Page 1

3GPP TSG-SA5 Meeting #121
S5-186256
Kochi, India, 8-12 October 2018

Revision of S5-186xxx
	CR-Form-v11.2

	CHANGE REQUEST

	

	
	32.156
	CR
	0018
	rev
	-
	Current version:
	15.0.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	X
	Core Network
	X

	

	Title:

	Update example of the generalization relationship

	
	

	Source to WG:
	Ericsson

	Source to TSG:
	S5

	
	

	Work item code:
	TEI15
	
	Date:
	2018-09-13

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-15

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)
Rel-15
(Release 15)
Rel-16
(Release 16)

	
	

	Reason for change:
	With the introduction of managegement services the example in clause 5.2.5.2 could be viewed as being outdated (IRP manager/agent). Better examples could be provided.
Many of the UML diagrams are colored the use of black and white would be preferred.

	
	

	Summary of change:
	Replace the UML diagram and update associated text in 5.2.5.2. (5th change)
As part of this CR all UML diagrams that have coloring are replaced with black and white diagrams (all changes except 5th change and part of 1st change)
Replace very generic UML diagram with an example (1st change, second diagram)

	
	

	Consequences if not approved:
	Current IRP example stays in the TS with the chance of confusing the reader. I.e. why still use IRP as example when we use management services instead.

New NRM proposals will consistently have colored background which has to be removed before new NRMs are approved. Starting with no background color will require less rework be more efficient.

	
	

	Clauses affected:
	5.2 (basic elements), 5.2.1.2, 5.2.2.2, 5.2.3.2, 5.2.4.2,5.2.5.2,5.2.6.2, 5.2.7.2, 5.2.8.2, 5.2.9.2, 5.2.10.2, 5.3.1.2, 5.3.2.2, 5.3.3.2, 5.3.5.2, 5.2.6.2, 5.4.1.2, 5.4.3.2, A.1, A.2, C.1, E.2

	
	

	
	Y
	N
	
	

	Other specs
	
	x
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	x
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	x
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

1st changs
5.2
Basic model elements

UML has defined a number of basic model elements. This subclause lists the subset selected for use in specifications based on this repertoire. The semantics of these selected basic model elements are defined in [1].

For each basic model element listed, there are three parts. The first part contains its description. The second part contains its graphical notation examples and the third part contains the rule, if any, recommended for labelling or naming it.

The graphical notation has the following characteristics:

Subclause 7.2.7 of [2] specifies "A class is often shown with three compartments. The middle compartment holds a list of attributes while the bottom compartment holds a list of operations" and "Additional compartments may be supplied to show other details". This repertoire only allows the use of the name (top) compartment and attribute (middle) compartment. The operation (bottom) compartment may be present but is always empty.

[image: image1.png]

Classes may or may not have attributes. The graphical notation of a class may show an empty attribute (middle) compartment even if the class has attributes, as shown in figure below.
[image: image3.png]

The visibility symbol shall not appear along with the class attribute, as shown below.
[image: image6.png]

The use of the decoration, i.e. the symbol in the name (top) compartment, is optional.
5.2.1
Attribute

5.2.1.1
Description

It is a typed element representing a property of a class. See 10.2.5 Property of [1].

An element that is typed implies that the element can only refer to a constrained set of values.

See 10.1.4 Type of [1] for more information on type.

See 5.3.4 and 5.4.3 for predefined data types and user-defined data types that can apply type information to an element.

The following table captures the properties of this modelled element.

