Page 1

3GPP TSG-SA5 (Telecom Management)

Meeting #11bis, Sophia Antipolis, France 9–12 May 2000

Tdoc S5C000026

3GPP TSG S5 (Telecom Management) CM ad-hoc meeting #1

Paris April, 2000
Tdoc S5- CM#01(00)0017

Title:
Proposal for Corba Solution Set to Notification IRP

Source:
Ericsson (Thomas.Tovinger@erv.ericsson.se, Edwin.Tse@lmc.ericsson.se)

Agenda item:
To be defined

Document for:
Discussion and decision

Category:
Contribution to 32.106 V3.0.0

Document Summary:
This document contains a proposal for the complete Corba Solution Set to Notification IRP, including the IDL definitions.

Specification(s) involved:
32.106 (Annex C)

Other information:
--

3G TS 32.106 V3.x.x (2000-03)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects;

3G Configuration Management

(3G TS 32.106 version 3.x.x Release 1999)

[image: image1.png]
The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organisational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organisational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organisational Partners' Publications Offices.

Notification Integration Reference Point (IRP)

Specification: CORBA Solution Set (SS)
2000-04-24

Version 1:1
(Revision A)

Table of Contents
61
Introduction

1.1
Document Structure
6
1.2
Key Terms
6
1.3
IRP solution set version
6
1.4
Glossary
6
2
Architectural Features
7
2.1
Notification Services
7
2.1.1
Support of Push and Pull Interface
7
2.1.2
Support of multiple notifications in one push operation
7
3.
Mapping
8
3.1
Operation mapping
8
3.2
Operation parameter mapping
9
3.3
Notification parameter mapping
11
3.4
Attribute mapping
11
4
Use of OMG Notification StructuredEvent
12
5
System’s Behaviour
14
5.1
Subscription
14
5.2
System Supports Multiple Categories of Notifications
14
5.3
System’s Integrity Risk of attach_push_b Method
15
6
Example
16
7
References
16
Appendix A: Notification IRP CORBA IDL
17

Tables

8Table 1: Mapping from IS Operation to SS Equivalents

Table 2: Mapping from IS subscribe parameters to SS attach_push equivalents
9
Table 3: Mapping from IS subscribe parameters to SS attach_push_b equivalents
9
Table 4: Mapping from IS subscribe parameters to SS attach_pull equivalents
10
Table 5: Mapping from IS unsubscribe parameters to SS equivalents
10
Table 6: Mapping from IS changeSubscriptionFilter parameters to SS equivalents
10
Table 7: Mapping from IS selectNotificationIRPVersion parameters to SS equivalents
10
Table 8: Mapping from IS getSubscriptionStatus parameters to SS equivalents
11
Table 9: Mapping from IS getNotificationCategory parameters to SS equivalents
11
Table 10: Attributes of StructuredEvent
12

1 Introduction
This document specifies the CORBA solution set (SS) for the IRP whose semantics is specified in Notification IRP: Information Service (IS) [9].
1.1
Document Structure

Clause 1 provides background information. Clause 2 provides key architectural features supporting this SS. Clause 3 defines mapping of IS operations, notifications and attributes to SS equivalents. Clause 4 defines usage of OMG CORBA Structured Event to carry information defined in notifications. Clause 5 specifies IRP System behaviour that cannot be specified in the IDL. Appendix A contains the complete IDL specification.

1.2
Key Terms

See [5].

1.3
IRP solution set version

The version of this CORBA solution set is 1:1, where the first “1” means that it corresponds to the information model version 1, and the second “1” means that it is the first CORBA solution set corresponding to this Information Service version.

1.4
Glossary

CM: Configuration Management

CORBA: Common Object Request Broker Architecture

EC: Event channel defined by OMG

IDL: Interface Definition Language

NC: Notification channel defined by OMG

NE: Network Element

NEM: Network Element Manager

OMG: Object Management Group

UML: Unified Model Language

2
Architectural Features

The overall architectural feature of Notification IRP is specified in Reference [5]. This clause specifies features that are specific to the CORBA solution set.

2.1
Notification Services

In the CORBA solution set, notifications are emitted by System using CORBA Event service [3] or CORBA Notification service [2].
CORBA Event service provides event routing and distribution capabilities. CORBA Notification service provides, in addition to Event service, event filtering and support for quality of service as well.

A subset of CORBA Notification Services shall be used to support the implementation of notification. The CORBA Notification service subset is identified in this document.

2.1.1
Support of Push and Pull Interface

The IRP System shall support the OMG Notification push interface model. Additionally, it may support the OMG Notification pull interface model as well.

2.1.2
Support of multiple notifications in one push operation

For efficiency, System uses the following OMG Notification Service [2] defined interface to pack multiple notifications and push them to Manager using one method push_structured_events. The method takes as input a parameter of type EventBatch as defined in the OMG CosNotification module [2]. This data type is a sequence of Structured Events. Upon invocation, this parameter will contain a sequence of Structured Events being delivered to Manager by System to which it is connected.

The maximum number of events that will be transmitted within a single invocation of this operation is controlled by System wide configuration parameter. The amount of time the supplier (System) of a sequence of Structured Events will accumulate individual events into the sequence before invoking this operation is controlled by System wide configuration parameter as well.

System may push EventBatch with only one Structured Event.

