3GPP TSG S5 (Telecom Management) meeting #9

Sophia Antipolis, France, 17 - 21 January, 2000
Tdoc S5-000004

 Page 1

Category:
32.104 – Performance Management

Source:
Siemens

Title:
Measurement Report File Format

Document for:
Input for 32.104 Annex A (Normative): Measurement Report File Format

Abstract: This contribution provides input for the Annex A “ Measurement Report File Format” of the 3G 32.104 PM specification. It comprises a list of requirements on a MR file format, a proposal of a MR file format described in ASN.1, and a proposal for basic (BER) as well as ASCII encoding rules that should be applied to ensure proper data transfer of performance measurement files to network management systems.

This Tdoc replaces the former Tdoc (99)194.

Recommendation: To be included in 32.104 Annex A (Normative): Measurement Report File Format

Requirements on the Measurement Report File Format

The following major requirements on the measurement report file format are met by the file format specification described in this Annex.

· The file structure and measurement value representations should be easy to understand and to implement.

· The file format should be independent of the data transfer protocol used to carry the file from one system to another. The file format should be described in ASN.1.

· The file format should re-use data definitions from GSM 12.04, ITU-T X.700 and Q.822 recommendations where applicable.

· Beside real measurement information the file may optionally include meta-information about the measurements that is necessary for interpretation. The overhead of meta-data should be minimised.

· Header information should indicate the file format version and identify the source of the measurement file.

· The file format should be appropriate that different up-load cycles of the file transfer can be supported. The up-load cycle may differ from the measurement periods.

· Information about the reliability of the measured item should be included in the file.

· The file format should support easy file merge, file split, and measurement compression functions.

· The file format and related encoding rules should allow complete file representations in ASCII format.

Measurement Report File Format Introduction

Measurement Items (counters) are typically grouped according functionality (cfr 12.04 Measurement Function). The term ObjectClass is used to identify such a group. The file format is based on the fact that the measurements are always collected in sets of one functional group.

The file format is structured to be line oriented. There are 2 kinds of lines defined :

· data lines containing the collected measurement data (one set of values per line), for each instance of the ObjectClass

· (optional) header lines conveying related meta-data

The key to link both types of lines is the ObjectClass. The header line stays the same for several corresponding data lines. Hence it need not be repeated each time.

The above is best explained with an example : consider the CELL measurement function (12.04). Then the ObjectClass is Cell. The file can contain a header line defining which measurements related to Cell are collected, and in which order. The subsequent data lines will then contain the values of the measurements for each specific cell which is measured, one data line per cell (and per granularity period).

This format will generate a kind of table with as column headings the measurement names, and in the rows the corresponding measurement values per measured instance and per granularity period.

The table would then roughly look like :

cell

attTCHSeizures
succTCHSeizures
…

cell
cell14
9.15
900
515
502
…

cell
cell22
9.15
900
448
422
…

cell
cell12
9.30
900
666
555
…

cell
cell14
9.45
900
741
725
…

…

…

Measurement Report File Format (ASN.1)

PM_File_Description

DEFINITIONS IMPLICIT TAGS ::= BEGIN

MeasDataCollection ::= SEQUENCE

{

measFileHeader

MeasFileHeader,

measData
 SEQUENCE OF MeasData,

measFileFooter

MeasFileFooter

}

MeasFileHeader ::= SEQUENCE

{

fileFormatVersion
INTEGER,

collectorName

PrintableString,

collectorType

PrintableString,

collectionBeginTime
TimeStamp,

collectionEndTime
TimeStamp
OPTIONAL

}

--

--

--

--

--

--

--

--

--

--
The fileFormatVersion has value 1 for the first format defined (= this one).

The collectorName refers to the name of the entity that has delivered the measurement data file to the NM. The collectorName may contain the vendor name.

The collectorType refers to a category the collector belongs to (EM/RNC/NodeB/MSC/..).

The collectionBeginTime refers to the start of the first measurement collection interval that is covered by the collected measurement results that are stored in this file.