Table 5.2.1.1-1: Attribute properties

	Property name
	Description
	Legal values

	documentation
	Contains a textual description of the attribute.
Should refer (to enable traceability) to the specific requirement.
	Any

	isOrdered
	For a multi-valued multiplicity; this specifies if the values of this attribute instance are sequentially ordered. See subclause 7.3.44 and its Table 7.1 of [2].
	True, False (default)

	isUnique
	For a multi-valued multiplicity, this specifies if the values of this attribute instance are unique (i.e., no duplicate attribute values). See subclause 7.3.44 and its Table 7.1 of [2].
	True (default), False

	isReadable
	Specifies that this attribute can be read by the manager.
	True (default), False

	isWritable
	Specifies that this attribute can be written by the manager under the conditions specified in Annex B.
	True, False (default)

	type
	Refers to a predefined (see subclause 5.4.3) or user defined data type (see section 5.3.4). See also subclause 7.3.44 of [2], inherited from StructuralFeature.
	NA

	isInvariant
	Attribute value is set at object creation time and cannot be changed under the conditions specified in Annex B.
	True, False (default)

	allowedValues
	Identifies the values the attribute can have.
	Dependent on type

	isNotifyable
	Identifies if a notification shall be sent in case of a value change (see Note 1, Note 2).
	True (default), False

	defaultValue
	Identifies a value at specification time that is used at object creation time under conditions defined in Annex B.
	No value (default) or a value that is dependent on allowedValues

	multiplicity
	Defines the number of values the attribute can simultaneously have. See subclause 7.3.44 of [2]; inherited from StructuralFeature.
	See 5.2.8 Default is 1

	isNullable
	Identifies if an attribute can carry no information. The implied meaning of carrying “no information” is context sensitive and is not defined in this Model Repertoire.
	True, False (default)

	supportQualifier
	Identifies the required support of the attribute. See also subclause 6.
	M, O (default), CM, CO, C

Note 1: Whether a client/manager can receive the notification depends on a) if the client/manager has subscribed or registered for reception of such notification and b) if a notification mechanism is supported.

Note 2: If the attribute is a role-attribute and its property passedById is ‘False’, then changes in the navigable association target end instance alone shall not trigger a notification.

5.2.1.2
Example

This example shows three attributes, i.e., a, b and c, listed in the attribute (the second) compartment of the class Xyz.

[image: image7.png]
Figure 5.2.1.2-1: Attribute notation

5.2.1.3
Name style

An attribute name shall use the LCC style.

Well Known Abbreviation (WKA) is treated as a word if used in a name. However, WKA shall be used as is (its letter case cannot be changed) except when it is the first word of a name; and if so, its first letter must be in lower case.

2nd changs
5.2.2
Association relationship

5.2.2.1
Description

It shows a relationship between two classes and describes the reasons for the relationship and the rules that might govern that relationship.

It has ends. Its end, the association end(s), specifies the role that the object at one end of a relationship performs. Each end of a relationship has properties that specify the role (see 5.2.9), multiplicity (see 5.2.8), visibility and navigability (see the arrow symbol used in Figure 5.2.2.2-2: Unidirectional association relationship notation) and may have constraints. Note that visibility shall not be used in models based on this Repertoire (see bullet 3 of 5.1).

See 7.3.3 Association of [2].

Three examples below show a binary association between two model elements. The association can include the possibility of relating a model element to itself.

The first example (Figure 5.2.2.2-1) shows a bi-directional navigable association in that each model element has a pointer to the other. The second example (Figure 5.2.2.2-2) shows a unidirectional association (shown with an open arrow at the target model element end) in that only the source model element has a pointer to the target model element and not vice-versa. The third example (Figure 5.2.2.2-3) shows a bi-directional non-navigable association in that each model element does not have a pointer to the other; i.e., such associations are just for illustration purposes.

5.2.2.2
Example

An association shall have an indication of cardinality (see 5.2.8).

It shall, except the case of non-navigable association, have an indication of the role name (see 5.2.9). The model element involved in an association is said to be “playing a role” in that association. The role has a name such as +aClass in the first example below. Note that the "+" character in front of the role name, indicating the visibility, is ignored.

[image: image9.png]
Figure 5.2.2.2-1: Bidirectional association relationship notation
[image: image11.png]
Figure 5.2.2.2-2: Unidirectional association relationship notation
[image: image13.png]
Figure 5.2.2.2-3: Non-navigable association relationship notation

Note that some tools do not use arrows in the UML graphical representation for bidirectional associations. Therefore, absence of arrows is not, but absence of role names is, an indication of a non-navigable association.

