Page 1

3G TS 32.106-6 V3.0.1b (2000-05)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

Part 6: Basic Configuration Management IRP:

Information Service CORBA Solution Set Version 1:1

(Release 1999)
[image: image1.png]K ey

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organisational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organisational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organisational Partners' Publications Offices.

Keywords

Configuration Management

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2000, 3GPP Organizational Partners (ARIB, CWTS, ETSI, T1, TTA,TTC).

All rights reserved.

Contents

4Foreword

Introduction
4
1
Scope
5
2
References
5
3
Definitions and abbreviations
5
3.1
Definitions
5
3.2
Abbreviations
5
4
IRP solution set version
6
5
Architectural Features
6
5.1
Notification Services
6
5.2
Support of Push and Pull Interface
6
5.3
Support multiple notifications in one push operation
6
5.4
Filter Language
7
5.5
Use of CORBA 2.3 Valuetypes
7
5.6
Syntax for Distinguished Names and Versions
7
6
Mapping
8
6.1
General mappings
8
6.2
Operation and Notification mapping
8
6.3
Operation parameter mapping
9
6.4
Notification attribute mapping
10
6.5
Model Mapping
13
6.5.1
Generic Managed Object Class Mapping
13
6.5.1.1
MOC Network (M)
13
6.5.1.2
MOC ManagedElement (M)
14
6.5.1.3
MOC MEController (O)
14
6.5.1.4
MOC ManagementNode (M)
14
6.5.1.5
MOC ManagedFunction (M)
14
6.5.2
UMTS Specific Managed Object Class Mapping
15
6.5.2.1
MOC RadioFunction (M)
15
6.5.2.2
MOC Cell (M)
15
7
Use of OMG Structured Event
15
8
Annex A (informative): Change history
18
8
Annex B (normative): CORBA IDL
19

Foreword

This Technical Specification (TS) has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

Configuration Management (CM), in general, provides the operator with the ability to assure correct and effective operation of the 3G network as it evolves. CM actions have the objective to control and monitor the actual configuration on the NEs and NRs, and they may be initiated by the operator or functions in the OSs or NEs.

CM actions may be requested as part of an implementation programme (e.g. additions and deletions), as part of an optimisation programme (e.g. modifications), and to maintain the overall Quality of Service. The CM actions are initiated either as a single action on a network element of the 3G network or as part of a complex procedure involving actions on many network elements.

The N interface for Configuration Management is built up by a number of Integration Reference Points (IRPs) and a related Name Convention, which realise the functional capabilities over this interface. The basic structure of the IRPs is defined in [1] and [2]. For CM, a number of IRPs (and the Name Convention) are defined herein, used by this as well as other technical specifications for telecom management produced by 3GPP. All these documents are included in Parts 2-N the 3G TS 32.106.
This document consitutes 32.106 Part 6 - Basic Configuration Management IRP: Information Service CORBA Solution Set.

1
Scope

The purpose of this Basic Configuration Management (CM) IRP: Information Service CORBA Solution Set is to define the mapping of the IRP information model (32.106 Part 5) to the protocol specific details necessary for implementation of this IRP in a CORBA/IDL environment. This document does not describe any Network Resource Model (NRM) – this is described in [4]. Please note that ref. [4] defines an IRP Information Model, which comprises both an IS and NRM definition.
2
References

The following documents contain provisions, which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies.

[1]
3G TS 32.101: "3G Telecom Management principles and high level requirements"

[2]
3G TS 32.102: "3G Telecom Management architecture"

[3]
3G TS 32.106-1: “3G Configuration Management”

[4]
3G TS 32.106-5: “Basic Configuration Management IRP: Information Model”

[5]
3G TS 32.106-8: “Name Convention for Managed Objects”
[6]
OMG Notification Service, OMG TC Document telecom/98-11-01

[7]
OMG CORBA services: Common Object Services Specification, Update: November 22, 1996.

