
3GPP TSG-SA5 (Telecom Management)

Meeting #13, Washington, D.C., 24 - 28 July 2000
S5C000085

CHANGE REQUEST
Please see embedded help file at the bottom of this
page for instructions on how to fill in this form correctly.

32.106
CR
02
Current Version:
V3.0.1c

GSM (AA.BB) or 3G (AA.BBB) specification number (

(CR number as allocated by MCC support team

For submission to:
SA#8
for approval
X

strategic

(for SMG

list expected approval meeting # here (
for information

non-strategic

use only)

Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc

Proposed change affects:
(U)SIM

ME

UTRAN / Radio
X
Core Network

(at least one should be marked with an X)

Source:
Lucent Technologies
Date:
July 2000

Subject:
Corrections to TS 32.106-3 Notification IRP CORBA Solution Set

Work item:
32.106 3G Configuration Management

Category:
F
Correction
X
Release:
Phase 2

A
Corresponds to a correction in an earlier release

Release 96

(only one category
B
Addition of feature

Release 97

shall be marked
C
Functional modification of feature

Release 98

with an X)
D
Editorial modification

Release 99
X

Release 00

Reason for
change:

This contribution requests the following updates to the Notification Integration Reference Point CORBA Solution Set document:

1. Recommend removal of attach_push interface.

2. Adding #pragma statement.

3. Spelling corrections.

4. Updates from comments to Alarm IRP CORBA Solution Set.

5. Clarification of behavior when no IRPManagers are subscribed.

6. Clarification on IRPAgent wide configuration parameters.

7. Clarification on supported event types.

8. Clarification on Get Notification IRP Version exceptions.

Clauses affected:
4.1.1, 4.1.2, 5.1, 5.2, 6, 7.1, 7.2, 7.3 and Appendix A

Other specs
Other 3G core specifications
X
(List of CRs:
S5F0000x2

affected:
Other GSM core specifications

(List of CRs:

MS test specifications

(List of CRs:

BSS test specifications

(List of CRs:

O&M specifications

(List of CRs:

Other
comments:
See further explanations in accompanying document

4
Architectural Features

The overall architectural feature of Notification IRP is specified in Reference [5]. This clause specifies features that are specific to the CORBA solution set.

4.1
Notification Services

In the CORBA solution set, notifications are emitted by IRPAgent using CORBA Notification service [2].

CORBA Event service [3] provides event routing and distribution capabilities. CORBA Notification service provides, in addition to Event service, event filtering and support for quality of service as well.

A subset of CORBA Notification Services shall be used to support the implementation of notification. This CORBA Notification service subset, in terms of OMG Notification Service [2] defined methods, is identified in this document.

4.1.1
Support of Push and Pull Interface

The IRPAgent shall support the OMG Notification push interface model. Additionally, it may support the OMG Notification pull interface model as well.
IRPAgents should emit notifications even when there are no IRPManagers subscribed. This will allow the planned future capability of Telecom Log support.
4.1.2
Support of multiple notifications in one push operation

For efficiency, IRPAgent uses the following OMG Notification Service [2] defined interface to pack multiple notifications and push them to IRPManager using one method push_structured_events. The method takes as input a parameter of type EventBatch as defined in the OMG CosNotification module [2]. This data type is a sequence of Structured Events (see clause 4). Upon invocation, this parameter will contain a sequence of Structured Events being delivered to IRPManager by IRPAgent to which it is connected.

The maximum number of events that will be transmitted within a single invocation of this operation is controlled by IRPAgent wide configuration parameter. The amount of time IRPAgent will accumulate individual events into the sequence before invoking this operation is controlled by IRPAgent wide configuration parameter as well.
IRPAgent-wide configuration parameters are not part of Release 1999, therefore the requirements related to these parameters are not valid for Release 1999.
IRPAgent may push EventBatch with only one Structured Event.

The OMG Notification Service [2] defined IDL module is shown below.

module CosNotifyComm {

…

Interface SequencePushConsumer : NotifyPublish {

void push_structured_events(

in CosNotification::EventBatch notifications)

raises(CosEventComm::Disconnected);

…

}; // SequencePushConsumer

…

}; // CosNotifyComm

5
Mapping

5.1
Operation mapping

Notification IRP: IS [5] defines semantics of operations visible across this IRP.