5.2.2.3
Name style

An Association can have a name. Use of Association name is optional. Its name style is LCC style.

A role name shall use the LCC style.
NOTE:
The role name needs not resemble the class name.
3rd changs
5.2.3
Aggregation association relationship

5.2.3.1
Description

It shows a class as a part of or subordinate to another class.

An aggregation is a special type of association in which objects are assembled or configured together to create a more complex object. Aggregation protects the integrity of an assembly of objects by defining a single point of control called aggregate, in the object that represents the assembly.

See 7.3.2 AggregationKind (from Kernel) of [2].

5.2.3.2
Example

A hollow diamond attached to the end of a relationship is used to indicate an aggregation. The diamond is attached to the class that is the aggregate. The aggregation association shall have an indication of cardinality at each end of the relationship (see 5.2.8).

[image: image15.png]
Figure 5.2.3.2-1: Aggregation association relationship notation

5.2.3.3
Name style

An Association can have a name. Use of Association name is optional. Its name style is LCC.

4th changs
5.2.4
Composite aggregation association relationship

5.2.4.1
Description

A composite aggregation association is a strong form of aggregation that requires a part instance be included in at most one composite at a time. If a composite is deleted, all of its parts are deleted as well.

A composite aggregation shall contain a description of its use.

See 7.3.3 Association (from Kernel) of [2].

5.2.4.2
Example

A filled diamond attached to the end of a relationship is used to indicate a composite aggregation. The diamond is attached to the class that is the composite. The composition association shall have an indication of cardinality at each end of the relationship (see 5.2.8).

[image: image17.png]
Figure 5.2.4.2-1: Composite aggregation association relationship notation

5.2.4.3
Name style

An Association can have a name. Use of Association name is optional. Its name style is LCC.

5th changs
5.2.5
Generalization relationship

5.2.5.1
Description

It indicates a relationship in which one class (the child) inherits from another class (the parent).
See 7.3.20 Generalization of [2].

5.2.5.2
Example

This example shows a generalization relationship between a more general model element (theEUtranGenericCell) and a more specific model element (the EUtranCellTDD) that is fully consistent with the first element and that adds additional information.

[image: image19.png]
Figure 5.2.5.2-1: Generalization relationship notation

5.2.5.3
Name style

It has no name so there is no name style.

6th changs
5.2.6
Dependency relationship

5.2.6.1
Description

 “A dependency is a relationship that signifies that a single or a set of model elements requires other model elements for their specification or implementation. This means that the complete semantics of the depending elements is either semantically or structurally dependent on the definition of the supplier element(s)...“, an extract from 7.3.12 Dependency of [2].

5.2.6.2
Example

This example shows that the BClass instances have a semantic relationship with the AClass instances. It indicates a situation in which a change to the target element (the AClass in the example) will require a change to the source element (the BClass in the example) in the dependency.

[image: image21.png]
Figure 5.2.6.2-1: Dependency relationship notation

5.2.6.3
Name style

A Dependency can have a name. Use of Dependency name is optional. Its name style is LCC.

7th changs
5.2.7
Comment

5.2.7.1
Description

· A comment is a textual annotation that can be attached to a set of elements.

· See 7.3.9 Comment (from Kernel) from [2].

5.2.7.2
Example

This example shows a comment, as a rectangle with a "bent corner" in the upper right corner. It contains text. It appears on a particular diagram and may be attached to zero or more modelling elements by dashed lines.

[image: image23.png]
Figure 5.2.7.2-1: Comment notation

5.2.7.3
Name style

It has no name so there is no name style.

8th changs
5.2.8
Multiplicity, a.k.a. cardinality in relationships

5.2.8.1
Description

 “A multiplicity is a definition of an inclusive interval of non-negative integers beginning with a lower bound and ending with a (possibly infinite) upper bound. A multiplicity element embeds this information to specify the allowable cardinalities for an instantiation of this element…“, an extract from 7.3.32 MultiplicityElement of [2].

Table 5.2.8.1-1: Multiplicity-string definitions

	Multiplicity
	Explanation

	1
	Attribute has one attribute value.

	m
	Attribute has m attribute values.

