

Address:

ngmn e. V.

Großer Hasenpfad 30 • 60598 Frankfurt • Germany

Phone +49 69/9 07 49 98-0 • Fax +49 69/9 07 49 98-41

Continuous Delivery in Telecommunication
Network Environments

by NGMN Alliance

Version: 1.0

Date: 5th September 2019

Document Type: Final Deliverable (approved)

Confidentiality Class: P - Public

Editor / Submitter: Nils Mäthner, Simon Baatz, Wolfgang Wirths - Deutsche
Telekom

Jaesuk Ahn, Taeil Choi - SK Telecom

Approved by / Date: NGMN Board, 19th September 2019

© 2019 Next Generation Mobile Networks e.V. All rights reserved. No part of this document may be reproduced or
transmitted in any form or by any means without prior written permission from NGMN e.V.

The information contained in this document represents the current view held by NGMN e.V. on the issues
discussed as of the date of publication. This document is provided “as is” with no warranties whatsoever including
any warranty of merchantability, non-infringement, or fitness for any particular purpose. All liability (including liability
for infringement of any property rights) relating to the use of information in this document is disclaimed. No license,
express or implied, to any intellectual property rights are granted herein. This document is distributed for
informational purposes only and is subject to change without notice. Readers should not design products based on
this document.

Page 2 (16) Continuous Delivery in Telecommunication Network Environments

Version 1.0, 19th September 2019

Executive Summary

Telecommunications industry is undergoing a fundamental transformation to become more software-centric

and cloud-based, paving the way towards a more agile service environment and higher operational

automation.

On the journey to DevOps and applying practices such as Continuous Integration (CI) and Continuous

Delivery (CD), network operators at some point in time hit a challenge we called the ‘air gap’. It is caused by

the fact, that production networks are strictly segregated from test networks and development environment

networks for security and operational reasons. This gap between CI automation in one network zone and

deployment automations in other network zones hinders seamless CD automation.

This white paper focuses on solving the ‘air gap’ challenge.

In subsequent sections this white paper

 Outlines the target scenario for CD in telecommunication network environments

 Identifies key concepts for a model-based and reusable solution

 Examines various aspects of lifecycle management, putting CD into an even larger context

The work builds on practical experience of automating the delivery chain for multiple applications at DT,

complemented by mapping the concept to SKT technology stack. It is motivated by identified needs for

alignment with future industry activities around application and service orchestration and zero touch

automation such as ZSM.

This document is primarily aimed at network service providers and VNF developers who are involved in

establishing joint delivery pipelines for continuous software and configuration rollout. It is also useful to

industry fora for building consensus and driving standardization. We expect this paper to be beneficial for

anyone who wants to have a good reference they can develop their own customized system based upon.

The authors welcome feedback on this white paper and the evolution towards true continuous deployment.

Contact details are provided at the end.

Page 3 (16) Continuous Delivery in Telecommunication Network Environments

Version 1.0, 19th September 2019

Glossary

API Application Programming Interface

CD Continuous Delivery

CI Continuous Integration

ED Environment Descriptor

EMS Element Management System

ETSI European Telecommunications Standards Institute

GUI Graphical User Interface

IETF Internet Engineering Task Force

NFV Network Functions Virtualization (specified by ETSI)

NFV-O NFV-Orchestrator (part of ETSI NFV architecture)

RD Release Descriptor

RDR Release Descriptor Repository

RPM Red Hat Package Manager (software package management format)

SDN Software Defined Network

TOSCA Topology and Orchestration Specification for Cloud Applications (specified by OASIS)

VM Virtual Machine

VNF Virtual Network Function (part of ETSI NFV architecture)

VNFC VNF Component (part of ETSI NFV architecture)

VNF-M VNF-Manager (part of ETSI NFV architecture)

YANG (Yet Another Next Generation) data modelling language specified by IETF

ZSM Zero touch network and Service Management (specified by ETSI)

Page 4 (16) Continuous Delivery in Telecommunication Network Environments

Version 1.0, 19th September 2019

Contents

1 Introduction ... 5
2 Target Scenario .. 6
3 Solution Approach .. 7

3.1 Release Model ... 7
3.2 Environment Model .. 8
3.3 Version Control and CI Integration .. 9
3.4 Deployment Automation .. 10
3.5 Implementation ... 11

