
DRAFT

Draft Standard T1.2XX (T1M1.5-030)

3GPP TSG S5 (Telecom Management) meeting #8

Bonn, Germany, 7-10 December, 1999
Tdoc S5-99298

COMMITTEE T1 – TELECOMMUNICATIONS

Working Group T1M1.5 Meeting

Boca Raton, FA; November 8-12, 1999
T1M1.5/99-030R4.5

DRAFT STANDARD

Title:
Working Document for Draft Standard ANSI T1.2xx-1999,

CORBA Generic Network and NE Level Information Model

Source:
Editors

Contact:
Kam Lam
Weijing Chen

Lucent Technologies
SBC Technology Resources

(732) 332-2454 (voice)
(512) 372-5710 (voice)

(732) 332-2464 (fax)
(512) 372 5791 (fax)

hklam@lucent.com
 wchen@tri.sbc.com
Distribution:
T1M1.5

Project:
Protocol Standards for Communication between Operating Systems

ABSTRACT

This contribution defines an U.S. position on a CORBA-based generic network information model.

This version of the document has been updated to reflect the decisions made at the November 8-12, 1999 meeting in Boca Raton, FL.

NOTICE

This is a draft document and thus, is dynamic in nature. It does not reflect a consensus of Committee T1-Telecommunications and it may be changed or modified. Neither ATIS nor Committee T1 makes any representation or warranty, express or implied, with respect to the sufficiency, accuracy or utility of the information or opinion contained or reflected in the material utilized. ATIS and Committee T1 further expressly advise that any use of or reliance upon the material in question is at your risk and neither ATIS nor Committee T1 shall be liable for any damage or injury, of whatever nature, incurred by any person arising out of any utilization of the material. It is possible that this material will at some future date be included in a copyrighted work by ATIS.

ANSI®
T1.2XX-1999

American National Standard

for Telecommunications

CORBA Generic Network and NE Level Information Model

Secretariat

Alliance for Telecommunications Industry Solutions

Approved XXX 31, 1999

American National Standards Institute

Abstract

This document specifies a generic network level information model to be used in telecommunications network management based on CORBA. It defined in Interface Definition Language (IDL) a set of generic interfaces and constants. These generic IDL interfaces could be extended by various industries for managing specific network technologies, such as ATM and SONET/SDH.

Table Of Contents

viiTable of Figures

Table of Tables
vii
Foreword
ix
1.
Introduction
11
1.1
Document Roadmap
11
1.2
Updates
11
1.3
Issues
13
2.
References
14
3.
Definitions
15
4.
Summary of Generic Information Model IDL
16
5.
Information Model Definition
18
5.1
Imports
19
5.2
Forward Declarations
20
5.3
Structures and Typedefs
21
5.4
Exceptions
33
5.5
Interfaces
36
5.5.1
AbstractLink
36
5.5.2
AbstractLinkEnd
39
5.5.3
AccessGroup
41
5.5.4
AlarmSeverityAssignmentProfile
44
5.5.5
CircuitPack
46
5.5.6
CircuitEndPointSubgroup
54
5.5.7
CTP (Connection Termination Point)
56
5.5.8
ControlPoint
59
5.5.9
CrossConnection
62
5.5.10
Equipment
67
5.5.11
EquipmentHolder
74
5.5.12
ExternalPoint
79
5.5.13
Fabric
82
5.5.14
GTP (Group Termination Point)
90
5.5.15
LayerNetworkDomain
92
5.5.16
LinkConnection
93
5.5.17
LogicalLink
95
5.5.18
LogicalLinkEnd
97
5.5.19
ManagedElement
99
5.5.20
ManagedElementComplex
104
5.5.21
MPCrossConnection
105
5.5.22
Network
109
5.5.23
NetworkCTP (Network Connection Termination Point)
111
5.5.24
NetworkTP (Network Termination Point)
114
5.5.25
NetworkTTP (Network Trail Termination Point)
118
5.5.26
Pipe
122
5.5.27
ScanPoint
126
5.5.28
Software
129
5.5.29
Subnetwork
135
5.5.30
SubnetworkConnection
142
5.5.31
TP (Termination Point)
145
5.5.32
TopLink (Topological Link)
148
5.5.33
TopLinkEnd (Topological Link End)
151
5.5.34
TPPool (Termination Point Pool)
154
5.5.35
Trail
156
5.5.36
TTP (Trail Termination Point)
158
5.6
Notifications
162
6.
Information Model Constants
164
6.1
AdditionalInformationConst
165
6.2
CharacteristicInfoConst
166
6.3
GeneralErrorCauseConst
168
6.4
ProbableCauseConst
170
6.5
ProblemCauseConst
174

Table of Figures

Table of Tables

Foreword

This document was produced by the T1M1.5 Working Group on OAM&P Architecture, Interface, and Protocols.

The Common Object Resource Broker Architecture (CORBA) is a software architecture defined by the Object Management Group to enable software objects to interact with each other despite their location, type of host computer, or programming language. By the spring of 1999 interest in applying CORBA to Telecommunications Management Network (TMN) interfaces was building and industry groups were beginning to define CORBA-based network management interfaces for specific network technologies such as ATM and SONET/SDH. Many of these groups had earlier defined TMN interfaces based on the Common Management Information Protocol (CMIP) by re-using a common framework and generic network information model defined in part by T1 and standardized by the ITU-T. Contributions from multiple sources to T1M1.5 pointed out the benefits to the industry of following a similar approach for CORBA interfaces, with T1, and ultimately the ITU-T, defining a framework and generic network information model that can then be extended by various industry fora for managing specific network technologies. This document defines the framework. A separate document defines the generic network information model. Both will be submitted to the ITU-T in an attempt to develop international standards for CORBA-based network management interfaces.

Suggestions for the improvement of this standard are welcome. They should be sent to the Alliance for Telecommunications Industry Solutions, 1200 G Street, NW, Suite 500, Washington, DC 20005.

This standard was processed and approved for submittal to ANSI by the Accredited Standards Committee on Telecommunications T1. Committee approval of this standard does not necessarily imply that all committee members voted for its approval. At the time it approved this standard, Committee T1 had the following officers:

Gerald Peterson, Chair

Ray Hapeman, Vice-Chair

Steve Barclay, Secretary

Working Group T1M1.5, which developed this standard, had the following participants:

Gopal Iyengar, Chair

John Portschy, Vice-Chair

AMERICAN NATIONAL STANDARD
ANSI T1.2XX-1999

American National Standard for Telecommunications

CORBA Generic Network and NE Level Information Model

1. Introduction

This document defines a generic network information model to be used in telecommunications network management based on CORBA. It defined in Interface Definition Language (IDL) a set of generic interfaces and constants. The intent of this document is to define a generic CORBA/IDL model similar to that defined in ITU Recommendations X.721 and M.3100 using CMISE. These generic IDL interfaces could be extended by various industries for managing specific network technologies, such as ATM and SONET/SDH.

1.1 Document Roadmap

This document has the following sections:

Section 1.
Introduction, document roadmap, update history, and list of issues.

Section 2.
References.

Section 3.
Definitions of terms and abbreviations used throughout the rest of the document.

Section 4.
Summary of Generic Information Model in IDL.

Section 5.
Information Model Definition.

Section 6.
Information Model Constants.

1.2 Updates

This section describes the updates of the various versions of the document.

· The first version, T1M1.5/99-030, was created from materials contributed at the May 10-14 T1M1.5 meeting in Eatontown, NJ. In particular, text was drawn from contribution 107 (SBC).

· The second version, T1M1.5/99-030R1, has been updated to reflect the decisions made at the June 14-16 interim meeting in Red Bank, NJ, including:

1) Changed the format of the document to a draft ANSI standard.

2) Removed the circuit pack object. It was agreed to use the latest version of the object, i.e., circuitPackR1 of M.3100 Amendment 1. However, it was also agreed that until some of the open issues are resolved it is not appropriate to generate IDL definitions using the M.3100 Amendment 1. Therefore, the IDL of the circuitPackR1 object is not included this version of the model yet.

3) Removed the X.721 system object.

4) Changed all the type names to have the suffix “Type”.

5) Changed all the list names to have the suffix “ListType”.

6) For all the optional (conditional) types, defined union _TypeOpt type to be used when the value of an optional type needs to be returned by the managed system.

7) Moved InformationTransferCapability from Appendix B to Appendix A and defined as Type instead of UID.

8) Moved SignallingCapability from Appendix B to Appendix A and defined as Type instead of UID.

9) Structures are defined for the AlarmSeverityAssignmentProfile, Equipment, EquipmentHold, ManagedElement, Network and Software for retrieving all the attributes of an object.

· The third version, T1M1.5/99-030R2, has been updated to reflect the decisions made at the August meeting in Torrance, California, including:

10) Provided the IDL definition of the following M.3100 Amendment 1 object classes and their associated data types:

· Abstract Link

· Abstract Link End

· Access Group

· Circuit Pack

· Control Point

· Cross Connection

· External Point

· Layer Network Domain

· Link Connection

· Logical Link

· Logical Link End

· Network CTP

· Network TP

· Network TTP

· Pipe

· Scan Point

· Subnetwork Connection

· Termination Point

· Topological Link

· Topological Link End

· Trail

11) Removed the value noChange from AlarmSeverityCodeType.

12) For the previously defined managed object interfaces, the valueType definitions are now outside of the object interface definitions.

13) Subsection headings have been added to the interfaces for improving the readability of the document.

· The fourth version, T1M1.5/99-030R4, has been updated to reflect the decisions made at the September meeting in Austin, Texas, including:

14) Provided the IDL definition of the following M.3100 NE-level object classes and their associated data types:

· Connection Termination Point (CTP)

· Trail Termination Point (TTP)

· Fabric

· Group Termination Point (GTP)

· TP Pool

· MP Cross Connection

· Managed Element Complex

· Connection R1 (To be provided ? No.)

