Page 1

3GPP TSG-SA5 CM Telecom Management CM
S5-CM#01(00)0013
Ad-hoc Meeting #01, Montreal, Canada, 28-31 March 2000

Source:
Siemens (di.zhou@siemens.at)

Title:
Comments to the updated Notification IRP from Ericsson

Agenda Item:

Category:
Contribution for Configuration Management / Notification IRP Information Service

Document Summary:
This contribution provides comments to the update of Notification IRP Information Service provided by Ericsson for the CM ad hoc meeting in Montreal.

Specification(s) involved:
TS 32.106 - Notification IRP Information Service (Annex B)

Other information:
All comments were edited directly into the original document using the WinWord comment function. The texts commented are coloured in yellow. Just put the cursor on these texts, the comments will appear.

Annex B (normative): Notification Integration Reference Point: Information Service
Version 1

Revision C
B1
Introduction

B1.1
Background
Integration Reference Points (IRPs) are the means within 3G telecom management for specifying interoperable points of information exchange between systems and applications
.

For a more detailed background and introduction of the IRP concept, please refer to TS 32.101 [7] and 32.102 [8].

1.
2.
3.
4.

1.
2.
3.
B1.2
Scope

This document defines the Notification IRP Information Service.

Network elements (NEs) under management generate events to inform event receivers about occurrences within the network that may be of interest to event receivers. There are a number of categories of events. Alarm, as specified in Alarm IRP: Information Service [1], is one member of this category
.

The purpose of Notification IRP is to define an interface through which an Actor
 (typically a network management system) can subscribe to System (typically a NE manager (EM) or a NE
) for receiving network events. It also specifies attributes carried in the network events. These attributes are common among all event categories. Attributes that are specific to a particular event category are not part of this specification. For example, perceivedSeverity is an attribute specific for alarm event category. This attribute is not defined here but in Alarm IRP [1].

B1.3
Key Terms

This section lists key terms used in this document.

Actor: It models all kinds of objects outside the domain of the System
 and it interacts directly with the System using this IRP. Since Actors represent System users, they help delimit the System and give a clearer picture of what System is supposed to do.

Correlated Notifications: It contains a set of Notification identifiers and, if necessary, the distinguished names of their associated managed object instances . Notifications in this set are correlated to the subject Notification
. The notification carries this in an optional parameter called correlatedNotifications. The algorithm by which correlation is accomplished is outside the scope of this IRP. The source object instance shall be present if the correlated event notification is from a managed object instance other than the one in which the Correlated Notifications parameter appears.

Event:
 It is an occurrence that is of significance to network operators, the network elements under surveillance and network management applications. Events can indicate many types of network management information, such as network alarms, network configuration change information and network performance data.

Notification
: It refers to the transport of events from event producer to consumer (receiver). In this IRP, notification is used to carry network events from System to Actor. Producer sends notifications to consumers as soon as there are new events occur. Consumer does not need to check (“pull”) for events.

Notification Identifier: It provides an identifier for the notification, which may be carried in the Correlated Notifications parameter (see above) of future notifications. Notification identifiers shall be chosen to be unique across all notifications of a particular managed object throughout the time that correlation is significant.
 Notification carries this identifier in an optional parameter called notificationId.

It may be reused if there is no requirement that the previous notification using that Notification identifier be correlated with future notifications. Generally, System should choose it to ensure uniqueness over as long a time as is feasible for the managed system.

System: It models the object that interacts with Actor using this IRP. For this document, System encapsulates network element functions regarding network event detection and reporting. From Actor’s perspective, System behaviour is only visible via this IRP.

B1.4
Glossary

EM
Element Manager

IRP
Integration Reference Point

ITU-T
International Telecommunication Union, Telecommunication Sector

NE
Network Element

NM
Network Manager

OMG
Object Management Group

B2
System Overview

B2.1
System context for Notification

The following figures identify system contexts of Notification IRP in terms of implementations
 called System and Actor.

“Actor” depicts a process
 that interacts with System for the purpose of receiving network Notifications via this IRP. System detects network events. System sends Actors notifications carrying the events. Examples of Actors can be a network Notification logging device or network Notification viewing devices (such as a local craft terminal). System implements and supports this IRP. System can be one
Network Element (NE) (see Figure 1) or it can be one NE Manager (EM) with one or more NEs (see Figure 2). In the latter case, the interfaces (represented by a thick dotted line) between the EM and the NEs are not subject of this IRP. Whether EM and NE share the same hardware system is not relevant to this IRP either.
 By observing the interaction across the IRP, one cannot deduce if EM and NE are integrated in a single system or if they run in separate systems.