The table below maps the operations defined in Notification IRP: IS [5] to their equivalents (methods) in this SS. It also qualifies if a method is mandatory (M) or optional (O)

Table 1: Mapping from IS Operation to SS Equivalents

IS Operations in [5]
SS Methods
Qualifier

subscribe
attach_push, attach_pull
M, O

unsubscribe
detach
M

get Notification IRPVersion
get_notification_IRP_version
M

get Subscription Status
get_subscription_status
O

getSubscriptionIds
get_subscription_ids
O

change Subscription Filter

If subscription is established using attach_push method, the SS equivalent shall be modify_constraints. The method is defined by OMG Notification Service Filter Interface [2]. The IDL specification of this method is not included in the Appendix.
If subscription is established using attach_pull method, the SS equivalent shall be modify_constraints. The method is defined by OMG Notification Service Filter Interface [2]. The IDL specification of this method is not included in the Appendix. If IRPAgent supports the optional attach_pull method, it shall support this method as mandatory.
See box on the left.

suspend Subscription

If subscription is established using attach_push, the SS equivalent shall be suspend_connection. This method is defined by OMG Notification Service [2]. The IDL specification of this method is not included in the Appendix.
If subscription is established using attach_pull, there is no SS equivalent.
See box on the left

resume Subscription

If subscription is established using attach_push, the SS equivalent shall be resume_connection. This method is defined by OMG Notification Service [2]. The IDL specification of this method is not included in the Appendix.
If subscription is established using attach_pull, there is no SS equivalent.
See box on the left

get Notification Categories
get_notification_categories
O

5.2 Operation parameter mapping

Reference [5] defines semantics of parameters carried in operations across the Notification IRP. The tables below indicate the mapping of these parameters, as per operation, to their equivalents defined in this SS.

Table 3: Mapping from IS subscribe parameters to SS attach_push equivalents
IS Operation parameter
SS Method parameter
Qualifier

managerReference
Object manager_reference
M

timeTick
long time_tick
O

notification Categories
NotificationCategorySet notification_category_set
O

filter
string filter
O

subscriptionId
Return value of type SubscriptionId
M

Not specified in IS
CosNotifyChannelAdmin::SequenceProxyPushSupplier system_reference (See note below table.)
M

status
Attach, OperationNotSupported, ParameterNotSupported, InvalidParameter, AlreadySubscribed, AtLeastOneNotificationCategoryNotSupported
M

Note: The grammar of the filter string is extended_TCL defined by OMG Notification Service [2]. This grammar shall be the only one used for Alarm IRP: CORBA SS.

Note: IRPAgent provides this reference to which IRPManager can invoke methods to manage the subscription. Valid methods are not defined in this IRP. OMG CORBA Notification Service defines these methods. Read interface SequencePushSupplier:proxySupplier, CosNotifyComm::SequencePushSupplier{}. IRPManager is expected to invoke connect_sequence_push_consumer() of this interface to connect its own cosNotifyComm::sequencePushConsummer with this reference. After successful connection, IRPAgent pushes sequence of Structured Events towards IRPManager.

Table 4: Mapping from IS subscribe parameters to SS attach_pull equivalents
IS Operation parameter
SS Method parameter
Qualifier

managerReference
Object manager_reference
M

timeTick
long time_tick
O

notification Categories
NotificationCategorySet notification_category_set
O

filter
string filter
O

subscriptionId
Return value of type SubscriptionId
M

Not specified in IS.
CosNotifyChannelAdmin::SequenceProxyPullSupplier system_reference
M

status
Attach, OperationNotSupported, ParameterNotSupported, InvalidParameter, AlreadySubscribed, AtLeastOneNotificationCategoryNotSupported
M

