction
X
Release:
Phase 2

A
Corresponds to a correction in an earlier release

Release 96

(only one category
B
Addition of feature

Release 97

shall be marked
C
Functional modification of feature

Release 98

with an X)
D
Editorial modification

Release 99
X

Release 00

Reason for
change:

This contribution requests the following updates to the TS 32.106-3 document:

1. Spelling corrections – Make the following changes:

· NV_ALARM_id goes to NV_ALARM_ID.
· NV_STATE_CHANGE_DEFINITIONS goes to NV_STATE_CHANGE_DEFINITION.
· NV_PROPOSED_REPAIRED_ACTIONS goes to NV_PROPOSED_REPAIR_ACTIONS.
2. Clarification of behavior when no IRPManagers are subscribed – The suggestion is that notifications should still be emitted.

3. Clarification on IRPAgent wide configuration parameters – The suggestion is to indicate that IRPAgent wide configuration parameters are not yet defined in Release 1999.

4. Clarification on OMG Notification Service Quality Of Service (QOS) parameters – The suggestion is to require certain OMG Notification Service parameter settings.

This contribution reintroduces comments from Tdoc S5C000085 that were not addressed at the 3GPP SA5 meeting in Alexandria.

Clauses affected:

Other specs
Other 3G core specifications

(List of CRs:

affected:
Other GSM core specifications

(List of CRs:

MS test specifications

(List of CRs:

BSS test specifications

(List of CRs:

O&M specifications

(List of CRs:

Other
comments:

3.2
Abbreviations

For the purposes of the present document, the following abbreviations apply:

CM
Configuration Management

CORBA
Common Object Request Broker Architecture (OMG)

EC
Event channel (OMG)

IDL
Interface Definition Language (OMG)

IS
Information Service

NC
Notification Channel (OMG)

NE
Network Element

NV
Name and Value pair
EM
Element Manager

OMG
Object Management Group
QOS Quality Of Service
SS
Solution Set

 UML
 Unified Modelling Language (OMG)

4.1.1
Support of Push and Pull Interface

The IRPAgent shall support the OMG Notification push interface model. Additionally, it may support the OMG Notification pull interface model as well.
IRPAgents should emit notifications even when there are no IRPManagers subscribed. This will allow the planned future capability of Telecom Log support.
4.1.2
Support of multiple notifications in one push operation

For efficiency, IRPAgent uses the following OMG Notification Service (OMG TC Document telecom [2]) defined interface to pack multiple notifications and push them to IRPManager using one method push_structured_events. The method takes as input a parameter of type EventBatch as defined in the OMG CosNotification module (OMG TC Document telecom [2]). This data type is a sequence of Structured Events (see clause 4). Upon invocation, this parameter will contain a sequence of Structured Events being delivered to IRPManager by IRPAgent to which it is connected.

The maximum number of events that will be transmitted within a single invocation of this operation is controlled by IRPAgent wide configuration parameter. The amount of time IRPAgent will accumulate individual events into the sequence before invoking this operation is controlled by IRPAgent wide configuration parameter as well.
IRPAgent-wide configuration parameters are not part of Release 1999, therefore the requirements related to these parameters are not valid for Release 1999.
IRPAgent may push EventBatch with only one Structured Event.

The OMG Notification service (OMG TC Document telecom [2]) defined IDL module is shown below.

module CosNotifyComm {

…

Interface SequencePushConsumer : NotifyPublish {

void push_structured_events(

in CosNotification::EventBatch notifications)

raises(CosEventComm::Disconnected);

…

}; // SequencePushConsumer

…

}; // CosNotifyComm

7.4
OMG Notification Service Quality Of Service Parameters
The OMG Notification Service [6] supports a variety of Quality Of Service (QOS) properties, such as reliability and priority, that may be expressed to indicate the delivery characteristics of notifications. The IRPAgent has the responsibility of setting the OMG Notification Service Quality Of Service parameters.
While many of these QOS parameters need to be based on Service Level Agreements, a number of them need to be specified as required. The following OMG Notification Service QOS parameter settings are required:
1. The order policy must be set to FifoOrder (first in, first out).

2. The message priority must be set to 0, i.e., no priority.

3. The Start Time Supported must be set to false.

4. The Stop Time Supported must be set to false.
8
Example of Notification related to alarm

The following is an example of Notification related to alarm.

If type_name == NOTIFY_FM_NEW_ALARM, then the filterable_body_field attributes can contain:

{

systemDN, “…”;

alarmId, “abce232”,

notificationId, 4467,

managedObjectInstance, “…”,

eventTime, …,

probableCause, 3,

perceivedSeverity, 2,

specificProblems, “xxx”,

additionalText, “…”,

…

}

Annex A (normative):
Notification IRP CORBA IDL

/* ## Module: CommonIRPConstDefs

This module contains definitions commonly used among all IRPs such as Alarm IRP.