Figure 1: System Context A

Figure 2: System Context B

This interface
supports the following implementation strategies.

· One System supports emission of different categories of Notifications, such as alarms (as specified in [1]) and others.

· One Systems supports emission of one specific category of Notification. For example, one System implementation only emits alarms specified in [1]. Another System implementation emits configuration status change notifications.

· Actor can specify the categories of notifications it wants to receive using subscribe() operation. In the case Actor does not specify the notification category in subscribe(), System will then emit all categories of notifications that System handles. This implementation is solution set dependent.

· Actor can query the categories of notification that System is emitting. This implementation is solution set dependent.

The Notification IRP defines attributes, carried in notifications that are common in all categories of notifications. Attributes specific to a particular category of notification shall be specified in corresponding IRP (such as Alarm IRP). Those IRP also defines the protocol interaction via which Actor receives the notifications
.
B2.2
Compliance rules

[Editor suggests that definitions of Mandatory and Optional be removed from all IRP documents and placed in either document [7] or [8].
Operations, notifications, parameters (of operation and notification) and attributes (of event record) defined in this section are qualified by mandatory (M) and optional (O).
The solution set may specify capability via which Actor can discover if System has implemented an optional operation or parameter.

This information service does not specify if an operation or notification is asynchronous or synchronous, blocked or unblocked, direct call or store-and-forward call-type
. This type (and other types) of call semantics shall be defined in each solution set.
B3
Modelling Approach

This section identifies the modelling
 approach adopted and used in this IRP.

This IRP bases its design on work captured in ITU-T Recommendation X.734 [3], OMG Notification Service [6]. The central design ideas are:

· Separation of notification Consumers (Actors) from Producers (Systems);

· Notifications are forwarded from Systems to Actors in a store and forward manner; and

· Notifications are sent to Actors without the need for Actors to periodically check for new notifications.
· Common characteristics related to notifications in all other IRPs are gathered in one IRP (this document).

B4
IRP Information Service

·
·

·

·

B4.1
Interfaces
The following figure illustrates the operations and notifications defined as interfaces
 implemented and used by System and Actor. Parameters and return status are not indicated.

One interface
, called NotificationIRPOperations, is defined. This interface defines operations implemented by System and used (or called by) Actor.

Figure 4: Protocol Independent interface for Notification IRP

[image: image1.wmf]NotificationIRPOperations

subscribe()

unsubscribe()

getSubscriptionStatus()

suspend()

resume()

changeFilter()

setNotificationIRPVersion()

getNotificationCategoryTypes()

<<Interface>>

use

implement

System

Actor-1

B4.2
Operations of NotificationIRPOperations Interface
B4.2.1
Operation subscribe (M)

Actor invokes this operation to establish subscription to receive network events via notifications, under the filter constraint specified in this operation. How Actor discovers the System’s address or reference
 (so that Actor can invoke this operation) is outside the scope of this document. This operation is mandatory.

Table 2: Parameters of subscribe
Name
Qualifier
Purpose

actorReference
Input, M
It specifies the reference of Actor against which System shall send events.

timeTick
Input, M
It specifies the value of a timer hold by System for the subject Actor. This value defines a time window within which Actor intends to invoke getSubscriptionStatus (or subscribe) operation. System shall reset the timer, with timeTick, when it receives the getSubscriptionStatus (or subscribe) operation from the subject Actor. If the timer expires, System may delete its resources allocated to the Actor and consider Actor as if it has invoked unsubscribe operation. In such case, Actor will not receive further notification. Actor needs to invoke subscribe operation again.

The value is in unit of whole minute. If the value is NULL, negative, 0, System considers it to be infinite, i.e., timer will never expire and System needs other means to decide when to delete resources allocated to the Actor. If the value is between 0 and 15, System considers it to be 15.

notification CategoryType
Input, O
It identifies one category of notifications wanted by Actor. Each IRP document, such as Alarm IRP [1], defines one category of notification.