Table 5: Mapping from IS unsubscribe parameters to SS equivalents
IS Operation parameter
SS Method parameter
Qualifier

managerReference
Object manager_reference
M

subscriptionId
string subscription_id
O

status
Detach,InvalidParameter
M

Table 6: Mapping from IS getNotificationIRPVersion parameters to SS equivalents
IS Operation parameter
SS Method parameter
Qualifier

versionNumber List
Return value of type CommonIRPConstDefs::VersionNumberSet
M

status
GetNotificationIRPVersion
M

Table 7: Mapping from IS getSubscriptionStatus parameters to SS equivalents
IS Operation parameter
SS Method parameter
Qualifier

subscriptionId
string subscription_id
M

notification CategoryList
Return value of type NotificationIRPConstDefs::NotificationCategorySet
M

filterInEffect
string filter_in_effect
O

subscription State
NotificationIRPConstDef::SubscriptionState subscription_state
O

timeTick
long time_tick
O

status
GetSubscriptionStatus,OperationNotSupported,InvalidParameter
M

Table 8: Mapping from IS getSubscriptionIds parameters to SS equivalents

IS Operation parameter
SS Method parameter
Qualifier

managerReference
Object manager_reference
M

subscriptionIdList
Return value of type NotificationIRPConstDefs::SubscriptionIdSet
M

status
GetSubscriptionIds,OperationNotSupported,InvalidParameter
M

Table 9: Mapping from IS changeSubscriptionFilter parameters to SS equivalents
IS Operation parameter
SS Method parameter
Qualifier

subscriptionId
string subscription_id
M

filter
string filter
M

status
ChangeSubscriptionFilter,OperationNotSupported,InvalidParameter
M

Table 10: Mapping from IS suspendSubscription parameters to SS equivalents
IS Operation parameter
SS Method parameter
Qualifier

subscriptionId

If subscription is established using attach_push, the SS equivalent method is suspend_connection. This method is defined by OMG Notification Service [2] and requires no parameter. Therefore, there is no SS equivalent for this IS parameter.

If subscription is established using attach_pull, there is no SS equivalent method. Therefore, there is no SS equivalent for this IS parameter.
M

status

If subscription is established using attach_push, the SS equivalent method is suspend_connection. This method is defined by OMG Notification Service [2] and it returns a void. Therefore, there is no SS equivalent for this IS parameter. This suspend_connection method can raise OMG Notification Service [2] defined exception called ConnectionAlreadyInactive.

If subscription is established using attach_pull, there is no SS equivalent method. Therefore, there is no SS equivalent for this IS parameter.
M

Table 11: Mapping from IS resumeSubscription parameters to SS equivalents
IS Operation parameter
SS Method parameter
Qualifier

subscriptionId

If subscription is established using attach_push, the SS equivalent method is resume_connection. This method is defined by OMG Notification Service [2] and requires no parameter. Therefore, there is no SS equivalent for this IS parameter.

If subscription is established using attach_pull, there is no SS equivalent method. Therefore, there is no SS equivalent for this IS parameter.
M

status

If subscription is established using attach_push, the SS equivalent method is resume_connection. This method is defined by OMG Notification Service [2] and returns a void. Therefore, there is no SS equivalent for this IS parameter. This resume_connection method can raise OMG Notification Service [2] defined exception called ConnectionAlreadyActive.

If subscription is established using attach_pull, there is no SS equivalent method. Therefore, there is no SS equivalent for this IS parameter.
M

Table 12: Mapping from IS getNotificationCategories parameters to SS equivalents
IS Operation parameter
SS Method parameter
Qualifier

notification CategoryList
Return value of type NotificationIRPConstDefs::NotificationCategorySet
M

eventTypeList
NotificationIRPConstDefs::EventTypesSet event_type_list
O

extendedEvent TypeList
NotificationIRPConstDefs::ExtendedEventTypesSet extended_event_type_list
O

status
GetNotificationCategories,OperationNotSupported
M

5.3
Notification parameter mapping

Notification IRP: IS [5] defines a generic notify and its parameters. This SS does not provide the mapping of these parameters to their CORBA SS equivalents. Other IRPs such as Alarm IRP: IS [6] extends the generic notify for its specific use. Their corresponding SS documents shall define the mapping from their specific notification parameters (defined in their IS document) to their SS equivalents. The SS documents shall qualify their SS equivalents as well.

5.4
Attribute mapping

Notification IRP: IS [5] defines the semantics of common attributes carried in notifications. This SS does not provide the mapping of these attributes to their CORBA SS equivalents. Other IRPs such as Alarm IRP: IS [6] identify and qualify these common attributes for use in their environment. Their corresponding SS documents define the mapping of these attributes to their SS equivalents.