==

*/

#ifndef CommonIRPConstDefs_idl

#define CommonIRPConstDefs_idl

#include <TimeBase.idl>

module CommonIRPConstDefs {

 /*

 Definition imported from CosTime. The time refers to time in Greenwich

 Time Zone. It also consists of a time displacement factor in the form

 of minutes of displacement from the Greenwich Meridian.

 */

 typedef TimeBase::UtcT IRPTime;

 enum Signal {OK, Failure, PartialFailure};

 typedef sequence <string> VersionNumberSet;

};

#endif

/* ## Module: NotificationIRPConstDefs

This module contains definitions specific to Notification IRP.

==

*/

#ifndef NotificationIRPConstDefs_idl

#define NotificationIRPConstDefs_idl

module NotificationIRPConstDefs {

 /*

 This is a string sequence identifying notification categories.

 A notification category is identified by the IRP name and its version.

 */

 typedef sequence <string> NotificationCategorySet;

 /*

 This is a sequence of strings identifying event types of a particular

 notification category.

 */

 typedef sequence <string> EventTypesPerNotificationCategory;

 /*

 This sequence identifies all event types of all notification categories

 identified by NotificationCategorySet. The number of elements in this

 sequence shall be identical to that of NotificationCategorySet.

 */

 typedef sequence <EventTypesPerNotificationCategory> EventTypesSet;

 /*

 This is a sequence of strings identifying extended event types of

 a particular notification category.

 */

 typedef sequence <string> ExtendedEventTypePerNotificationCategory;

 /*

 This sequence identifies all extended event types of all notification

 categories identified by NotificationCategorySet. The number of elements

 in this sequence shall be identical to that of NotificationCategorySet.

 */

 typedef sequence <ExtendedEventTypePerNotificationCategory>

 ExtendedEventTypesSet;

 typedef sequence <long> NotifIDSet;

 /*

 This holds identifiers of notifications that are correlated.

 */

 struct CorrelatedNotification {

 string source; // Contains DN of MO that emitted the set of notifications

 // DN string format in compliance with Name Convention for

 // Managed Object.

 // This may be a zero-length string. In this case, the MO

 // is identified by the value of the MOI parameter-attribute

 // of the Structured Event, i.e., the notification.

 NotifIDSet notifIDSet;

 };

 /*

 Correlated Notification sets are sets of Correlated Notification

 structures.

 */

 typedef sequence <CorrelatedNotification> CorrelatedNotificationSetType;

 /*

 This is a sequence of strings identifying Subscription Ids.

 */

 typedef string SubscriptionId;

 typedef sequence <SubscriptionId> SubscriptionIdSet;

 /*

 This block encapsulates valid strings carried in domain_name of

 structured event header. It carries the name of IRP and its

 corresponding CORBA SS version number. They are the returned

 values for get_XXX_IRP_version() as well.

 */

 const string ALARM_IRP_VERSION_1_1 = "1f1"; //alarm IRP 1:1

 const string CONFIGURATION_IRP_VERSION_1_1 = "1c1"; //CM IRP 1:1

 /*

 This string is used as return value for get_notification_irp_version()

 */

 const string NOTIFICATION_IRP_VERSION_1_1 = "1n1"; //Notification IRP 1:1

 /*

 This block encapsulates string used in the name of the Name Value

 pair of the structured event.

 */

 const string NV_NOTIFICATION_ID = "a";

 const string NV_CORRELATED_NOTIFICATIONS = "b";

 const string NV_EVENT_TIME = "c";

 const string NV_SYSTEM_DN = "d";

 const string NV_MANAGED_OBJECT_CLASS = "e";

 const string NV_MANAGED_OBJECT_INSTANCE = "f";

 const string NV_PROBABLE_CAUSE = "g";

 const string NV_PERCEIVED_SEVERITY = "h";

 const string NV_SPECIFIC_PROBLEM = "i";

 const string NV_ADDITIONAL_TEXT = "j";

 const string NV_ALARM_ID = "k";

 const string NV_ACK_USER_ID = "l";

 const string NV_ACK_TIME = "m";

 const string NV_ACK_SYSTEM_ID = "n";

 const string NV_ACK_STATE = "o";

 const string NV_BACKED_UP_STATUS = "p";

 const string NV_BACK_UP_OBJECT = "q";

 const string NV_THRESHOLD_INFO = "r";

 const string NV_TREND_INDICATION = "s";

 const string NV_STATE_CHANGE_DEFINITION = "t";

 const string NV_MONITORED_ATTRIBUTES = "u";

 const string NV_PROPOSED_REPAIR_ACTIONS = "v";

 /*

 This indicates if the subscription is active (not suspended) or inactive.