[8]
The Common Object Request Broker: Architecture and Specification, version 2.3

[9]
3G TS 32.106-3 “Notification IRP: CORBA Solution Set, version 1:1”
3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the following terms and definitions apply. For terms and definitions not found here, please refer to [1],[2], [3] and [4].
3.2
Abbreviations

For the purposes of the present document, the following abbreviations apply:
CORBA
Common Object Request Broker Architecture

IS
Information Service

IDL
Interface Definition Language (OMG)

IRP
Integration Reference Point

MIM
Management Information Model
NRM
Network Resource Model
OMG
Object Management Group

SS
Solution Set

4 IRP solution set version

The version of this CORBA solution set is 1:1, where the “1” means that it corresponds to the Information Model version 1, and the “1” means that it is the first CORBA solution set corresponding to Information Model version 1.

5 Architectural Features

The overall architectural feature of Basic Configuration Management IRP is specified in [4]. This clause specifies features that are specific to the CORBA SS.

5.1
Notification Services

In the CORBA SS, notifications are emitted by the IRPAgent using the CORBA Notification Service [6].

The CORBA Event Service [7] provides event routing and distribution capabilities. The CORBA Notification Service provides, in addition to Event Service, event filtering and quality of service as well.

A subset of CORBA Notification Service shall be used to support the implementation of notifications. The CORBA Notification Service subset, in terms of CORBA Notification Service defined methods, is defined in this document.

5.2
Support of Push and Pull Interface

OMG Notification Services define two styles of interaction. One is called push style. In this style, System pushes notifications to Manager as soon as they are available. The other is called pull style. In this style, System keeps the notifications till Manager requests for them.

This CORBA SS specifies that support of push style is mandatory and that support of pull style is optional.

5.3
Support multiple notifications in one push operation

For effiency, the IRPAgent uses the following OMG Notification Service [6] defined interface to pack multiple notifications and push them to IRPManager using the method push_structured_events. The method takes as input a parameter of type EventBatch as defined in OMG CosNotifcations module [6]. This type is a sequence of Structured Events. Upon invocation, this parameter will contain a sequence of Structured Events being delivered to the IRPManager by the IRPAgent to which it is connected.

The maximum number of events that will be transmitted within a single invocation of this operation is controlled by a IRPAgent wide configuration parameter. The amount of time the IRPAgent will accumulate individual events into sequences before invoking this operation is controlled by a IRPAgent wide configuration parameter as well.

The IRPAgent may push an EventBatch with only one Structured Event.

module CosNotifyComm {

…

Interface SequencePushConsumer : NotifyPublish {

void push_structured_events(

in CosNotification::EventBatch notifications)

raises(CosEventComm::Disconnected);

…

}; // SequencePushConsumer

…

}; // CosNotifyComm

5.4
Filter Language

The filter language used in the SS is a subset of the Extended Trader Constraint Language [6]. The used subset is specified in the CORBA IDL, see Annex B.

5.5
Use of CORBA 2.3 Valuetypes

The CORBA 2.3 Specification [8] contains a new IDL construct called “valuetype”

The IDL type valuetype is used to pass data over the wire. A valuetype is best thought of as a struct with inheritance and methods. Valuetypes differ from normal interfaces in that they contain properties to describe the valuetype’s state, and contain implementation details beyond that of an interface.

Valuetypes are always local. They are not registered with the ORB, and require no identity, as their value is their identity. They can not be called remotely.

There are two different kinds of valuetypes: concrete and abstract.

Concrete valuetypes contains state data. They extend the expressive power of IDL structs by allowing:

· Single concrete valuetype derivation and multiple abstract valuetype derivation.

· Multiple interfaces support (one concrete and multiple abstract).

· Arbitrary recursive valuetype definitions.

· Null value semantics.

· Sharing semantics.

Abstract valuetypes contain only methods and do not have state. They may not be instantiated. Abstract valuetypes are a bundle of operation signatures with a purely local implementation.

The use of valutypes in this CORBA SS IDL is to have null-value semantics for operation parameters and return values, and to have private data in a structure (see the Iterator valuetype in Annex B).

5.6
Syntax for Distinguished Names and Versions

The format of a Distinguished Name is defined in [5].

The format of a Version is split into two parts: the format of a CORBA SS interface version, and the format of a Resource Model version.

The format of the interface version for this CORBA SS is the string “1c1”, meaning “Basic Configuration Management IRP 1:1”.

Format of a MIM version is a string: “<VendorPrefix>.<Technology>.<Resource Model Name>.<MajorVersion>_<MinorVersion>”.

