3GPP TS 28.526 V0.4.0 (2017-01)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

Telecommunication management;

Life Cycle Management (LCM) for mobile networks that include virtualized network functions;
Procedures
(Release 14)
[image: image1.jpg]



[image: image2.png]=

A GLOBAL INITIATIVE




The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP..
The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and Reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

<keyword[, keyword, …]>

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2015, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TSDSI, TTA, TTC).

All rights reserved.
UMTS™ is a Trade Mark of ETSI registered for the benefit of its members

3GPP™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
LTE™ is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners
GSM® and the GSM logo are registered and owned by the GSM Association

Contents

5Foreword

Introduction
5
1
Scope
6
2
References
6
3
Definitions and abbreviations
6
3.1
Definitions
6
3.2
Abbreviations
6
4
Lifecycle Management procedures
7
4.1
Introduction
7
4.2
VNF Instance procedures
7
4.2.1
VNF Identifier creation
7
4.2.2
VNF instantiation
7
4.2.2.1
VNF instantiation by EM request
7
4.2.2.2
VNF instantiation as part of NS update initiated through Os-Ma-nfvo
8
4.2.2.3
Provide IP address of the managing EM in VNF instantiation
9
4.2.2.4
Query VNF instance information through Ve-Vnfm-em
11
4.2.3
VNF scaling
11
4.2.3.1
Scale VNF instance initiated by EM
11
4.2.3.2.
Scale VNF instance to a level initiated by EM
12
4.2.3.3
VNF scaling as part of NS scaling initiated through Os-Ma-nfvo
12
4.2.4
VNF instance termination
13
4.2.4.1
VNF termination by EM request
13
4.2.5
Notifications about VNF lifecycle changes
14
4.2.6
Enabling/disabling the autoscaling of the corresponding VNF instance(s) for an NE
14
4.2.7
Subscribing to VNF lifecycle change notifications through Ve-Vnfm-em
14
4.3
VNF Package procedures
14
4.3.1
VNF package on-boarding
14
4.3.2
VNF Package enabling
15
4.3.3
VNF Package disabling
15
4.3.4
VNF Package deleting
15
4.3.5
Abort VNF package deletion
15
4.3.6
VNF Package querying
15
4.3.7
Fetch VNF Package
15
4.3.8
Notify operation on VNF Package management interface
15
4.3.9
Subscribe operation on VNF Package management interface
15
4.4
NS Instance procedures
15
4.4.1
NS Instance instantiation
15
4.4.2
NS Instance termination
16
4.4.3
NS Instance querying
17
4.4.3.1
Query VNF instance information as part of NS querying through Os-Ma-nfvo
17
4.4.4
NS Instance scaling
17
4.4.5
NS Instance updating
17
4.4.5.1
NS update to associate an NS instance to a different NSD version
17
4.4.5.2
Modifying VNF instance information through Os-Ma-nfvo
18
4.4.5.3
Modifying VNF instance configuration through Os-Ma-nfvo
19
4.4.6
Subscription regarding NS Instance lifecycle changes
20
4.4.7
Create NS Instance identifier
20
4.4.8
Delete NS Instance identifier
20
4.4.9
Procedure for the Notify operation for notifications to NM
21
4.5
NS Descriptor (NSD) procedures
22
4.5.1
NSD on-boarding
22
4.5.2
NSD enabling
22
4.5.3
NSD disabling
22
4.5.4
NSD querying
22
4.5.5
NSD deletion
22
4.5.6
NSD updating
22
4.5.7
Subscribe to NSD change notifications
22
4.5.8
Notify operation for management changes in NSDs
22
4.6
PNFD procedures
22
4.6.1
PNFD on-boarding
22
4.6.2
Create a new version of already on-boarded PNFD
22
4.6.3
Update of the user-defined data in PNFD
22
4.6.4
PNFD deletion
22
4.6.5
PNFD querying
22
Annex A (informative): Change history
23


Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

The present document is part of a TS-family covering the 3rd Generation Partnership Project Technical Specification Group Services and System Aspects, Telecommunication Management; as identified below:

TS 28.525:
Telecommunication management; Life Cycle Management (LCM) for mobile networks that include virtualized network functions; Requirements
TS 28.526:
Telecommunication management; Life Cycle Management (LCM) for mobile networks that include virtualized network functions; Procedures

TS 28.527:
Telecommunication management; Life Cycle Management (LCM) for mobile networks that include virtualized network functions; Stage 2
TS 28.528:
Telecommunication management; Life Cycle Management (LCM) for mobile networks that include virtualized network functions; Stage 3

1
Scope

The present document specifies the Life Cycle Management (LCM) procedures for mobile networks that include virtualized network functions, which can be part of EPC or IMS.
2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TS 28.500: "Management concept, architecture and requirements for mobile networks that include virtualized network functions".