4 Additional Considerations .. 13
4.1 Managing Dependencies across Technology Layers ... 13
4.2 Managing Dependencies across Teams .. 14
4.3 Relation to other Automation Domains ... 15

5 Conclusions .. 16

Page 5 (16) Continuous Delivery in Telecommunication Network Environments

Version 1.0, 19th September 2019

1 INTRODUCTION

Telecommunications industry is undergoing a fundamental transformation; networks that traditionally relied on

vendor-specific appliances become more software-centric and cloud-based. Network Functions Virtualisation (NFV)

and Software Defined Networking (SDN) are two key concepts that are synonymous for this change. They pave the

way towards a more agile service environment and higher operational automation. But the change is not only about

technology, it is also about culture and methodologies. Operators’ technology organizations start to transform from

tayloristic structures into more DevOps friendly ones.

Practices such as Continuous Integration (CI) and Continuous Delivery (CD) are seen as typical ingredients to

high-performing technology teams. We observe a massive uptake of CI adoption by teams moving along the path

towards DevOps. That’s great. But when it comes to CD, network operators’ environments present a specific

challenge: the air gap!

Dev Environment Test Environment Prod Environment

Developers Testers Operations

CI Repos

Build

App. B App. A

Test App.

Feasibility / Design Phase Realisation / Acceptance Testing Migration / Rollout

Typical waterfall Project phases

App. B App. A

App. C

As operators’ business is strongly related to the network, there is a strict segregation between production networks

and test networks for operational as well as security reasons. This has also impact on data centers and the ability

to adopt CD practices on Virtual Network Function (VNF) and Network Services levels. Established security rules

advise to connect test systems or virtualized test VNFs to test networks only and to connect production VNFs to

production networks only. Connectivity between production networks and test networks is usually not permitted.

Development and office networks are often further segregated. So how can we move a software release from CI

environment to test and production environments consistently, securely and with automation?

This is our air gap challenge. This paper discusses how we tackle it.

Page 6 (16) Continuous Delivery in Telecommunication Network Environments

Version 1.0, 19th September 2019

2 TARGET SCENARIO

To efficiently enable a DevOps style of working within cross-functional teams, we need to bridge the air gap

between automated builds executed in CI environments and automated deployments executed in test and

production environments. The architectural approach is driven by the following goals:

 Secure

We aim for a solution which is able to move software releases being composed of multiple software

artifacts across network boundaries in a controlled way. This implies that strict security controls can

be established at network boundaries. Filtering of administrative traffic by web application firewalls is

self-evident. Furthermore, attack surface should be minimized by placing activity controls into the

network domain of higher sensitivity and trust, i.e. high trust area is preferably in control to pull data

from lower trust areas.

 CI automation friendly

Working with version control repositories is distinctive for state-of-the-art CI. We aim for a solution

which smoothly picks up release builds from repositories and which can be seamlessly triggered by

CI automation. This gives autonomy to the DevOps teams to decide which steps of delivery they

want to automate, and which steps they prefer to keep under manual control.

 Deployment technology agnostic

Typical for an operator’s system landscape is to deal with elements from multiple vendors, each of

them bringing in specific flavors of deployment and configuration automation. One might prefer Chef

for configuration, others use e.g. Ansible. Some deliver virtual machines to be deployed on

OpenStack using e.g. Heat API, others deliver Containers to be deployed via Kubernetes. Future

proof CD solution should be able to support all those flavors by being sufficiently independent of

them.

 Model driven approach

Last but not least, CD solution should be easy to use from an application’s point of view. A model-

based approach provides abstraction between user perspective and implementation. Such model

should be human readable as well as machine parseable.

Page 7 (16) Continuous Delivery in Telecommunication Network Environments

Version 1.0, 19th September 2019

3 SOLUTION APPROACH

3.1 Release Model

Modelling starts with the question: What is a release?

On a semantic level, we define a release as the complete set of items needed for instantiating a software-based

function. Granularity of such function depends on decisions of responsible DevOps team how they want to shape

their release strategy and dependency management. The team might prefer to manage a complete VNF as single

release with all internal dependencies resolved by CI or to deliver VNF components as independent releases and

manage dependencies outside.