Valid values for this parameter are solution set dependent.

filter
Input, O
It specifies a filter constraint that System shall use to filter notification of the category specified in notificationCategoryType parameter. System shall notify Actors if the event satisfies the filter constraint.

If this parameter is absent or its value is NULL, then no filter constraint shall be applied. Valid filter constraint grammars are specified by individual notification IRP solution set, e.g. Notification IRP: CORBA solution set.

subscriptionId
Output, M
It holds a unique identity of the subscription managed by System, so that Actor can invoke operations to manage it. Operation examples are for Actor to request System to suspend and resume event notification.

status
Output, M
(a) Operation succeeded in that the requested subscription has been established successfully AND that System is emitting categories of notification specified by Actor via the notificationCategoryType parameter AND that the filter, if present, contains a valid filter constraint including NULL.
(b) Operation failed because Actor is already in subscription, i.e., System detects that there is an existing subscription carrying the same actorReference and in subscription for the same.notificationCategoryType.
(c) Operation failed because of other specified or unspecified reason.

B4.2.2
Operation unsubscribe (M)
Actor invokes this operation to cancel subscription. Actor shall supply the subscriptionId assigned by System in the corresponding operation subscribe. This operation is mandatory.

Table 3: Parameters for unsubscribe
Name
Qualifier
Purpose

subscriptionId
Input, M
It carries the subscriptionId carried as the OUT parameter in the subscribe operation.

actorReference
Input, O
If this is present, System shall ignore the presence of subscriptionId and use this actorReference to process the unsubscribe operation (request).

status
Output, M
(a) Operation succeeded in that subscription is cancelled successfully.
(b) Operation failed because of specified or unspecified reason.

B4.2.3
Operation selectNotificationIRPVersion (M)
Actor wishes to communicate with System using a particular Notification IRP solution set version. System shall respond with operation unsuccessful in case System does not support the requested version. In this case, System shall return with a list of (one or more) version numbers currently supported by System. Actor, if it supports one of the versions listed by System, shall invoke this operation again using a mutually supported version. After System returns successful status, Actor proceeds with subscribe operation.
System shall respond with operation successful in case System supports the requested version. In this case, System shall not return to Actor with a list of version number currently supported by System. This operation is mandatory.

Table 4: Parameters for selectNotificationIRPVersion
Name
Qualifier
Purpose

versionNumber
Input, M
It indicates the Notification IRP solution set version number supported by Actor.

versionNumberList
Output, M
It indicates one or more solution set version numbers supported by the System. This value should be NULL if status is successful, indicating that System is accepting the version number provided by Actor.

status
Output, M
(a) Operation succeeded in that System is supporting the solution set version indicated in the input parameter. In this case, the output parameter versionNumberList shall be NULL.

(b) Operation failed in that the System is not supporting the solution set version indicated in the input parameter. In this case, the output parameter versionNumberList shall contain one or more solution set version numbers currently supported by the System.

B4.2.4
Operation getSubscriptionStatus (O)
Actor invokes this operation to verify if System has lost the Actor’s reference and as a consequence, the System may not be able to emit notification to Actor.

Actor can get similar service by invoking subscribe operation using the same actorReference during subscription. However, the following differences are noted.
· Operation subscribe uses actorReference and this operation uses subscriptionId.

· If System has lost Actor’s reference, using subscribe operation may establish another subscription. Using this operation does not establish another subscription.
· Actor can use getSubscriptionStatus operation to know about the filter constraint and the notificationCategoryType currently in used in the subscription.

Table 5: Parameters for getSubscriptionStatus
Name
Qualifier
Purpose

subscriptionId
Input, M
It carries the subscriptionId carried as the OUT parameter in the subscribe operation.

notification CategoryTypes
Output, M

It identifies the categories of notifications emitted by System towards the subject Actor.

If this parameter is absent or its value is NULL, then the meaning is that System is not emitting any notification to the subject Actor.

filterInEffect
Output, M
It contains the filter constraint currently active. If it contains a NULL string, it means that there is no filter constraint applied to notification emitted towards the subject Actor.

subscription
Status
Output, M
(a) System has knowledge of the subscriptionId
(b) System has no knowledge of the subscriptionId.

B4.2.5
Operation changeFilter (O)

Actor invokes this operation to replace the present filter constraint with a new one.