The OMG Notification Service [2] defined IDL module is shown below.

module CosNotifyComm {

…

Interface SequencePushConsumer : NotifyPublish {

void push_structured_events(

in CosNotification::EventBatch notifications)

raises(CosEventComm::Disconnected);

…

}; // SequencePushConsumer

…

}; // CosNotifyComm

3.
Mapping
3.1
Operation mapping

Notification IRP: IS [5] defines semantics of operations visible across this IRP.

The table below maps the operations defined in Notification IRP: IS [5] to their equivalents (methods) in this SS. It also qualifies if a method is mandatory (M) or optional (O)

Table 1: Mapping from IS Operation to SS Equivalents
IS Operations in [5]
SS Methods
Qualifier

subscribe
attach_push, attach_push_b, attach_pull
M, O, O

unsubscribe
detach
M

resume Subscription
If subscription is established using attach_push, there is no SS equivalent. In other words, Manager cannot resume subscription.

If subscription is established using attach_push_b, the SS equivalent is resume_connection. This method is defined by OMG Notification Service [2]. The IDL specification of this method is not included in the Appendix. This method is optional.
If subscription is established using attach_pull, there is no SS equivalent.
See box on the left

suspend Subscription
If subscription is established using attach_push, there is no SS equivalent. In other words, Manager cannot suspend subscription.

If subscription is established using attach_push_b, the SS equivalent is suspend_connection. This method is defined by OMG Notification Service [2]. The IDL specification of this method is not included in the Appendix. This method is optional.

If subscription is established using attach_pull, there is no SS equivalent.
See box on the left

change Subscription Filter
If subscription is established using attach_push method, the SS equivalent shall be set_filter. The IDL specification of this method is included in the Appendix. This method is optional.
If subscription is established using attach_push_b method, the SS equivalent shall be modify_constraints, the method defined by OMG Notification Service Filter Interface [2]. The IDL specification of this method is not included in the Appendix. This method is optional.

If subscription is established using attach_pull method, the SS equivalent shall be modify_constraints, the method defined by OMG Notification Service Filter Interface [2]. The IDL specification of this method is not included in the Appendix. This method is optional.
See box on the left.

select Notification IRPVersion
select_notification_IRP_version
M

get Subscription Status
get_subscription_status
M

get Notification IRP Categories
get_notification_IRP_categories
O

3.2 Operation parameter mapping
Reference [5] defines semantics of parameters carried in operations across the Notification IRP. The tables below indicate the mapping of these parameters, as per operation, to their equivalents defined in this SS.

Table 2: Mapping from IS subscribe parameters to SS attach_push equivalents
IS Operation parameter
SS Method parameter
Qualifier

managerReference
in Object manager_reference
M

timeTick
in long time_tick timeTick
O

notification Category
in string notification_category
O

filter
in string filter
O

subscriptionId
out string subscription_id
M

status
CommonIRPConstDefs::Signal

AttachException, ParameterNotSupportedException, InvalidParameterException
M

Table 3: Mapping from IS subscribe parameters to SS attach_push_b equivalents
IS Operation parameter
SS Method parameter
Qualifier

timeTick
in long time_tick
O

notification Category
in string notification_category
O

filter
in string filter
O

subscriptionId
out string subscription_id
M

Not specified in IS
out CosNotifyChannelAdmin::SequenceProxyPushSupplier system_reference

M

status
CommonIRPConstDefs::Signal
AttachException, OperationNotSupportedException, ParameterNotSupportedException, InvalidParameterException
M

Table 4: Mapping from IS subscribe parameters to SS attach_pull equivalents
IS Operation parameter
SS Method parameter
Qualifier

timeTick
in long time_tick
O

notification Category
in string notification_category
O

filter
in string filter
O

subscriptionId
out string subscription_id
M

Not specified in IS.
out CosNotifyChannelAdmin::SequenceProxyPullSupplier system_reference
M

status
CommonIRPConstDefs::Signal
AttachException, OperationNotSupportedException, ParameterNotSupportedException, InvalidParameterException
M

Table 5: Mapping from IS unsubscribe parameters to SS equivalents
IS Operation parameter
SS Method parameter
Qualifier

subscriptionId
in string subscription_id
M

managerReference
in CosNotifyComm::PushConsumer manager_reference
M

status
CommonIRPConstDefs::Signal DetachException,InvalidParameterException
M

Table 6: Mapping from IS changeSubscriptionFilter parameters to SS equivalents
IS Operation parameter
SS Method parameter
Qualifier

subscriptionId
in string subscription_id
M

filter
in string filter
M

status
CommonIRPConstDefs::Signal SetFilterException,InvalidParameterException
M

Table 7: Mapping from IS selectNotificationIRPVersion parameters to SS equivalents
IS Operation parameter
SS Method parameter
Qualifier

versionNumber
in string version_number
M

versionNumber List
out CommonIRPConstDefs::VersionNumberSeq version_number_list
M

status
CommonIRPConstDefs::Signal SelectNotificationIRPVersionException,InvalidParameterException
M