	0..1
	Attribute has zero or one attribute value.

	0..*
	Attribute has zero or more attribute values.

	*
	Attribute has zero or more attribute values.

	1..*
	Attribute has at least one attribute value.

	m..n
	Attribute has at least m but no more than n attribute values.

The use of "0..n" is not recommended although it has the same meaning as " 0..* " and " *".

The use of a standalone symbol zero (0) is not allowed.

5.2.8.2
Example

This example shows a multiplicity attached to the end of an association path. The meaning of this multiplicity is one to many. One Class1 instance is associated with zero or more Class2 instances. Other valid examples can show the “many to many” relationship.

[image: image25.png]
Figure 5.2.8.2-1: Cardinality notation

The cardinality zero is not used to indicate the IOC’s so-called “transient state” characteristic. For example, it is not used to indicate that the instance is not yet created but it is in the process of being created. The cardinality zero will not be used to indicate this characteristic since such characteristic is considered inherent in all IOCs. All IOCs defined are considered to have such inherent “transient state” characteristics.

9th changs
5.2.9
Role

5.2.9.1
Description

It indicates navigation, from one class to another class, involved in an association relationship. A role is named. The direction of navigation is to the class attached to the end of the association relationship with (or near) the role name.

The use of role name in the graphical representation is mandatory for bidirectional and unidirectional association relationship notations (see Figure 5.2.2.2-1: Bidirectional association relationship notation and Figure 5.2.2.2-2: Unidirectional association relationship notation). Role name shall not be used in non-navigable association relationship notation (see Figure 5.2.2.2-3: Non-navigable association relationship notation).

A role at the navigable end of a relationship becomes (or is mapped into) an attribute (called role-attribute) in the source class of the relationship. Therefore roles have the same behaviour (or properties) as attributes. See Table 5.2.1.1-1: Attribute properties.

The role-attribute shall have all properties defined for attributes in subclause 5.2.1 Attribute and in addition the following property

Table 5.2.9.1-1: passedById property

	Property name
	Description
	Legal values

	passedById
	If True, the role-attribute (navigable association source end) contains a DN of the navigable association target end instance.

If False, the role-attribute contains (a copy of) the whole target end instance (e.g. X). If X has a role-attribute whose “passedById==False”, then the subject role-attribute contains (a copy of) X’s target end instance as well.

The above rule is applied repeatedly for all occurrences of “passedById==False”. This application can result in a collection of instances where no ordering can be implied and no instances are duplicated.

Use of “passedById==False” supports the efficient access of target end instances from a source end instance. The mechanism by which such access is achieved is operation model design specific (e.g. not related to resource model design).

	True (default), False

:

5.2.9.2
Example

This example shows that a Person (say instance John) is associated with a Company (say whose DN is “Company=XYZ”). We navigate the association by using the opposite association-end such that John’s Person.company would hold the DN, i.e. "Company=XYZ".

[image: image27.png]
Figure 5.2.9.2-1: Role notation

5.2.9.3
Name style

A role has a name. Use a noun for the name. The name style follows the attribute name style; see subclause 5.2.1.3.

10th changs
5.2.10
Xor constraint

5.2.10.1
Description

 “A Constraint represents additional semantic information attached to the constrained elements. A constraint is an assertion that indicates a restriction that must be satisfied by a correct design of the system. The constrained elements are those elements required to evaluate the constraint specification…“, an extract from 7.3.10 Constraint (from Kernel) of [2].

For a constraint that applies to two elements such as two associations, the constraint shall be shown as a dashed line between the elements labeled by the constraint string (in braces). The constraint string, in this case, is xor.

5.2.10.2
Example

The figure below shows a ServerObjectClass instance that has relation(s) to multiple instances of a class from the choice of ClientObjectCLass_Alternative1, ClientObjectClass_Alternative2 or ClientObjectCLass_Alternative3.
[image: image29.png]
Figure 5.2.10.2-1: {xor} notation

5.2.10.3
Name style

It has no name so there is no name style.
11th changs
5.3.1
<<ProxyClass>>

5.3.1.1
Description

It is a form or template representing a number of <<InformationObjectClass>>. It encapsulates attributes, links, methods (or operations), and interactions that are present in the represented <<InformationObjectClass>>.