6
Use of OMG Notification StructuredEvent
Notification IRP: IS [5] defines attributes that are commonly present in notifications of all notification categories such as notifications emitted from Alarm IRP IRPAgent.

In CORBA SS, OMG defined StructuredEvent [2] is used to carry notification. This clause identifies the OMG defined StructuredEvent attributes that carry the common attributes defined in [5].

The composition of OMG StructuredEvent is:

Header

 Fixed Header

 Domain_name

 Type_name

 Event_name

 Variable Header

Body

 Filterable_body_fields

 Remaining_body

Following table shows the OMG Structured Event attributes (middle column) that are used to carry the common notification attributes defined in Notification IRP: IS [5].

Table 13: Attributes of StructuredEvent
Common attributes defined in Notification IRP: IS [5]
Attribute defined by OMG Structured Event
Comment

There is no corresponding SS attribute.
domain_name
It indicates that the StructuredEvent, carried in the Notification, is defined by a specific 3GPP IRP such as Alarm IRP, as opposed to OMG specified Telecommunication, healthcare, utility, finance, etc. It indicates the CORBA SS version number as well.

It is a string. Legal values are defined in module.

For Alarm IRP version 1:1, the value is ALARM_IRP_VERSION_1_1.

eventType
type_name
It indicates event types of this notification. The semantics of the event type is defined by ITU-T TMN Recommendations. Each IRP, such as Alarm IRP IS version 1, shall identify the ITU-T defined event types for their use. That document shall define the values of the identified event Types as well.

Dependent on the notification category, possible legal values are:

COMMUNICATIONS_ALARM (section 8.1.1 of [8]), QUALITY_OF_SERVICE_ALARM (section 8.1.1 of [8]), PROCESSING_ERROR_ALARM (section 8.1.1 of [8]), EQUIPMENT_ALARM (section 8.1.1 of [8]), ENVIRONMENTAL_ALARM (section 8.1.1 of [8]), ALARM LIST REBUILT (section 5.3 of [7]).

The bracketed number of each type indicates the reference where the semantics of the type is specified.

It is a string. See individual IRP SS module for legal values used by that IRP version.

Since each IRP except Notification IRP specifies its own set of event type, the values specified by each IRP are only unique within one IRP. For uniqueness among all IRPs’ specifications, the values of event type shall be coupled with the notification category, the value carried in domain_name of the same notification.

extended EventType
event_name
The legal values carried in this attribute are specified by the IRP using the notification. For example, Alarm IRP: CORBA SS [7] defines and uses the following values:

NOTIFY_FM_NEW_ALARM, NOTIFY_FM_CHANGED_ALARM, NOTIFY_FM_ACK_STATE_CHANGED and NOTIFY_FM_CLEARED_ALARM .
It is a string. See individual IRP SS module for legal values used by that IRP version.

Since each IRP except Notification IRP specifies its own set of extended event type, the values specified by each IRP are only unique within one IRP. For uniqueness among all IRPs’ specification, the values of extended event type shall be coupled with the notification category, the value carried in domain_name of the same notification.

There is no corresponding SS attribute.
variable Header

managed Object Class, managed Object Instance
One NV (name-value) pair of filterable_ body_fields
Name of NV pair is a string, NV_MANAGED_OBJECT_INSTANCE.

Value of NV pair is a string. Syntax and semantics of this string conform to the Managed Object string representation specified in [4]. Note that two SS attributes are carried in this one NV pair since the string representation specified in [4] can convey the semantics of managedObjectClass and managedObjectInstance in one string.

notificationId
One NV pair of filterable_ body_fields
Name of NV pair is a string, NV_NOTIFICATION_ID.

Value of NV pair is an unsigned long.

eventTime
One NV pair of filterable_ body_fields
Name of NV pair is a string, NV_EVENT_TIME.

Value of NV pair is an IRPTime.

systemDN
One NV pair of filterable_ body_fields
Name of NV pair is a string, NV_SYSTEM_DN.

Value of NV pair is a string. Syntax and semantics of this string conforms to the Managed Object string representation specified in [4].