The collectionEndTime refers to the end of the last measurement collection interval that is covered by the collected measurement results that are stored in this file.

The collectionEndTime is OPTIONAL as at file creation, it may not be known when the measurement file will be closed and has an indicative value

MeasFileFooter
::= TimeStamp

--

--

--
The TimeStamp in the MeasFileFooter refers to the end of the overall measurement collection interval that is covered by the collected measurement results being stored in this file. It has the same meaning as the collectionEndTime in the MeasFileHeader.

.

MeasData ::= Choice

 {

 scannedDataInfo

[0]
ScannedDataInfo,

 scannedDataLine
 [1]
ScannedDataLine

 }

ScannedDataInfo ::= SEQUENCE

{

keyMeasObjectClass
[0]
KeyMeasObjectClass,

numberOfMeasAddInfo
[1]
INTEGER (0..40),

numberOfMeasItem
[2]
INTEGER (1..1024),

measAddInfoNames
[3]
SEQUENCE (SIZE(0..40)) OF IdentifyingName,

measItemInfos

[4]
SEQUENCE (SIZE(1..1024)) OF MeasItemInfo

}

--

--

--

--

--

--

--

--
The measAddInfoNames (referring to measurement additional information) is related to configuration information that cannot be used in calculations, but is anyhow required for evaluation purposes (eg. if trunk measurements are taken, the trunk may uniquely be identified by a number, but it may be interesting to also include f.i. the trunkname or some other property of the trunk).

The.measItemInfos is referring to (numerical) information that typically is used in calculations (formulas). It identifies which measurements of the measurement function determined by the KeyMeasObjectClass are being collected and in which order.

IdentifyingName ::= PrintableString

MeasItemInfo ::= SEQUENCE

{

measItemType

[0]
MeasItemType,

measItemName

[1]
IdentifyingName

}

--
The MeasItemInfo gives information about one measurement.

MeasItemType ::= ENUMERATED

--
as defined in ITU T X.721

{

resetableCounter
(0),

cummulativeCounter
(1),

gauge

(2)

}

--

--

--

--

--

--
A reset-table counter typically is reset to zero at the beginning of a new elementary measurement interval (granularity) and increments by 1. It is a non-negative INTEGER.

A cummulativeCounter typically increments by 1 up to a maximum value and then set to zero (i.e. wrap around). It is a non-negative INTEGER.

A gauge can vary in either direction (increment and decrement). It is a non-negative INTEGER or REAL..

KeyMeasObjectClass ::= SEQUENCE

{

measObjectClass
[0]
MeasObjectClass,

measObjectVersion
[1]
MeasObjectVersion

}

--

--

--

--

--

--

--
Measurement Items (counters) are typically grouped according functionality (cfr 12.04 Measurement Function). The term ObjectClass is used for such a group. The KeyMeasObjectClass is also used as a link between the ScannedDataInfo and the ScannedDataLine.

The measObjectVersion is added as from one release to another measAddInfos and measItems are added/removed/updated e.g. due to the introduction of new features in a release..

MeasObjectClass ::=
IdentifyingName
(SIZE (1..128))

MeasObjectVersion ::= PrintableString (SIZE(1..20))

ScannedDataLine ::= SEQUENCE

{

keyMeasObjectClass

[0]
KeyMeasObjectClass,

keyMeasObjectInstance
 [1]
KeyMeasObjectInstance,

timeStamp

[2]
TimeStamp,

--

--
refers to the time, when the measurement information is scanned (collected).

granularityPeriod

[3]
INTEGER,

--

--

--

--
Number of seconds comprising the measurement interval, e.g. 300 in case of a 5 minutes

The measurement interval considered is

 [timeStamp – granularityPeriod , timeStamp]

suspectFlag

[4]
BOOLEAN,

--

--
Used as an indication of the quality of the scanned data FALSE in case of reliable data, TRUE if not reliable

measAddInfoValues

[5]
SEQUENCE (SIZE(0..40)) OF MeasAddInfoValue,

measItemValues

[6]
SEQUENCE (SIZE(1..1024)) OF MeasItemValue

}

KeyMeasObjectInstance ::=
SEQUENCE OF IdentifyingName

--

--

--
A certain MeasObjectClass may exists more than once in the system (e.g. trunk measurements). The KeyMeasObjectInstance uniquely identifies one particular set of measurements.