The semantics of a <<ProxyClass>> is that all behaviour of the <<ProxyClass>> is present in the represented <<InformationObjectClass>>. Since this class is simply a representation of other classes, this class cannot define its own behaviour other than those already defined by the represented <<InformationObjectClass>>.

A particular <<InformationObjectClass>> can be represented by zero, one or more <<ProxyClass>>. For example, the ManagedElement <<InformationObjectClass>> can have MonitoredEntity <<ProxyClass>> and ManagedEntity <<ProxyClass>>.

The attributes of the <<ProxyClass>> are accessible by the source entity that has an association with the <<ProxyClass>>.

5.3.1.2
Example

This shows a <<ProxyClass>> named MonitoredEntity. It represents (or its constraints is that it represents) all NRM <<InformationObjectClass>> (e.g. GgsnFunction <<InformationObjectClass>>) whose instances are being monitored for alarm conditions. It is mandatory to use a Note to capture the constraint.

[image: image31.png]

Figure 5.3.1.2-1: <<ProxyClass>> notation
See Annex A for more examples that use <<ProxyClass>>.

5.3.1.3
Name style

For <<ProxyClass>> name, use the same style as <<InformationObjectClass>> (see 5.3.2).

12th changs
5.3.2
<<InformationObjectClass>>

5.3.2.1
Description

The <<InformationObjectClass>> is identical to UML class except that it does not include/define methods or operations.

A UML class represents a capability or concept within the system being modelled. Classes have data structure and behaviour and relationships to other elements.

This class can inherit from zero, one or multiple classes (multiple inheritances).

See more on UML class in 10.2.1 of [1].
5.3.2.2
Example

This example shows an AbcFunction <<InformationObjectClass>>.

[image: image33.png]
Figure 5.3.2.2-1: <<InformationObjectClass>> notation

The following table captures the properties of this modelled element.

13th changs
5.3.3
<<names>>

5.3.3.1
Description

The <<names>> is modelled by a composition association where both ends are non-navigable. The source class is the composition and the target class is the component. The target instance is uniquely identifiable, within the namespace of the source entity, among all other targeted instances of the same target class and among other targeted instances of other classes that have the same <<names>> composition with the source.

The source class and target class shall each has its own naming attribute.

The composition aggregation association relationship is used as the act of name containment providing a semantic of a whole-part relationship between the domain and the named elements that are contained, even if only by name. From the management perspective access to the part is through the whole. Multiplicity shall be indicated at both ends of the relationship.

A target instance cannot have multiple <<names>> with multiple source instances s, i.e. a target instance can not participate in or belong to multiple namespaces.

5.3.3.2
Example

This shows that all instances of Class4 are uniquely identifiable within a Class3 instance's namespace.

[image: image35.png]
Figure 5.3.3.2-1: <<names>> notation
5.3.3.3
Name style

It has no name so there is no name style.

14th changs
5.3.5
<<enumeration>>

5.3.5.1
Description

An enumeration is a data type. It contains sets of named literals that represent the values of the enumeration. An enumeration has a name.

See 10.3.2 Enumeration of [1].

5.3.5.2
Example

This example shows an enumeration model element whose name is Account and it has four enumeration literals. The upper compartment contains the keyword <<enumeration>> and the name of the enumeration. The lower compartment contains a list of enumeration literals.

Note that the symbol to the right of <<enumeration>> Account in the figure below is a feature specific to a particular modelling tool. It is recommended that modelling tool features should be used when appropriate.

[image: image37.png]
Figure 5.3.5.2-1: <<enumeration>> notation
5.3.5.3
Name style

For <<enumeration>> name, use the same style as <<InformationObjectClass>> (see 5.3.2).