 */

 enum SubscriptionState {Inactive, Active, DontKnow};

};

#endif

/* ## Module: NotificationIRPSystem

 This module implements capabilities of IRPAgent specified in Notification

 IRP: Information Service version 1 and its equivalents in Notification

 IRP: CORBA Solution Set version 1:1.

 ==

*/

#ifndef NotificationIRPSystem_idl

#define NotificationIRPSystem_idl

#include "CosNotifyComm.idl"

#include "CosNotifyChannelAdmin.idl"

#include "NotificationIRPConstDefs.idl"

#include "CommonIRPConstDefs.idl"

module NotificationIRPSystem {

/*

 System fails to complete the operation. System can provide reason

 to qualify the exception. The semantics carried in reason

 is outside the scope of this IRP.

 */

 exception Attach { string reason; };

 exception DetachException { string reason; };

 exception GetSubscriptionStatus { string reason; };

 exception GetSubscriptionIds { string reason; };

 exception ChangeSubscriptionFilter { string reason; };

 exception GetNotificationCategories { string reason; };

 exception ParameterNotSupported { string parameter; };

 // name of the unsupported parameter as defined in IDL

 exception InvalidParameter { string parameter; };

 // name of the parameter as defined in IDL

 exception OperationNotSupported {};

 exception AlreadySubscribed {};

 exception AtLeastOneNotificationCategoryNotSupported {};

interface NotificationIRPOperations {

 /* ## Operation: attach_push

 */

 NotificationIRPConstDefs::SubscriptionId attach_push (

 in Object manager_reference,

 in long time_tick,

 in NotificationCategorySet notification_category_set,

 in string filter

)

 raises (Attach, ParameterNotSupported, InvalidParameter, AlreadySubscribed,

 AtLeastOneNotificationCategoryNotSupported);

 /* ## Operation: attach_push_b

 */

NotificationIRPConstDefs::SubscriptionId attach_push_b (

 in Object manager_reference,

 in long time_tick,

 in NotificationCategorySet notification_category_set,

 in string filter,

 out CosNotifyChannelAdmin::SequenceProxyPushSupplier system_reference

)

 raises (Attach,OperationNotSupported,ParameterNotSupported,InvalidParameter,AlreadySubscribed,AtLeastOneNotificationCategoryNotSupported);

 /* ## Operation: attach_pull

 */

NotificationIRPConstDefs::SubscriptionId attach_pull (

 in Object manager_reference,

 in long time_tick,

 in NotificationCategorySet notification_category_set,

 in string filter,

 out CosNotifyChannelAdmin::SequenceProxyPullSupplier system_reference

)

 raises (Attach, OperationNotSupported, ParameterNotSupported,

 InvalidParameter, AlreadySubscribed,

 AtLeastOneNotificationCategoryNotSupported);

 /* ## Operation: detach

 */

void detach (

 in Object manager_reference,

 in string subscription_id

)

 raises (DetachException,InvalidParameter);

 /* ## Operation: get_notification_IRP_version

 */

 CommonIRPConstDefs::VersionNumberSet get_notification_IRP_version ()

 ;

 /* ## Operation: get_subscription_status

 */

NotificationIRPConstDefs::NotificationCategorySet get_subscription_status (

 in string subscription_id,

 out string filter_in_effect,

 out NotificationIRPConstDefs::SubscriptionState subscription_state,

 out long time_tick

)

 raises (GetSubscriptionStatus,OperationNotSupported,InvalidParameter);

 /* ## Operation: get_subscription_ids

 */

 NotificationIRPConstDefs::SubscriptionIdSet get_subscription_ids (

 in Object manager_reference

)

 raises (GetSubscriptionIds,OperationNotSupported,InvalidParameter);

 /* ## Operation: change_subscription_filter

 */

void change_subscription_filter (

in string subscription_id,

in string filter

)

 raises (ChangeSubscriptionFilter,OperationNotSupported,InvalidParameter);

 /* ## Operation: get_notification_categories

 */

 NotificationIRPConstDefs::NotificationCategorySet

 get_notification_categories (

 out NotificationIRPConstDefs::EventTypesSet event_type_list,

 out NotificationIRPConstDefs::ExtendedEventTypesSet

 extended_event_type_list

)

 raises (GetNotificationCategories,OperationNotSupported);

};

};

#endif

�PAGE \# "'Page: '#'�'" �� If this RG Temporary document (Tdoc) should not be submitted to the SA5 plenary, please delete this text (i.e. the SA5 reference).

The Rapporteur should clearly indicate to the SA5 secretary which RG Tdocs should be submitted to the SA5 plenary.

NOTE:	- The Rapporteur will deliver e.g. S5P000015.doc

- The SA5 secretary will allocate the SA5 number and will rename the file to S5-000xyz_S5P000015.doc &

 will compress the file to S5-000xyz.ZIP for storage on the server.