For example:

· companyX.gsm.BSC_MODEL.1_1
· companyX.umts.RNC_MODEL.1_2
· companyX.common.PLMN_MODEL.1_0
Note that the space character is not allowed, and that dots are not allowed within the parts, except for <VendorPrefix>, because the part after the <VendorPrefix> has a fixed structure. <MajorVersion> and <MinorVersion> are both non-negative integers.

A complete Version example:

“1c1;companyX.gsm.BSC_MODEL.1_1;companyX.gsm.MSC_MODEL.1_3”.

6 Mapping

6.1
General mappings

The IS parameter name managedObjectInstance is mapped into DN.

The SS supports two different kinds of associations: references and relations. A reference is a managed object attribute that refers (unidirectional) to another managed object. A relation is a unidirectional or a bi-directional mapping between two managed objects. A relation has a type and two role names: one for each direction. A relation is not a managed object attribute. If a reference attribute is changed, a notifyAttributeValueChange is emitted. If a relation is changed, a notifyRelationshipChange is emitted.

6.2
Operation and Notification mapping

The IS part of Basic CM IRP: IM [4] defines semantics of operation and notification visible across the Basic Configuration Management IRP . The table below indicates mapping of these operations and notifications to their equivalents defined in this SS.

Table 1: Mapping from IS Notification/Operation to SS equivalents

IS Operation/ notification [4]
SS Method
Qualifier

getMO
find_managed_objects

get_next_elements

delete_iterator
M

getTopology
find_managed_objects

get_next_elements

delete_iterator
O

getAssociation
find_managed_objects

get_next_elements

delete_iterator
O

getBasicCmIRPVersion
get_basic_cm_irp_version
M

notifyObjectCreation
(to convey of a new Managed Object created)
push_structured_event
O

notifyObjectDeletion
(to convey of a new Managed Object deleted)
push_structured_event
O

notifyAttributeValueChange
(to convey of a change of one or several attributes of a Managed Object)
push_structured_event
O

notifyRelationshipChange
(to convey of a change of one or several associations between Managed Object)
push_structured_event
O

notifyTopologyChange
(to convey a large change of a MIB)
push_structured_event
O

6.3
Operation parameter mapping

The IS part of Basic CM IRP: IM [4] defines semantics of parameters carried in operations across the Basic Configuration Management IRP . The tables below indicate the mapping of these parameters, as per operation, to their equivalents defined in this SS.

The SS operation find_managed_objects is equivalent to the IS operation getMo when called with ResultContents set to ALL or NAMES_AND_ATTRIBUTES. Iterating the Iterator is used to fetch the result.

Table 2: Mapping from IS getMO parameters to SS equivalents

IS Operation parameter
SS Method parameter
Qualifier

baseObjectInstance
in DN baseObject
M

scope
in SearchControl.scope
M

filter
in SearchControl.filter
M

managedObjectClass
managedObjectInstance
attributeList
associationList
in unsigned long howMany
return Iterator
(see dn, attributes and associations parameters)
O

status
exception UndefinedMOException,
exception IllegalDNFormatException,
exception UndefinedScopeException,
exception IllegalScopeTypeException,
exception IllegalScopeLevelException,
exception IllegalFilterFormatException,
exception IllegalCountException
M

The SS operation find_managed_objects is equivalent to the IS operation getTopology when called with ResultContents set to NAMES. Iterating the Iterator is used to fetch the result.

Table 3: Mapping from IS getTopology parameters to SS equivalents

IS Operation parameter
SS Method parameter
Qualifier

baseObjectInstance
in DN baseObject
M

scope
in SearchControl.scope
O

topology
in unsigned long howMany
return Iterator
(see dn parameter)
M

status
exception UndefinedMOException,
exception IllegalDNFormatException,
exception UndefinedScopeException,
exception IllegalScopeTypeException,
exception IllegalScopeLevelException,
exception IllegalFilterFormatException,
exception IllegalCountException
M

The SS operation find_managed_objects is equivalent to the IS operation getAssociation when called with ResultContents set to NAMES_AND_ASSOCIATIONS. Iterating the Iterator is used to fetch the result.