[3]
3GPP TS 28.525: "Life Cycle Management (LCM) for mobile networks that include virtualized network functions; Requirements".
[4]
GS NFV-IFA008 V2.1.1 (2016-10) "Network Function Virtualization (NFV); Management and Orchestration; Ve-Vnfm Reference Point - Interface and Information Model Specification".
[5]
GS NFV-IFA013 V2.1.1 (2016-10) "Network Function Virtualization (NFV); Management and Orchestration; Os-Ma-nfvo Reference Point - Interface and Information Model Specification".
3
Definitions and abbreviations
3.1
Definitions

For the purposes of the present document, the terms and definitions given in 3GPP TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in 3GPP TR 21.905 [1].

3.2
Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].

4
Lifecycle Management procedures
4.1
Introduction
The procedures listed in clause 4, as some of all the possibilities, are not exhaustive.
4.2
VNF Instance procedures

4.2.1
VNF Identifier creation

4.2.2
VNF instantiation

4.2.2.1
VNF instantiation by EM request
Figure 4.2.2.1-1 depicts a procedure of VNF instantiation by EM request. It is assumed that EM has subscribed to receive the VNF lifecycle change notification from VNFM.

1.  EM sends CreateVnfRequest to VNFM with vnfDescriptorId, vnfInstanceName, and vnfInstanceDescription to create the VNF identifier (see clause 7.2.2 [4]).

2.
VNFM sends CreateVnfResponse to EM with vnfInstanceId to indicate the creation of a new instance of a VNF information element (see clause 7.2.2.3 [4]).

3.
EM sends InstantiateVnfRequest to VNFM with input parameters, listed in clause 7.2.3.2 [4] to instantiate a VNF (see clause 7.2.3 [4]).
4.
VNFM sends InstantiateVnfResponse with lifecycleOperationOccurrenceId to EM (see clause 7.2.3.3 [4]).

5.
VNFM send a Notify (see clause 7.5.3 [4]), carrying VnfLifecycleChangeNotification information element to EM with attributes vnfInstanceId, status = “start”, operation = “instantiation”, lifeycleOperationOccurrenceId, affectedVnfc, affectedVl, and affectedVirtualStorage to indicate the start of VNF instantiation (see clause 9.5.1 [4]).

6.
VNFM send a Notify (see clause 7.5.3 [4]), carrying VnfLifecycleChangeNotification information element to EM with attributes vnfInstanceId, status = “result”, operation = “instantiation”, lifeycleOperationOccurrenceId, affectedVnfc, affectedVl, and affectedVirtualStorage to indicate the result of VNF instantiation, when the VNF instantiation operation is completed (see clause 9.5.1 [4]).


[image: image3.emf]EM

1. CreateVnfRequest 

2. CreateVnfResponse 

VNFM

3. InstantiateVnfRequest 

6. Notify

5. Notify

4. InstantiateVnfResponse 


Figure 4.2.2.1-1: VNF instantiation procedure
Editor’s note: how the VNF instantiation procedure may be triggered is FFS.

4.2.2.2
VNF instantiation as part of NS update initiated through Os-Ma-nfvo
Figure 4.2.2.2-1 depicts the procedure of instantiating a VNF instance as part of an NS update through the Os-Ma-nfvo reference point (see clause 7.3.5 [5]). 

1.  NM sends to NFVO an UpdateNsRequest with parameters nsInstanceId, updateType = "InstantiateVnf", instantiateVnfData, and updateTime to instantiate the VNF instance (see clause 7.3.5.2 [5]). The instantiateVnfData contains the parameters that are needed for VNF instantiation, including vnfdId, flavourId, and can include in addition the parameters instantiationLevelId, vnfInstanceName, etc (see clause 8.3.4.12 [5]).

2.
NFVO sends to NM an UpdateNsResponse with parameter lifecycleOperationOccurrenceId providing the identifier of the NS lifecycle operation occurrence (see clause 7.3.5.3 [5]).

3.
NFVO sends to NM a Notify (see clause 7.4.3 [5]), carrying NsLifecycleChangeNotification information element with attributes nsInstanceId, lifecycleOperationOccurrenceId, operation = "UpdateNs", and notificationType = "start" to indicate the start of the NS update that includes the VNF instantiation (see clause 8.3.2.2 [5]).

4.
NFVO sends to NM a Notify (see clause 7.4.3 [5]), carrying NsLifecycleChangeNotification information element with attributes nsInstanceId, lifecycleOperationOccurrenceId, operation = "UpdateNs", notificationType = "result" to indicate the end result of the NS update that includes the VNF instantiation, and affectedVnf providing information about the added VNF instance. The affectedVnf includes parameters vnfInstanceId, vnfdId, vnfProfileId, vnfName and changeType = "instantiated" (see clauses 8.3.2.2 and 8.3.2.3 [5]).


[image: image4]
Figure 4.2.2.2-1: VNF instantiation as part of NS update initiated through Os-Ma-nfvo
4.2.2.3
Provide IP address of the managing EM in VNF instantiation
Figure 4.2.2.3-1 depicts a procedure of providing the IP address of the managing EM to the VNF in instantiation. The figure uses UML notation to show multiple options available. 

1.
EM sends CreateVnfIdentifierRequest with parameters vnfdId, and optionally vnfInstanceName and vnfInstanceDescription to VNFM (see clause 7.2.2 [4]).