There is no corresponding SS attribute.
remaining_ Body

7
IRPAgent’s Behaviour

This clause describes some IRPAgent’s behaviour not captured by IDL.

7.1
Subscription

IRPManager can invoke multiple attach_push or multiple attach_pull using different manager_reference(s). As far as IRPAgent is concerned, the IRPAgent will emit notifications to multiple "places" with their independent filter requirements. IRPAgent will not know if the notifications are going to the same IRPManager.

If IRPManager invokes attach_push or attach_pull using the same manager_reference and with an already subscribed notification_category, IRPAgent shall raise AlreadySubscribed exception to all invocations except one.
IRPManager can invoke multiple attach_push using the same manager_reference and with one or more not-yet-subscribed notification_categories. In this case, if IRPAgent supports all the notification categories requested, IRPAgent shall accept the invocation; otherwise, it raises AtLeastOneNotificationCategoryNotSupported exception. IRPAgent shall have similar behaviour for attach_pull.

When IRPManager is in subscription by invoking attach_push, IRPManager can change the filter constraint during subscription using the OMG defined Notification Service Filter Interface. IRPManager shall not use change_subscription_filter; otherwise it shall get an exception.
7.2
IRPAgent Supports Multiple Categories of Notifications

IRPAgent may emit multiple categories of Notifications. IRPAgent may have mechanism for IRPManager to pull for notifications of multiple categories.

IRPManager can query IRPAgent about the categories of notifications supported by using get_notification_categories.

IRPManager uses a parameter, notification_categories, in attach_push and attach_pull to specify one or more categories of notifications wanted.

IRPManager uses a zero-length sequence in notification_categories of attach_push and attach_pull to specify that all IRPAgent supported categories of notifications are wanted. If IRPManager uses attach_push with zero-length sequence in notification_categories and if the operation is successful, IRPAgent shall reject subsequent attach_push operation, regardless if the notification_categories contains a zero-length sequence or one or more specific notification categories. IRPAgent shall have similar behaviour for attach_pull.

7.3
IRPAgent’s Integrity Risk of attach_push Method

In the case that IRPAgent implements this method by extending or using OMG compliant Notification Service, the following IRPManager behaviour illustrates a risk to IRPAgent’s integrity.

Given the object reference (IOR) of the SequenceProxyPushSupplier (as the mandatory output parameter of the subject method), IRPManager can invoke sequenceProxyPushSupplier.MyAdmin method.

IRPManager can then obtain the consumer admin object of the proxy. Then IRPManager can invoke consumerAdmin.MyChannel to get the IOR of the Notification Channel. IRPManager then can call eventChannel.MyFactory which will provide IRPManager the IOR of the EventChannelFactory itself. IRPManager can then able to invoke methods directly on the EventChannelFactory, like get_all_channels which lists all channel numbers and create_channel which allows IRPManager to create any number of additional channels.

A malicious IRPManager can, given access to the EventChannelFactory, get a list of existing channels and start connecting them together at random thus compromising the IRPAgent’s integrity. Deployment of this attach_push needs strong authentication and authorisation mechanism in place.

Note that attach_push is mandatory. IRPAgent compliant to this IRP shall implement it.
8
Example

The following is an example of Notification related to alarm.

If type_name == NOTIFY_FM_NEW_ALARM, then the filterable_body_field attributes can contain:

{

systemDN, “…”;

alarmId, “abce232”,

notificationId, 4467,

managedObjectInstance, “…”,

eventTime, …,

probableCause, 3,

perceivedSeverity, 2,

specificProblems, “xxx”,

additionalText, “…”,

…

}

Appendix A: Notification IRP CORBA IDL

/* ## Module: CommonIRPConstDefs

This module contains definitions commonly used among all IRPs such as Alarm IRP.

==

*/

#ifndef CommonIRPConstDefs_idl

#define CommonIRPConstDefs_idl

#include <TimeBase.idl>

#pragma prefix "3gpp.org"
module CommonIRPConstDefs {

 /*

 Definition imported from CosTime. The time refers to time in Greenwich

 Time Zone. It also consists of a time displacement factor in the form

 of minutes of displacement from the Greenwich Meridian.