Table 8: Mapping from IS getSubscriptionStatus parameters to SS equivalents
IS Operation parameter
SS Method parameter
Qualifier

subscriptionId
in string subscription_id
M

notification CategoryList
out NotificationIRPConstDefs::NotificationCategorySeq notification_category_list
M

filterInEffect
out string filter_in_effect
O

subscription State
out NotificationIRPConstDef::SubscriptionState subscription_state
O

timeTick
out long time_tick
O

status
CommonIRPConstDefs::Signal

GetSubscriptionStatusException,InvalidParameterException
M

Table 9: Mapping from IS getNotificationCategory parameters to SS equivalents
IS Operation parameter
SS Method parameter
Qualifier

notification CategoryList
out NotificationIRPConstDefs::NotificationCategorySeq notification_category_list
M

eventTypeList
out NotificationIRPConstDefs::EventTypesSeq event_type_list
M

extendedEvent TypeList
out NotificationIRPConstDefs::ExtendedEventTypesSeq extended_event_type_list
M

status
CommonIRPConstDefs::Signal

GetNotificationIRPCategoriesException,OperationNotSupportedException
M

3.3
Notification parameter mapping

Notification IRP: IS [5] defines a generic notify and its parameters. This SS does not provide the mapping of these parameters to their CORBA SS equivalents. Other IRPs such as Alarm IRP: IS [6] extends the generic notify for its specific use. Their corresponding SS documents shall define the mapping from their specific notification parameters (defined in their IS document) to their SS equivalents. The SS documents shall qualify their SS equivalents as well.
3.4
Attribute mapping
Notification IRP: IS [5] defines the semantics of common attributes carried in notifications. This SS does not provide the mapping of these attributes to their CORBA SS equivalents. Other IRPs such as Alarm IRP: IS [6] identify and qualify these common attributes for use in their environment. Their corresponding SS documents define the mapping of these attributes to their SS equivalents.
4
Use of OMG Notification StructuredEvent
Notification IRP: IS [5] defines attributes that are commonly present in notifications of all notification categories such as notifications emitted from Alarm IRP System.

In CORBA SS, OMG defined
StructuredEvent [2] is used to carry notification. This clause identifies the OMG defined StructuredEvent attributes that carry the common attributes defined in [5].
The composition of OMG StructuredEvent is:

Header

 Fixed Header

 Domain_name

 Type_name

 Event_name

 Variable Header

Body

 Filterable_body_fields

 Remaining_body
Following table shows the OMG Structured Event attributes (left column) that are used to carry the common notification attributes defined in Notification IRP: IS [5].
Table 10: Attributes of StructuredEvent
Attribute defined by OMG Structured Event
Common attributes defined in Notification IRP: IS [5]
Comment

domain_name
It is not used to hold common attribute.
It indicates that the StructuredEvent, carried in the Notification, is defined by a specific 3GPP IRP such as Alarm IRP, as opposed to OMG specified Telecommunication, healthcare, utility, finance, etc. It indicates the CORBA SS version number as well.

It is a string. Legal value to differentiate notifications of Alarm IRP from all others is:

“3GPP FM IRP 1:1”.

type_name
eventType
It indicates event types as defined in ITU-T TMN Recommendations.
For Alarm IRP, i.e., the value of domain_type is “3GPP FM IRP 1:1”, the legal values of this are:

EVENT_COMMUNICATIONS_ALARM (section 8.1.1 of [8]), EVENT_QUALITY_OF_SERVICE_ALARM (section 8.1.1 of [8]), EVENT_PROCESSING_ERROR_ALARM (section 8.1.1 of [8]), EVENT_EQUIPMENT_ALARM (section 8.1.1 of [8]), EVENT_ENVIRONMENTAL_ALARM (section 8.1.1 of [8]), EVENT_PHYSICAL_VIOLATION [1], EVENT_INTEGRITY_VIOLATION [1], EVENT_SECURITY_VIOLATION [1], EVENT_TIME_DOMAIN_VIOLATION [1], EVENT_OPERATIONAL_VIOLATION [1]
The bracketed number of each type indicates the reference where the semantics of the type is specified.
It is a string. See interface EventTypeValue of module CommonIRPConstDefs of this IRP IDL.

event_name
extended EventType
The legal values carried in this attribute are specific by the IRP using the notification. An example of such IRP is Alarm IRP: CORBA SS [7].

For example, in case of Alarm IRP (i.e., the value for domain_type is “3GPP FM_IRP 1:1”. In indicates one of the following:
NOTIFY_FM_NEW_ALARM, NOTIFY_FM_CHANGED_ALARM, NOTIFY_FM_ACK_STATE_CHANGED, NOTIFY_FM_CLEARED_ALARM and NOTIFY_FM_ALARM_LIST_REBUILT.

It is a string.

See interface ExtendedEventTypeValue of module CommonIRPConstDefs of this IRP IDL.

variable Header
It is not used to hold common attribute.

One NV
 pair of filterable_ body_fields
managed Object Instance, managed Object Instance
Name of NV pair is a string, AttributeNameValue.managedObjectInstance.
Value of NV pair is a string. Syntax and semantics of this string conform to the Managed Object string representation specified in [4]. Note that two SS attributes are carried in this one NV pair since the string representation specified in [4] can convey the semantics of managedObjectClass and managedObjectInstance in one string.

One NV pair of filterable_ body_fields
notification Id
Name of NV pair is a string, AttributeNameValue.notificationId.

Value of NV pair is an unsigned long.

One NV pair of filterable_ body_fields
eventTime
Name of NV pair is a string, AttributeNameValue.eventTime.
Value of NV pair is a string. The time indication is in UTC (Co-ordinated Universal Time)
 with no possibility of specifying time zones.

It is a string with a four-digit representation of the year, a two-digit representation of the month and a two-digit representation of the day, without use of separators, followed by a string representing the time of day without separators and with no terminating Z.