2.
VNFM creates a new VnfInfo object

3.
VNFM sends CreateVnfIdentifierResponse with the new VNF identifier to EM (see clause 7.2.2 [4]).

If the Multi-vendor Plug and Play connection to the network method is not used and managing EM IP address is provided as VNF configuration data, the steps 4.1.1 through 4.1.4 are executed.

4.1.1.
EM sends ModifyVnfConfigurationRequest with parameters vnfInstanceId, vnfConfigurationData, extVirtualLink and vnfcConfigurationData to VNFM (see clause 7.6.2 [4]). The managing EM IP address value used in parameter vnfConfigurationData.

4.1.2.
VNFM sets the vnfConfigurationData in the vnfInfo object.

4.1.3.
VNFM sends ModifyVnfConfigurationResponse to EM (see clause 7.6.2 [4]).

4.1.4.
EM sends InstantiateVnfRequest with parameters vnfInstanceId, flavourId, instantiationLevelId, extVirtualLink, extManagedVirtualLink, localizationLanguage and additionalParam to VNFM (see clause 7.2.3 [4]).
Note: The extVirtualLink may be known to the EM (e.g. provided by another entity).

If the Multi-vendor Plug and Play connection to the network method is not used and managing EM IP address is provided as additional parameter for instantiation, the steps 4.2.1 through 4.2.3 are executed.

4.2.1.
EM sends InstantiateVnfRequest with parameters vnfInstanceId, flavourId, instantiationLevelId, extVirtualLink, extManagedVirtualLink, localizationLanguage and additionalParam to VNFM (see clause 7.2.3 [4]). The managing EM IP address value used in parameter additionalParam.

4.2.2.
VNFM maps the managing EM IP address value received in parameter additionalParam of InstantiateVnfRequest to vnfConfigurationData.

Editor’s Note: the specific mechanism for this mapping (e.g. vendor specific LCM script or specific VNFM) is FFS

4.2.3.
VNFM sets the vnfConfigurationData in the vnfInfo object.

If the Multi-vendor Plug and Play connection to the network method is used to provide the managing EM IP address to VNF, step 4.3.1 is executed.

4.3.1.
EM sends InstantiateVnfRequest with parameters vnfInstanceId, flavourId, instantiationLevelId, extVirtualLink, extManagedVirtualLink, localizationLanguage and additionalParam to VNFM (see clause 7.2.3 [4]).

5.
VNFM initiates the VNF instantiation process.

6.
VNFM sends InstantiateVnfResponse with the new lifecycleOperationOccurrenceId to EM (see clause 7.2.3 [4]).

7.
VNFM sends SetInitialConfigurationRequest with parameters vnfInstanceId, vnfConfigurationData and vnfcConfigurationData to VNF (see clause 6.2.2 [4]).

8.
VNF sends SetInitialConfigurationResponse with parameters vnfConfigurationData and vnfcConfigurationData to VNFM (see clause 6.2.2 [4]).

9. If Multi-vendor Plug and Play connection to the network method is used to provide the managing EM IP address to VNF, VNF performs the EM discovery.

Editor’s Note: the specific mechanism for EM discovery by VNF could follow steps 1, 2, 5 and 6.2 of the procedure 5.1 in TS 32.508 and is FFS
10.
VNF connects to the managing EM.

11.
"Normal" NE management by the EM over Type-1 interface (e.g. s/w update, configuration) begins.

[image: image5.png]Em VNEM

1. CreateVnfidentiferRequest()

"] 2 cens

S=== v

|3, CreatevnfiertiterResponse()
Lo

|
ait ]| TMVPNP ot used ]

alt ] T (EM 1P Address provided as viConfigurationData |

|
|
I
|
{4411 Mo ConftnReestrContraiondaa=EV 1P A

7
|

421 niniteRequestaddionaParan-EM_IP_pcr)

) 422 MapacionalParam v o iContiuraondata

425 SetconData
T

5. Instaniiate
o

6. InstaniateVaResponse()
=

7. SethithiConfguationRequest()

8 SethitalConfigurationResponse()
=

7

opt J [MVPNP Used ]
|

o1 o, MVPNP EM discovery

10. Connect

1 1
70T |11 “Nomal"NE management by he EM ove Type- nteface (e s updte, confiuraton)





Figure 4.2.2.3-1: Scale VNF instance procedure

4.2.2.4
Query VNF instance information through Ve-Vnfm-em
Figure 4.2.2.4-1 depicts the procedure of querying VNF instance information through the Ve-Vnfm-em reference point (see clause 7.2.9 [4]). 

1.  EM sends to VNFM a QueryVnfRequest with parameters filter and attributeSelector used to filter the VNF instance(s) and select the information attributes that are requested to be returned (see clause 7.2.9.2 [4]).

2.
VNFM sends to EM a QueryVnfResponse with parameter vnfInfo providing the information that is selected according to parameters filter and attributeSelector (see clause 7.2.9.3 [4]).


