3GPP TSG SA WG5 (Telecom Management) Meeting #113
S5-17273

8-12 May 2017, West Palm Beach, Florida(US)
revision of S5A-17xabc
Source:
Nokia
Title:
pCR 32.866 Add common principles and design patterns
Document for:
Approval
Agenda Item:
6.6.8
1
Decision/action requested

Discuss and agree proposed text.
2
References

None.
3
Rationale

Discuss and agree to include proposed text.
4
Detailed proposal

	1st modified section

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[x]
ETSI NFV SOL 17
NFVSOL(17)000050r1: "SOL REST API convention collection living document (2017-01-30)".
[y]
ETSI GS NFV SOL 003 V0.6.0 (2017-01): "RESTful protocols specification for the Or-Vnfm Reference Point".

[z]
Draft ETSI GS MEC 009 V0.7.1 (2017-02): "Mobile Edge Computing (MEC); General principles for Mobile Edge Service APIs".

[t]
IETF RFC 6421: "Network Configuration Protocol (NETCONF)" (https://www.ietf.org/rfc/rfc6241.txt).
[u]
IETF RFC 8040: "RESTCONF Protocol" (https://www.ietf.org/rfc/rfc8040.txt).

[a1]
IETF RFC 7230: "Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing" (https://www.ietf.org/rfc/rfc7230.txt).
[a2]
IETF RFC 7231: "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content" (https://www.ietf.org/rfc/rfc7231.txt).
[a3]
IETF RFC 3986: "Uniform Resource Identifier (URI): Generic Syntax" (https://www.ietf.org/rfc/rfc3986.txt).
[a4]
3GPP TS 32.300: "Name convention for managed objects".

[a5]
ETSI GS NFV SOL 003 (V0.7.0): "Network Functions Virtualisation (NFV); Management and Orchestration; Functional requirements specification".
[a6]
3GPP TS 32.602: "Telecommunication management; Configuration Management (CM); Basic CM Integration Reference Point (IRP); Information Service (IS)".
[a7]
3GPP TS 32.111-2: " Telecommunication management; Fault Management; Part 2: Alarm Integration Reference Point (IRP): Information Service (IS)".
	End of 1st modified section

	2nd modified section

·
·

7
Common principles and design patterns for a RESTful HTTP-based Solution Set

7.1
Input material

As described earlier there are already numerous SDO/fora using RESTful HTTP-based solution sets. SA5 should this material as input for its work and study possible alignment options.

7.2
Short review of REST

7.2.1
REST design principles

7.2.2
REST implementation levels

7.3
Short review of HTTP

7.3.1
Message Format

In RFC 7230 [a1] the general format of a message is given by

HTTP-message = start-line

 *(header-field CRLF)

 CRLF

 [message-body]
with

start-line = request-line / status-line

request-line = method SP request-target SP HTTP-version CRLF
method = token

token = 1*tchar

tchar = "!" / "#" / "$" / "%" / "&" / "’" / "*" / "+" / "-" / "." /

"^" / "_" / "‘" / "|" / "˜" / DIGIT / ALPHA

request-target = origin-form

/ absolute-form

/ authority-form

/ asterisk-form

HTTP-name = %x48.54.54.50 ; HTTP

HTTP-version = HTTP-name "/" DIGIT "." DIGIT

status-line = HTTP-version SP status-code SP reason-phrase CRLF
status-code = 3DIGIT

reason-phrase = *(HTAB / SP / VCHAR / obs-text)
header-field = field-name ":" OWS field-value OWS

field-name = token

field-value = *(field-content / obs-fold)

field-content = field-vchar [1*(SP / HTAB) field-vchar]

field-vchar = VCHAR / obs-text

obs-fold = CRLF 1*(SP / HTAB)

; obsolete line folding

; see Section 3.2.4

message-body = *OCTET

7.3.2
HTTP methods

RFC 7231 [a2] defines eight methods.

GET

Editors’s note: short definition to be added
HEAD

Editors’s note: short definition to be added
POST

Editors’s note: short definition to be added
PUT

Editors’s note: short definition to be added
DELETE

Editors’s note: short definition to be added
CONNECT

Editors’s note: short definition to be added
OPTIONS

Editors’s note: short definition to be added
TRACE

Editors’s note: short definition to be added
RFC 5789 defines the PATCH method

PATCH

Editors’s note: short definition to be added
7.3.3
HTTP resources

HTTP requests act on resources identified by a Uniform Resource Identifier (URI). Resources can be created, read, updated or deleted (CRUD).