· Circuit End Point Subgroup (To be provided ? Yes.)

15) The “name” parameters are removed from the operations

16) The <…>IDType struct’s are removed

17) The GDMO package information is preserved by using comments.

1.3 Issues

This section documents the issues that have arisen during the development of this document. It will be removed from the final version of the document.

1) (To be provided, if any)

2. References

This section contains references for documents on which this specification draws.

[1] The Object Management Group (OMG), “The Common Object Request Broker: Architecture and Specification”, Revision 2.2, February 1998.

[2] The Object Management Group (OMG), “CORBA Services: Common Object Services Specification”, Updated version, December 1998.

[3] The Object Management Group (OMG), “Notification Service”, OMG TC Document telecom/98-11-01, November 3, 1998.

[4] The Object Management Group (OMG), “Telecom Log Service”, OMG TC Document telecom/98-12-??, December 16, 1998.

[5] Inter-domain Management: Specification Translation, Open Group

[6] JIDM Interaction Translation, Edition 4.31, October 1998, OMG document telecom/98-10-10

3. Definitions

4. Summary of Generic Information Model IDL

The information model is defined in CORBA’s Interface Definition Language (IDL) in Appendices A and B. Appendix A contains all the data types and interface definitions. Appendix B contains only constant definitions. The IDL was created manually, following the GDMO specifications found in M.3100. So far, all applicable M.3100 and its amendment 1 36 objects have been translated to IDL. They are:

· AbstractLink

· AbstractLinkEnd

· AccessGroup

· AlarmSeverityAssignmentProfile

· CircuitEndPointSubgroup

· CircuitPack

· CTP

· ControlPoint

· CrossConnection

· Equipment

· EquipmentHolder

· ExternalPoint

· Fabric

· GTP

· LayerNetworkDomain

· LinkConnection

· LogicalLink

· LogicalLinkEnd

· ManagedElement

· ManagedElementComplex

· MPCrossConnection

· Network

· NetworkCTP

· NetworkTP

· NetworkTTP

· Pipe

· ScanPoint

· Software

· Subnetwork

· SubnetworkConnection

· TerminationPoint

· TopLink

· TopLinkEnd

· TPPool

· Trail

· TTP

and the Notification interface.

The latest versions available for the objects were used, e.g., the Network interface is based on the NetworkR1 GDMO specification.

The object interfaces defined in this contribution rely upon and build upon the CORBA Framework for Telecommunications Network Management defined in a separate contribution.

Information Model Definition

#ifndef _ITU_M3100_IDL_

#define _ITU_M3100_IDL_

#include <Naming.idl>

#include <itu_x721.idl>

#include <itu_m3100const.idl>

#include <itu_m3100.idl>

/**

This module contains the IDL interface definition based on objects defined in

M.3100 and its Amendment 1.

*/

module ITU_M3100

{

/**

4.1 Imports

IMPORTS

*/

/**

Types imported from ITU_X721

*/

typedef ITU_X721::AdministrativeStateType AdministrativeStateType

typedef ITU_X721::AlarmInfoType AlarmInfoType

typedef ITU_X721::AttributeSetType AttributeSetType

typedef ITU_X721::GeneralizedTimeType GeneralizedTimeType

typedef ITU_X721::Istring Istring

typedef ITU_X721::IstringOpt IstringOpt

typedef ITU_X721::IstringSetType IstringSetType

typedef ITU_X721::MO MO

typedef ITU_X721::MOSetType MOSetType

typedef ITU_X721::ObjectClassType ObjectClassType

typedef ITU_X721::ProbableCauseType ProbableCauseType

typedef ITU_X721::UIDType UIDType

typedef ITU_X721::UsageStateType UsageStateType

/**

Exceptions imported from ITU_X721

*/

typedef ITU_X721::DuplicateItem DuplicateItem

typedef ITU_X721::DuplicateName DuplicateName

typedef ITU_X721::ItemNotFound ItemNotFound

typedef ITU_X721::PackageNotPresente PackageNotPresent

typedef ITU_X721::TooManyListeners TooManyListeners

typedef ITU_X721::UnicastOnly UnicastOnly

/**

Interfaces imported from ITU_X721

*/

typedef ITU_X721::ManagedObject ManagedObject

typedef ITU_X721::ManagedObjectFactory ManagedObjectFactory

/**

4.2 Forward Declarations

FORWARD DECLARATIONS

*/

interface AbstractLink;

interface AbstractLinkEnd;

interface AccessGroup;

interface AlarmSeverityAssignmentProfile;

interface CircuitEndPointSubgroup;

interface CircuitPack;

interface CTP;

interface ControlPoint;

interface CrossConnection;

interface Equipment;

interface EquipmentHolder;

interface ExternalPoint;

interface Fabric;

interface GTP;

interface LayerNetworkDomain;

interface LinkConnection;

interface LogicalLink;

interface LogicalLinkEnd;

interface ManagedElement;

interface ManagedElementComplex;

interface MPCrossConnection;

interface Network;

interface NetworkCTP;

interface NetworkTP;

interface NetworkTTP;

interface Pipe;

interface ScanPoint;

interface Software;

interface Subnetwork;

interface SubnetworkConnection;

interface TP;

interface TopLink;

interface TopLinkEnd;

interface TPPool;

interface Trail;

interface TTP;

interface Notifications;

/**

4.3 Structures and Typedefs

STRUCTURES AND TYPEDEFS

*/

typedef sequence<AbstractLink> AbstractLinkSetType;

typedef sequence<AbstractLinkEnd> AbstractLinkEndSetType;

typedef sequence<AccessGroup> AccessGroupSetType;

/**

Alarm Severity Code.

*/

enum AlarmSeverityCodeType

{

alarmSeverityCodeNonalarmed,

alarmSeverityCodeMinor,

alarmSeverityCodeMajor,

alarmSeverityCodeCritical,

alarmSeverityCodeWarning

};

union AlarmSeverityCodeOptType switch (boolean)

{

case TRUE:

AlarmSeverityCodeType val;

}

/**

Alarm Severity Assignment. Each alarm severity assignment structure

identifies a particular problem (with a Unique ID) and then provides the

alarm severity code assigned if that problem is service affecting, not service

affecting, or service independent. This structure is usually part of

an AlarmSeverityAssignmentList.

*/

struct AlarmSeverityAssignmentType

{

ProbableCauseType
problem;

AlarmSeverityCodeOptType severityAssignedServiceAffecting;

AlarmSeverityCodeOptType severityAssignedNonServiceAffecting;

AlarmSeverityCodeOptType severityAssignedServiceIndependent;

};

/**

Alarm Severity Assignment Lists provide a listing of all abnormal

conditions that may exist in instances of an object class, and show the

assigned alarm severity information (minor, major etc.) for each condition.

*/

typedef sequence<AlarmSeverityAssignmentType>

AlarmSeverityAssignmentSetType;

typedef sequence<AlarmSeverityAssignmentProfile>

AlarmSeverityAssignementProfileSetType;

/**

Alarm Status indicates the occurrence of an abnormal condition relating to

an object. Attributes of this type may also function as a summary indicator

of alarm conditions associated with a specific resource. It is used to

indicate the existence of an alarm condition, a pending alarm condition such

as threshold situations, or (when used as a summary indicator) the highest

severity of active alarm conditions. When used as a summary indicator, the

order of severity (from highest to lowest) is: activeReportable-Critical

activeReportable-Major activeReportable-Minor activeReportable-Indeterminate

activeReportable-Warning activePending cleared.

*/

enum AlarmStatusType

{

alarmStatusCleared,

alarmStatusActiveReportableIndeterminate,

alarmStatusActiveReportableWarning,

alarmStatusActiveReportableMinor,

alarmStatusActiveReportableMajor,

alarmStatusActiveReportableCritical,

alarmStatusActivePending

};

/**

Avalibility Type is used in a sequence to indicate the availability

of a resource. Zero or more of these conditions may be indicated.

*/

typedef short AvailabilityType;

const AvailabilityType availabilityTypeInTest = 0;

const AvailabilityType availabilityTypeFailed = 1;

const AvailabilityType availabilityTypePowerOff = 2;

const AvailabilityType availabilityTypeOffLine = 3;

const AvailabilityType availabilityTypeOffDuty = 4;

const AvailabilityType availabilityTypeDependency = 5;

const AvailabilityType availabilityTypeDegraded = 6;

const AvailabilityType availabilityTypeNotInstalled = 7;

const AvailabilityType availabilityTypeLogFull = 8;

/**

Availability status is used to indicate the availability of a resource.

It is represented as a sequence of enums because several of the enumerated

conditions may exist at once.

*/

typedef sequence<AvailabilityType> AvailabilitySetType;

struct BandwidthComponentType

{

unsigned long
ingress;

unsigned long
egress;

};

typedef sequence<BandwidthComponentType> BandwidthSetType;

/**

This attribute indicates the available capacity of a link expressed

as either the number of link connections that are avaiable or the

bandwidth that is available to that link.

*/

enum CapacityChoice

{

capacityChoiceNumberOfLinkConnections,

capacityChoiceBandwidth

};

union CapacityType switch (CapacityChoice)

{

case capacityChoiceNumberOfLinkConnections:

long

numberOfLinkConnections;

case capacityChoiceBandwidth:

BandwidthSetType
bandwidth;

};

struct CapacitiesType

{

CapacityType

availableLinkCapacity;

CapacityType

maxProvisionableCapacity;

CapacityType

potentialLinkCapacity;

CapacityType

provisionedLinkCapacity;

};

typedef sequence<long> ChannelSetType;

typedef UIDType CharacteristicInfoType;

typedef sequence<CharacteristicInfoType> CharactristicInfoSetType;

/**

Circuit Directionality indicates the direction of a circuit relative to a

termination point.