Table 6: Parameters for changeFilter
Name
Qualifier
Purpose

subscriptionId
Input, M
It carries the subscriptionId carried as the OUT parameter in the subscribe operation

filter
Input, M
See description of Table 1: Parameters of subscribe.

status
Output, M
(a) Operation succeeded in that System is now producing events based on the new filter constraint.
(b) Operation failed in that, for unspecified reason, the new filter constraint cannot be installed. The old filter constraint, if present before this operation, is still in effect.

B4.2.6
Operation suspend (O)

Actor invokes this operation to request System to stop emission of events.

Table 7: Parameters for suspend
Name
Qualifier
Purpose

subscriptionId
Input, M
 It carries the subscriptionId carried as the OUT parameter in the subscribe operation

status
Output, M
(a) Operation succeeded in that System has suspended emission of events.
(b) Operation failed in that, for unspecified reason, System has not suspended emission of events.

B4.2.7
Operation resume (O)

Actor invokes this operation to request System to resume emission events.

Table 8: Parameters for resume
Name
Qualifier
Purpose

subscriptionId
Input, M
It carries the subscriptionId carried as the OUT parameter in the subscribe operation.

status
Output, M
(a) Operation succeeded in that System is has resumed emission of events.
(b) Operation failed in that, for unspecified reason, System cannot resume emission of events.

B4.2.8
Operation getNotificationCategoryTypes (O)

Actor invokes this operation to query the categories of notification emitted by System. Actor does not need to be in subscription to invoke this operation.
Table 9: Parameters for getNotificationCategoryTypes
Name
Qualifier
Purpose

notification CategoryTypes
Output, M
It identifies the categories of notifications emitted by System. Categories of notifications can be that defined by IRPs such as Alarm IRP [1], etc. Categories of notifications can be others, not defined by any IRPs, as well.

Valid values for this parameter are solution set dependent. Each solution set shall define, at the minimum, legal values for all IRP notification categories. Each solution set may specify values for notifications not specified by IRP as well.

If this parameter is absent
 or its value is NULL, then the meaning is that System is not emitter of any category of notification at the moment.

status
Output, M
(a) Operation succeeded in that the output parameter contains valid information.
(b) Operation failed in that the output parameter does not contain valid information.

B4.3
Behaviour

B4.3.1
System Supports Multiple Subscriptions from Actor

An Actor can invoke multiple subscriptions (i.e., invoke subscribe() operation using different actorReferences). As far as System is concerned, the System is sending alarms to multiple "places".

If Actor invokes multiple subscriptions with identical actorReference, all but the first subscription shall fail with exception indicating that the Actor is already in subscription.

Actor does not have the concept of filter object.
 Actor controls the filter constraint via subscribe()
.

B4.3.3
Support of multiple notifications in one message

For efficiency reasons, System may pack multiple notifications and send them to Actor using one single message. To pack multiple notifications, System may wait and not send the combined notification message as soon as the individual notifications have been generated. For System to avoid waiting for an extended period of time that is objectionable to Actor, it is recommended that System implement a system wide timer configurable by administrator
. On or before expiration of this timer, System must send the packed notifications, even though there may be only one notification in the message. This timer is re-started after each notification/message sent.
B4.3.4

System Supports Emission of Multiple Types of Notifications

System of
 this IRP may emit multiple categories of notifications. For example, it may emit notification defined in Alarm IRP [1].
 System supports mechanism that Actor can use to determine the types of notifications emitted by System. System also supports mechanism that Actor can use to specify the categories of notifications System should emit to Actor during subscription.

B4.3.5
Event Attributes

Network events are carried in notification that contains multiple attributes. This IRP specifies attributes that will appear in all notifications in all IRPs. They are mandatory.
 Other attributes are specified in IRPs such as Alarm IRP [1], etc. Whether they are mandatory or not are also specified in those IRPs.

B4.3.5.1
notificationId
 (M)

This parameter, when present,
 provides an identifier for the notification, which may be carried in the correlatedNotifications parameter (see below) of future notifications. NotificationId shall be chosen to be unique across all notifications of a particular managed object throughout the time that correlation is significant.

A notificationId may be reused if there is no requirement that the previous notification using that notificationId be correlated with future notifications. Generally, notificationIds should be chosen to ensure uniqueness over as long a time as is feasible for the managed system.