This “19981216010203” is an example that represents 01 hour 02 minute 03 seconds of December 16, 1998 in UTC.

One NV pair of filterable_ body_fields
systemDN
Name of NV pair is a string, AttributeNameValue.systemDN.
Value of NV pair is a string. Syntax and semantics of this string conform to the Managed Object string representation specified in [4].

remaining_ Body
It is not used to hold common attribute.

·
·

5
System’s Behaviour
This clause describes some System’s behaviour not captured by IDL.
5.1
Subscription

Manager can invoke multiple attach_push, multiple attach_push_b or multiple attach_pull using different IORs. As far as System is concerned, the System will emit notifications to multiple "places" with their independent filter requirements. System will not know if the notifications are going to the same Manager.

If Manager invokes multiple attach_push, attach_push_b or attach_pull using the same Manager’s IOR and notificationCategory, System shall throw AlreadySubscribedException to all invocations except one
.
Manager can invoke multiple attach_push, multiple attach_push_b or multiple attach_pull using the same Manager’s IOR and different notificationCategory. System shall process the invocation accordingly. If System supports the notification category requested, System shall accept the invocation; otherwise, it throws UnsupportedCategoryException.
When an Manager is in subscription by invoking attach_push, Manager can change the filter constraint, using set_filter, applicable to the notification category specified in the attach_push.

When an Manager is in subscription by invoking attach_push_b, Manager can change the filter constraint during subscription using the OMG defined Notification Service Filter Interface. Manager shall not use set_filter; otherwise it shall get an exception.
Manager does not implement filter object. Manager specifies the filter constraint to System via attach_push and attach_push_b. System implements filter objects.

5.2
System Supports Multiple Categories of Notifications

System may emit multiple categories of Notifications. For example, it can emit Notification defined in Alarm IRP [7]. System may have mechanism for Manager to pull for notifications of multiple categories.

Manager can query System about the categories of notifications supported by using get_notification_IRP_categories.

Manager uses a parameter in attach_push, attach_push_b and attach_pull to specify one category of notifications wanted. Manager, by invoking multiple attach_push, attach_push_b, or attach_pull methods specifying a different categories in each invocation can receive multiple categories of notification from System.

5.3
System’s Integrity Risk of attach_push_b Method

In the case that System implements this method by extending or using commercially available OMG compliant Notification Service, the following Manager behaviour illustrates a risk to System’s integrity.

Given the IOR of the SequenceProxyPushSupplier (as the mandatory output parameter of the subject operation), Manager can invoke sequenceProxyPushSupplier.MyAdmin operation.

Manager can then obtain the consumer admin object of the proxy. Then Manager can invoke consumerAdmin.MyChannel to get the IOR of the Notification Channel. Manager then can call eventChannel.MyFactory which will provide Manager the IOR of the EventChannelFactory itself. Manager can then able to invoke operations directly on the EventChannelFactory. Like get_channels which lists all channel numbers and create_channel which will allow Manager to create any number of additional channels.

A malicious Manager can, given access to the EventChannelFactory, get a list of existing channels and start connecting them together at random thus compromising the System’s integrity. Deployment of this attach_push_b needs strong authentication and authorisation mechanism in place.

Note that attach_push is mandatory. System compliant to this IRP shall implement it. Note also that attach_push_b is optional. It is recommended that System concerned with integrity risk should not implement the attach_push_b option.

6
Example

The following is an example of Notification related to alarm.

If type_name == NOTIFY_FM_NEW_ALARM, then the filterable_body_field attributes can contain:

{

systemDN, “…”;

alarmId, 232,

notificationId, 4467,

managedObjectInstance, “…”,

eventTime, “…”,

probableCause, abc,

perceivedSeverity, kkk,

specificProblems, xxx,

additionalText, “…”,

…

}

7
References

 AUTONUM
ITU-T Recommendation X.736: Security Alarm Reporting Function
2.
OMG Notification Service OMG TC Document telecom/98-11-01

3. OMG CORBA services: Common Object Services Specification, Update: November 22, 1996. (Clause 4 contains the Event Service Specification.)

4. Name Convention for Managed Object
5. Notification IRP: Information Service
6. Alarm IRP: Information Service
7. Alarm IRP: CORBA solution set, version 1:1 (3
8. ITU-T Recommendation X.733- Alarm Reporting functions
Appendix A: Notification IRP CORBA IDL

//Source file: H:/lmcango/rose/idl/CommonIRPConstDefs.idl

//This module contains definitions common for IRPs.

//This module also contains definitions specific for particular IRPs. But they are

// grouped under this module so assignment of same value to different tokens can be

// easily spotted and avoided.

#ifndef CommonIRPConstDefs_idl

#define CommonIRPConstDefs_idl

module CommonIRPConstDefs {

typedef short Signal;

enum Signals {OK, FAILURE, PARTIAL_FAILURE};

typedef sequence <string> VersionNumberSeq;

struct CorrelatedNotificationInfo {

string notificationId;

string manageObjectInstanceDistinguishedName;