 */

 typedef TimeBase::UtcT IRPTime;

 enum Signal {OK, Failure, PartialFailure};

 typedef sequence <string> VersionNumberSet;

};

#endif

/* ## Module: NotificationIRPConstDefs

This module contains definitions specific to Notification IRP.

==

*/

#ifndef NotificationIRPConstDefs_idl

#define NotificationIRPConstDefs_idl

module NotificationIRPConstDefs {

 /*

 This is a string sequence identifying notification categories.

 A notification category is identified by the IRP name and its version.

 */

 typedef sequence <string> NotificationCategorySet;

 /*

 This is a sequence of strings identifying event types of a particular

 notification category.

 */

 typedef sequence <string> EventTypesPerNotificationCategory;

 /*

 This sequence identifies all event types of all notification categories

 identified by NotificationCategorySet. The number of elements in this

 sequence shall be identical to that of NotificationCategorySet.

 */

 typedef sequence <EventTypesPerNotificationCategory> EventTypesSet;

 /*

 This is a sequence of strings identifying extended event types of

 a particular notification category.

 */

 typedef sequence <string> ExtendedEventTypePerNotificationCategory;

 /*

 This sequence identifies all extended event types of all notification

 categories identified by NotificationCategorySet. The number of elements

 in this sequence shall be identical to that of NotificationCategorySet.

 */

 typedef sequence <ExtendedEventTypePerNotificationCategory>

 ExtendedEventTypesSet;

 typedef sequence <long> NotifIDSet;

 /*

 This holds identifiers of notifications that are correlated.

 */

 struct CorrelatedNotification {

 string source; // Contains DN of MO that emitted the set of notifications

 // DN string format in compliance with Name Convention for

 // Managed Object.

 // This may be a zero-length string. In this case, the MO

 // is identified by the value of the MOI parameter-attribute

 // of the Structured Event, i.e., the notification.

 NotifIDSet notifIDSet;

 };

 /*

 Correlated Notification sets are sets of Correlated Notification

 structures.

 */

 typedef sequence <CorrelatedNotification> CorrelatedNotificationSetType;

 /*

 This is a sequence of strings identifying Subscription Ids.

 */

 typedef string SubscriptionId;

 typedef sequence <SubscriptionId> SubscriptionIdSet;

 /*

 This block encapsulates valid strings carried in domain_name of

 structured event header. It carries the name of IRP and its

 corresponding CORBA SS version number. They are the returned

 values for get_XXX_IRP_version() as well.

 */

 const string ALARM_IRP_VERSION_1_1 = "1f1"; //alarm IRP 1:1

 const string CONFIGURATION_IRP_VERSION_1_1 = "1c1"; //CM IRP 1:1

 /*

 This string is used as return value for get_notification_irp_version()

 */

 const string NOTIFICATION_IRP_VERSION_1_1 = "1n1"; //Notification IRP 1:1

 /*

 This block encapsulates string used in the name of the Name Value

 pair of the structured event.

 */

 const string NV_NOTIFICATION_ID = "a";

 const string NV_CORRELATED_NOTIFICATIONS = "b";

 const string NV_EVENT_TIME = "c";

 const string NV_SYSTEM_DN = "d";

 const string NV_MANAGED_OBJECT_CLASS = "e";

 const string NV_MANAGED_OBJECT_INSTANCE = "f";

 const string NV_PROBABLE_CAUSE = "g";

 const string NV_PERCEIVED_SEVERITY = "h";

 const string NV_SPECIFIC_PROBLEM = "i";

 const string NV_ADDITIONAL_TEXT = "j";

 const string NV_ALARM_ID = "k";

 const string NV_ACK_USER_ID = "l";

 const string NV_ACK_TIME = "m";

 const string NV_ACK_SYSTEM_ID = "n";

 const string NV_ACK_STATE = "o";

 const string NV_BACKED_UP_STATUS = "p";

 const string NV_BACK_UP_OBJECT = "q";

 const string NV_THRESHOLD_INFO = "r";

 const string NV_TREND_INDICATION = "s";

 const string NV_STATE_CHANGE_DEFINITION = "t";

 const string NV_MONITORED_ATTRIBUTES = "u";

 const string NV_PROPOSED_REPAIR_ACTIONS = "v";
 const string NV_REASON = "w";
 /*

 This indicates if the subscription is active (not suspended) or inactive.