It uniquely identifies this notification from other notifications emitted from the System. System emitting the notification assigns its value.

If Actor receives notifications from multiple Systems and needs to identify uniquely all notifications received, then Actor shall use this identification, together with systemDN, for unique identification.

If and when the value of this can be re-used is specified in solution sets.

B4.3.5.2
correlatedNotifications (O)

This parameter, when present, contains a set of the following set of information:

· Notification identifier
;

· Distinguished name
of the managed object instance associated with the notification identified by the above identifier. This information is optional and shall be present if the correlated event notification is from a managed object instance other than the one in which the correlatedNotifications parameter appears.

Notifications in this set are correlated to the subject notification. The algorithm by which correlation is accomplished is outside the scope of this IRP.

B4.3.5.3
eventTime
 (M)

It indicates the event occurrence time. The time indication is UTC (Co-ordinated Universal Time). The Bureau Internationale De l’Heure (International Time Bureau) maintains UTC time scale and it forms the basis of a co-ordinated dissemination of standard frequencies and time signals. The source of this definition is Recommendation 460-2 of the Consultative Committee on International Radio (CCIR). CCIR has also defined the acronym for Co-ordinated Universal Time as UTC. UTC is also referred to as Greenwich Mean Time (GMT) and appropriate time signals are regularly broadcast.

The time indicates the year, month, day, hour, minute and second.

B4.3.5.4
systemDN
 (M)

It carries the Distinguished Name (DN) of System that detects the network event and generates the notification. See [4] for name convention regarding DN.

B4.3.5.5
eventType (M)

It carries identification of event types
 carried in the notification. Event types are specific to a particular notification category. For example, for notification category of Alarm IRP [1], the event types may be communication alarm, environmental alarm, equipment alarm, integrity violation, operational violation etc. See corresponding IRP document, such as Alarm IRP: Information Service [1], for a listing of possible event types for that notification category.

B4.3.6
Subscription list loss

System can lose the list of actorReference that identifies current Actors under subscription. Under this condition, System is incapable of sending events to the affected subscriber(s).

This Notification IRP recommends that Actor should invoke the getSubscriptionStatus operation periodically to confirm that System still has the Actor’s reference in its list. In case Actor does not obtain a positive confirmation, Actor should assume that System has lost the Actor’s reference. In this case, Actor should invoke unsubscribe and then subscribe operation again.

This IRP does not recommend the frequency Actor should use to invoke getSubscriptionStatus operation.

B5
Dynamic Model

B5.1
Use Cases

B5.1.1
Actor subscribes to receive events

Name: Actor subscribes to receive events

Summary: This use case illustrates the interactions for actors to subscribe for events.

Pre-conditions: Actor knows the address of System.

Post-conditions: None
.

Figure 6: Interaction diagram for Actor subscription to events

[image: image4.wmf]actor-1 : Actor

system-A :

Notification

actor-2 : Actor

attach

_push(

)

notifyEvent()

notifyEvent()

subscribe()

notifyEvent()

notifyEvent()

unattach()

notifyEvent()

B5.1.2
Actor performs Heartbeat

Name: Actor performs heartbeat.

Summary: This use case allows Actor to confirm if System is functioning, regarding emission of events, or otherwise.

Pre-conditions: Actor knows the System’s address.

Begins when: Actor issues getSubscriptionStatus operation.

Ends when: Operation completes.

Post-conditions: None.

The following figure illustrates the scenario when System responds negatively to the operation, indicating that it is not functioning correctly as far as emitting events to the invoking Actor. Most probably, the System has lost the Actor’s subscription reference. In such case, Actor is recommended to invoke unsubscribe and subscribe operations as illustrated.

In such a scenario, Actor shall assume that some events may have been lost. How Actor can recover the lost is outside the scope of this IRP. The recovery mechanism, if any, will be specified in IRPs (e.g., Alarm IRP) that refer to this IRP.