Table 4: Mapping from IS getAssociation parameters to SS equivalents

IS Operation parameter
SS Method parameter
Qualifier

baseObjectInstance
in DN baseObject
O

associationlist
in unsigned long howMany
return Iterator
(see dn and associations parameters)
M

status
exception UndefinedMOException,
exception IllegalDNFormatException,
exception UndefinedScopeException,
exception IllegalScopeTypeException,
exception IllegalScopeLevelException,
exception IllegalFilterFormatException,
exception IllegalCountException
M

Table 5: Mapping from IS getBasicCmIRPVersion parameters to SS equivalents

IS Operation parameter
SS Method parameter
Qualifier

versionNumberList
return Version
(see interfaceVersion and modelVersions)
M

status

M

6.4
Notification attribute mapping

The IS part of Basic CM IRP: IM [4] identifies and defines the semantics of attributes for notifyObjectCreation, notifyObjectDeletion, notifyAttributeValueChange, notifyRelationshipChange and notifyTopologyChange for use for its IRP. The following table shows the mapping of the IS notifications to SS equivalents.

Table 6: Mapping from IS notifications to SS equivalents

IS notifications in [4]
SS notifications
Qualifier

NotifyObjectCreation
OBJECT_CREATION
O

NotifyObjectDeletion
OBJECT_DELETION
O

NotifyAttributeValue Change
ATTRIBUTE_VALUE_CHANGE
O

NotifyRelationshipChange
RELATIONSHIP_CHANGE
O

NotifyTopologyChange
NOTIFY_CM_TOPOLOGY_CHANGE
O

The IS part of Basic CM IRP: IM [4] also qualifies the attributes. The following tables show the mapping show the mapping of these IS attributes to SS equivalents.

Table 7: Mapping from IS notifyObjectCreation attributes to SS equivalent OBJECT_CREATION

IS Attribute of notifyObjectCreation in [4]
SS Attribute
Qualifier

NotificationID
notificationID
O

CorrelatedNotifications
correlatedNotifications
O

EventTime
eventTime
M

EventType
eventType
M

SystemDN
systemDN
O

SourceIndicator
sourceIndicator
O

ManagedObjectClass
managedObjectInstance
managedObject
M

AttributeList
attributeList
M

associationList
O

Table 8: Mapping from IS notifyObjectDeletion attributes to SS equivalent OBJECT_DELETION

IS Attribute of notifyObjectDeletion in [4]
SS Attribute
Qualifier

NotificationID
notificationID
O

CorrelatedNotifications
correlatedNotifications
O

EventTime
eventTime
M

EventType
eventType
M

SystemDN
systemDN
O

SourceIndicator
sourceIndicator
O

ManagedObjectClass
managedObjectInstance
managedObject
M

AttributeList

O

Table 9: Mapping from IS notifyAttributeValueChange attributes to SS equivalent ATTRIBUTE_VALUE_CHANGE

IS Attribute of notifyAttributeValueChange in [4]
SS Attribute
Qualifier

notificationID
notificationID
O

correlatedNotifications
correlatedNotifications
O

eventTime
eventTime
M

eventType
eventType
M

systemDN
systemDN
O

sourceIndicator
sourceIndicator
O

managedObjectClass
managedObjectInstance
managedObject
M

attributeValueChangeDefinition
attributeValueChangeSeq
M

Table 10: Mapping from IS notifyRelationshipChange attributes to SS equivalent RELATIONSHIP_CHANGE

IS Attribute of notifyRelationshipChange in [4]
SS Attribute
Qualifier

notificationID
notificationID
O

correlatedNotifications
correlatedNotifications
O

eventTime
eventTime
M

eventType
eventType
M

systemDN
systemDN
O

sourceIndicator
sourceIndicator
O

managedObjectClass
managedObjectInstance
managedObject
M

relationshipChangeDefinition
associationChangeSeq
M

Table 11: Mapping from IS notifyTopologyChange attributes to SS equivalent NOTIFY_CM_TOPOLOGY_CHANGE

IS Attribute of notifyTopologyChange in [4]
SS Attribute
Qualifier

notificationID
notificationID
O

correlatedNotifications
correlatedNotifications
O

eventTime
eventTime
M

eventType
eventType
M

systemDN
systemDN
O

SourceIndicator
sourceIndicator
O

ManagedObjectInstance
managedObject
M

6.5
Network Resource Model Mapping
This solution set supports both associations and reference attributes for relations other than containment relations between objects. Optional reference attributes are therefore introduced in each MOC where such a relation is needed.
6.5.1
Generic NRM Managed Object Class Mapping
6.5.1.1
MOC Network (M)
Table12: Mapping from NRM MOC Network attributes to SS equivalent MOC Network attributes
NRM Attributes of MOC Network in [4]
SS Attributes
SS Type
Qualifier

networkId
networkId
string
Read-Only, M

userLabel
userLabel
string
Read-Only, M

networkType
networkType
string
Read-Only, O

6.5.1.2
MOC ManagedElement (M)
Table13: Mapping from NRM MOC ManagedElement attributes to SS equivalent MOC ManagedElement attributes