For <<enumeration>> attribute (the enumeration literal), use the following rules:

Enumeration literal is composed of one or more words of upper case characters. Words are separated by the underscore character.
15th changs
5.3.6
<<choice>>
5.3.6.1
Description

The «choice» stereotype represents one of a set of classes (when used as an information model element) or one of a set of data types (when used as an operation model element).

This stereotype property, e.g., one out of a set of possible alternatives, is identical to the {xor} constraint (see 5.2.10).

5.3.6.2
Example
Sometimes the specific kind of class cannot be determined at model specification time. In order to support such scenario, the specification is done by listing all possible classes.

The following diagram lists 3 possible classes. It also shows a «choice, InformationObjectClass» named SubstituteObjectClass. This scenario indicates that only one of the three «InformationObjectClass» named Alternative1ObjectClass, Alternative2ObjectClass, Alternative3ObjectClass shall be realised.

The «choice» stereotype represents one of a set of classes when used as an information model element.
[image: image39.png]
Figure 5.3.6.2-1: Information model element example using «choice» notation
Sometimes the specific kind of data type cannot be determined at model specification time. In order to support such scenario, the specification is done by listing all possible data types.

The following diagram lists 2 possible data types. It also shows a «choice» named ProbableCause. This scenario indicates that only one of the two «dataType» named IntegerProbableCause, StringProbableCause shall be realised.

The «choice» stereotype represents one of a set of data types when used as an operations model element.

[image: image41.png]
Figure 5.3.6.2-2: Operations model element example using «choice» notation
Sometimes models distinguish between sink/source/bidirectional termination points. A generic class which comprises these three specific classes can be modelled using the «choice» stereotype.

[image: image43.png]
Figure 5.3.6.2-3: Sink/source/bidirectional termination points example using «choice» notation
5.3.6.3
Name style
For <<choice>> name, use the same style as <<InformationObjectClass>> (see 5.3.2).

16th changs
5.4.1
Association class

5.4.1.1
Description

An association class is an association that also has class properties (or a class that has association properties).
Even though it is drawn as an association and a class, it is really just a single model element.

See 7.3.4 AssociationClass of [2].

Association classes are appropriate for use when an «InformationObjectClass» needs to maintain associations to several other instances of «InformationObjectClass» and there are relationships between the members of the associations within the scope of the "containing" «InformationObjectClass». For example, a namespace maintains a set of bindings, a binding ties a name to an identifier. A NameBinding «InformationObjectClass» can be modelled as an Association Class that provides the binding semantics to the relationship between an identifier and some other «InformationObjectClass» such as Object in the figure. This is depicted in the following figure.

5.4.1.2
Example

[image: image45.png]
Figure 5.4.1.2-1: Association class notation
5.4.1.3
Name style

The name shall use the same style as in <<InformationObjectClass>> (see 5.3.2.3).
17th changs
5.4.3
Predefined data types

5.4.3.1
Description

It represents the general notion of being a data type (i.e. a type whose instances are identified only by their values) whose definition is defined by this specification and not by the user (e.g. specification authors).

This repertoire uses two kinds of data types: predefined data types and user-defined data types. The latter is defined in 5.3.4 <<dataType>> and 5.3.5 <<enumeration>>.

The following table lists the UML data types selected for use as predefined data type.

Table 5.4.3.1-1: UML defined data types
	Name
	Description and reference

	Boolean
	See Boolean type of [7].

	Integer
	See Integer type of [7].

	String
	See PrintableString type of [7].

The following table lists data types that are defined by this repertoire.

Table 5.4.3.1-2: Non-UML defined data types

	Name
	Description and reference

	AttributeValuePair
	This data type defines an attribute name and the attribute’s value.

	BitString
	This data type is defined by Bit string of subclause 3 and subclause G.2.5 of [7].

	DateTime
	This data type is defined by GeneralizedTime of [7].

	DN
	This data type defines the DN (see Distinguished Name of [3]) of an object. It contains a sequence of one or more name components. The “initial sub-sequence” (note 1) of a DN is also a DN of an object.
Note 1: Suppose an object’s DN is composed of a sequence of 4 name components, i.e. 1st, 2nd, 3rd and 4th components. The “initial sub-sequence” of this DN is composed of the 1st, 2nd and 3rd components.

