3GPP TSG SA WG5 (Telecom Management) Meeting #108
S5-164250
11-15 July 2016, Harbin (China)
revision of S5-164137
Source:
China Mobile
Title:
pCR TR 32.880 overview of solution sets for Itf-N
Document for:
Approval

Agenda Item:
6.5.3
1
Decision/action requested

The document gives some suggestions on the overview of solution sets for Itf-N to TR32.880.
2
References

[1]
3GPP TR 32.880 v 0.2.0 "Study on Implementation for the Partitioning of Itf-N"

3
Rationale

A proposal for the Grouping IRP Functionality part of TR 32.880 is submitted and approved at SA5 Meeting #107. This pCR is proposed for the overview of solution sets to chapter 6 of the TR.
4
Detailed proposal

	1st Modified Section

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]
3GPP TR 32.861: "Study on Application and Partitioning of Itf-N".
[3]
3GPP TS 32.111-2："Telecommunication management; Fault Management; Part 2: Alarm Integration Reference Point (IRP): Information Service (IS)"
[4]
3GPP TS 32.302: "Telecommunication management; Configuration Management (CM); Notification Integration Reference Point (IRP); Information Service (IS)"
[5]
3GPP TS 32.312: "Telecommunication management; Generic Integration Reference Point (IRP) management; Information Service (IS)"
[6]
3GPP TS 32.342"Telecommunication management; File Transfer (FT) Integration Reference Point (IRP); Information Service (IS)"
[7]
3GPP TS 32.352 "Telecommunication management; Communication Surveillance (CS) Integration Reference Point (IRP); Information Service (IS)"

[8]
3GPP TS 32.412 "Telecommunication management; Performance Management (PM) Integration Reference Point (IRP): Information Service (IS)"

[9]
3GPP TS 32.612 "Telecommunication management; Configuration Management (CM); Bulk CM Integration Reference Point (IRP): Information Service (IS)"
[10]
OMG, Common Object Request Broker Architecture (CORBA) Specification, Part 1 – Interfaces, Version 3.3, http://www.omg.org/spec/CORBA/3.3/Interfaces/PDF
[11]
W3C, SOAP Version 1.2 Part 0: Primer (Second Edition), https://www.w3.org/TR/soap12-part0/
[12]
3GPP TR 32.809 v 7.0.0 "Feasibility Study of XML-based (SOAP/HTTP) IRP Solution Sets"
	2nd Modified Section

6
Analysis on diverse solution sets for Itf-N

6.1
Overview

Diverse solutions for Itf-N are adopted for the management of actual networks. Some of the solutions are in the scope of existing specifications, such as solution sets based on CORBA or SOAP, while others are not. The IRPs’ requirements and information services are well supported by existing solution sets, but these IRPs do not support some operators’ need for a simpler solution, as stated in the previous study for partioning of Itf-N [2]. Solutions beyond the scope of existing specifications are adopted to implement the subset of IRPs.
This section is a technical overview of the protocols of several solution sets, and provides information for the comparison and recommendations in following sections.
6.1.1
CORBA

6.1.1.1
Overview and concepts
Common Object Request Broker Architecture (CORBA) is OMG’s vendor-neutral, open standard for distributed object technology. Since the beginning it has gone through various improvement and enhancements and the current version is CORBA 3.3 presented in Nov 2012 [10].
The components of CORBA are Object Management Architecture (OMA), Object Request Broker (ORB) to support interaction between objects, and object services, and its main functions include locating objects, communication between servers and clients. Communication between clients and servers are not direct, it is always carried out via an Object Request Broker (ORB). Moreover ORB objects are accessed through the use of interfaces, defined using Interface Definition language (IDL).
6.1.1.2
Interoperation
When an object in the client role invokes an operation, the request is processed by an ORB to identify the server object to perform the request. The client is not aware of either the location or implementation details of the server object. The client makes the request using the object reference. An Interoperable Object Reference (IOR) contains the contact details for all the protocols that clients can use to communicate with an object in a server.

The ORB is responsible for all of the mechanisms required to find the object implementation for the request, to prepare the object implementation to receive the request, and to communicate the data making up the request. The interface which the client sees is completely independent of where the object is located, what programming language it is implemented in, or any other aspect that is not reflected in the interface of the object. In the client-server model an object plays roles of a client and a server and an object may assume both client and server roles for different operations.
ORB interoperability specifies a comprehensive, flexible approach to supporting networks of objects that are distributed across and managed by multiple, heterogeneous CORBA-compliant ORBs. General Inter-ORB Protocol (GIOP) is the abstract protocol by which ORBs communicate. This protocol defines the different message types – such as request and reply messages – that can be exchanged between client and server applications and also specifies a binary format for the on-the-wire representation of IDL types.
The GIOP is specifically built for ORB to ORB interactions and is designed to work directly over any connection-oriented transport protocol that meets a minimal set of assumptions. Instead, the choice of transport mechanism is decided in a specialization of GIOP.