NRM Attributes of MOC ManagedElement in [4]
SS Attributes
SS Type
Qualifier

ManagedElementId
managedElementId
string
Read-Only, M

ManagedElementType
managedElementType
string
Read-Only, M

UserLabel
userLabel
string
Read-Only, M

LocationName
locationName
string
Read-Only, O

-
ManagementNodeRef
any
Read-Only, O

6.5.1.3
MOC MEController (O)

Table14: Mapping from NRM MOC MEController attributes to SS equivalent MOC MEController attributes

NRM Attributes of MOC MEController in [4]
SS Attributes
SS Type
Qualifier

MeControllerId
meControllerId
string
Read-Only, M

UserLabel
userLabel
string
Read-Only, M

6.5.1.4
MOC ManagementNode (M)

Table15: Mapping from NRM MOC ManagementNode attributes to SS equivalent MOC ManagementNode attributes

NRM Attributes of MOC ManagementNode in [4]
SS Attributes
SS Type
Qualifier

ManagementNodeId
managementNodeId
string
Read-Only, M

ManagedElementType
managedElementType
string
Read-Only, M

UserLabel
userLabel
string
Read-Only, M

LocationName
locationName
string
Read-Only, O

-
ManagedElementRef
sequenceof <any>
Read-Only, O

6.5.1.5
MOC ManagedFunction (M)

This Managed Object class is provided for sub-classing only. Mapping is therefore only performed for sub-classes.
6.5.2
UMTS NRM Managed Object Class Mapping

6.5.2.1
MOC RadioFunction (M)

Table16: Mapping from NRM MOC RadioFunction attributes to SS equivalent MOC RadioFunction attributes

NRM Attributes of MOC RadioFunction in [4]
SS Attributes
SS Type
Qualifier

radioFunctionId
radioFunctionId
string
Read-Only, M

userLabel
userLabel
string
Read-Only, O

6.5.2.2
MOC Cell (M)

Table17: Mapping from NRM MOC Cell attributes to SS equivalent MOC Cell attributes

NRM Attributes of MOC Cell in [4]
SS Attributes
SS Type
Qualifier

cellId
cellId
string
Read-Only, M

userLabel
userLabel
string
Read-Only, O

7 Use of OMG Structured Event

In CORBA SS, OMG defined StructuredEvent [6] is used to carry notification. This clause identifies the OMG defined StructuredEvent attributes that carry the attributes of parameters defined in [4].

The composition of OMG Structured Event, as defined in [6], is:

Header

 Fixed Header

 domain_name

 type_name

 event_name

 Variable Header

Body

 filterable_body_fields

 remaining_body

The table below lists all OMG Structured Event attributes in its leftmost column. The second column identifies the SS attributes, if any, that shall be carried there.

Table 12: Use of OMG Structured Event

SS Attribute
OMG CORBA Structured Event attribute
Comment

There is no corresponding SS attribute.
domain_name
It contains the string “1c1;<MIM version X>;…”, where “1c1” is the supported SS version, followed by all supported MIM versions. “;” is used as a separator (not terminator). See also clause 5.6 in this document.

eventType
type_name
It shall indicate one of the following ITU-T defined semantics:

OBJECT_CREATION
OBJECT_DELETION
ATTRIBUTE_VALUE_CHANGE
RELATIONSHIP_CHANGE
It is a string. It is assumed that the types are defined in module CommonIRPConstDefs in Notification IRP IDL [9]

extended EventType
event_name
The legal values of this attribute is

NOTIFY_CM_TOPOLOGY_CHANGE

It is a string. See this SS IDL.

There is no corresponding SS attribute.
variable Header

notificationId
One NV pair of filterable_ body_fields
Name of NV pair is a string, notificationId.