[image: image6]
Figure 4.2.2.4-1: Query VNF instance information through Ve-Vnfm-em
4.2.3
VNF scaling

4.2.3.1
Scale VNF instance initiated by EM

Figure 4.2.3.1-1 depicts a procedure of scaling VNF instance (see clause 7.2.8 [4]). 

1.  EM sends ScaleVnfRequest with parameters vnfInstanceId, type, aspectId, and numberOfSteps to scale the VNF instance (see clause 7.2.8 [4]).

2. VNFM sends ScaleVnfResponsewith the identifier of the VNF lifecycle operation occurrence lifecycleOperationOccurrenceId to EM (see clause 7.2.8.

3.
VNFM send a Notify (see clause 7.5.3 [4]), carrying VnfLifecycleChangeNotification information element,  to EM with attributes vnfInstanceId, status = “start”, operation to indicate the start of VNF scaling (see clause 9.5.1 [4]).

4.
VNFM send a Notify (see clause 7.5.3 [4]), carrying VnfLifecycleChangeNotification information element,  to EM with attributes vnfInstanceId, status = “result”, operation to indicate the result of VNF scaling, when the VNF scaling operation is completed (see clause 9.5.1 [4]).


[image: image7.emf]EM VNFM

1. ScaleVnfRequest

4. Notify 

3. Notify

2. ScaleVnfResponse 


Figure 4.2.3.1-1: Scale VNF instance procedure

4.2.3.2.
Scale VNF instance to a level initiated by EM
Figure 4.2.3.2-1 depicts a procedure of scaling VNF instance to a level (see clause 7.2.9 [4]). 

1.  EM sends ScaleVnfToLevelRequest with parameters vnfInstanceId, and (instantiationLevelId or scaleInfo) to scale the VNF instance to a level defined by instantiationLevelId or scaleInfo (see clause 7.2.9 [4]).

2. VNFM sends ScaleVnfToLevelResponse with the identifier of the VNF lifecycle operation occurrence lifecycleOperationOccurrenceId to EM (see clause 7.2.9 [4]).

3.
VNFM send a Notify (see clause 7.5.3 [4]), carrying VnfLifecycleChangeNotification information element, to EM with attributes vnfInstanceId, status = “start”, operation to indicate the start of VNF scaling (see clause 9.5.1 [4]).

4.
VNFM send a Notify (see clause 7.5.3 [4]), carrying VnfLifecycleChangeNotification information element, to EM with attributes vnfInstanceId, status = “result”, operation to indicate the result of VNF scaling, when the VNF scaling operation is completed (see clause 9.5.1 [4]).


[image: image8.emf]EM VNFM

1. ScaleVnfToLevelRequest 

4. Notify

3. Notify

2. 

ScaleVnfToLevelResponse


Figure 4.2.3.2-1: Scale VNF instance to a level procedure
4.2.3.3
VNF scaling as part of NS scaling initiated through Os-Ma-nfvo
Figure 4.2.3.3-1 depicts the procedure of scaling VNF instance for which the NM has selected the NS instance within which the subject VNF instance is intended to be scaled (see clause 7.3.4 [5]).

1.  NM sends to NFVO a ScaleNsRequest with parameters nsInstanceId, scaleType = "SCALE_VNF", scaleVnfData, and scaleTime to scale the VNF instance(s) (see clause 7.3.5.2 [5]). The scaleVnfData contains the parameters that are needed for scaling a specific VNF instance, including among others vnfInstanceId, type, and either scaleToLevelData or scaleByStepData depending on the type of scaling (see clauses 8.3.4.9.2, 8.3.4.10 and 8.3.4.11 [5]).

2.
NFVO sends to NM a ScaleNsResponse with parameter lifecycleOperationOccurrenceId providing the identifier of the NS lifecycle operation occurrence (see clause 7.3.5.3 [5]).

3.
NFVO sends to NM a Notify (see clause 7.4.3 [5]) carrying an NsLifecycleChangeNotification information element with attributes nsInstanceId, lifecycleOperationOccurrenceId, operation = "ScaleNs", and notificationType = "start" to indicate the start of the NS scaling that is being performed through specific VNF scaling (see clause 8.3.2.2 [5]).

4.
NFVO sends to NM a Notify (see clause 7.4.3 [5]) carrying an NsLifecycleChangeNotification information element with attributes nsInstanceId, lifecycleOperationOccurrenceId, operation = "ScaleNs", notificationType = "result" to indicate the end result of the NS scaling performed through specific VNF scaling, and affectedVnf providing information about the scaled VNF instance(s), including vnfInstanceId, vnfdId, vnfProfileId, vnfName and changeType = "scaled" (see clauses 8.3.2.2 and 8.3.2.3 [5]).


[image: image9]
Figure 4.2.3.3-1: VNF scaling as part of NS scaling initiated through Os-Ma-nfvo
4.2.4
VNF instance termination

4.2.4.1
VNF termination by EM request
Figure 4.2.4.1-1 depicts a procedure of VNF termination by EM request, when this VNF instance is not needed. It is assumed that EM has subscribed to receive the VNF lifecycle change notification from VNFM. The VNF instance identifier will be deleted after the VNF termination. 