*/

enum CircuitDirectionalityType

{

circuitDirectionalityOnewayOut,

circuitDirectionalityOnewayIn,

circuitDirectionalityTwoway

};

typedef sequence<CircuitPack> CircuitPackSetType;

/**

This syntax type indicates the configured connectivity of a Network Termination

Point managed object (or subclass). The possible values for this attribute are

sourceConnect, sinkConnect, bidirectionalConnect and noConnect.

For a Network Termination Point managed object with pointDirectionality equal

to sink, the allowed values for this attribute are noConnect and sinkConnect.

For a Network Termination Point managed object with pointDirectionality equal

to source, the allowed values for this attribute are noConnect and

sourceConnect.

For a Network Termination Point managed object with pointDirectionality equal

to bidirectional, the allowed values for this attribute are noConnect and

bidirectionalConnect.

For some technologies, sinkConnect and sourceConnect may also be allowed for

a bidirectional Network Termination Point managed object.

*/

enum ConfiguredConnectivityType

{

configuratedConnectivitySourceConnect,

configuratedConnectivitySinkConnect,

configuratedConnectivityBidirectionalConnect,

configuratedConnectivityNoConnect

};

/**

Connection results return the results of adding legs to or creating

connections. An issue to address is will all connections automatically be

multi-point. Due to the containment relationship between MPCrossConnections

and Connections, there appears to be no way to add legs to a pt-pt connection.

*/

struct ConnectResultType

{

TP

fromTP;

// the "root" of a connection

LegSetType

legs;

// the "leafs" of a connection.

// for pt-pt, only one leaf in list

MPCrossConnection
mpxcon;

// the containing pt-multipt xcon.

// for pt-pt, this will be null

};

/**

This syntax indicates the possible value of in parameter for externalControl

action.

*/

enum ControlActionType

{

controlActionCloseContinuously,

controlActionOpenContinuously,

controlActionCloseMomentarily,

controlActionOpenMomentarily

};

typedef sequence<ControlPoint> ControlPointSetType;

/**

This syntax type indicates the possible value of out parameter for

externalControl action.

*/

enum ControlResultType

{

controlResultComplete,

controlResultAlreadyInCondition,

controlResultFail_InvalidControlActionType,

controlResultFail_ReasonUnknown

};

/**

This syntax type indicates the state of the control point.

*/

enum ControlStateType

{

controlStateClosed,

controlStateOpen

};

typedef sequence<CrossConnection> CrossConnectionSetType;

/**

This syntax type are used to identify the cross connection object(s) with

which a termination point is associated.

*/

struct CrossConnectionPointerType

{

CrossConnection
upstream;
// may be null

CrossConnection
downstream;
// may be null

};

/**

The current problem structure identifies an existing problem with an

object. It is typically a component of a Current Problem List.

*/

struct CurrentProblemType

{

ProbableCauseType
problem;

AlarmStatus

alarmStatus;

};

/**

Current Problem Lists identify the current existing problems, with

severity, associated with a managed object.

*/

typedef sequence<CurrentProblemType> CurrentProblemSetType;

/**

This syntax type specifies there the associated managed object is uni- or

bi- directional.

*/

enum DirectionalityType

{

directinalityUnidirectional,

directinalityBidirectional

};

/**

Downstream Connectivity Pointer Type identifies the type of connection a TP is

involved in.

*/

enum DownstreamConnectivityPointerChoice

{

downstreamConnectivityPointerChoiceNoneOrSingleOrConcatenated,

downstreamConnectivityPointerChoiceBroadcast,

downstreamConnectivityPointerChoiceBroadcastConcatenated

};

union DownstreamConnectivityPointerType

switch (DownstreamConnectivityPointerChoice)

{

case

downstreamConnectivityPointerChoiceNoneOrSingleOrConcatenated:

TPSeqType noneOrSingleOrConcatenated;

// order is significant

case downstreamConnectivityPointerChoiceBroadcast:

TPSetType broadcast;

// order is insignificant

case downstreamConnectivityPointerChoiceBroadcastConcatenated:

sequence<TPSeqType> broadcastConcatenated;

// outer sequence order is insignificant

// inner sequence order is significant

};

typedef sequence<ExternalPoint> ExternalPointSetType;

/**

External time attributes and parameters provide time-of-day system time.

*/

typedef GeneralizedTimeType ExternalTimeType;

/**

Failures convey logical or resource problems encountered during an operation.

*/

struct FailureType

{

MO

obj; // the offending object - could be null

ProblemCauseType
problemCause;

};

typedef sequence<FailureType> FailureSetType;

/**

General Error Causes are represented by Unique Identifiers.

*/

typedef UIDType GeneralErrorCauseType;

/**

General Error Structures are used to represent general errors, with the

error or errors described by a cause code and optionally provided text.

An attributeList can be provided if the error condition can be further

described by the state of the object attributes. Related object(s) can

also be provided. The related objects may contribute to the condition

that does not allow the operation to take place. An example would be

if objects are configured for a particular service offering that is in

conflict with the service offering that is being provisioned. These

structures are usually part of a General Error List.

*/

struct GeneralErrorType

{

GeneralErrorCauseType
cause;

Istring

details;
// may be null

MOSetType

relatedObjects;
// may be null

AttributeSetType
attributeList;
// may be null

};

/**

General Error List. If an error or set of errors occur that cannot be

described by existing CORBA errors or other error parameters, the error(s)

will be communicated using this parameter, with the error or errors described

by a cause code and optionally provided text. An attributeList can be

provided if the error condition can be further described by the state of the

object attributes. Related object(s) can also be provided. The related

objects may contribute to the condition that does not allow the operation to

take place. An example would be if objects are configured for a particular

service offering that is in conflict with the service offering that is being

provisioned.

*/

typedef sequence<GeneralErrorType> GeneralErrorSetType;

/**

Holder Status relates the status of an equipment holder. "Empty" means the

equipment holder contains no circuit pack. If the status is "acceptable, the

circuit pack in the holder is on the acceptable list. "Unacceptable" means

the circuit pack type is known but not on the acceptable list. "Unknown

means the circuit pack is unknown or the status of the equipment holder cannot

be determined.

*/

enum HolderStatusType

{

holderStatusEmpty,

holderStatusAcceptable,

holderStatusUnacceptable,

holderStatusUnknown

};

/**

This type is an extensible enumerated type and additional value may be added

in future.

*/

typedef short InformationTransferCapabilityType

const InformationTransferCapabilityType

informationTransferCapabilitySpeech = 0;

const InformationTransferCapabilityType

informationTransferCapabilityAudio3Pt1 = 1;

const InformationTransferCapabilityType

informationTransferCapabilityAudio7 = 2;

const InformationTransferCapabilityType

informationTransferCapabilityAudioComb = 3;

const InformationTransferCapabilityType

informationTransferCapabilityDigitalRestricted56 = 4;

const InformationTransferCapabilityType

informationTransferCapabilityUnrestricted64 = 5;

typedef sequence<LayerNetworkDomain> LayerNetworkDomainSetType;

/**

The leg structure represents one leg of a multi-point connection.

*/

struct LegType

{

TP

leaf;

// a "leaf" termination point

CrossConnection

xcon;

// a pt-pt cross-connection to the TP

};

typedef sequence<LegType> LegSetType;

typedef sequence<LinkConnection> LinkConnectionSetType;

/**

This syntax type specifies whether the associated link managed object

is uni- or bi-directional, or undefined.

*/

enum LinkDirectionalityType

{

linkDirectionalityUnidirectional,

linkDirectionalityBidirectional,

linkDirectionalityUndefined

};

/**

???

This syntax is in ASN.1 production, but not used.

enum LinkEndChoice

{

linkEndChoiceSubnetwork,

linkEndChoiceAccessGroup,

linkEndChoiceLinkEnd,

linkEndChoiceUndefined

};

union LinkEndType switch (LinkEndChoice)

{

case linkEndChoiceSubnetwork:

Subnetwork
sn;

case linkEndChoiceAccessGroup:

AccessGroup
ag;

case linkEndChoiceLinkEnd:

AbstractLinkEnd
le;

};

*/

typedef sequence<NetworkCTP> NetworkCTPSetType;

typedef sequence<NetworkTP> NetworkTPSetType;

typedef sequence<NetworkTTP> NetworkTTPSetType;

typedef sequence<Pipe> PipeSetType;

/**

This syntax type indicates the number of Network CTPs associated with a Link

End that have spare capacity or the amount of spare bandwidth associated with

a LinkEnd.

*/

enum PointCapacityChoice

{

pointCapacityNumberOfTPs,

pointCapacityBandwidth

};

union PointCapacityType switch (PointCapacityChoice)

{

case pointCapacityNumberOfTPs:

long

numberOfTPs;

case pointCapacityBandwidth:

BandwidthType
bandwidth;

}

/**

This syntax type specifies whether the associated link end managed object

is sink, source, or bi-directional.

*/

enum PointDirectionalityType

{

pointDirectinalitySink,

pointDirectinalitySource,

pointDirectinalityBidirectional

};

/**

A Port Association relates a port (identified by a string name) on a circuit

pack with the managed object representing that link termination. These

associations are usually part of a Port Association List.

*/

struct PortAssociationType

{

Istring

portId;

AbstractLinkEnd
linkEnd; // null means unassigned.

/**

??? or

LinkEndType
linkEnd;

*/

};

/**

A Port Association List is a sequence of port association structures.

*/

typedef sequence<PortAssociationType> PortAssociationSetType;

/**

This structure identifies the signal rate associated with a circuit pack

port (e.g. port = 0, rate = stm1) and its payload mapping (e.g. au3 or au4).

*/

struct PortSignalRateAndMappingType

{

Istring

portId;

SignalRateType

signalRate;

CharacteristicInfoSetType
characteristicInfoList;

};

typedef sequence<PortSignalRateAndMappingType>

PortSignalRateAndMappingSetType;

typedef UIDType ProblemCauseType;

/**

Replaceable indicates whether the resource represented by the object is

physically replaceable.