Value of NV pair is an unsigned long. See corresponding table in Notification IRP: CORBA SS [9].

correlatedNotifications
One NV pair of filterable_ body_fields
Name of NV pair is a string, correlatedNotifications.

Value of NV pair is of type correlatedNotificationSetType. See module NotificationIRPConstDefs in Notification IRP: CORBA SS [9].

eventTime
One NV pair of filterable_ body_fields
Name of NV pair is a string, eventTime.

Value of NV pair is an IRPTime. The definition is in accordance with CosTime, TimeBase::UtcT.

systemDN
One NV pair of filterable_ body_fields
Name of NV pair is a string, systemDN.

Value of NV pair is a string representing the DN of System. See corresponding table in Notification IRP: CORBA SS [9].

sourceIndicator
One NV pair of filterable_ body_fields
Name of NV pair is a string, sourceIndicator.

Value of NV pair is a string. It shall identify one of the following:

RESOURCE OPERATION
MANAGEMENT OPERATION
UNKNOWN

managedObject
One NV pair of filterable_ body_fields
Name of NV pair is a string, DN.

Value of NV pair is a string. Syntax and semantics of this string conform to the Managed Object string representation specified in [5].

attributeValueChangeSeq
One NV pair of remaining_ body_fields
Name of NV pair is a string, attributeValueChangeSeq.

Value of NV pair is of type MOAttributeChangeSeq.

associationChangeSeq
One NV pair of remaining_ body_fields
Name of NV pair is a string, associationChangeSeq.

Value of NV pair is of type MOAssociationChangeSeq.

8
Annex A (informative):
Change history

This annex lists all change requests approved for this document since the specification was first approved by 3GPP TSG-SA.

Change history

TSG SA#
Version
CR
Tdoc SA
New Version
Subject/Comment

S_07
2.0.0
-
SP-000012
3.0.0
Approved at TSG SA #7 and placed under Change Control

Post S5#10
3.0.0
-
- S5-000227
3.0.1
Updated by MCC staff with editorial changes according to documentation rules.

S_S5#11
3.0.1
-
 ?
3.0.1a
 Updated according to S5#10bis (S5-000192) and S5#11 (decision to create separate parts for main body and earlier annexes). To be agreed at S5#11bis and approved at S5 #12, together with possible new updates according to S5#11bis.

S_04
3.0.0
003
SP-99308
3.1.0
Conditions on use of authentication information

SA5 internal Change history

SA/SA5 meeting
Version
Tdoc SA/SA5
New version
Subject/comment

S5#12
3.0.1a
S5C000050
3.0.1b
First proposal for a complete version of this document.

8 Annex B (normative):
CORBA IDL

#include <CosTime.idl>

/**

 * BasicCmIRPSystem Module

 */

 module BasicCmIRPSystem {

 // Definition of non ITU-T defined event type.

 const string NOTIFY_CM_TOPOLOGY_CHANGE = "x105";

 exception IllegalFilterFormatException {

 string reason;

 };

 exception IllegalDNFormatException {

 string reason;

 };

 exception IllegalScopeTypeException {

 string reason;

 };

 exception IllegalScopeLevelException {

 string reason;

 };

 exception IllegalCountException {

 string reason;

 };

 exception UndefinedMOException {

 string reason;

 };

 exception UndefinedIteratorException {

 string reason;

 };

 exception UndefinedScopeException {

 string reason;

 };

 /**

 * The format of Distinguished Name (DN) is specified in "Name Conventions

 * for Managed Objects revision B".

 */

 typedef string DN;

 /**

 * The format of time in a Notification Structured Event EventTime attribute.

 */

 typedef TimeBase::UtcT IRPTime;

 /**

 * Defintion of the Filter language.

 *

 * Constraints to use in Filters. The syntax is described below.

 * (It is similar to Notification Service constraints.)

 * Constraints are boolean conditions on named attributes and numeric or

 * string literals.

 * The constraints are constructed with "and", "or" and "not".

 * ==, !=, >, <, >=, <= are the relational operators.

 * Use () to force the correct order of evaluation.

 * Names and strings are case sensitive.

 * Example: "$type_name=CELL and $.frequency > 957 and $.location.latitude ==

 * 60;".

 *

 * Undefined attributes will not abort a search, it will regard an undefined

 * attribute as "false" in a constraint involving the attribute.