	External
	This data type is defined by another organization.

	Real
	This data type is defined by Real type of [7]

5.4.3.2
Example

[image: image47.png]
Figure 5.4.3.2-1: Predefined data types usage

Note: Use of this is optional. Uses of other means, to specify Predefined data types, are allowed.

5.4.3.3
Name style

It shall use the UCC style.

18th changs
Annex A (informative):
Examples of using <<ProxyClass>>

A.1
First Example

This shows a <<ProxyClass>> named YyyFunction. It represents all IOCs listed in the Note under the UML diagram. All the listed IOCs, in the context of this example, inherit from ManagedFunction IOC.

The use of <<ProxyClass>> eliminates the need to draw multiple UML <<InformationObjectClass>> boxes, i.e. those whose names are listed in the Note, in the UML diagram.

[image: image49.png]
Figure A.1-1: <<ProxyClass>> Notation Example A.1
19th changs
A.2
Second Example

This shows a <<ProxyClass>> named YyyFunction. It represents all IOCs listed in the attached (or associated) Note. All the listed IOCs, in the context of this example, have link (internal and external) relations.

This shows a <<ProxyClass>> InternalYyyFunction. It represents all IOCs listed in the attached (or associated) Note.

This shows a <<ProxyClass>> Link_a_z and ExternalLink_a_z. They represent all IOCs listed in the attached (or associated) Note.

[image: image51.png]
Figure A.2-1: <<ProxyClass>> Notation Example A.2
20th changs
Annex C (normative):
Design patterns

C.1
Intervening Class and Association Class

C.1.1
Concept and Definition

Classes may be related via simple direct associations or via associations with related association classes.

However, in situations where the relationships between a number of classes is complex and especially where the relationships between instances of those classes are themselves interrelated there may be a need to encapsulate the complexity of the relationships within a class that sits between the classes that are to be related. The term “intervening class” is used here to name the pattern that describes this approach. The name “intervening class” is used as the additional class “intervenes” in the relationships between other classes.

The “intervening class” differs from the association class as the intervening class does break the association between the classes where as the association class does not but instead sits to one side. This can be seen in the following figure. A direct association between class A and C appears the same at A and C regardless of the presence or absence of an association class where as in the case of the “intervening class” there are associations between A and the “intervening class” B and C and the “intervening class” B.

[image: image54.png][image: image55.png][image: image56.png][image: image57.png]
Figure C.1.1-1: Various association forms
The “intervening class” is essentially no different to any other class in that it may encapsulate attributes, complex behaviour etc.

The following figure shows an instance view of both an association class form and an “intervening class” form for a complex interrelationship

[image: image58.png][image: image59.png]
Figure C.1.1-2: Instance view of "intervening class"
The case depicted above does not show interrelationships between the relationships. A practical case from modeling of the relationships between Termination Points in a fixed network does show this relationship interrelationship challenge. In this case the complexity of relationship is between instances of the same class, the Termination Point (TP). The complexity is encapsulated in a SubNetworkConnection (SNC) class.

[image: image61.png][image: image62.png]
Figure C.1.1-3: SNC intervening in TP-TP relationship
The SNC also encapsulates the complex behaviour of switching and path selection as depicted below.

[image: image64.png]
Figure C.1.1-4: Complex relationship interrelationships
21st changs
Annex E (normative): <<SupportIOC>> stereotype definition
E.1
Description

It is the descriptor for a set of management capabilities.

The <<SupportIOC>> is an extension of UML class. See Annex [F] for the differences between <<InformationObjectClass>> and <<SupportIOC>>.

See more on UML class in 10.2.1 of [1].
E.2
Example

This sample shows an AlarmList <<SupportIOC>>.

[image: image66.png]
<<SupportIOC>> notation

E.3
Name style

For <<SupportIOC>> name, use the same style as <<InformationObjectClass>> (see subclause 5.3.2).

End of changes