*/

enum ReplaceableType

{

replaceableYes,

replaceableNo,

replaceableNotApplicable

};

enum RequestedPointCapacityChoice

{

requestedPointCapacitySpecificTPList,

requestedPointCapacityPointCapacity

};

union RequestedPointCapacityType switch (RequestedPointCapacityChoice)

{

case requestedPointCapacitySpecificTPList:

NetworkTPSetType
specificTPList;

case requestedPointCapacityPointCapacity:

PointCapacityType
capacity;

};

enum RequestedCapacityChoice

{

requestedCapacitySpecificChannelList,

requestedCapacityCapacity

};

union RequestedCapacityType switch (RequestedCapacityChoice)

{

case requestedCapacitySpecificChannelList:

ChannelSetType
specificChannelList;

case requestedCapacityCapacity:

CapacityType
capacity;

};

typedef short ResetErrorType;

const ResetErrorType resetErrorTypeResetFail = 0;

const ResetErrorType resetErrorTypeEntityInService = 1;

typedef sequence<ScanPoint> ScanPointSetType;

typedef short ServiceAffectingErrorType;

const ServiceAffectingErrorType

serviceAffectingErrorAffectingExistingService = 0;

/**

This type is an extensible enumerated type and additional value may be added

in future.

*/

typedef short SignallingCapabilityType

const SignallingCapabilityType signallingCapabilityISUP = 0;

const SignallingCapabilityType signallingCapabilityISUP92 = 1;

const SignallingCapabilityType signallingCapabilityCCITTNo5 = 2;

const SignallingCapabilityType signallingCapabilityR2 = 3;

const SignallingCapabilityType signallingCapabilityCCITTNo6 = 4;

const SignallingCapabilityType signallingCapabilityTUP = 5;

/**

This syntax type defines the characteristic information of the layer

(in the G.805 sense) to which the entity under consideration belongs.

It is used to determine whether sub-network connection/connectivity

is possible. The signal type may be a simple rate and format or may be

a bundle of entities with the same characteristic information which

form an aggregate signal. If the signal type is simple, it consists of

a single SignalIdStruct with bundlingFactor = 1. A "bundled" signal is

made up of a number of signal ids all of the same characteristic information.

It is represented by a single SignalIdStruct with bundlingFactor > 1.

Complex signal types have multiple SignalIdStructs, each of which may have

bundlingFactor >= 1. The order of the SignalIdStructs in the complex signal

type represents the actual composition of the signal.

*/

struct SignalIdComponentType

{

CharacteristicInfoType
characteristicInfo;

long

bundlingFactor:

};

/**

Signal Type indicates the type of information carried by a signal. It is

composed of one or more Signal Type Structures.

*/

typedef sequence<SignalIdComponentType> SignalIdType;

enum SignalRateChoice

{

signalRateCharacteristicInfo,

signalRateObjectClass

};

union SignalRateType switch (SignalRateChoice)

{

case signalRateCharacteristicInfo:

CharacteristicInfoType
characteristicInfo;

case signalRateObjectClass:

ObjectClassType

objectClass;

};

typedef sequence<SignalRateType> SignalRateSetType;

typedef sequence<Software> SoftwareSetType;

typedef sequence<SubnetworkConnection>

SubnetworkConnectionSetType;

/**

A SuspectObject identifies an object that may be the cause of a failure.

It is usually a component of a SuspectObjectList.

*/

struct SuspectObjectType

{

ObjectClassType
objectClass;

MO

suspectObjectInstance;

unsigned short
failureProbability;

// in the range 1..10

};

/**

Suspect Object Lists are used to identify objects that may be the cause of

a failure.

*/

typedef sequence<SuspectObjectType> SuspectObjectSetType;

/**

SystemTimingSource is used to specify the resource's primary and secondary

timing source for synchronization.

*/

struct SystemTimingSourceType

{

TimingSourceType
primaryTimingSource;

MO

primaryTimingSourceID;

boolean

secondarySupported;

TimingSourceType
secondaryTimingSource;

MO

secondaryTimingSourceID;

};

/**

Timing Source Type identifies the type of a timing source.

*/

enum TimingSourceType

{

timingSourceInternal,

timingSourceRemote,

timingSourceSlavedTimingTerminationSignal

};

/**

The Top End Directionality attribute type specifics whether the associated

link end managed object is sink, source, bi-directional, or undefined.

*/

enum TopEndDirectionalityType

{

topEndDirectionalityUndefined,

topEndDirectionalitySink,

topEndDirectionalitySource,

topEndDirectionalityBidirectional

};

typedef sequence<TopLinkEnd> TopLinkEndSetType;

typedef sequence<TopLink> TopLinkSetType;

/**

Set type order is insignificant.

*/

typedef sequence<TP> TPSetType;

/**

Seq type order is significant.

*/

typedef sequence<TP> TPSeqType;

typedef sequence<Trail> TrailSetType;

/**

Transmission Characteristic identifies on type of transmission supported by

a circuit end point subgroup.

*/

enum TransmissionCharacteristicType

{

transmissionCharacteristicSatellite,

transmissionCharacteristicDCME,

transmissionCharacteristicEchoControl

};

/**

Transmission Characteristics specify the different transmission characteristics

such as satellite, echo control supported by a circuit subgroup. In M.3100

they are specified as a bit string. But in IDL they are represented by a

sequence of enumerations. If a particular characteristic is missing from the

list it means it is not supported.

*/

typedef sequence<TransmissionCharacteristicType>

TransmissionCharacteristicSetType;

/**

UsageCost is an integer in the range 0..255

*/

typedef short UsageCostType;

/**

This syntax indicates the valid type of control signal for a control point.

*/

enum ValidControlType

{

validControlMomentaryOnly,

validControlContinuousOnly,

validControlBoth

};

/**

4.4 Exceptions

EXCEPTIONS

*/

/**

The following exceptions are generated for parameter defined in M.3100.

*/

/**

The alarmEffectOnServiceParameter is a parameter to be included as an

element of a set in AdditionalInformation parameter of the AlarmInfo

defined in X.721. The alarmEffectOnServiceParameter indicates whether

the service is affected by the alarm.

*/

exception AlarmEffectOnServiceParameter { };

/**

If the maximum number of instances of the object class exist within the

superior (containing) managed object, attempts to create additional

instances will result in the CMIP processing failure error.

The value of the integer indicates the number of instances that are

currently contained in the superior object.

*/

exception CreateError { short num; };

/**

General Error Parameter are a way of reporting detailed information on

errors that have occurred. This is a capability that is added to M.3100 in

it's 7/98 corrigendum. To prevent the need to re-register many object

interfaces, the corrigendum proposed it's use quite sparingly, mainly only

in name bindings where it only applies to object creations and deletions. It

may make sense to use it more liberally in this interface specification. <p>

The places the corrigendum does mention that are not reflected here are the

delete operations for the following objects: circuit pack (under equipment

holder) cross-connection (under fabric), equipment (under managed element and

equipment) EFD (under managed element), and fabric (under managed element).

Also, the corrigendum proposes it be sent back on a failed create operation

for EFDs (under managed element). Since CORBA implementations will likely use

an off-the-shelf notification service, including notification channels,

getting this behavior on notification channel creation will be difficult.

The delete operation on the Managed Object interface could be updated to throw

this exception, making it available to the other objects listed above.

Unfortunately, CORBA IDL does not allow these objects to overload the delete

operation inherited from ManagedObject to include this exception.

@param GeneralErrorList
the list of problems encountered.

*/

exception GeneralError { GeneralErrorType error; };

exception ResetError { ResetErrorType error; };

exception CircuitPackResetError { };

exception ServiceAffectedError { ServiceAffectingErrorType error; };

exception BoundSubnetwork { };

exception ChannelsAlreadyProvisioned { ChannelSetType channelList; };

exception FailureToAddLinkConnections { };

exception FailureToAddNetworkCTPs { };

exception FailureToAssociateLCs { };

exception FailureToAssociateNetworkTTP { };

exception FailureToDeassignLinkConnection { };

exception FailureToDeassignNetworkCTP { };

exception FailureToDecreaseCapacity { CapacitiesType capacities; };

exception FailureToIncreaseCapacity { CapacitiesType capacities; };

exception FailureToRemoveLCs { };

exception FailureToBindLink { };

exception FailureToBindLinkEnd { };

exception FailureToBindTopologicalLink { };

exception FailureToCreateAccessGroup { };

exception FailureToCreateLink { };

exception FailureToCreateLCs { };

exception FailureToCreateLinkEnd { };

exception FailureToCreateNetworkTTP { };

exception FailureToCreateSubnetwork { };

exception FailureToDisassociateNetworkTTP { };

exception FailureToRemoveAccessGroup { };

exception FailureToRemoveNetworkCTPs { };

exception FailureToRemoveNetworkTTP { };

exception FailureToRemoveSubnetwork { };

exception FailureToSetDirectionality { };

exception FailureToSetLinkConnectionCallerId { };

exception FailureToSetNetworkCTPCallerId { };

exception FailureToSetUserIdentifier { };

exception FailureToSupportLCs { };

exception InconsistentDirectionality { };

exception InconsistentSignalIdentification { };

exception InsufficientCapacity { CapacitiesType capacities };

exception InvalidChannelsNumber { ChannelSetType channelList };

exception InvalidLinkConnection { MO linkConnection; };

exception InvalidNetworkCTP { MO networkCTP; };

exception InvalidServiceCharacteristicsRequested { };

exception InvalidTPType { };

exception InvalidTrafficDescriptorRequested { };

exception LinkConnectionAlreadyAssigned { MOSetType linkList; };

exception LinkEndAndNetworkCTPNotCompatible { MOSetType linkList; };

exception LinkAndLinkConnectionNotCompatible { MOSetType linkList; };

exception NetworkCTPAlreadyAssigned { MO networkCTP; };

exception NetworkTTPAndAccessGroupNotCompatible { };

exception NetworkTTPAndSubnetworkNotCompatible { };

exception NetworkTTPAssociatedWithAccessGroup { MO networkTTP; };

exception NetworkTTPAssociatedWithSubnetwork { MO networkTTP; };

exception NetworkTTPsExisting { };

exception NetworkTTPTerminatesTrail { MO networkTTP; };

exception NewServiceCharacteristicsExistsAlready

{ SignalIdType signalId; };

exception NewTrafficDescriptorExistsAlready { SignalIdType signalId; };

exception NoLinkCapacity { };

exception NoLinkEndCapacity { };

exception NoSuchLink { MO link; };

exception NoSuchLinkEnd { MO linkEnd; };

exception NotAssignedToCaller { MO caller; };

exception NotEnoughLinkConnections { long num; };

exception NotEnoughNetworkCTPs { long num; };

exception SubnetworkInUse { };

/**

TP Error Exceptions report problems encountered on operations involving

termination points.