1.  EM sends TerminateVnfRequest to VNFM with vnfInstanceId to terminate the VNF instance (see clause 7.2.7 [4]).

2.
VNFM sends TerminateVnfResponse with lifecycleOperationOccurrenceId to EM (see clause 7.2.7.3 [4]).

3.
VNFM sends a Notify (see clause 7.5.3 [4]), carrying VnfLifecycleChangeNotification to EM with attributes vnfInstanceId, status = “start”, operation = “termination” to indicate the start of VNF termination (see clause 9.5.1 [4]).

4.
VNFM sends a Notify (see clause 7.5.3 [4]), carrying VnfLifecycleChangeNotification to EM with attributes vnfInstanceId, affectedVnfc, affectedVirtualLink, affectedVirtualStorage, status = “result”, operation = “termination” to indicate the result of VNF termination, when the VNF termination operation is completed (see clause 9.5.1 [4]).

5.  EM sends DeleteVnfIdentifierRequest to VNFM with vnfInstanceId to delete the VNF instance identifier (see clause 7.2.8 [4]).

6.
VNFM sends a Notify (see clause 7.5.3 [4]), carrying VnfIdentifierDeletionNotification information element to EM with attributes vnfInstanceId (see clause 9.5.8 [4]).

Editor’s note: This procedure needs to be revisited if the use case in clause 6.4.1.4.1 [3] is changed.


[image: image10.emf]EM

1. TerminateVnfRequest 

2. TerminateVnfResponse 

VNFM

4. Notify

3. Notify

5. DeteleVnfIdentifierRequest 

6. Notify


Figure 4.2.4.1-1: VNF termination procedure
4.2.5
Notifications about VNF lifecycle changes

4.2.6
Enabling/disabling the autoscaling of the corresponding VNF instance(s) for an NE

4.2.7
Subscribing to VNF lifecycle change notifications through Ve-Vnfm-em

Figure 4.2.7-1 depicts the procedure of subscribing to VNF lifecycle change notifications through the Ve-Vnfm-em reference point (see clause 7.3.2 [4]). 

1.  EM sends to VNFM a SubscribeRequest with input parameter filter for selecting the notifications, which can be on the VNF instance(s) of interest or other attributes of the notification (see clause 7.3.2.2 [4]).

2.
VNFM sends to EM a SubscribeResponse with parameter subscriptionId providing the identifier of the subscription realized (see clause 7.3.2.3 [4]).


[image: image11]
Figure 4.2.7-1: Subscribing to VNF lifecycle change notifications through Ve-Vnfm-em
4.3
VNF Package procedures

4.3.1
VNF package on-boarding
Figure 4.4-1 depicts a procedure of VNF package on-boarding,   

1. 
NM sends OnboardVnfPackageRequest to NFVO with input parameters listed in clause 7.7.2.2 [5] to on-board a VNF package (see clause 7.7.2 [5]). 

2.
NFVO sends OnboardVnfPackageResponse to NM with with vnfPackageId to indicate a VNF package has been on-boarded (see clause 7.7.2.3 [5]).


[image: image12.emf]NFVO NM

1. OnboardVnfPackageRequest 

2. OnboardVnfPackageResponse 


Figure 4.4-1: VNF package on-boarding procedure

4.3.2
VNF Package enabling

4.3.3
VNF Package disabling

4.3.4
VNF Package deleting

4.3.5
Abort VNF package deletion

4.3.6
VNF Package querying

4.3.7
Fetch VNF Package

4.3.8
Notify operation on VNF Package management interface

4.3.9
Subscribe operation on VNF Package management interface 

4.4
NS Instance procedures

4.4.1
NS Instance instantiation
Figure 4.4.1-1 depicts the procedure of an NS instantiation initiated through the Os-Ma-nfvo reference point (see clause 7.3.3 [5]). The procedure includes the steps of creating first the corresponding NS instance identifier. 

1.
NM sends to NFVO a CreateNsIdentifierRequest with parameters nsdId, nsName, and nsDescription to create an NS instance identifier (nsInstanceId) and an associated instance of an NsInfo information element (see clause 7.3.2.2 [5]).

2.
NFVO sends to NM a CreateNsIdentifierResponse with parameter nsInstanceId identifying the instance of the NS that has been created (see clause 7.3.2.3 [5]).

3.
NFVO sends to subscribers a Notify (see clause 7.4.3 [5]) carrying NsIdentifierCreationNotification information element with attribute nsInstanceId to indicate the NS instance idenfier creation (see clause 8.3.2.9 [5]).
4.
NM sends to NFVO an InstantiateNsRequest with parameters nsInstanceId and flavourId. Additional parameters can be provided including sapData, pnfInfo, locationConstraints, additionalParamsForNs, additionalParamForVnf, startTime, nsInstantiationLevelId, and additionalAffinityOrAntiAffinityRule. In addition, if the NS instantiation includes reusing existing VNF instances and/or NS instances, parameters vnfInstanceData and nestedNsInstanceId are provided, respectively. See clause 7.3.3.2 [5].