7.3.4
Uniform Resource Identifiers (URIs)

URIs are used in HTTP as a means for identifying resources. The generic URI is defined in RFC 3986 [a3] by
URI = scheme ":" hier-part ["?" query] ["#" fragment]

hier-part = "//" authority path-abempty

/ path-absolute

/ path-rootless

/ path-empty

HTTP uses a subset of the generic URI scheme defined in RFC 7230 [b] as

http-URI = "http:" "//" authority path-abempty ["?" query]

["#" fragment]
where

authority = <authority, see [RFC3986], Section 3.2>

path-abempty = <path-abempty, see [RFC3986], Section 3.3>
query = <query, see [RFC3986], Section 3.4>
fragment = <fragment, see [RFC3986], Section 3.5>

and

authority = [userinfo "@"] host [":" port]
path-abempty = *("/" segment)

query = *(pchar / "/" / "?")
fragment = *(pchar / "/" / "?")
and

segment = *pchar
pchar = unreserved / pct-encoded / sub-delims / ":" / "@"

unreserved = ALPHA / DIGIT / "-" / "." / "_" / "˜"

pct-encoded = "%" HEXDIG HEXDIG

sub-delims = "!" / "$" / "&" / "’" / "(" / ")"

/ "*" / "+" / "," / ";" / "="
Example:

foo://example.com:8042/over/there?name=ferret#nose

_/ ______________/_________/ _________/ __/

 | | | | |

scheme authority path query fragment
7.4
Usage of HTTP
7.4.1
URI structure

The URI should follow a common structure. One possibility is to align with ETSI GS NFV SOL 003 [a5]. In this case the URI without the query component follows the structure

URI = {URI-prefix}/{resourcepath}

URI-prefix = {irpRoot}/{irpName}/{irpVersion}

Editor’s note: It is ffs if above should be expressed in ABNF.
where

{irpRoot}
indicates the scheme (“http” or “https”), the host name and optional port, and an optional prefix path.
{irpName}
indicates the IRP name
{irpVersion}
indicates the current version of the IRP.

Editor’s note: It is ffs, how to map the DN prefix into this scheme.
When comparing this URI scheme to the http-URI you get

http-URI = "http:" "//" host [":" port] path-abempty ["?" query]

 ___________________________/___/ ___/
 | | |
 irpRoot irpName irpVersion
Example:

http://example.com:80/basicCmIRP/V1400/...
The optional userinfo component shall not be used.

Editor’s note: The use of the fragment component is ffs
7.4.2
Resource identification

TS 32. 300 [a4] defines the approach for naming a MOI as follows

“ITU-T Recommendation X.500 [2] uses the AttributeType (defined for use as the first component of the AttributeTypeAndValue of a RDN) to identify one attribute of the subject MO for naming purpose. This AttributeType is called the naming attribute to distinguish itself from other attributes that may be present in the MO.”

Based on this definition, the RDN can be defined as

RDN = "/"{namingAttribute} "/" {namingAttributeValue}
and the resource path is the concatenation of RDNs separated by "/".
resourcePath = *("/" RDN)
Example:

…/SubNetwork/south/IRPAgent/5/ManagedElement/Berlin6754/ENBFunction/1

In this approach, each managed object instance is mapped to a top-level resource. It is also possible to define some sort of container resource for the instantiated NRM.

Editor’s note: The container approach is ffs and needs to be compared with the approach where each MOI is mapped to a top-level resource.
7.4.3
Usage of HTTP headers and footers

7.4.4
Metadata language for the message body

JSON is used for the message body.

Editor’s note: Specify the content type of the header, or provide a reference.
7.5
Design Patterns

7.5.1
Design pattern for READ operations

READ operations shall be mapped to the HTTP GET method.
7.5.2
Design pattern for UPDATE operations

WRITE operations shall be mapped to the HTTP PUT or the HTTP PATCH method.
7.5.3
Design pattern for CREATE operations

CREATE operations shall be mapped to the HTTP POST method.

7.5.4
Design pattern for DELETE operations

DELETE operations shall be mapped to the HTTP DELETE method.
7.5.5
Design pattern for SUBSCRIBE/NOTIFY operations

This pattern uses the HTTP POST method. To subscribe to notifications the subscriber sends a POST request to the server indicating – in the message body - the HTTP endpoint to which notifications shall be sent to, and including information about the type of notifications that are subscribed to. Additional filter information may be included in the message body as well.

Subscription requests are sent to a so-called container resource or parent resource. Subscription resources are created below this resource.

To send a notification the server sends a POST request to the client identified by HTTP endpoint address. The actual notification content is included in the message body of the POST request.

Editor’s note: An example should be added
7.5.6
Design pattern for TASK operations

Due to their complexity, some operations cannot be mapped easily into CRUD operations. For these operations task resources are introduced. Reasons for escaping to task operations include

· Editor’s note: Reasons are to be added
Task resources are created below a parent resource to which the task is related to. The tasks are invoked by sending a POST request to the resource. Input parameters can be specified in the message body of the POST request. Output parameters can be returned in the message body of the POST response. The name of the resource should be a verb describing the invoked action

…/foo/doSomething

Task resources are created automatically by the HTTP server once the parent resource is created. The HTTP client does not need to create them.

7.5.7
Design pattern for scoping and filtering

The hierarchical path component in the URI serves to identify a resource, called the base resource. The scope defines the resources below the base resource or at the same level as the base resource to be selected for filtering. The scoped resources that match the filter criteria are those on which the HTTP operation is being applied to.

The query component in the URI is used for scoping and filtering. The query component is indicated by the first question mark ("?") character and terminated by a number sign ("#") character or by the end of the URI.