*/

exception TPError (FailureList);

/**

4.5 Interfaces

INTERFACES

*/

/**

4.5.1 AbstractLink

Managed objects supporting the AbstractLink interface give a topological

description of the capacity between two adjacent Sub-networks, or two Link

Ends; or a Sub-network and an Access Group when Network trail termination

points lie outside the boundary of the largest sub-network.

The use made of the individual attributes and notifications is detailed below:

-a end: the link end, sub-network or access group which terminates one

end of the Link.

-available link capacity: the number of free Link Connections or free

bandwidth.

-z end: the link end, sub-network or access group which terminates the

other end of the Link.

-signal Id: shows the signal Id of the Link Connections that provide

the capacity for the Link.

A link must be provided with capacity by Link connections of the same signal

Id.

Attribute value change notification: shall be emitted when

the values change of the following attributes: availableLinkCapacity,

totalLinkCapacity.

The AbstractLink interface is not instantiable.

*/

valuetype AbstractLinkValueType: ManagedObjectValueType

{

public MO

aEnd;

// abstractLinkPackage

// GET, SET-BY-CREATE

public CapacityType
availableLinkCapacity;

// abstractLinkPackage

// GET

public SignalIdType
signalId;

// abstractLinkPackage

// GET, SET-BY-CREATE

public MO

zEnd;

// abstractLinkPackage

// GET, SET-BY-CREATE

public UsageCostType
usageCost;

// conditional

// usageCostPackage

// GET

public Istring

userLabel;

// conditional

// userLabelPackage

// GET-REPLACE

}; // valuetype AbstractLinkValueType

interface AbstractLink: ManagedObject

{

/**

This attribute is a pointer to a sub-network, a link end or an

access group in the same network layer domain.

*/

MO aEndGet ();

/**

This attribute indicates the available capacity of a link expressed as either

the number of link connections that are available or the bandwidth that is

available to that link.

*/

CapacityType availableLinkCapacityGet ();

/**

This attribute defines the characteristic infomation of the layer (in the

G.805 sense) to which the entity under consideration belongs. It is used

to determine whether sub-network connection/connectivity is possible.

*/

SignalIdType signalIdGet ();

/**

This attribute is a pointer to a sub-network, a link end or an

access group in the same network layer domain.

*/

MO zEndGet ();

/**

Returns the cost for using this link. It is to be used as selection/routing

criteria. Supported if the link has an allocated usage cost.

*/

UsageCostType usageCostGet ()

raises (CONDITIONAL_PACKAGE

(usageCostPackage));

/**

Sets the cost of using this link. It is to be used as selection/routing

criteria. Supported if the link has an allocated usage cost.

** M.3100a1 has this attribute as get only, but it has

to be settable, or at least set-by-create, doesn't it? **

*/

void usageCostSet

(in UsageCostType usageCost)

raises (CONDITIONAL_PACKAGE

(usageCostPackage));

/**

This method returns a user friendly name for the associated object.

Supported if an instance supports it.

*/

Istring userLabelGet ()

raises (CONDITIONAL_PACKAGE

(userLabelPackage));

/**

This method assigns a user friendly name to the associated object.

Supported if an instance supports it.

*/

void userLabelSet

(in Istring label)

raises (CONDITIONAL_PACKAGE

(userLabelPackage));

MANDATORY_NOTIFICATION

(ITU_X721::Notifications, objectCreation);

MANDATORY_NOTIFICATION

(ITU_X721::Notifications, objectDeletion);

/**

Supported if the attributeValueChange notification defined in

Recommendation X.721 is supported by an instance of this managed

object class.

*/

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, attributeValueChange,

attributeValueChangeNotificationPackage);

}; // interface AbstractLink

/**

4.5.2 AbstractLinkEnd

Managed objects supporting the AbstractLinkEnd interface contain Network

Connection Termination Points for the purpose of representing topology.

The use made of individual attributes and notification is detailed below:

-available link end capacity: represents the spare capacity of the link end;

-link pointer: is a distinguished name of the related link managed object

instance;

-contained in sub-network list: is a distinguished name that represents the

parent sub-network of the logical link.

An attribute value change notification shall be emitted when the value of the

availableLinkEndCapacity or the containedInSubNetworkList is changed. <p>

The AbstractLinkEnd interface is not instantiable.

*/

valuetype AbstractLinkEndValueType: ManagedObjectValueType

{

public PointCapacityType
availableLinkEndCapacity;

// abstractLinkEndPackage

// GET

public AbstractLink

linkPointer;

// abstractLinkEndPackage

// GET

public SubnetworkSetType
containedInSubnetworkList;

// conditional

// containedInSubnetworkListPackage,

// GET-REPLACE, ADD-REMOVE

public Istring

userLabel;

// conditional

// userLabelPackage

// GET-REPLACE

}; // valuetype AbstractLinkEndValueType

interface AbstractLinkEnd: ManagedObject

{

/**

This attribute indicates the number of Network CTPs associated with a Link End

that have spare capacity or the amount of spare bandwidth associated with a

LinkEnd.

*/

PointCapacityType availableLinkEndCapacityGet ();

/**

This attribute points to a link from a link end.

*/

AbstractLink linkPointerGet ();

/**

This attribute defines the list of paraent sub-networks which contain

the link end in a given layer. Supported if this link end object instance

is not named from a subnetwork managed object.

This package identifies the aggregate subnetwork(s) that a component

subnetwork is contained in through partitioning.

The component subnetwork may be named from a different layerNetworkDomain

(associated with a different networkR1 administrative domain with a compatiable

signal identification) that the aggregate subnetwork if permitted by a policy.

*/

SubnetworkSetType containedInSubnetworkListGet ()

raises (CONDITIONAL_PACKAGE

(containedInSubnetworkListPackage));

void containedInSubnetworkListSet

(in SubnetworkSetType containedInSubnetworkList)

raises (CONDITIONAL_PACKAGE

(containedInSubnetworkListPackage));

void containedInSubnetworkListAdd

(in SubnetworkSetType containedInSubnetworkList)

raises (DuplicateItem,

CONDITIONAL_PACKAGE

(containedInSubnetworkListPackage));

void containedInSubnetworkListRemove

(in SubnetworkSetType containedInSubnetworkList)

raises (ItemNotFound,

CONDITIONAL_PACKAGE

(containedInSubnetworkListPackage));

/**

This method returns a user friendly name for the associated object.

Supported if an instance supports it.

*/

Istring userLabelGet ()

raises (CONDITIONAL_PACKAGE

(userLabelPackage));

/**

This method assigns a user friendly name to the associated object.

Supported if an instance supports it.

*/

void userLabelSet

(in Istring label)

raises (CONDITIONAL_PACKAGE

(userLabelPackage));

MANDATORY_NOTIFICATION

(ITU_X721::Notifications, objectCreation);

MANDATORY_NOTIFICATION

(ITU_X721::Notifications, objectDeletion);

MANDATORY_NOTIFICATION

(ITU_X721::Notifications, attributeValueChange);

}; // interface AbstractLinkEnd

/**

4.5.3 AccessGroup

Managed objects supporting the AccessGroup interface group Network Trail

Termination Points for management purposes.

[Rec.G.852.3,ACTION:create link,ACTION POLICY:inputAEnd]

[Rec.G.852.3,ACTION:create link,ACTION POLICY:inputZEnd]

*/

valuetype AccessGroupValueType: ManagedObjectValueType

{

public NetworkTPSetType

accessPointList;

// accessGroupPackage

// GET-REPLACE, ADD-REMOVE

public TopEndDirectionalityType
topEndDirectionality;

// accessGroupPackage

// GET

public SignalId

signalId;

// accessGroupPackage

// GET

public SubnetworkSetType
containedInSubnetworkList;

// conditional

// containedInSubnetworkListPackage,

// GET-REPLACE, ADD-REMOVE

public AbstractLinkSetType
linkPointerList;

// conditional

// linkPointerListPackage

// GET

public Istring

userLabel;

// conditional

// userLabelPackage

// GET-REPLACE

}; // valuetype AccessGroupValueType

interface AccessGroup: ManagedObject

{

/**

The Access Point List attribute lists all the Network Trail Termination Points

within an instance of the managed object class AccessGroup.

*/

NetworkTPSetType accessPointListGet ();

void accessPointListSet

(NetworkTPSetType accessPointList)

raises (NetworkTTPAndAccessGroupNotCompatible,

FailureToAssociateNetworkTTP,

FailureToDisassociateNetworkTTP);

void accessPointListAdd

(NetworkTPSetType accessPointList)

raises (DuplicateItem,

NetworkTTPAndAccessGroupNotCompatible,

FailureToAssociateNetworkTTP,

FailureToDisassociateNetworkTTP);

void accessPointListRemove

(NetworkTPSetType accessPointList)

raises (ItemNotFound,

NetworkTTPAndAccessGroupNotCompatible,

FailureToAssociateNetworkTTP,

FailureToDisassociateNetworkTTP);

/**

The TopEndDirectionality attribute type specifies whether the

associated link end managed object is sink, source, bi-directional,

or undefined.