Actor should periodically invoke this operation to confirm if System is still functioning well.
Figure 7: Interaction diagram for Heartbeat

[image: image6.wmf]actor-1 : Actor

system-1 :

System

getSubscriptionStatus()

Attach_push

()

unattach()

·
·

·
·
·
B6
References

1. Alarm IRP: Information Service; 3G TS 32.111 Annex xx
2. Intentionally left blank
3. ITU-T Recommendation X.734 (09/92) - Information technology - Open Systems Interconnection - Systems management: Event report management function

4. Name Convention for Managed Objects; 3G TS 32.106 Annex H
5. Intentionally left blank
6. OMG Notification Service
7. 3G Telecom Management principles and high level requirements; 3G TS 32.101
8. 3G Telecom Management architecture; 3G TS 32.102

9. RFC-2573, SNMP
Itf-N

Notification IRP

System

NE

Actor

Actor

 EM

NEs

System

Itf-N

Notification IRP

System

NEs

EM

Actor

Notification IRP

Itf-N

� Interface in IRP Information ModelInformation Service is identical to concepts conveyed by stereotype <<interface>> of UMLRational Rose Model.

�PAGE \# "'Seite: '#'�'" �� Use either “Systems/Actors” or “Agents/Managers”

�PAGE \# "'Seite: '#'�'" �� should be “is one of these categories”

�PAGE \# "'Seite: '#'�'" �� if you write “an Actor” here you should write “an System” in the next line too!

�PAGE \# "'Seite: '#'�'" �� the definition and usage of the term “System” is not very clear. It seems better to write “typically contained in a …..” or “typically representing a …”

�PAGE \# "'Seite: '#'�'" �� The concept “System” is used here to define “Actor”. But “Actor” is used later in the definition of “System”. We must avoid this kind of iteration.

�PAGE \# "'Seite: '#'�'" �� Please add a clause to explain what a subject Notification is.

�PAGE \# "'Seite: '#'�'" �� These sentences are somekinds of requirements and should be move to a more suitable place. The explanation is not very clear. What is really the correlated notification parameter, is it correlatedNotifications? But correlatedNotifications seems to have nothing to do with object instances.

�PAGE \# "'Seite: '#'�'" �� Such terms are define in 32.111. Why do we have to define them once more. By the way ITU_T defines such terms too!

�PAGE \# "'Seite: '#'�'" �� See Event above

�PAGE \# "'Seite: '#'�'" �� This sentence and the last sentence of this definition seem to be requirements and should be moved to a more suitable place. An notification can be only identified by the nofificationId together with the related object instance (DN). See the related comment to B4.3.5.1.

�PAGE \# "'Seite: '#'�'" �� should be “cooperating units”

�PAGE \# "'Seite: '#'�'" �� We should avoid to use such programming terms. An Actor doesn’t have to be implemented by a process. It could for instance consist of several processes running on different machines. “Device”, “Component” or “Unit” could be better.

�PAGE \# "'Seite: '#'�'" �� should be “be a part of a”. Same in the next sentence.

�PAGE \# "'Seite: '#'�'" �� This sentence should be removed. It repeats only what the other sentences say.

�PAGE \# "'Seite: '#'�'" �� Should be “Notification IRP”

�PAGE \# "'Seite: '#'�'" �� Why do we have to talk about operations defined later here? We should not tell the readers here how to subscribe to a System. These sentences should be moved to B4 or B5.

�PAGE \# "'Seite: '#'�'" �� These sentences appear in this document before and should not be repeated.

�PAGE \# "'Seite: '#'�'" �� This conflicts to the second bullet of B3

�PAGE \# "'Seite: '#'�'" �� wrong spelling

�PAGE \# "'Seite: '#'�'" �� remove this bullet. See the last comment of the last chapter.

�PAGE \# "'Seite: '#'�'" �� It seems that the term “interface” are used in the sense of OMG (UML/CORBA, also DCOM). We’d better define or mention it in B1.3.

�PAGE \# "'Seite: '#'�'" �� “System’s address or reference” is somewhat CORBA oriented. There is no concept like “reference” in the CMIP world. Write just “System” instead.

�PAGE \# "'Seite: '#'�'" �� But how? The semantic must be clear defined, i.e. all subscribtions of this actor will be cancelled.

�PAGE \# "'Seite: '#'�'" �� the same parameter for “subscribe” is optional. It should be also optional for this operation!

�PAGE \# "'Seite: '#'�'" �� It should be explained explicitly whether the notifications which cannot be send to the Actors have to be stored by the System.

It must be explicitly explained that (o) means either both “suspend” and “resume” are supported or neither of them are supported.

�PAGE \# "'Seite: '#'�'" �� Should the subscription automatically removed?