On a structural level, a release is described by a list of artifacts, each of them with its individual version. We call this

list a release descriptor. A release descriptor can be compared to a packaging list; when we receive a shipment

from an online store, it comes with a list of items that should be inside. In our case the release descriptor is a yaml

file for sake of being human readable and machine parseable.

Following is an example of a simple release descriptor:

descriptor_version: 1
name: application
version: 1.1.0
summary: The main application
vendor: Acme
artifacts:
 helm/application-1.1.0.tgz:
 type: file
 size: 1329
 sha256: fa454198b29cb4adbdaf2a26169a45b72a548e29b77aa157530b33420d264192
 acme/application_exporter@sha256:ca2b7dd0b0ce0575581b78412281daca98e19faf78e63737c2
dee41b1272777f:
 type: docker
 tags:
 - application-1.1.0
 - 0.2.7
 acme/application@sha256:841efc80d56e4b67b223d0a07525ba622587433bef7820fef9e9089f386
00282:
 type: docker
 tags:
 - application-1.1.0
 - 1.1.0

A release is identified by its name and version, i.e. application and 1.0.0 in this example. As a common

practice, we use semantic versioning for releases. Additionally, the release descriptor has meta-data fields that

allow to describe the release further, like summary and vendor.

The artifacts mapping is the ‘core’ of the release descriptor defining the artifacts the release is comprised of. Our

example release consists of one file and two Docker images. An important property of release descriptors is to pin

the artifacts by a cryptographic digest. This allows to verify the integrity of a release before delivering it. The digest

Page 8 (16) Continuous Delivery in Telecommunication Network Environments

Version 1.0, 19th September 2019

must be given explicitly by an attribute (like for file artifacts) or may be part of the native notation (like for Docker

artifacts)

However, the Docker CAS (Content Addressable Storage) notation is cumbersome to work with. Therefore, the

release descriptor allows to specify tags that may be used to retrieve the respective image.

To ease the generation of release descriptors in the proper format, we provide additional tooling to developers and

vendors. It can be used to generate release descriptors based on local files, artifacts in repository servers and

Docker images in Docker registries.

3.2 Environment Model

Next question is to model where the release should go to. Releases are deployed to different environments which

may vary by project. Most projects have at least one test environment and one production environment. In addition,

there might be a need for a kind of stable test environment used by other teams or a pilot environment used for

friendly user validation in pre-production scenarios.

We model assignment of releases to environments by means of a declaration we call environment descriptor.

Placing a release reference (i.e. the reference to a release descriptor) into an environment descriptor semantically

means to approve that the release shall be visible to this environment. Releases are always made available as a

whole. Our solution verifies the availability and integrity of the specified artifacts before adding it to an environment.

On a structural level, an environment descriptor is a list of releases, in our case a yaml file too.

application-rdr

application-1.1.0.yml

application-1.2.0.yml

documentation-rdr

utils-1.0.2.yml

utils-1.0.3.yml

man_pages-1.2.4.yml

man_pages-1.2.6.yml

environments

test.yml

prod.yml

The environment descriptor on a first level refers to a release descriptor repository (in this example application-

rdr). On the next level, a given release is referred with all versions that shall be visible in the target environment in

this case application-1.2.0, utils-1.0.3 and man_pages-1.2.6:

Name of the descriptor file: prod.yaml

application-rdr:
 application:
 -1.2.0

Page 9 (16) Continuous Delivery in Telecommunication Network Environments

Version 1.0, 19th September 2019

 utils:
 -1.0.3

documentation-rdr:
 man_pages:
 -1.2.6

While the above example describes the general model, the technology stack you are based on, can motivate

variations in RD and ED detailed design. Aiming on support of multiple technology stacks favors RD design to be

agnostic of technology stack as described above. Optimizing for a dedicated technology stack may prefer deeper

integration and reuse of its native concepts.

For example, in SKT scenario delivering "OpenStack and related Infrastructure software" on top of Kubernetes

cluster, a concept of explicit ED is applied in combination with RD based on native package descriptions such as

helm charts. Note that the versions in the example are arbitrary version, not a real version.