*/

TopEndDirectionalityType topEndDirectionalityGet ();

SignalIdType signalIdGet ();

/**

This attribute defines the list of paraent sub-networks which contain

the access group in a given layer. Supported if this accss group object

instance is contained in a sub-network.

This package identifies the aggregate subnetwork(s) that a component

subnetwork is contained in through partitioning.

The component subnetwork may be named from a different layerNetworkDomain

(associated with a different networkR1 administrative domain with a compatiable

signal identification) that the aggregate subnetwork if permitted by a policy.

*/

SubnetworkSetType containedInSubnetworkListGet ()

raises (CONDITIONAL_PACKAGE

(containedInSubnetworkListPackage));

void containedInSubnetworkListSet

(in SubnetworkSetType containedInSubnetworkList)

raises (CONDITIONAL_PACKAGE

(containedInSubnetworkListPackage));

void containedInSubnetworkListAdd

(in SubnetworkSetType containedInSubnetworkList)

raises (DuplicateItem,

CONDITIONAL_PACKAGE

(containedInSubnetworkListPackage));

void containedInSubnetworkListRemove

(in SubnetworkSetType containedInSubnetworkList)

raises (ItemNotFound,

CONDITIONAL_PACKAGE

(containedInSubnetworkListPackage));

/**

This attribute points to the links terminated by an access group.

Supported if topology management is supported.

*/

AbstractLinkSetType linkPointerListGet ()

raises (CONDITIONAL_PACKAGE

(linkPointerListPackage));

/**

This method returns a user friendly name for the associated object. Supported

if a userLabel is supported [Rec.G.852.2,PERMISSION:userLabelFacility].

*/

Istring userLabelGet ()

raises (CONDITIONAL_PACKAGE

(userLabelPackage));

/**

This method assigns a user friendly name to the associated object. Supported

if a userLabel is supported [Rec.G.852.2,PERMISSION:userLabelFacility].

*/

void userLabelSet

(in Istring label)

raises (CONDITIONAL_PACKAGE

(userLabelPackage));

}; // interface AccessGroup

/**

Objects supporting this interface are capable of creating AccessGroup objects.

Only creation by reference is supported.

Delete operation of created object may raises exception NetworkTTPsExisting

and FailureToRemoveAccessGroup.

*/

interface AccessGroup_LayerNetworkDomain_Factory: ManagedObjectFactory

{

/**

If, during a create operation, the topEndDirectionality attribute

fails to be set or the access group object fails to be created, the create

operation will fail with the specific error.

If, during a delete operation, the accessPointList is not NULL the delete

operation will fail with the exception NetworkTTPsExisting. If the access

group managed object is not deleted, the delete operation will fail with

the specific error.

*/

AccessGroup create

(in LayerNetworkDomain superior,

in Istring name, // no auto-naming, cannot be null

in IstringSetType packageNameList,

in NetworkTPSetType accessPointList,

// accessGroupPackage

// GET-REPLACE, ADD-REMOVE

in SubnetworkSetType containedInSubnetworkList,

// conditional

// containedInSubnetworkListPackage

// GET-REPLACE, ADD-REMOVE

in IstringOpt userLabel)

// conditional

// userLabelPackage

// GET-REPLACE

raises (DuplicateName,

CreateError,

GeneralError,

FailureToSetDirectionality,

FailureToCreateAccessGroup);

// DELETE_POLICY: deleteOnlyIfNoContainedObjects

// NetworkTTPsExisting

// FailureToRemoveAccessGroup

}; // interface AccessGroup_LayerNetworkDomain_Factory

/**

4.5.4 AlarmSeverityAssignmentProfile

Managed objects supporting the alarm severity assignment profile

interface specify the alarm severity assignment for other managed

objects. Instances of this interface are referenced by the

alarmSeverityAssignmentProfilePointer attribute in the managed objects.

*/

valuetype AlarmSeverityAssignmentProfileValueType:

ManagedObjectValueType

{

public AlarmSeverityAssignmentSetType

alarmSeverityAssignmentList;

// alarmSeverityAssignmentProfilePackage

// GET-REPLACE, ADD-REMOVE

}; // valuetype AlarmSeverityAssignmentProfileValueType

interface AlarmSeverityAssignmentProfile: ManagedObject

{

/**

This method is used to retrieve the object's Alarm Severity Assignment List.

*/

AlarmSeverityAssignmentSetType alarmSeverityAssignmentListGet();

/**

This method is used to add an alarm to the object's Alarm Severity

Assignment List. An Attribute Value Change notification will be sent if the

object supports it. If an exception is thrown, the object is not changed.

*/

void alarmSeverityAssignmentsAdd

(in AlarmSeverityAssignmentSetType

alarmSeverityAssignmentList)

raises (DuplicateItem);

/**

This method is used to remove entries from the object's Alarm Severity

Assignment List. An Attribute Value Change notification will be sent if the

object supports it. If an exception is thrown, the object is not changed.

*/

void alarmSeverityAssignmentsRemove

(in AlarmSeverityAssignmentSetType

alarmSeverityAssignmentList)

raises (ItemNotFound);

/**

This method is used to replace all the entries in the object's Alarm

Severity Assignment List with the submitted list. An Attribute Value Change

notification will be sent if the object supports it. If an exception is

thrown, the object is not changed.

*/

void replaceAlarmSeverityAssignmentList

(in AlarmSeverityAssignmentSetType

alarmSeverityAssignmentList);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, objectCreation,

objectManagementNotificatoinsPackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, objectDeletion,

objectManagementNotificatoinsPackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, attributeValueChange,

objectManagementNotificatoinsPackage);

}; // interface AlarmSeverityAssignmentProfile

/**

Objects supporting this interface are capable of creating Alarm Severity

Assignment Profile objects. Auto-naming and creation by reference are

supported.

NOTE:

The operations on this interface do not allow the client to specify which

optional capabilities (those in conditional packages in the CMIP

specification and allowed to throw NotSupported exceptions in IDL) the

managed object is to support. It is left up to the implementation of

the managed object. This is a departure from CMIP, where sometimes the

manager can specify which conditional packages are to be included when

an object is created.

*/

interface AlarmSeverityAssignmentProfile_ManagedElement_Factory:

ManagedObjectFactory

{

/**

This operation creates an Alarm Severity Assignment Profile object

subordinate to a Managed Element Object.

*/

AlarmSeverityAssignmentProfile create

(in ManagedElement superior,//superior object

inout Istring name,
//auto-naming if null

in AlarmSeverityAssignmentSetType list)

// alarmSeverityAssignmentProfilePackage

// GET-REPLACE, ADD-REMOVE

raises (DuplicateName,

CreateError,

GeneralError);

// DELETE_POLICY: deleteOnlyIfNoContainedObjects

}; // interface AlarmSeverityAssignmentProfile_ManagedElement_Factory

/**

4.5.5 CircuitPack

Managed objects supporting the CircuitPack interface represent a plug-in

replaceable unit that can be inserted into or removed from the equipment holder

of the Network Element. Examples of plug-in cards include line cards, processors

and power supply units. The inherited attribute textType (of syntax

GraphicString) is used to indicate the type of the circuit pack. The value of

this attribute should match one of the values of the

acceptableCircuitPackTypeList attribute (of syntax PrintableString) of the

containing equipmentHolder object. If the type of a circuit pack is of

GraphicString characters outside of the PrintableString character set, it will

not match any value of the acceptableCircuitPackList attribute. In this case, no

instance of circuitPackR1 should be instantiated and the holderStatus attribute

of the equipmentHolder object shall have the value 'unknownType'. The attribute

availabilityStatus is used to indicate the availability of the circuit pack. The

availabilityStatus attribute is a set-valued attribute. The following values may

be used:

-fail: the circuit pack is failed,

-inTest: the circuit pack is in test,

-notInstall: the physical circuit pack is not inserted, or if inserted

but its type does not match the type specified in the textType attribute

of the circuitPackR1 instance (even if the physical circuit pack is one

of the acceptable circuit pack type of the containing equipment holder),

-degraded: a subset of the ports of the circuit pack have defects,

-dependency: the circuit pack is disabled because of a resource which

the circuit pack depends on is not available, and

-offLine: the circuit pack is under initializing (i.e., resetting).

The circuitPackR1 may contain additional circuitPackR1 objects.

This structure is used to retreive all of the CircuitPack attributes

in one operation. Most unsupported attributes will be returned as a null

string or list if they are not supported. Receipt of a null value does

not mean the attribute is not supported, though.

*/

valuetype CircuitPackValueType: EquipmentValueType

{

/**

The following attributes were conditional in EquipmentValueType.

They are mandatory now. And their respective operations shall not raises

CONDITIONAL_PACKAGE exception.

public CurrentProblemSetType
currentProblemList;

// currentProblemListPackage

// GET

public AlarmSeverityAssignmentProfile

alarmSeverityAssignmentProfile;

// alarmServityAssignmentPointerPackage

// GET-REPLACE

public OperationalStateType
operationalState;

// administrativeOperationalStatesPackage

// GET

public AdministrativeStateType
administrativeState;

// administrativeOperationalStatesPackage

// GET-REPLACE

*/

public AvailabilitySetType
availabilityStatus;

// circuitPackR1Package

// GET

public short

numOfPorts;

// conditional

// numberOfPortPackage

// GET

public PortAssociationSetType
portAssociationList;

// conditional

// portAssociationsPackage

// GET

public SignalRateSetType
availableSignalRateList;

// conditional

// circuitPackConfigurationPackage

// GET

public PortSignalRateAndMappingSetType

portSignalRateAndMappingList;

// conditional

// circuitPackConfigurationPackage

// GET-REPLACE, ADD-REMOVE

public IstringSetType

acceptableCircuitPackTypeList;

// conditional

// containedBoardPackage

// GET-REPLACE, ADD-REMOVE

}; // valuetype CircuitPackValueType

interface CircuitPack: Equipment

{

/**

The attribute availabilityStatus is used to indicate whether the

correct physical circuit pack is inserted or not. This attribute is a

sequence of enumerations which includes the value notInstalled. If the

type of the inserted physical circuit pack matches the value of the

circuitPackType attribute (relating to the circuitPack instance) then

the value of the availabilityStatus is an empty set. Otherwise, the

value of the availabilityStatus attribute is notInstalled even if it is

one of the acceptable circuit pack types.