TimeStamp ::=
GeneralizedTime

--

--

--

--

--

--

--

--

--

--

--
Format: YYYYMODDHHMMSS<option1><option2>

YYYY
year

MO

month
(01..12)

DD

day
(01..31)

HH

hour
(00..23)

MM

minute
(00..59)

SS

second
(00..59)

<option1> optionally provides an eventual precision up to 1/1000 of a

second in the format .sss (0..999)

<option2> optionally provides a time differential in the format

 +HHMM or –HHMM. The time differential applies to the UTC time.

MeasAddInfoValue ::= PrintableString (SIZE(1..512))

--

--

--

--
The PrintableString principally covers all elementary types (INTEGER, REAL, BOOLEAN, ENUMERATED, STRING).

Complex attributes eventually have to be splitted into multiple elementary types, or the elementary types are concatenated into a single PrintableString

MeasItemValue ::= CHOICE

{

iValue

INTEGER,

rValue

REAL,

noValue

NULL

}

--

--

--
Normal values are non-negative INTEGERs and REALs

The NULL value is reserved to indicate that the measurement item is not applicable or could not be retrieved for the object instance

Encoding Rules for Measurement Report File Transfer

One of the following encoding rules should be applied :

· Binary Encoding

The BER (Basic Encoding Rules) according to ITU-T X.209.

· ASCII Encoding

A MeasurementDataCollection is encoded as a repetition of

<tag>
;
<line>
<CR> <LF> and ended by an <EOF>

where
<tag>=”0” for <line>=MeasFileHeader

<tag>=”1” for <line>=ScannedDataInfo

<tag>=”2” for <line>=ScannedDataLine

<tag>=”3” for <line>=MeasFileFooter

<CR> (resp <LF>, <EOF>) is the ASCII character Carriage Return (resp. Line Feed, End-Of-File)

For the ASCII Encoding of a <line>, a <SEPARATOR> character is used. This <SEPARATOR> has the ASCII value <TAB>.

For each individual <line>, the following encoding applies

SIMPLE VALUE (ENUMERATED, BOOLEAN, INTEGER, REAL PrintableString)

For an ENUMERATED type, the corresponding INTEGER value is encoded.

For BOOLEAN type, the value FALSE (resp TRUE) is encoded as the INTEGER value 0 (resp. 1).

A value of type INTEGER, REAL and a PrintableString are encoded as a sequence of ASCII characters. A value of type REAL always contains a (decimal) dot “.” (e.g. –5.)

When the <SEPARATOR> character sign is used within a PrintableString, then this character is to be encoded as <SEPARATOR><SEPARATOR><SEPARATOR> in the PrintableString (this is only required if the <SEPARATOR> character is allowed in the PrintableString.

SEQUENCE OF <dataType>

The individual dataType values are separated by a <SEPARATOR>.

The SEQUENCE OF is terminated by a double separator, i.e.

<SEPARATOR><SEPARATOR>

SEQUENCE

The values of the fields in a SEQUENCE are separated by a <SEPARATOR>.

An exception is made for a field in a SEQUENCE that is of type “SEQUENCE OF”: the “SEQUENCE OF” already is terminated by a double separator and no separator needs to be added (the double separator of the SEQUENCE OF acts as a separator is this case).

GeneralizedTime

Format: YYYYMODDHHMMSS<option1><option2>

YYYY
year

MO

month
(01..12)

DD

day
(01..31)

HH

hour
(00..23)

MM

minute
(00..59)

SS

second
(00..59)

<option1> optionally provides an eventual precision up to 1/1000 of a

second in the format .sss (0..999)

<option2> optionaly provides a time differential in the format

+HHMM or –HHMM The time differential applies to the UTC time.

Examples: 199906292254, 199906292254.3-0200, 199906292254+0100