Deployment-1.0.0

 docker images 1.0.0 (artifact with versioning)

 helm charts 1.0.0 (a package descriptor, managed as artifact with versioning)

 armada manifests 1.0.0 (a manifest, managed as artifact with versioning)

 kubespray 2.0.0 (deployment code for kubernetes, it also has list of necessary docker images)

 ceph-ansible 2.1.0 (deployment code for ceph)

 bifrost-ansible 2.2.0 (deployment code for baremetal provisioning)

Armada is one of sub-projects in Airship project. Armada manifest contains list of helm charts with their versions,

and in turn, each helm chart contains docker image tags used in that chart. In this way, deployment 1.0.0 acts as

an explicit ED and each element has its native RD.

Currently, SKT’s looking into cloud native technologies to do everything in declarative way from bare metal

provisioning up to OpenStack and other related software. In other words, a standard manifest will be given a set of

APIs to deploy the entire infrastructure and related software. In this way, ED and RD role will be easily combined.

3.3 Version Control and CI Integration

Another key concept is putting release descriptors and environment descriptors under version control. They are

stored in git repositories for the following reasons:

 Access control and authorization to git repositories is a “solved problem” in enterprise environments.

Often there are requirements to differentiate access to steering repositories. It is usually desirable to

enable suppliers to directly upload artifacts and related release descriptors to the CI collaboration

platform. But policies controlling artifact propagation into production environment should be limited to

operator’s operational staff. Furthermore, multi-vendor scenarios might require segregating vendor-

related repositories from each other. These requirements can be met by means of GitLab role-based

Page 10 (16) Continuous Delivery in Telecommunication Network Environments

Version 1.0, 19th September 2019

access and a repository structure adjusted to organizational needs.

The release descriptor repository and the environment repositories can be split and managed by

dedicated subgroups that can add/modify/delete release and environment descriptors.

 git provides a change history out of the box.

The delivery pipeline service itself is automated using steering information that is kept under version

control to control what artifact release shall be visible in a given target environment. Keeping the

delivery pipeline control information under version control guarantees that any change that is rolled

out is auditable and documented.

 git allows to sign commits, which may be used to verify the integrity of releases and to further

authorize promotion of releases into environments. This is done by provisioning the delivery pipeline

with the public keys of the project members who commit into the steering repositories, e.g. add a new

release descriptor. The delivery pipeline service would first verify the commit signature before parsing

the steering information.

Additionally, this concept nicely integrates with CI automation based on Jenkins or GitLab CI.

Although release descriptors and environment descriptors can be written manually by using any editor, the intention

is to generate them automatically as far as possible. Especially writing release descriptors manually might become

error prone if the number of artifacts gets large. Formatting the release descriptor file and writing it to the respective

repository is automated by means of a generator script – so called rd tool – with input of the list of artifacts to be

packaged. Since your CI automation is in possession of this information anyway, creating the release descriptor by

a Jenkins or GitLab CI job is preferred by most teams.

Promoting a release to a specific environment means adding its reference to the respective environment descriptor.

This is supported by rd tool as well and thus, enables automatic release propagation driven by a Jenkins or GitLab

CI job.

Now a DevOps team has the freedom to easily decide which promotion steps they want to run automatically, and

which steps they want to restrict to manual control.

3.4 Deployment Automation

We observe a huge variety of deployment and configuration automation solutions. This is due to the fact that a

network operator makes use of network elements sourced from different suppliers, each of them having its own

software technology strategy. Typical examples of technologies coming into play are

 Spinning up virtual machines by delivering VM images

 Installing application software on top of an operating system by means of RPMs

 Configuring software stacks by means of tools like Chef, Puppet, Ansible

 Configuring network elements by means of Netconf/YANG

 Managing VNF deployments via OpenStack Heat or TOSCA

Page 11 (16) Continuous Delivery in Telecommunication Network Environments

Version 1.0, 19th September 2019

 Managing container deployments via Kubernetes

The delivery pipeline should be able to support all of these options. Thus, enabling generic file formats such as zip,

tar.gz and VM images is a minimum requirement. In addition, supporting frequently used repository formats such

as RPM/yum and Docker registry API provides significant value to application DevOps teams.

Referring to container technology as an example and the release descriptor example described in section 3.1

above, the application container can be retrieved (after login with the proper credentials) in the production

environment as follows:

docker pull acme-prod-docker.prod.registry.dt/acme/application:1.1.0

Often releases make use of multiple artifact formats being executed by different entities. As an example, application

software might by delivered as RPMs to the application nodes directly, while configuration goes to an element

manager or orchestrator as tar.gz. In any case, version dependencies across these places of execution need to be

resolved.