*/

AvailabilitySetType availabilityStatusGet ();

/**

This method returns the number of ports supported by the circuit pack.

*/

short numOfPortsGet ()

raises (CONDITIONAL_PACKAGE

(numberOfPortPackage));

/**

The method returns a list associating physical ports on the circuit pack

(identified by their string names) with the objects representing those ports,

contained elsewhere. The choice of values for the string names is critical

since they have physical connotations.

*/

PortAssociationSetType portAssociationListGet ()

raises (CONDITIONAL_PACKAGE

(portAssociationsPackage));

/**

This attributes identifies the signal rates supported by the circuit pack

entity.

*/

SignalRateSetType availableSignalRateSetTypeGet ()

raises (CONDITIONAL_PACKAGE

(circuitPackConfigurationPackage));

/**

This attributes identifies the signal rate associated with a circuit pack

port and its payload mapping. The signal rate and payload mapping is

provisionable. For example, a port with signal rate stm4 may have a payload

mapping of au4-4. Another possible mapping of this rate is a sequence of

four individual au4 (i.e. au4, au4, au4, au4) or a sequence of mixed au3

and au4 (e.g., au3, au3, au3, au4, au4, au4, au3, au3, au3).

*/

PortSignalRateAndMappingSetType

portSignalRateAndMappingListGet ()

raises (CONDITIONAL_PACKAGE

(circuitPackConfigurationPackage));

/**

A replace operation of the portSignalRateAndMappingList attribute may cause

the deletion and creation of termination point objects. If this is the case,

objectDeletion and objectCreation notifications will be emitted from the

deleted and created objects. However, if such deletion and/or creation affects

existing user services, the replace request should be denied and an exception

of ServiceAffectedError should be raised.

*/

void portSignalRateAndMappingListSet

(in PortSignalRateAndMappingList rateAndMappingList)

raises (ServiceAffecedError,

CONDITIONAL_PACKAGE

(circuitPackConfigurationPackage));

void portSignalRateAndMappingListAdd

(in PortSignalRateAndMappingList rateAndMappingList)

raises (ServiceAffectedError,

DuplicatedItem,

CONDITIONAL_PACKAGE

(circuitPackConfigurationPackage));

void portSignalRateAndMappingListRemove

(in PortSignalRateAndMappingList rateAndMappingList)

raises (ServiceAffectedError,

ItemNotFound,

CONDITIONAL_PACKAGE

(circuitPackConfigurationPackage));

/**

This attribute indicates the types of the board that can be contained

in a circuit pack object.

*/

IstringSetType acceptableCircuitPackTypeListGet ()

raises (CONDITIONAL_PACKAGE

(containedBoardPackage));

void acceptableCircuitPackTypeListSet

(IstringSetType acceptableCircuitPackTypeList)

raises (CONDITIONAL_PACKAGE

(containedBoardPackage));

void acceptableCircuitPackTypeListAdd

(IstringSetType acceptableCircuitPackTypeList)

raises (DuplicatedItem,

CONDITIONAL_PACKAGE

(containedBoardPackage));

void acceptableCircuitPackTypeListRemove

(IstringSetType acceptableCircuitPackTypeList)

raises (ItemNotFound,

CONDITIONAL_PACKAGE

(containedBoardPackage));

/**

This action is used to request to initialize a circuit pack. The request

can be a complete reset or a partial reset. A complete reset request is

indicated by the negative value in the action argument. A partial reset

request is indicated by a non-negative integer. The value zero implies

the least level of reset. The higher the integer implies more thorough

reset. The determination of the highest integer that is equivalent to a

complete reset is a local matter. When the circuit pack in the process of

resetting, the value offLine of the availablilityStatus attribute shall

be indicated. If the circuit pack is user service sensitive, then a reset

shall be performed only when the circuit pack is in the locked

administrativeState. If the circuit pack is not in the locked

administrativeState, a reset request shall be denied and CircuitPackResetError

exception shall be raised.

The ResetErrorType value is included in the parameter portion of the

CircuitPackResetError exception when the reset action fails for any

other reason than the package being not implemented.

*/

boolean reset

(short resetLevel)

raises (CircuitPackResetError,

CONDITIONAL_PACKAGE

(circuitPackResetPackage));

MANDATORY_NOTIFICATION

(ITU_X721::Notifications, objectCreation);

MANDATORY_NOTIFICATION

(ITU_X721::Notifications, objectDeletion);

MANDATORY_NOTIFICATION

(ITU_X721::Notifications, staeChange);

MANDATORY_NOTIFICATION

(ITU_M3100::Notifications, equipmentAlarmR1);

MANDATORY_NOTIFICATION

(ITU_M3100::Notifications,

equipmentAlarmEffectOnService);

}; // interface CircuitPack

/**

This interface is used only when a circuitPack provides slots for the

contained boards (e.g. lower-order temination). When the circuitPack is

inserted into the containing board, the circuitPack object representing

the inserted board is automatically created. It could be deleted by the

managing system though (??? what?).

*/

interface CircuitPack_CircuitPack_Auto_Factory:

ManagedObjectFactory

{

// DELETE_POLICY: deleteContainedObjects

}; // interface CircuitPack_CircuitPack_Auto_Factory

/**

This interface is used to relate an instance of a circuitPack to an

equipmentHolder instance. The creation of the circuitPack object is

the result of inserting the physical circuit pack into the resource

represented by the superior object.

The management system may delete this circuit pack and recreate a new one

in order to plan the specific type of the circuit pack, using the

ExplicitlyCreated interface.

The circuit pack including contained objects can only be deleted as the

result of system management when there is no contained objects.

Delete operation of created object may raise exception NetworkTTPsExisting

and FailureToRemoveAccessGroup.

*/

interface CircuitPack_EquipmentHolder_Auto_Factory:

ManagedObjectFactory

{

// DELETE_POLICY: deleteOnlyIfNoContainedObjects

}; // interface CircuitPack_EquipmentHolder_Auto_Factory

/**

This interface is used to relate an instance of a circuitPack to an

equipmentHodler instance. The creation of the circuitPack object is

the result of inserting the physical circuit pack into the resource

represented by the superior object.

The circuit pack including contained objects can be deleted as the

result of system managemen.

*/

interface CircuitPack_EquipmentHolder_Auto_Deletable_Factory:

ManagedObjectFactory

{

// DELETE_POLICY: deleteContainedObjects

}; // interface CircuitPack_EquipmentHolder_Auto_Deletable_Factory

/**

This interface is used to explicitly create an instance of circuitPack

relative to an equipmentHolder instance. The creation of the circuitPack

object is the result of system management protocol. If the type of

circuitPack is incompatible with the types supported by the equipmentHolder,

the create request will result in a CreateError or GeneralError exception.

The GeneralError exception is then used to report the error and may provide

the value of the circuitPack type attribute.

The circuitPack can only be deleted as the result of system management when

there are no contained objects.

*/

interface CircuitPack_EquipmentHolder_Factory:

ManagedObjectFactory

{

/**

This method is used to create an instance of a circuitPack relative to an

equipmentHolder instance. The creation of the circuitPack object is the

result of system management protocol. If the circuitPackType is incompatible

with the types supported by the equipmentHolder the create request will result

in an object processing failure error. The generalErrorParameter is then used

to report the error and may provide the value of the circuitPackType attribute.

This parameter may be used for other processing failures if needed.

@param superior
the managed object under which the new one will be created

@param name
a name with at most a single CORBA Name Service name

component should be submitted. The object will be named

relative to the superior object. A null-value name

may be submitted, in which case the object will be

automatically named. The full name is returned in the ID

of the object.

@param list
the initial list with which the object will be created.

*/

CircuitPack create

(in EquipmentHolder superior,// superior object

inout Istring name,
// auto-naming if null

in IstringSetType packageNameList,

in ReplaceableType replaceable,

// equipmentPackage

// GET, SET-BY-CREATE

in Istring type,

// equipmentR2Package

// GET, SET-BY-CREATE

in MOSetType supportedByObjectList,
// may be null

// equipmentR1Package

// GET-REPLACE, ADD-REMOVE

in AdministrativeStateType adminState,

// conditional

// administrativeOperationalStatesPackage

// GET-REPLACE

in AlarmSeverityAssignmentProfileType profile,

// conditional

// alarmSeverityAssignmentPointerPackage

// GET-REPLACE

in IstringType userLabel,

// conditional

// userLabelPackage

// GET-REPLACE

in IstringType vendorName,

// conditional

// vendorNamePackage

// GET-REPLACE

in IstringType version,

// conditional

// versionPackage

// GET-REPLACE

in IstringType locationName,

// conditional

// locationNamePackage

// GET-REPLACE

in PortSignalRateAndMappingSetType

rateAndMappingList

// conditional

// circuitPackConfigurationPackage

// GET-REPLACE, ADD-REMOVE

in IstringSetType

acceptableCircuitPackTypeList)

// conditional

// containedBoardPackage

// GET-REPLACE, ADD-REMOVE

raises (DuplicateName,

CreateError,

GeneralError);

// DELETE_POLICY: deleteOnlyIfNoContainedObjects

}; // interface CircuitPack_EquipmentHolder_Factory

/**

This interface is used to explicitly create an instance of circuitPack

relative to an equipmentHolder instance. The creation of the circuitPack

object is the result of system management protocol.