5.
NFVO sends to NM an InstantiateNsResponse with parameter lifecycleOperationOccurrenceId providing the identifier of the NS lifecycle operation occurrence (see clause 7.3.3.3 [5]).

6.
NFVO sends to NM a Notify (see clause 7.4.3 [5]) carrying an NsLifecycleChangeNotification information element with attributes nsInstanceId, lifecycleOperationOccurrenceId, operation = "NsInstantiation", and notificationType = "start" to indicate the start of the NS instantiation (see clause 8.3.2.2 [5]).

7.
NFVO sends to NM a Notify (see clause 7.4.3 [5]) carrying an NsLifecycleChangeNotification information element with attributes nsInstanceId, lifecycleOperationOccurrenceId, operation = "NsInstantiation", and notificationType = "result" to indicate the end result of the NS instantiation. According to the results of the NS instantiation, additional information is provided in the notification with parameters affectedVnf, affectedPnf, affectedVl, affectedVnffg, affectedNs and affectedSap (see clause 8.3.2.2 [5]).

 SHAPE  \* MERGEFORMAT 



Figure 4.4.1-1: NS instantiation
4.4.2
NS Instance termination

Figure 4.4.2-1 depicts the procedure of an NS instance termination initiated through the Os-Ma-Nfvo reference point (see clause 7.3.7 [5]).
1. NM sends to NFVO a TerminateNsRequest with parameter nsInstanceId and terminateTime (see clause 7.3.7 [5]).

2. NFVO sends to NM a TerminateNsResponse with parameter lifecycleOperationOccurrenceId providing the identifier of the NS lifecycle operation occurrence (see clause 7.3.7.3 [5]).

3. NFVO sends to NM a Notify (see clause 7.4.3 [5]) carriying an NsLifecycleChangeNotification information element with attributes nsInstanceId, lifecycleOperationoccurrenceId, operation = “TerminationNs”, and “notificationType” = “start’ to indicate the start of the NS termination (see clause 8.3.2.2 [5]).

4. NFVO sends to NM a Notify (see clause 7.4.3 [5]) carrying an NsLifecycleChangeNotification information element with attributes nsInstanceId, lifecycleOperationOccurrenceId, operation = “TerminationNs”, and notificationType = “result” to indicate the end result of the NS termination (see clause 8.3.2.2 [5]).


[image: image14.emf]NM NFVO

1.TerminiateNsRequest

2.TerminiateNsResponse

3. Notify

4. Notify


Figure 4.4.2-1: NS instance termination
4.4.3
NS Instance querying

4.4.3.1
Query VNF instance information as part of NS querying through Os-Ma-nfvo 
Figure 4.4.3.1-1 depicts the procedure of querying VNF instance information as part of NS querying through the Os-Ma-nfvo reference point (see clause 7.3.4 [5]). 

1.  NM sends to NFVO a QueryNsRequest with parameters filter and attributeSelector used to filter the VNF instance(s) and select the information attributes that are requested to be returned (see clause 7.3.6.2 [5]).

2.
NFVO sends to NM a QueryNsResponse with parameter queryNsResult providing the information that is selected according to parameters filter and attributeSelector (see clause 7.3.6.3 [5]).


[image: image15]
Figure 4.4.3.1-1: Query VNF instance information as part of NS querying through Os-Ma-nfvo 
4.4.4
NS Instance scaling

4.4.5
NS Instance updating

4.4.5.1
NS update to associate an NS instance to a different NSD version
Figure 4.4.5.1-1 depicts the procedure of NS update to associate an NS instance to a different NSD version. 

1.
NM sends to NFVO an UpdateNsRequest with parameters nsInstanceId, updateType = "AssociateNewNsdVersion", assocNewNsdVersionData, and updateTime to associate a new NSD version to the NS instance (see clause 7.3.5.2 [5]). The assocNewNsdVersionData contains the parameter newNsdId, and can include in addition the parameter sync to indicate whether the NS instance should be automatically synchronized to the new NSD by the NFVO.

2.
NFVO sends to NM an UpdateNsResponse with parameter lifecycleOperationOccurrenceId providing the identifier of the NS lifecycle operation occurrence (see clause 7.3.5.3 [5]).

3.
NFVO sends to NM a Notify (see clause 7.4.3 [5]) carrying an NsLifecycleChangeNotification information element with attributes nsInstanceId, lifecycleOperationOccurrenceId, operation = "UpdateNs", and notificationType = "start" to indicate the start of the NS update (see clause 8.3.2.2 [5]).

4.
NFVO sends to NM a Notify (see clause 7.4.3 [5]) carrying an NsLifecycleChangeNotification information element with attributes nsInstanceId, lifecycleOperationOccurrenceId, operation = "UpdateNs", notificationType = "result" to indicate the end result of NS update. According to the changes in the NS instance performed as a result of the NS update, additional information is provided in the notification with parameters affectedVnf, affectedPnf, affectedVl, affectedVnffg, affectedNs and affectedSap (see clause 8.3.2.2 [5]).