A specialization of GIOP is the Internet Inter-ORB Protocol (IIOP), which is specified how GIOP messages are exchanged using TCP/IP connections. CORBA uses IIOP (Internet-Inter ORB Protocol) for interoperability in distributed heterogeneous environment.
CORBA products are obliged to support IIOP, but they may optionally also support other GIOP-based protocols or Environment Dpecific Inter-ORB protocols (ESIOP).
6.1.1.3
Features
CORBA has many advantages such as it is neither language nor operating system dependent paradigm, there are many languages supported by various CORBA providers, the most popular being Java and C++. Also CORBA's design is meant to be OS-independent. CORBA is available in Java (OS-independent), as well as natively for Linux/Unix, Windows, Solaris, etc. This provides extensibility to support any future language paradigm and OS.

Moreover CORBA Server and clients are transparent to implementation and underlying architecture, thus system details are hidden from developer and there is no need for server and clients to know underlying architecture.
CORBA is a true object oriented component framework, with CORBA, there is a tight coupling between the client and the server. First of all, both of them must share the same interface and must run an ORB (Object Request Broker) at both ends. Then, the interaction between the client and the server may be achieved directly with no need to further intermediation.
In CORBA, the Portable Object Adapter (POA) policies combined with the Fault-tolerant CORBA features and the Load-balancing CORBA service provide the desired scalability to CORBA applications.
6.1.2
SOAP

6.1.2.1
Overview and concepts
SOAP is a lightweight protocol defined by the w3c organisation [11]. SOAP is intended to exchange information in decentralized and distributed environment. It uses XML technologies that allow defining an extensible messaging framework providing a message construct that can be exchanged over a variety of underlying protocols. As well, the framework has been designed to be independent of any particular programming model and other implementations specific semantics. SOAP does not specify a transport event though it is very commonly used with HTTP.
6.1.2.2
Interoperation

SOAP provides a distributed processing model that assumes a SOAP message originates at an initial SOAP sender and is sent to an ultimate SOAP receiver via a number of SOAP intermediaries.
A SOAP message is specified as an XML infoset that consists in a SOAP envelope, a SOAP header and a SOAP body. The SOAP envelope element information item is embedded within an XML infoset and specifies that this infoset is a SOAP message. It contains a local name (envelope) as well as a namespace and a number of namespace qualified attribute information items. Finally it has to contain a Body element information item and optionally a Header element information item.
The SOAP header provides a mechanism for extending a SOAP message in a decentralized and modular way. The SOAP body provides a mechanism to transmit information to an ultimate SOAP receiver. It is a mandatory field since it contains the message or payload that is to be processed by the ultimate SOAP receiver.
While a SOAP receiver processing a message, a SOAP node (identified by an URI) is said to act in one or more SOAP role, each of which is identified by a URI known as the SOAP role name. For example, there are three main role names in the context of SOAP:

-
Next: Each SOAP intermediary and the ultimate SOAP receiver must act in this role

-
None: SOAP nodes must NOT act in this role

-
Ultimate Receiver: Only the ultimate receiver must act in this role

A solution set based on SOAP also needs WSDL as a description language and UDDI as a discovery “layer”.
WSDL is a Standard to define Web Services. WSDL is an XML format that allows Web Services description as a set of endpoints operating on messages containing either a document oriented or procedure oriented information. Operations and messages are described at an abstract level and then bound to a concrete network protocol and message format to define an endpoint. Basically WSDL describes the format and protocols of a web service in a standardized way.
The Service provider publishes service WSDL description to a UDDI registry. The service requestor discovers the service by searching the UDDI registry and then binds the WSDL description to a specific message it uses to access the service. Finally, the service requestor can use the service.
UDDI allows service providers to publish information about their services. The requestor can then find those information when looking for a service. This is done using the UDDI functionalities providing a registry in which information such as business entity, service provided by this entity and the WSDL description of those services is stored. UDDI provides as well an interface to insert information of the registry and possibly search for a service.

6.1.2.3
Features
SOAP version 1.2 is based on the XML Information Set [11]. SOAP 1.2 places no restriction about how the infoset is transported. Building on top of the XML infoset, the SOAP 1.2 specification defines a binding framework explaining the responsibility of the mechanism carrying a SOAP message from one SOAP node to another. This makes SOAP processors underlying protocol agnostics and SOAP version 1.2 protocol independent. SOAP 1.2 messages can be carried over HTTP, SMTP or any other protocol for which a binding conforms the binding framework.
SOAP 1.2 defines a web method feature and the SOAP HTTP binding provides support for both HTTP GET and POST operations. This implies that SOAP gets the benefits of the web infrastructure such as HTTP caches. Basically, SOAP 1.2 uses existing, established web technologies and it allows achieving better performance.
The biggest strength of SOAP 1.2 is coming from its extensibility model. SOAP 1.1 model has been reworked and formalized as features and properties that can be expressed either in the SOAP envelope or via the underlying protocol binding, making SOAP1.2 very flexible and making it take advantage of any feature that the underlying protocol would be providing.

	End of Modified Section