�PAGE \# "'Seite: '#'�'" �� How to handle the stored notifications. see the similar comment for suspend.

�PAGE \# "'Seite: '#'�'" ��This parameter is mandatory and cannot be absent!

�PAGE \# "'Seite: '#'�'" ��You didn’t talk anything about “filter object”. There is no point to talk about it here. Just delete this sentence.

�PAGE \# "'Seite: '#'�'" �� subscribe() and changeFilter().

�PAGE \# "'Seite: '#'�'" �� How can a System know how many events should be packed in a notification? The following text seems to recommend a System always to wait until the timer expires. Probably we need an optional parameter e.g. for subscribe to define this maximum number of events.

�PAGE \# "'Seite: '#'�'" ��online by administrator

�PAGE \# "'Seite: '#'�'" �� This section should be deleted. It contains no new point and just repeats what already described somewhere above.

�PAGE \# "'Seite: '#'�'" �� “supporting” instead of “of”

�PAGE \# "'Seite: '#'�'" �� you should give an example of multiple categories here, not just a single category!

�PAGE \# "'Seite: '#'�'" �� It should be probably “Notification Attributes”! It could be necessary to tell notification attributes from event attributes. A notification may contain multiple events.

�PAGE \# "'Seite: '#'�'" �� This sentence should be deleted. Theoretically not all attributes have to be mandatory. If an attribute is mandatory or not will be anyway defined at the corresponding attribute definition.

�PAGE \# "'Seite: '#'�'" �� This sentence should be deleted. It contains no real point.

�PAGE \# "'Seite: '#'�'" �� A notification cannot identified by a notificationId within the scope of a System. This doesn’t sound reasonable. Why can it not be recommended that a notification shall be unambiguously identified by the associated notificationId? We don’t define how the value of this attribute shall look like. In an implementation the object instance Id could be used as a part of the related notificationId.

�PAGE \# "'Seite: '#'�'" �� delete it. This attribute must present!

�PAGE \# "'Seite: '#'�'" �� It seems to be significant to correlate events but not notifications, if notification contains multiple events. What we need really is the IDs of the correlated events but not notificationIds.

�PAGE \# "'Seite: '#'�'" �� See the related comment to B4.3.5.1

�PAGE \# "'Seite: '#'�'" �� EventTime or NotificationTime? A notification may contain multiple events!

�PAGE \# "'Seite: '#'�'" �� “Systems” don’t have to be modeled by an object. Can we recommend to apply a DN to a “System” without recommending to model a “System” with a unique object instance?

�PAGE \# "'Seite: '#'�'" �� Is eventType a sequence of identifiers, each of which describes the type of an event contained in a notification? Explain it explicitly please!

�PAGE \# "'Seite: '#'�'" ��Actor is registered at the System for the concerned events and got the Id of the subscription. System is able to send notifications to the Actor.

�PAGE \# "'Seite: '#'�'" �� This use case is ambiguous. It uses undefined operations. More Explanations are needed!

�PAGE \# "'Seite: '#'�'" �� It seems that you want to show how an Actor handles an exception. An additional precondition: System lost the subscription of the Actor.

�PAGE \# "'Seite: '#'�'" �� The System gets the subscription of the Actor again.

�PAGE \# "'Seite: '#'�'" �� Use case is incomplete. Please don’t use any undefined operations!

PAGE 1

_1014556440.doc

actor-1 : Actor

system-A :

Notification

actor-2 : Actor

attach_push()

notifyEvent()

notifyEvent()

subscribe()

notifyEvent()

notifyEvent()

unattach()

notifyEvent()

_1014803533.doc

NotificationIRPOperations

subscribe()

unsubscribe()

getSubscriptionStatus()

suspend()

resume()

changeFilter()

setNotificationIRPVersion()

getNotificationCategoryTypes()

<<Interface>>

use

implement

System

Actor-1

_1014556470.doc

actor-1 : Actor

system-1 :

System

getSubscriptionStatus()

Attach_push ()

unattach()

_1005657514.doc
[image: image1.emf][image: image2.emf]

System

NotificationIRPOperations

unsubscribe()

subscribe()

getSubscriptionStatus()

suspend()

resume()

changeFilter()

setNotificationIRPVersion()

getNotificationCategoryTypes()

<<Interface>>

Actor-1

use

implement