[image: image16]
Figure 4.4.5.1-1: NS update to associate an NS instance to a different NSD version
4.4.5.2
Modifying VNF instance information through Os-Ma-nfvo
Figure 4.4.5.2-1 depicts the procedure of modifying VNF instance information through the Os-Ma-nfvo reference point (see clause 7.3.5 [5]). 

1.  NM sends to NFVO an UpdateNsRequest with parameters nsInstanceId, updateType = "ModifyVnfInformation", modifyVnfInfoData, and updateTime to modify the VNF instance information (see clause 7.3.5.2 [5]). The modifyVnfInfoData contains the parameters that are needed for VNF instance information modification, namely vnfInstanceId, and list of newValues (see clause 8.3.4.17 [5]).

2.
NFVO sends to NM an UpdateNsResponse with parameter lifecycleOperationOccurrenceId providing the identifier of the NS lifecycle operation occurrence (see clause 7.3.5.3 [5]).

3.
NFVO sends to NM a Notify (see clause 7.4.3 [5]) carrying an NsLifecycleChangeNotification information element with attributes nsInstanceId, lifecycleOperationOccurrenceId, operation = "UpdateNs", and notificationType = "start" to indicate the start of the NS update that includes the VNF instance information modification (see clause 8.3.2.2 [5]).

4.
NFVO sends to NM a Notify (see clause 7.4.3 [5]) carrying an NsLifecycleChangeNotification information element with attributes nsInstanceId, lifecycleOperationOccurrenceId, operation = "UpdateNs", notificationType = "result" to indicate the end result of NS update that includes the VNF instance information modification, and affectedVnf providing information about the VNF instance whose information has been modified, including vnfInstanceId, vnfdId, vnfProfileId, vnfName and changeType = "information modified" (see clauses 8.3.2.2 and 8.3.2.3 [5]).


[image: image17]
Figure 4.4.5.2-1: Modifying VNF instance information through Os-Ma-nfvo
4.4.5.3
Modifying VNF instance configuration through Os-Ma-nfvo
Figure 4.4.5.3-1 depicts the procedure of modifying VNF instance configuration through the Os-Ma-nfvo reference point (see clause 7.3.5 [5]). 

1.  NM sends to NFVO an UpdateNsRequest with parameters nsInstanceId, updateType = “ModifyVnfConfig”, modifyVnfConfigData, and updateTime to modify the VNF instance configuration (see clause 7.3.5.2 [5]). The modifyVnfConfigData contains the parameters that are needed for VNF instance configuration modification, namely vnfInstanceId, list of vnfConfigurationData and list of extVirtualLink (see clause 8.3.4.18 [5]).

2.
NFVO sends to NM an UpdateNsResponse with parameter lifecycleOperationOccurrenceId providing the identifier of the NS lifecycle operation occurrence (see clause 7.3.5.3 [5]).

3.
NFVO sends to NM a Notify (see clause 7.4.3 [5]) carrying an NsLifecycleChangeNotification information element with attributes nsInstanceId, lifecycleOperationOccurrenceId, operation = "UpdateNs", and notificationType = "start" to indicate the start of the NS update that includes the VNF instance configuration modification (see clause 8.3.2.2 [5]).

4.
NFVO sends to NM a Notify (see clause 7.4.3 [5]) carrying an NsLifecycleChangeNotification information element with attributes nsInstanceId, lifecycleOperationOccurrenceId, operation = "UpdateNs", notificationType = "result" to indicate the end result of the NS update that includes the VNF instance configuration modification, and affectedVnf providing information about the modified VNF instance whose configuration has been modified, including vnfInstanceId, vnfdId, vnfProfileId, vnfName and changeType = "configuration modified" (see clauses 8.3.2.2 and 8.3.2.3 [5]).


[image: image18]
Figure 4.4.5.3-1: Modifying VNF instance configuration through Os-Ma-nfvo
4.4.6
Subscription regarding NS Instance lifecycle changes
The Figure 4.4.6-1 depicts a procedure of subscription to NS instance lifecycle change notifications
1. 
NM sends SubscribeRequest message to NFVO with input parameter filter described in 7.4.2.2 [5] used for selecting the notifications, which can be on the NS instance(s) of interest or other attributes of the notification, to subscribe for the notifications sent by the NFVO supported on the NS lifecycle change notification interface. 

2.
NFVO sends SubscribeResponse message to NM to indicate if the subscription has been successful or not with a standard success/error result. Output parameter subscriptionId is specified in 7.4.2.3 [5] to provide the identifier of the subscription realized. After successful subscription, the consumer (NM) is registered to receive notifications supported on the NS lifecycle change notification interface. For a particular subscription, only notifications matching the filter will be delivered to the consumer (see clause 7.4.2.4 [5]).

[image: image19.emf]NFVO NM

1. SubscribeRequest

2. SubscribeResponse


Figure 4.4.6-1: Subscribing to NS lifecycle change notifications through Os-Ma-nfvo
4.4.7
Create NS Instance identifier

4.4.8
Delete NS Instance identifier

Figure 4.4.8-1 depicts the procedure of an NS instance identifier deletion initiated through the Os-Ma-Nfvo reference point (see clause 7.3.8 [5]).
1. NM sends to NFVO a DeleteNsRequest with parameter nsInstanceId to delete the NS instance identifier (see clause 7.3.8.2 [5]).