};

typedef sequence <CorrelatedNotificationInfo> CorrelatedNotificationInfoSeq;

interface EventTypeValue {

const string UNKNOWN_EVENT_TYPE = “x0”;

const string COMMUNICATIONS_ALARM = “x2”;

const string ENVIRONMENTAL_ALARM = “x3”;

const string EQUIPMENT_ALARM = “x4”;

const string ADMINISTRATIVE_ALARM = “x6”;

const string SWITCHING_OR_CROSS_CONNECTING_ALARM = “x7”;

const string PROCESSING_ERROR_ALARM = “x10”;

const string QUALITY_OF_SERVICE_ALARM = “x11”;

const string INTEGRITY_VIOLATION = “x15”;

const string OPERATIONAL_VIOLATION = “x16”;

const string PHYSICAL_VIOLATION = “x17”;

const string SECURITY_SERVICE_VIOLATION = “x18”;

const string TIME_DOMAIN_VIOLATION = “x19”;

};

 interface ExtendedEventTypeValue {

const string NOTIFY_FM_NEW_ALARM = “x100”;

const string NOTIFY_FM_CHANGED_ALARM = “x101”;

const string NOTIFY_FM_ACK_STATE_CHANGED = “x102”;

const string NOTIFY_FM_CLEARED_ALARM = “x103”;

const string NOTIFY_FM_ALARM_LIST_REBUILT = “x104”;

};

};

#endif

/* ## Module: NotificationIRPConstDefs

Source file: C:\Program Files\Rational\Rational Rose 2000 Enterprise Edition\NotificationIRPConstDefs.idl
Documentation::

 This package contains definitions for Notification IRP.
 ==

 */

#ifndef NotificationIRPConstDefs_idl

#define NotificationIRPConstDefs_idl

module NotificationIRPConstDefs {

 typedef sequence <string> NotificationCategorySeq;

 typedef sequence <string> EventTypeSeq; // string must be one of EventTypeValue{}
 typedef sequence <EventTypeSeq> EventTypesSeq;

 typedef sequence <string> ExtendedEventTypeSeq; // string must be one of ExtendedEventTypeValue{}
 typedef sequence <EventTypeSeq> ExtendedEventTypesSeq;

 // A Correlated Notification is identified by the object that emitted the

 // notification and the notification ID.

struct CorrelatedNotificationType {

string source;

unsigned long
notifID;

};

 // Correlated Notification set is a set of Correlated Notification structures.

typedef sequence <CorrelatedNotificationType> CorrelatedNotificationSetType;

interface AttributeNameValue {

const string notificationId = "a";

const string correlatedNotifications = "b";

const string eventTime = "c";

const string systemDN = "d";

const string managedObjectClass = "e";

const string managedObjectInstance = "f";

const string problableCause = "g";

const string perceivedSeverity = "h";

const string specificProblem = "i";

const string additionalText = "j";

const string alarmId = "k";

const string ackUserId = "l";

const string ackTime = "m";

const string ackSystemId = "n";

const string ackState = "o";

const string backedUpStatus = "p";

const string thresholdInfo = "q";

const string trendIndication = "r";

const string stateChangeDefinitions = "s";

const string monitoredAttributes = "t";

const string proposedRepairedActions = "u";

};

// Subscription State indicates if the subscription is suspended or not.

enum SubscriptionState {SUSPENDED, RESUMED, DONTKNOW};

};

#endif

/* ## Module: NotificationIRPSystem

Source file: C:\Program Files\Rational\Rational Rose 2000 Enterprise Edition\NotificationIRPSystem.idl

Documentation::

 This package implements capabilities specified in Notification

 IRP:Information Service version and CORBA Solution

 Set version 1:1.

 ==

 */

#ifndef NotificationIRPSystem_idl

#define NotificationIRPSystem_idl

#include "CosNotifyComm.idl"

#include "CosNotifyChannelAdmin.idl"

#include "NotificationIRPConstDefs.idl"

#include "CommonIRPConstDefs.idl"

module NotificationIRPSystem {

/* System fails to complete the operation. System provides reasons whose semantics is outside the scope of this IRP. */

 exception AttachException { string reason; };

exception DetachException { string reason; };

exception SelectNotificationIRPVersionException { string reason; };

exception GetSubscriptionStatusException { string reason; };

 exception SetFilterException { string reason; };

 exception GetNotificationIRPCategoriesException { string reason; };

 exception ParameterNotSupportedException { string parameter; };

 exception InvalidParameterException { string parameter; };

exception OperationNotSupportedException {};

interface NotificationIRPOperations {

/* ## Operation: attach_push

 ## Documentation:

 Manager invokes this operation to establish a

 subscription to receive network events. How Manager

 discovers the System's address or reference (so

 that Manager can invoke this operation) is outside

 the scope of this document. This operation is

 mandatory.

 Parameters:

 (in) manager_reference: It carries the Manager's IOR

 against which the System pushes notifications.

 (in) time_tick: It specifies the value of a timer

 held by the System for the subject Manager. This

 value defines a time window within which the Manager

 intends to invode the get_subscription_status

 operation. The System will reset the timer, with

 time_tick when it receives the get_subscription_status

 (or attach_push, attach_push_b, attach_pull)

 operation from the subject Manager. If the timer

 expires, the System may delete its resources

 allocated to the Manager and condider the Manager as if

 it had invoked the detach operation. In such case,

 the Manager will not receive firther Notifications.

 The Manager will need to invoke the attach, attach_b or

 attach_pull operation again.

 (in) notification_category: It identifies the

 categories of notifications wanted by Manager.

 Each IRP document, such as Alarm IRP,

 Performance Data IRP, defines one category of

 notification. Valid values for this parameter are

 solution set dependent.

 If this parameter is absent or its value is NULL, then

 the meaning is that Manager wants all categories of

 notification emitted by System.