In RFC3986 [a3] the query component is defined as

query = *(pchar / "/" / "?")

A filter language is not defined. In ETSI GS NFV SOL 003 the following filter language is specified

simpleFilterExpr := <attrName>["."<attrName>]*"."<op>"="<value>

filterExpr := "?"<simpleFilterExpr>["&"<simpleFilterExpr>]*
op := "eq" | "neq" | "gt" | "lt" | "gte" | "lte" | "cont" |
 "ncont"
attrName := string
with

	Operator <op>
	Meaning

	<attrName>.eq=<value>[,<value>]*
	Attribute equal to one of the values in the list

	<attrName>.neq=<value>[,<value>]*
	Attribute not equal to any of the values in the list

	<attrName>.gt=<value>
	Attribute greater than <value>

	<attrName>.gte=<value>
	Attribute greater than or equal to <value>

	<attrName>.lt=<value>
	Attribute less than <value>

	<attrName>.lte=<value>
	Attribute less than or equal to <value>

	<attrName>.cont=<value>[,<value>]*
	Attribute contains (at least) one of the values in the list

	<attrName>.ncont=<value>[,<value>]*
	Attribute does not contain any of the values in the list

Editor’s note: It is ffs if this filter language shall be adopted.
The scope can be defined as follows:

…?scopeType={scopeTypeValue}&scopeLevel={scopeLevelValue}
scopeTypeValue = "BASE_ONLY" / "BASE_NTH_LEVEL" / "BASE_SUBTREE" / "BASE_ALL"

scopeLevelValue = *DIGIT
Editor’s note: It is ffs how the information is returned to the client for the case that more than one resource is scoped and passes the filter criteria.
The scope types are defined in TS 32.602 [a6]

7.4
Example mapping of IRPs

7.3.1.1
Mapping of Network Resource Model (NRM) IRPs to resources

Each Managed Object Instance (MOI) is mapped to a HTTP resource.

7.3.1.2
Mapping of Interface IRPs to resources

Example mapping of the Basic CM IRP

The Information Service of the Basic CM IRP is defined in 3GPP TS 32.602 [a6] and features the following operations
	IS operation
	Description

	createMO
	Operation allows to create one MOI

	deleteMO
	Operation allows to create one MOI or (through scoping and filtering) multiple MOIs

	setMOAttributes
	Operation allows to set the attributes of one MOI or (through scoping and filtering) multiple MOIs

	getMOAttributes
	Operation allows to read the attributes of one MOI or (through scoping and filtering) multiple MOIs

	getContainment
	Operation to get the containment starting from the specified base object

	cancelOperation
	Operation to cancel an ongoing Basic CM operation

Case 1: The operations relate to one and only one managed object instance (resource)

In this case the resource is identified by the URI. The scope is the base object alone. Filter constraints can be specified in the query component.

In this case the IS operations can be mapped directly into HTTP methods as specified in the following table.

Editor’s note: The mapping of the operations cancelOperation and getContainment is ffs.

	IS operation
	HTTP method

	createMO
	POST

	deleteMO
	DELETE

	setMOAttributes
	PATCH/PUT

	getMOAttributes
	GET

	cancelOperation
	tbc

	getContainment
	tbc

Example: Get all attributes of a resource

Request:

GET …/SubNetwork/south/IRPAgent/5/ManagedElement/6/ENBFunction/Berlin6754
Response:

Returns in the message body the resource instance in JSON or XML.

Case 1: The operations relate to a scope with more than one

This case is ffs.

Example mapping of the Alarm IRP

The Information Service of the Alarm IRP is specified in TS 32.111-2 [a7].
1. Possibility: The IS level operations are mapped to task resources. The parent resource of the task resource is the IS level interface like AlarmIRPOperations_1.

POST …/AlarmIRP/V1400/AlarmIRPOperations_1/getAlarmList

POST …/AlarmIRP/V1400/AlarmIRPOperations_1/acknowledgeAlarms

POST …/AlarmIRP/V1400/AlarmIRPOperation_2/getAlarmCount

POST …/AlarmIRP/V1400/AlarmIRPOperation_3/unacknowledgeAlarms

POST …/AlarmIRP/V1400/AlarmIRPOperation_4/setComment

POST …/AlarmIRP/V1400/AlarmIRPOperation_5/clearAlarms

This approach is consistent with the definition that support IOCs defined on IS level are not visible and accessible except through the input and output parameters of operations. On the other hand, in a design following REST principles, task resources should be avoided.
2. Possibility: In this approach CRUD operations are directly invoked on the support IOCs. This is not compliant to the IS level definitions of support IOCs, but to REST principles.

GET …/AlarmIRP/V1400/AlarmIRP/1/AlarmList/1/getAlarmList

GET …/AlarmIRP/V1400/AlarmIRP/1/AlarmList/1/alarmInformation/23/setComment

Editor’s note: It is ffs if more possibilities exist and what is the best approach.
7.5
REST SS template

This chapter provides the REST SS template.

	End of 2nd modified section