2. NFVO sends to NM a DeleteNsResponse (see clause 7.3.8.2 [5]).

3. NFVO sends to NM a Notify (see clause 7.4.3 [5]) carrying NsIdentifierObjectDeletionNotification information element with attributes nsInstanceId to indicate the result of the NS instance identifier deletion (see clause 8.3.2.10 [5]).


[image: image20.emf]NM NFVO

1.DeleteNsRequest

2.DeleteNsResponse

3. Notify


Figure 4.4.8-1: NS instance identifier deletion
4.4.9
Procedure for the Notify operation for notifications to NM
The Figure 4.4.9-1 depicts a procedure of notification on NS instance lifecycle change notifications
1. 
NFVO sends Notify message to NM according to 7.4.3 [5]. This operation distributes to subscribers the notifications supported on the NS lifecycle changes notification interface. In order to receive notifications, the consumer (NM) has to perform an explicit Subscribe operation beforehand.

[image: image21.emf]NFVO NM

1. Notify


Figure 4.4.9-1: Procedure for the Notify operation

The following notifications can be notified/sent by this operation:

•
NsLifecycleChangeNotification. See clause 8.3.2.2 [5] with the list of attributes in the Table 8.3.2.2.3-1 [5].

•
NsIdentifierCreationNotification. See clause 8.3.2.9 [5] with the attribute nsInstanceId per Table 8.3.2.9.3-1 [5].

•
NsIdentifierDeletionNotification. See clause 8.3.2.10 [5] with the attribute nsInstanceId per Table 8.3.2.10.3-1.
4.5
NS Descriptor (NSD) procedures

4.5.1
NSD on-boarding

4.5.2
NSD enabling

4.5.3
NSD disabling

4.5.4
NSD querying

4.5.5
NSD deletion

4.5.6
NSD updating

4.5.7
Subscribe to NSD change notifications

4.5.8
Notify operation for management changes in NSDs

4.6
PNFD procedures

4.6.1
PNFD on-boarding

4.6.2
Create a new version of already on-boarded PNFD

4.6.3
Update of the user-defined data in PNFD

4.6.4
PNFD deletion

4.6.5
PNFD querying

 Annex A (informative):
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	2015-10
	
	
	
	
	Draft skeleton
	
	0.0.0

	2016-07
	
	
	
	
	pCR(s) approved at SA5#108 (S5-164298, S5-164300)
	0.0.0
	0.1.0

	2016-09
	
	
	
	
	pCR(s) approved at SA5#109 (S5-165293, S5-165298)
	0.1.0
	0.2.0

	2016-11
	
	
	
	
	pCR(s) approved at SA5#110 (S5-166128, S5-166320, S5-166323, S5-166324, S5-166325, S5-166326, S5-166366, S5-166367, S5-166278)
	0.2.0
	0.3.0

	2017-01
	
	
	
	
	pCR(s) approved at SA5#111 (S5-171272, S5-171273, S5-171274, S5-171279, S5-171280) and rapporteur's clean-up / content re-arrangement
	0.3.0
	0.4.0

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	


NM





NFVO





1. UpdateNsRequest





2. UpdateNsResponse





3. Notify





4. Notify





EM





VNFM





1. QueryVnfRequest





2. QueryVnfResponse





NM





NFVO





1. ScaleNsRequest





2. ScaleNsResponse





3. Notify





4. Notify





EM





VNFM





1. SubscribeRequest





2. SubscribeResponse





NM





NFVO





3. Notify





5. InstantiateNsResponse





6. Notify





7. Notify





1. CreateNsIdentifierRequest





2. CreateNsIdentifierResponse





4. InstantiateNsRequest





NM





NFVO





1. QueryNsRequest





2. QueryNsResponse





NM





NFVO





1. UpdateNsRequest





2. UpdateNsResponse





3. Notify





4. Notify





NM





NFVO





1. UpdateNsRequest





2. UpdateNsResponse





3. Notify





4. Notify





NM





NFVO





1. UpdateNsRequest





2. UpdateNsResponse





3. Notify





4. Notify








EM
VNFM
1. ScaleVnfToLevelRequest
4. Notify
3. Notify
2. ScaleVnfToLevelResponse



NFVO
NM
1. SubscribeRequest
2. SubscribeResponse



NM
NFVO
1.TerminiateNsRequest
2.TerminiateNsResponse
3. Notify
4. Notify



NM
NFVO
1.DeleteNsRequest
2.DeleteNsResponse
3. Notify



NFVO
NM
1. Notify



EM
1. TerminateVnfRequest
2. TerminateVnfResponse
VNFM
4. Notify
3. Notify
5. DeteleVnfIdentifierRequest
6. Notify



EM
VNFM
1. ScaleVnfRequest
4. Notify
3. Notify
2. ScaleVnfResponse



NFVO
NM
1. OnboardVnfPackageRequest
2. OnboardVnfPackageResponse