 (in) filter: It specifies a filter constraint that

 System shall use to filter network events of a

 particular notification category. System shall

 notify Managers of an event only if the event

 satisfies the filter constraint. If this parameter

 is absent or its value is NULL, then it means that

 no filter constraint shall be applied. Valid filter

 constraint grammars are specified by individual

 notification IRP solution set, e.g. Notification IRP:

 CORBA solution set.

 (out) subscription_id: It holds a unique identity of the

 subscription managed by System.

 Returned status: a) Operation succeeded in that the

 requested subscription has been established

 successfully AND that System is emitting categories of

 notification specified by Manager via the

 notification_category parameter AND that the filter,

 if present, contains a valid filter constraint including

 NULL.

 (b) Operation failed because Manager is already in

 subscription, i.e., System detects that there is an existing

 subscription carrying the same manager_reference .

 (c) Operation failed because of other specified or

 unspecified reason.

@roseuid 38A07E8003E0 */

CommonIRPConstDefs::Signal attach_push (

in Object manager_reference,

out string subscription_id,

in long time_tick,

in string notification_category,

in string filter

)

raises (AttachException,ParameterNotSupportedException,InvalidParameterException);

/* ## Operation: attach_push_b

 ## Documentation:

 Manager invokes this operation to establish a

 subscription to receive network events. How Manager

 discovers the System's address or reference (so

 that Manager can invoke this operation) is outside

 the scope of this document. This operation is

 optional.

 Parameters:

 (in) time_tick: It specifies the value of a timer

 held by the System for the subject Manager. This

 value defines a time window within which the Manager

 intends to invode the get_subscription_status

 operation. The System will reset the timer, with

 time_tick when it receives the get_subscription_status

 (or attach_push, attach_push_b, attach_pull)

 operation from the subject Manager. If the timer

 expires, the System may delete its resources

 allocated to the Manager and condider the Manager as if

 it had invoked the detach operation. In such case,

 the Manager will not receive firther Notifications.

 The Manager will need to invoke the attach, attach_b or

 attach_pull operation again.

 (in) notification_category: It identifies the

 categories of notifications wanted by Manager.

 Each IRP document, such as Alarm IRP,

 Performance Data IRP, defines one category of

 notification. Valid values for this parameter are

 solution set dependent.

 If this parameter is absent or its value is NULL, then

 the meaning is that Manager wants all categories of

 notification emitted by System.

 (in) filter: It specifies a filter constraint that

 System shall use to filter network events of a

 particular notification category. System shall

 notify Managers of an event only if the event

 satisfies the filter constraint. If this parameter

 is absent or its value is NULL, then it means that

 no filter constraint shall be applied. Valid filter

 constraint grammars are specified by individual

 notification IRP solution set, e.g. Notification IRP:

 CORBA solution set.

 (out) subscription_id: It holds a unique identity of the

 subscription managed by System.

 (out) system_reference: It carries the IORs against

 which Manager can invoke operations to manage

 events. Operation examples are for Manager to

 request System to suspend and resume event

 Notification.

 Returned status: a) Operation succeeded in that the

 requested subscription has been established

 successfully AND that System is emitting categories of

 notification specified by Manager via the

 notification_category parameter AND that the filter,

 if present, contains a valid filter constraint including

 NULL.

 (b) Operation failed because Manager is already in

 subscription, i.e., System detects that there is an existing

 subscription carrying the same manager_reference .

 (c) Operation failed because of other specified or

 unspecified reason.

@roseuid 38A07E8403A9 */

CommonIRPConstDefs::Signal attach_push_b (

out string subscription_id,

in long time_tick,

in string notification_category,

in string filter,

out CosNotifyChannelAdmin::SequenceProxyPushSupplier system_reference

)

raises (AttachException,OperationNotSupportedException,ParameterNotSupportedException,InvalidParameterException);

/* ## Operation: attach_pull

 ## Documentation:

 Manager invokes this operation to establish a

 subscription to receive network events. How Manager

 discovers the System's address or reference (so

 that Manager can invoke this operation) is outside

 the scope of this document. This operation is

 optional.

 Parameters:

 (in) time_tick: It specifies the value of a timer

 held by the System for the subject Manager. This

 value defines a time window within which the Manager

 intends to invode the get_subscription_status

 operation. The System will reset the timer, with

 time_tick when it receives the get_subscription_status

 (or attach_push, attach_push_b, attach_pull)

 operation from the subject Manager. If the timer

 expires, the System may delete its resources

 allocated to the Manager and condider the Manager as if

 it had invoked the detach operation. In such case,

 the Manager will not receive firther Notifications.

 The Manager will need to invoke the attach, attach_b or

 attach_pull operation again.

 (in) notification_category: It identifies the

 categories of notifications wanted by Manager.

 Each IRP document, such as Alarm IRP,

 Performance Data IRP, defines one category of

 notification. Valid values for this parameter are

 solution set dependent.

 If this parameter is absent or its value is NULL, then

 the meaning is that Manager wants all categories of

 notification emitted by System.

 (in) filter: It specifies a filter constraint that

 System shall use to filter network events of a

 particular notification category. System shall

 notify Managers of an event only if the event

 satisfies the filter constraint. If this parameter

 is absent or its value is NULL, then it means that

 no filter constraint shall be applied. Valid filter

 constraint grammars are specified by individual

 notification IRP solution set, e.g. Notification IRP:

 CORBA solution set.