Last but not least, it should be noted that the concept of environment descriptor can be easily extended to steer

auto-deploy / auto-update capabilities of deployment automation functions.

3.5 Implementation

As outlined in the introduction, the main reason for the strict segregation between different network zones is due to

security rules. In brief, it comes down to environments such as DEV, TEST and PROD shall not be connected, in

order to apply sufficient control to any type of data ending up in production.

Our approach to deal with this is following:

We bridge the gap by establishing project / team specific delivery pipelines.

This is done by deploying a dedicated Application Staging Server which holds all software artifacts for a given

project and mirror servers in management zones of the respective target environments.

The connectivity between the environments only exists in form a highly controlled and secured connectivity

between the mirror servers and the staging servers.

Systems in the protected environments such a test and production don´t connect to systems in development

environment or internet but instead retrieve the relevant artifacts from mirror servers in their respective

management environment.

To reduce security risks to an absolute minimum several measures and principles are in place:

 Mirror servers and staging servers authenticate each other based on signed certificates

 Mirror servers only offer segregated repositories to a given project per environment.

 Access to the repositories on the mirror servers is based on digest authentication with

username/password.

 Mirror Servers authenticate towards the project clients via certificates

 Connections are encrypted via SSL/TLS certificates

 All deployed elements including the web application firewalls use SELinux in “enforcing” mode.

Page 12 (16) Continuous Delivery in Telecommunication Network Environments

Version 1.0, 19th September 2019

This implementation proposal was agreed with security experts as an approach that allows agile software delivery

teams to rollout change continuously (several times a day) in an automated way while maintaining a high level of

security across the different network zones. Nevertheless, it is just one implementation approach for illustration and

there may be others as well.

Solution architecture derived from above mentioned goals is depicted below. It is composed of the following

elements:

 Staging server(s) implement the role of staging policy control. They are connected to upstream

artifact repositories in order to pull artifacts from the artifact repositories (Artifactory in our case).

Application DevOps teams can control their individual staging policies via steering repositories on

GitLab – fully self-service.

 Mirrors are placed into the target network zones according to security and operational needs. This

facilitates easy network access from deployment sites to the mirrors.

Mirrors can offer multiple APIs such as simple web server, RPM repository and Docker registry.

 Network borders are protected by filtering functions, so called Web Application Firewalls (WAF).

These only allow the specific paths to the repositories and log and deny any other activities.

Dev Environment Test Environment Prod Environment

Developers
Suppliers

Testers
Supplier

Operations

CI Repos

Build

App. B App. A

App. C

App. B App. A

App. C
App. C

Staging
Server

Mirror
Server

Mirror
ServerCD Pipelines

(Web Application Firewalls are not depicted above)

The functionality of staging server outlined above can be implemented based on open source projects such as Pulp

(https://pulpproject.org/). Pulp is a platform for managing repositories and does all the “heavy lifting” for our artifact

repositories. The staging control is implemented as a service that monitors the steering repositories and manages

repositories and artifacts accordingly using Pulp’s REST API.

https://pulpproject.org/

Page 13 (16) Continuous Delivery in Telecommunication Network Environments

Version 1.0, 19th September 2019

4 ADDITIONAL CONSIDERATIONS

4.1 Managing Dependencies across Technology Layers

Often releases are composed of artifacts coming from different sources and being executed by different entities.

Typical scenarios are

 Application (VNF) is delivered by a supplier as world market product while at least part of

configuration is managed by the operator.

 Application software is executed on service nodes while configuration packages might be executed

by management nodes; there might be multiple different management nodes involved if cloud

orchestration or service orchestration comes into play.

Respective dependencies need to be managed, see visual below.

Different versioning and packaging strategies can be applied to meet given organizational need. Teams practicing

full DevOps may prefer to package software and configuration into a single release package. Advantage of this

approach is that all dependencies can be resolved and tested by CI automation. Alternatively, teams facing a

responsibility split between software delivered by a supplier’s product unit in one release package and configuration

delivered by an operator’s integration team might prefer to keep delivery processes more decoupled by using

independent versioning schema. As a consequence, they need to validate dependencies within delivery and

deployment automation.