 */

 enum SubscriptionState {Inactive, Active, DontKnow};

};

#endif

/* ## Module: NotificationIRPSystem

 This module implements capabilities of IRPAgent specified in Notification

 IRP: Information Service version 1 and its equivalents in Notification

 IRP: CORBA Solution Set version 1:1.

 ==

*/

#ifndef NotificationIRPSystem_idl

#define NotificationIRPSystem_idl

#include "CosNotifyComm.idl"

#include "CosNotifyChannelAdmin.idl"

#include "NotificationIRPConstDefs.idl"

#include "CommonIRPConstDefs.idl"

module NotificationIRPSystem {

/*

 System fails to complete the operation. System can provide reason

 to qualify the exception. The semantics carried in reason

 is outside the scope of this IRP.

 */

 exception Attach { string reason; };

 exception DetachException { string reason; };

 exception GetSubscriptionStatus { string reason; };

 exception GetSubscriptionIds { string reason; };

 exception ChangeSubscriptionFilter { string reason; };

 exception GetNotificationCategories { string reason; };

 exception ParameterNotSupported { string parameter; };

 // name of the unsupported parameter as defined in IDL

 exception InvalidParameter { string parameter; };

 // name of the parameter as defined in IDL

 exception OperationNotSupported {};

 exception AlreadySubscribed {};

 exception AtLeastOneNotificationCategoryNotSupported {};
 exception GetNotificationIRPVersion { string reason; };

interface NotificationIRPOperations {

 /* ## Operation: attach_push
 */

NotificationIRPConstDefs::SubscriptionId attach_push (

 in Object manager_reference,

 in long time_tick,

 in NotificationCategorySet notification_category_set,

 in string filter,

 out CosNotifyChannelAdmin::SequenceProxyPushSupplier system_reference

)

 raises (Attach,OperationNotSupported,ParameterNotSupported,InvalidParameter,AlreadySubscribed,AtLeastOneNotificationCategoryNotSupported);

 /* ## Operation: attach_pull

 */

NotificationIRPConstDefs::SubscriptionId attach_pull (

 in Object manager_reference,

 in long time_tick,

 in NotificationCategorySet notification_category_set,

 in string filter,

 out CosNotifyChannelAdmin::SequenceProxyPullSupplier system_reference

)

 raises (Attach, OperationNotSupported, ParameterNotSupported,

 InvalidParameter, AlreadySubscribed,

 AtLeastOneNotificationCategoryNotSupported);

 /* ## Operation: detach

 */

void detach (

 in Object manager_reference,

 in string subscription_id

)

 raises (DetachException,InvalidParameter);

 /* ## Operation: get_notification_IRP_version

 */

 CommonIRPConstDefs::VersionNumberSet get_notification_IRP_version ()

 raises (GetNotificationIRPVersion);

 /* ## Operation: get_subscription_status

 */

NotificationIRPConstDefs::NotificationCategorySet get_subscription_status (

 in string subscription_id,

 out string filter_in_effect,

 out NotificationIRPConstDefs::SubscriptionState subscription_state,

 out long time_tick

)

 raises (GetSubscriptionStatus,OperationNotSupported,InvalidParameter);

 /* ## Operation: get_subscription_ids

 */

 NotificationIRPConstDefs::SubscriptionIdSet get_subscription_ids (

 in Object manager_reference

)

 raises (GetSubscriptionIds,OperationNotSupported,InvalidParameter);

 /* ## Operation: change_subscription_filter

 */

void change_subscription_filter (

in string subscription_id,

in string filter

)

 raises (ChangeSubscriptionFilter,OperationNotSupported,InvalidParameter);

 /* ## Operation: get_notification_categories

 */

 NotificationIRPConstDefs::NotificationCategorySet

 get_notification_categories (

 out NotificationIRPConstDefs::EventTypesSet event_type_list,

 out NotificationIRPConstDefs::ExtendedEventTypesSet

 extended_event_type_list

)

 raises (GetNotificationCategories,OperationNotSupported);

};

};

#endif

3GPP