 * Example: "$type_name == CELL and $.frequency > 10 and $.chno == 93;" is

 * false if "frequency" is undefined.

 * Example: "$type_name == CELL and $.frequency > 10 or $.chno == 93;" has the

 * value of "chno == 93" if "frequency" is undefined.

 *

 * The syntax "//" is a grammar comment.

 *

 * // BNF Grammar Starts *****************************

 *

 * <constraint> := empty | <bool> | <dnlist>

 * <dnlist> := // This is an Extended TCL expression containing a list of DNs

 * to filter on.

 * <bool> := $type_name == <identifier> and <bool_or>;

 * <bool_or> := <bool_or> or <bool_and>

 * | <bool_and>

 * <bool_and> := <bool_and> and <bool_compare>

 * | (<bool_or>)

 * | <bool_compare>

 * <bool_compare> := <term> == <literal>

 * | <term> != <literal>

 * | <term> < <literal>

 * | <term> <= <literal>

 * | <term> > <literal>

 * | <term> >= <literal>

 * | <term>

 * <term> := <term> . <identifier>

 * | $.<identifier>

 * <literal> := <number>

 * | - <number>

 * | <string>

 * | <enum>

 * | TRUE

 * | FALSE

 * <string> := ' <textChars> '

 * <textChars> := <textChars> <charOrEscape> | empty

 * <enum> := TRUE

 * | FALSE

 * | <identifier>

 * <charOrEscape> := \'

 * | // any character

 * <identifier> := // Java identifier (case sensitive), see "The Java Language

 * Specification", version 1, chapter 3.8.

 * <digits> := // positive integer

 *

 * // BNF Grammar ends *******************************

 *

 */

 valuetype FilterType string;

 /**

 * ResultContents is used to tell how much information to get back

 * from the find_managed_objects operation.

 *

 * NAMES: Distinguished Name (which include MO class).

 * NAMES_AND_ATTRIBUTES: as NAMES plus all attributes.

 * NAMES_AND_ASSOCIATIONS: as NAMES plus all associations.

 * ALL: as NAMES_AND_ATTRIBUTES plus NAMES_AND_ASSOCIATIONS.

 */

 enum ResultContents {

 NAMES,

 NAMES_AND_ATTRIBUTES,

 NAMES_AND_ASSOCIATIONS,

 ALL

 };

 /**

 * ScopeType defines the kind of scope to use in a search

 * together with SearchControl.level, in a SearchControl value.

 *

 * SearchControl.level is always >= 0. If a level is bigger than the

 * depth of the tree there will be no exceptions thrown.

 * BASE_ONLY: level ignored, just return the base object.

 * BASE_NTH_LEVEL: return all subordinate objects that are on "level"

 * distance from the base object, where 0 is the base object.

 * BASE_SUBTREE: return the base object and all of its subordinates

 * down to and including the nth level.

 * BASE_ALL: level ignored, return the base object and all of it's

 * subordinates.

 */

 enum ScopeType {

 BASE_ONLY,

 BASE_NTH_LEVEL,

 BASE_SUBTREE,

 BASE_ALL

 };

 /**

 * SearchControl controls the find_managed_object search,

 * and contains:

 * the type of scope ("type" field),

 * the level of scope ("level" field),

 * the filter ("filter" field),

 * the result type ("contents" field).

 * The type, level and contents fields are all mandatory.

 * The filter field is optional (null or the empty string).

 */

 valuetype SearchControl {

 public ScopeType type;

 public unsigned long level;

 public FilterType filter;

 public ResultContents contents;

 factory create(in ScopeType t, in unsigned long l, in FilterType f, in ResultContents rc);

 };

 /**

 * Represents an attribute: "name" is the attribute name

 * and "value" is the attribute value in form of a CORBA Any.

 */

 struct MOAttribute {

 string name;

 any value;

 };

 typedef sequence<MOAttribute> MOAttributeSeq;

 valuetype MOAttributes MOAttributeSeq;

 /**

 * A relation type implicitly defines all roles (directions) of the type,

 * defined by a MIM.

 * "toOtherMORole" contains the role name of the arrow pointing to "otherMO".