 (out) subscription_id: It holds a unique identity of the

 subscription managed by System.

 (out) system_reference: It carries the IORs against

 which Manager can invoke operations to manage

 events. Operation examples are for Manager to

 request System to suspend and resume event

 Notification.

 Returned status: a) Operation succeeded in that the

 requested subscription has been established

 successfully AND that System is emitting categories of

 notification specified by Manager via the

 notification_category parameter AND that the filter,

 if present, contains a valid filter constraint including

 NULL.

 (b) Operation failed because Manager is already in

 subscription, i.e., System detects that there is an existing

 subscription carrying the same manager_reference .

 (c) Operation failed because of other specified or

 unspecified reason.

@roseuid 38CFF57A0039 */

CommonIRPConstDefs::Signal attach_pull (

out string subscription_id,

in long time_tick,

in string notification_category,

in string filter,

out CosNotifyChannelAdmin::SequenceProxyPullSupplier system_reference

)

raises (AttachException,OperationNotSupportedException,ParameterNotSupportedException,InvalidParameterException);

/* ## Operation: unsubscribe

 ## Documentation:

 Manager invokes this operation to cancel

 subscription. Manager shall supply the same

 subscription_id assigned by System in the

 corresponding operation attach_push,

 attach_push_b or attach_pull.

 This operation is mandatory.

 Parameters:

 (in) subscription_id: It carries the subscription_id

 carried as the OUT parameter in the attach_push,

 attach_push_b or attach_pull operation.

 (in) manager_reference: If this is present, System shall

 ignore the presence of subscription_id and use this

 manager_reference to process the detach operation

 (request).

 Returned status: (a) Operation succeeded in that

 subscription is cancelled successfully or

 (b) Operation failed because of specified or unspecified

 reason.

@roseuid 38A07E880387 */

CommonIRPConstDefs::Signal detach (

in string subscription_id,

in CosNotifyComm::PushConsumer manager_reference

)

raises (DetachException,InvalidParameterException);

/* ## Operation: set_filter

 ## Documentation:

 If Manager uses attach_push() method, Manager can use

 set_filter() to modify filter constraint applicable to the

 subscription. This method is mandatory (M) if System

 supports attach_push().

 If Manager uses attach_push_b() method, Manager can use

 OMG defined Notification Service Filter Interface.

 This operation is optional.

 Parameters:

 (in) subscription_id: It carries the subscription_id

 carried as the OUT parameter in the attach_push,

 attach_push_b or attach_pull operation.

 (in) filter: It specifies a filter constraint that

 System shall use to filter network events of a

 particular notification category. System shall

 notify Managers of an event only if the event

 satisfies the filter constraint. If this parameter

 is absent or its value is NULL, then it means that

 no filter constraint shall be applied. Valid filter

 constraint grammars are specified by individual

 notification IRP solution set, e.g. Notification IRP:

 CORBA solution set.

 Returned status: (a) Operation succeeded in that

 System is now producing events based on the new filter

 constraint.

 (b) Operation failed in that, for unspecified reason, the

 new filter constraint cannot be installed. The old filter

 constraint, if present before this operation, is still in

 effect.

@roseuid 38A07E8902DE */

CommonIRPConstDefs::Signal change_subscription_filter (

in string subscription_id,

in string filter

)

raises (SetFilterException,InvalidParameterException);

/* ## Operation: select_notification_IRP_version

 ## Documentation:

 Manager wishes to communicate with System using a

 particular Notification IRP solution set version. System

 shall respond with operation unsuccessful in case

 System does not support the requested version. In this

 case, System shall return with a list of (one or more)

 version numbers currently supported by System. Manager,

 if it supports one of the versions listed by System, shall

 invoke this operation again using a mutually supported

 version. After System returns successful status, Manager

 proceeds with attach_push, attach_push_b or

 attach_pull operation.

 System shall respond with operation successful in case

 System supports the requested version. In this case,

 System shall not return to Manager with a list of version

 number currently supported by System. This operation is

 mandatory.

 Parameters:

 (in) version_number: It indicates the Notification IRP

 solution set version number supported by Manager

 (out) version_number_list: It indicates one or more solution

 set version numbers supported by the System. This

 value should be NULL if status is successful, indicating

 that System is accepting the version number provided by

 Manager.

 Returned status: It indicates a) Operation

 succeeded in that System is supporting the solution set

 version indicated in the input parameter. In this case,

 the output parameter version_number_list shall be NULL.

 (b) Operation failed in that the System is not supporting

 the solution set version indicated in the input

 parameter. In this case, the output parameter

 version_number_list shall contain one or more solution

 set version numbers currently supported by the System.

@roseuid 38A07E8C00DA */

CommonIRPConstDefs::Signal select_notification_IRP_version (

in string version_number,

out CommonIRPConstDefs::VersionNumberSeq version_number_list

)

raises (SelectNotificationIRPVersionException,InvalidParameterException);

/* ## Operation: get_subscription_status

 ## Documentation:

 Manager invokes this operation to verify if System has lost

 the Manager's reference and as a consequence, the

 System may not be able to emit notification to Manager.

 This operation is optional.

 Parameters:

 (in) subscription_id: It carries the subscription_id carried as

 the OUT parameter in the attach_push,

 attach_push_b or attach_pull operation.

 (out) notification_category_list: It identifies the

 categories of notifications emitted by System towards the

 subject Manager.

 If this parameter is absent or its value is NULL, then the

 meaning is that System is not emitting any notification to

 the subject Manager.