Page 14 (16) Continuous Delivery in Telecommunication Network Environments

Version 1.0, 19th September 2019

4.2 Managing Dependencies across Teams

When teams move to a DevOps way of working internally, cross-team collaboration needs to change as well, in

order to not become an impediment. Traditional collaboration styles using ticketing systems create a lot of human

workload on both sides, provider of a service as well as consumer of service.

An ideal target scenario is collaboration via API which allows to provide services by automation and to consume

services by automation. Unfortunately, this is not always achievable with reasonable effort.

An interesting concept for streamlined cross-team collaboration is called GitOps as outlined by Thomas A.

Limoncelli (see https://queue.acm.org/detail.cfm?id=3237207). It nicely plugs into our delivery pipelines and

complements them as depicted below.

Example below depicts Limoncelli’s use case where Team A cannot achieve their goal by changing their own

application in an isolated way, but depend on a configuration change to be rolled out by Team B on their application

too. Managing such team to team interaction via git pull request is the key idea of GitOps.

All in all, resilient dependency management across DevOps teams will involve two practices, ‘forward’ control via

versioning as well as ‘feedback’ loop utilizing shared test cases, which again can be managed collaboratively via

version control repositories.

https://queue.acm.org/detail.cfm?id=3237207

Page 15 (16) Continuous Delivery in Telecommunication Network Environments

Version 1.0, 19th September 2019

4.3 Relation to other Automation Domains

As automation becomes ubiquitous in network operators’ processes, it gets important to understand how CI/CD

automation interferes with other automation areas, especially orchestration and ZSM.

Fundamentally, we distinguish between artifact lifecycle and instance lifecycle. Artifact lifecycle is subject to version

control and managed via CI/CD automation. Network services and VNF instance lifecycle is the result of artifact

execution by orchestration functions like NFV-Orchestrator or VNF Manager (as defined by ETSI MANO

architecture), classic Element Management System (EMS), Kubernetes or so on. In order to efficiently interwork

with CI/CD workflows, orchestration solutions need to clearly separate ‘design-time’ activities and artifacts from

‘run-time’ activities and states (terminology borrowed from ONAP architecture

https://wiki.onap.org/display/DW/Architecture). This is essential for applying version control to all artifacts created

at design-time and to execute run-time automation fully data-driven by repository content, not by GUI captured

content directly. A good example for following this architecture paradigm is ONAP (https://www.onap.org/).

In contrast, some legacy orchestration solutions have been built GUI centric and tend to force the user to manually

do same steps in a production environment as they have already been done (maybe with other data partially) on a

test environment before. This introduces repeated and error-prone manual work. The safety of version control and

acceleration potential of CI/CD automation would be not leveraged in such scenario.

https://wiki.onap.org/display/DW/Architecture
https://www.onap.org/

Page 16 (16) Continuous Delivery in Telecommunication Network Environments

Version 1.0, 19th September 2019

5 CONCLUSIONS

On the journey to DevOps and applying CI/CD practices, network operators at some point in time hit a challenge

we called the ‘air gap’. It is caused by the fact, that production networks are strictly segregated from test networks

and development environment networks for security and operational reasons. This ‘air gap’ between CI automation

in one network zone and deployment automations in other network zones hinders seamless CD automation.

Finding a solution for this challenge requires to meet strict security requirements while bridging network boundaries.

The concept described above has been designed in close collaboration of security experts and CI/CD automation

experts. Is enables smooth and seamless automation pipelines connecting software suppliers, internal DevOps

teams and deployment environments such as test environments and production environments. The concept takes

advantage of cloud infrastructures and cloudified applications, but it is not limited to them. It also works well with

classic data centers providing virtual machines or even physical network elements.

Although primarily focusing on delivery pipelines per application (as a service to respective DevOps team), the

concept provides capabilities having the potential to also improve cross-team collaboration and dependency

management, which is a crucial area for network operator technology organizations on their way of DevOps

transformation.

The implementation is based on open source to large extend. Community project Pulp is complemented by some

own code implementing business logic for pipeline handling. This code is private for now but could be published

under open source license if interest arises.

For further questions and feedback please contact the NGMN Office.

mailto:office@ngmn.org?subject=Continuous%20Delivery%20White%20Paper