 */

 valuetype MOAssociation {

 public DN otherMO;

 public string relationType;

 public string toOtherMORole;

 };

 typedef sequence<MOAssociation> MOAssociationSeq;

 valuetype MOAssociations MOAssociationSeq;

 struct MOAttributeChange {

 MOAttribute old;

 MOAttribute new;

 };

 typedef sequence<MOAttributeChange> MOAttributeChangeSeq;

 enum AssociationChange {

 CREATED,

 DELETED

 };

 struct MOAssociationChange {

 DN otherMO;

 string relationType;

 string toOtherMORole;

 AssociationChange change;

 };

 typedef sequence<MOAssociationChange> MOAssociationChangeSeq;

 valuetype Result {

 public DN mo;

 public MOAttributes attributes;

 public MOAssociations associations;

 };

 typedef sequence<Result> ResultSeq;

 valuetype Results ResultSeq;

 /**

 * Iterator is returned from find_managed_object.

 *

 * The "id" field is for internal use, to keep track of the Iterator.

 */

 valuetype Iterator {

 private long id;

 };

 /**

 * Version is a string representing an interface version and

 * a list of resource model versions.

 *

 * Format: "1c1;<MIM A>;<MIM B>", where "1c1" is the SS version,

 * followed by all MIM versions. ";" is used as a separator (not

 * terminator).

 *

 * Format of a MIM version:

 * <VendorPrefix>.<Technology>.<Resource Model Name>.<MajorVersion>_<MinorVersion>

 *

 * Examples:

 * companyX.gsm.BSC_MODEL.1_1

 * companyX.umts.RNC_MODEL.1_2

 * companyX.common.PLMN_MODEL.1_0

 *

 * Note that the space character is not allowed,

 * and that dots are not allowed within the parts, except for <VendorPrefix>,

 * because the part after the <VendorPrefix> has a fixed structure.

 */

 valuetype Version string;

 /**

 * The BasicCmIrpOperations interface.

 * Supports a number of Resource Model versions.

 */

 interface BasicCmIrpOperations {

 /**

 * Get the version of the interface and all supported resource

 * model versions.

 *

 * @returns Interface version and all supported versions.

 */

 Version get_basic_cm_irp_version();

 /**

 * Performs a containment search, using a SearchControl to

 * control the search and the returned results.

 *

 * All MOs in the scope constitutes a set that the filter works on.

 * The result Iterator contains all matched MOs,

 * with the amount of detail specified in the SearchControl.

 *

 * @parm baseObject The start MO in the containment tree.

 * @parm scope the SearchControl to use.

 * @raises UndefinedMOException The MO does not exist.

 * @raises IllegalDNFormatException The dn syntax string is

 * malformed.

 * @raises IllegalScopeTypeException The ScopeType in scope contains

 * an illegal value.

 * @raises IllegalScopeLevelException The scope level is negative

 * (<0).

 * @raises IllegalFilterFormatException The filter string is

 * malformed.

 * @raises IllegalCountException "howMany" has a value less than 0.

 * @see SearchControl

 * @see Iterator

 */

 Iterator find_managed_objects(in DN baseObject,

 in SearchControl scope

)

 raises (UndefinedMOException,

 IllegalDNFormatException,

 UndefinedScopeException,

 IllegalScopeTypeException,

 IllegalScopeLevelException,

 IllegalFilterFormatException,

 IllegalCountException);

 /**

 * Gets data from an Iterator.

 *

 * @parm iter The Iterator to use. The "fetchedElements" field will

 * be updated with the "howMany" (if possible) new values if

 * "howMany" >= 0, where 0 means all remaining elements.

 * @parm howMany how many elements to return in the "fetchedElements" out

 * parameter.

 * @parm fetchedElements the elements.

 * @returns A boolean indicating if any elements are returned.

 * "fetchedElements" is set to null when the Iterator is empty.

 * @raises UndefinedIteratorException The Iterator does not exist or

 * is null.

 * @raises IllegalCountException "howMany" has a value < 0.

 * @see Iterator

 */

 boolean get_next_elements(in Iterator iter,

 in unsigned long howMany,

 out Results fetchedElements)

 raises (UndefinedIteratorException,

 IllegalCountException);

 /**

 * Deletes an Iterator.

 *

 * @parm iter The Iterator to delete.

 * @raises UndefinedIteratorException The Iterator does not exist or

 * is null.

 * @see Iterator

 */

 void delete_iterator(in Iterator iter)

 raises (UndefinedIteratorException);

 };

};

PAGE 1