 (out) filter_in_effect: It contains the filter constraint

 currently active. If it contains a NULL string, it means

 that there is no filter constraint applied to notification

 emitted towards the subject Manager.

 (out) subscription_state: it indicates if the subscription

 is in "suspended" or not-suspended" state.

 (out) time_tick: It carries the same value as the one in

 attach_push, attach_push_b and attach_pull operations.

 Returned status: (a) System has knowledge of the

 subscription_id.

 (b) System has no knowledge of the subscription_id.

@roseuid 38A07E8B0179 */

CommonIRPConstDefs::Signal get_subscription_status (

in string subscription_id,

out NotificationIRPConstDefs::NotificationCategorySeq notification_category_list,

out string filter_in_effect,

out NotificationIRPConstDefs::SubscriptionState subscription_state,

out long time_tick

)

raises (GetSubscriptionStatusException,InvalidParameterException);

/* ## Operation: get_notification_IRP_categories

 ## Documentation:

 Manager invokes this operation to query the categories of

 notification emitted by System. Manager does not need to

 be in subscription to invoke this operation.

 This operation is optional.

 Parameters:

 (out) notification_category_list: It identifies the

 categories of notifications emitted by System.

 Categories of notifications can be that defined by IRPs

 such as Alarm IRP, etc. Categories of notifications can

 be others, not defined by any IRPs, as well.

 Valid values for this parameter are solution set

 dependent. Each solution set shall define, at the

 minimum, legal values for all IRP notification categories.

 Each solution set may specify values for notifications not

 specified by IRP as well.

 If this parameter is absent or its value is NULL, then the

 meaning is that System is not emitter of any category of

 notification at the moment.

 (out) event_type_list: It contains a list of element.

 The number of element shall be identical to that of output

 parameter notification_category_list. Each element is a list

 of event_type. The n-th element of this list relates to the n-th

 element of the notification_category_list.

 If the n-th element contains NULL, it implies System is not

 providing explicit identification of eventType(s) of the

 corresponding notification category.

 If this list contains NULL or its parameter is absent, it implies

 that System is not providing explicit identification of event_type(s).

 (out) extended_event_type_list: It contains a list of element.

 The number of element shall be identical to that of output

 parameter notification_category_list. Each element is a list

 of extended_event_type.

 The n-th element of this list relates to the n-th element of

 the notification_category_list.

 If the n-th element contains NULL, it implies System is not

 providing explicit identification of extended_event_type(s) of

 the corresponding notification category.

 If this list contains NULL or if this parameter is absent, it

 implies that System is not providing explicit identification

 of extended_event_type(s).

 ReturnedValue: (a) Operation succeeded in that the

 output parameter contains valid information or

 (b) Operation failed in that the output parameter does not

 contain valid information.

@roseuid 38A07E8D0352 */

CommonIRPConstDefs::Signal get_notification_IRP_categories (

out NotificationIRPConstDefs::NotificationCategorySeq notification_category_list,

out NotificationIRPConstDefs::EventTypesSeq event_type_list,

out NotificationIRPConstDefs::ExtendedEventTypesSeq extended_event_type_list

)

raises (GetNotificationIRPCategoriesException,OperationNotSupportedException);

/* ##begin NotificationIRPOperations.additionalDeclarations preserve=yes

##end NotificationIRPOperations.additionalDeclarations */

};

};

#endif

� “XXX” stands for “Alarm”, “Configuration” and “Performance”, etc.

� System provides this reference to which Manager can invoke methods to manage the subscription. Valid methods are not defined in this IRP. They are defined by OMG CORBA Notification Service. Read interface SequencePushSupplier: proxySupplier, CosNotifyComm::SequencePushSupplier{}. Manager is expected to invoke connect_sequence_push_consumer() of this interface to connect its own cosNotifyComm::sequencePushConsummer with this reference. After successful connection, System pushes sequence of Structured Events towards Manager.

� NV stands for name-value pair. CORBA Structured Event’s filterable_body_fields contains multiple NV pairs. The name of the NV is always a string. Order arrangement of NV pairs is not significant.

� The time scale maintained by the Bureau Internationale de l'Heure (International Time Bureau) that forms the basis of a co-ordinated dissemination of standard frequencies and time signals. The source of this definition is Recommendation 460-2 of the Consultative Committee on International Radio (CCIR). CCIR has also defined the acronym for Co-ordinated Universal Time as UTC. UTC is also referred to as Greenwich Mean Time (GMT) and appropriate time signals are regularly broadcast.

� The time scale maintained by the Bureau Internationale de l'Heure (International Time Bureau) that forms the basis of a co-ordinated dissemination of standard frequencies and time signals. The source of this definition is Recommendation 460-2 of the Consultative Committee on International Radio (CCIR). CCIR has also defined the acronym for Co-ordinated Universal Time as UTC. UTC is also referred to as Greenwich Mean Time (GMT) and appropriate time signals are regularly broadcast.

� The exception received by ActorManager may not be associated with the first invocation. This is because System may use one thread to handle one invocation and timing of multiple invocations is not synchronised. When ActorManager invokes multiple attach_push, attach_push_b or attach_pullXXX() in rapid sequence using the same category of Notification, ActorManager cannot assume that the first attach_push, attach_push_b or attach_pull XXX() will always succeed and the rest fail. System can expect, though, that one and only one invocationattach_XXX() will succeed.

PAGE 1