The circuitPack including contained objects can be deleted as the result

of system management.

*/

interface CircuitPack_EquipmentHolder_Deletable_Factory:

ManagedObjectFactory

{

/**

This method is used to create an instance of a circuitPack relative to an

equipmentHolder instance. The creation of the circuitPack object is the

result of system management protocol. If the circuitPackType is incompatible

with the types supported by the equipmentHolder the create request will result

in an object processing failure error. The generalErrorParameter is then used

to report the error and may provide the value of the circuitPackType attribute.

This parameter may be used for other processing failures if needed.

*/

CircuitPack create

(in EquipmentHolder superior,// superior object

inout Istring name,
// auto-naming if null

in IstringSetType packageNameList,

in ReplaceableType replaceable,

// equipmentPackage

// GET, SET-BY-CREATE

in Istring type,

// equipmentR2Package

// GET, SET-BY-CREATE

in MOSetType supportedByObjectList,
// may be null

// equipmentR1Package

// GET-REPLACE, ADD-REMOVE

in AdministrativeStateType adminState,

// administrativeOperationalStatesPackage

// GET-REPLACE

in AlarmSeverityAssignmentProfileType profile,

// alarmSeverityAssignmentPointerPackage

// GET-REPLACE

in IstringType userLabel,

// conditional

// userLabelPackage

// GET-REPLACE

in IstringType vendorName,

// conditional

// vendorNamePackage

// GET-REPLACE

in IstringType version,

// conditional

// versionPackage

// GET-REPLACE

in IstringType locationName,

// conditional

// locationNamePackage

// GET-REPLACE

in PortSignalRateAndMappingSetType

rateAndMappingList

// conditional

// circuitPackConfigurationPackage

// GET-REPLACE, ADD-REMOVE

in IstringSetType

acceptableCircuitPackTypeList)

// conditional

// containedBoardPackage

// GET-REPLACE, ADD-REMOVE

raises (DuplicateName,

CreateError,

GeneralError);

// DELETE_POLICY: deleteContainedObjects

}; // interface CircuitPack_EquipmentHolder_Deletable_Factory

/**

4.5.6 CircuitEndPointSubgroup

This interface represents a set of circuit end points that directly

interconnects one exchange with another, having common values for the

attributes listed in this package. Note that the term exchange includes PBX

where applicable.

*/

valuetype CircuitEndPointSubgroupValueType: ManagedObjectValueType

{

public long

numberOfCircuits;

// circuitEndPointSubgroupPackage

// GET

public Istring

labelOfFarEndExchange;

// circuitEndPointSubgroupPackage

// GET

public SignallingCapabilityType
signallingCapability;

// circuitEndPointSubgroupPackage

// GET

public InformationTransferCapabilityType

informationTransferCapability;

// circuitEndPointSubgroupPackage

// GET

public CircuitDirectionalityType circuitDirectionality;

// circuitEndPointSubgroupPackage

// GET

public TransmissionCharacteristicSetType

transmissionCharacteristics;

// circuitEndPointSubgroupPackage

// GET

public Istring userLabelGet;

// circuitEndPointSubgroupPackage

// GET-REPLACE

}; // valuetype CircuitEndPointSubgroup

interface CircuitEndPointSubgroup : ManagedObject

{

/**

Returns the number of circuits in the circuit subgroup.

*/

long numberOfCircuitsGet ();

/**

Returns a user friendly name for the Far End Exchange terminating this circuit

subgroup.

*/

Istring labelOfFarEndExchangeGet ();

/**

Returns the signalling type supported by the circuit subgroup.

*/

SignallingCapabilityType signallingCapabilityGet ();

/**

Returns the different service type such as speech, 64 kbits unrestricted data

supported by the circuit subgroup.

*/

InformationTransferCapabilityType

informationTransferCapabilityGet ();

/**

Returns the directionality of the circuits in the circuit subgroup.

*/

CircuitDirectionalityType circuitDirectionalityGet ();

/**

Returns the different transmission characteristics such as satellite, echo

control supported or not supported by the circuit subgroup. Inclusion of an

enumerated type in the list indicates if a particular characteristic is

supported.

*/

TransmissionCharacteristicSetType

transmissionCharacteristicsGet ();

/**

This methods returns a user friendly name for the object.

*/

Istring userLabelGet ();

/**

This method assigns a user friendly name to the object.

*/

void userLabelSet (Istring userLabel);

MANDATORY_NOTIFICATION

(ITU_X721::Notifications, objectCreation);

MANDATORY_NOTIFICATION

(ITU_X721::Notifications, objectDeletion);

MANDATORY_NOTIFICATION

(ITU_M3100::Notifications, attributeValueChange);

}; // interface CircuitEndPointSubgroup

/**

4.5.7 CTP (Connection Termination Point)

The Connection Termination Point interface is based on the M.3100

connectionTerminationPointBidirectional/Sink/Source object classes.

This managed object originates or terminates a link connection.

Rather than defining separate source and sink interfaces, and then

inheriting from both to form a bidirectional interface, a single

interface is defined with an attribute identifying it as a source, sink

or bidirectional TP.

The upstream connectivity pointer attribute points to the termination

point managed object, within the same managed element, that sends

information (traffic) to this termination point at the same layer, or

is null. The referenced object shall be an instance of one of the

following classes or its subclasses: Trail Termination Point,

Connection Termination Point.

The downstream connectivity pointer attribute points to the termination

point managed object(s), within the same managed element, that receives

information (traffic) from this termination point at the same layer, or

is null. The referenced object(s) shall be an instance of one of the

following classes or its subclasses: Trail Termination Point,

Connection Termination Point. The downstream connectivity pointer may

identify one or more objects depending on whether the signal is

braodcast.

The directionality of a termination point of terminating or originating

(or both) a trial, is indicate by the pointDirectionality attribute.

*/

valuetype CTPValueType: TPValueType

{

public PointDirectionalityType
pointDirectionality;

// GET, SET-BY-CREATE

public DownstreamConnectivityPointerType

downstreamConnectivityPointer;

// conditional

// downstreamConnectivityPointPackage

// present if pointDirectionality = sink or birectional

// GET, SET-BY-CREATE

public TPSeqType
upstreamConnectivityPointer;

// conditional

// upstreamConnectivityPointPackage

// present if pointDirectionality = source or

// birectional

// GET, SET-BY-CREATE

public long

channelNumber;

// conditional

// channelNumberPackage

// GET, SET-BY-CREATE

}; // valuetype CTPValueType

interface CTP: TP

{

/**

PointDirectionality

Matching for equality is applicable for the syntax of this attribute.

Set-By-Create: Values of this attribute of this interface could be specified

in an input parameter to the create operation.

*/

PointDirectionalityType pointDirectionalityGet ();

/**

DownstreamConnectivityPoint

The matching for equality is applicable for all choices of the syntax.

The matching for SET-COMPARISON and SET-INTERSECTION are permitted only when

the choice of the syntax correspond to either broadcast or concatenated

broadcast.

Permitted values of this attribute for this interface: All choices except (1)

concatenated, (2)broadcastConcatenate.

Set-By-Create: Values of this attribute of this interface could be specified

in an input parameter to the create operation.

*/

DownstreamConnectivityPointerType

downstreamConnectivityPointerGet ()

raises (CONDITIONAL_PACKAGE

(downstreamConnectivityPointerPackage));

/**

UpstreamConnectivityPoint

The matching for equality is applicable for all choices of the syntax.

Permitted values of this attribute for this interface: All choices except (1)

concatenated.

Set-By-Create: Values of this attribute of this interface could be specified

in an input parameter to the create operation.

The ASN.1 of ConnectivityPointer could be simplified as

ConnectivityPointer ::= SEQUENCE OF ObjectInstance

in which an empty sequence ==> null, and single entry sequence ==> single.

Therefore a simplified IDL for ConnectivityPointerType could be TPSeqType

which order is significant.

*/

TPSeqType upstreamConnectivityPointerGet ()

raises (CONDITIONAL_PACKAGE

(upstreamConnectivityPointerPackage));

/**

The channelNumberGet method is supported if the channel number attribute is supported by an instance of this managed object class.

*/

long channelNumberGet ()

raises (CONDITIONAL_PACKAGE

(channelNumberPackage));

MANDATORY_NOTIFICATION

(ITU_X721::Notifications, objectCreation);

MANDATORY_NOTIFICATION

(ITU_X721::Notifications, objectDeletion);

MANDATORY_NOTIFICATION

(ITU_X721::Notifications, stateChange);

MANDATORY_NOTIFICATION

(ITU_M3100::Notifications, attributeValueChange);

MANDATORY_NOTIFICATION

(ITU_M3100::Notifications, communicationsAlarm);

}; // interface CTP

/**

This interface is used to create a CTP in a TTP. This relationship represents

a TTP receives/sends information (traffic) from a CTP. When automatic instance

naming is used, the choice of name bindings is left as a local matter.

*/

interface CTP_TTP_Factory: ManagedObjectFactory

{

CTP create

(in TTP superior,

inout Istring name, // auto naming if null

in IstringListType packageNameList,

in MOSetType supportedByObjectList,
// may be null

// equipmentR1Package

// GET-REPLACE, ADD-REMOVE

in PointDirectionalityType pointDirectionality,

// GET, SET-BY-CREATE

in CharacteristicInfoType characteristicInfo,

// conditional

// characteristicInformationPackage

// GET, SET-BY-CREATE

in MO networkLevelPointer,

// conditional

// networkLevelPackage

// GET-REPLACE

in AlarmSeverityAssignmentProfileType profile,

// conditional

// alarmSeverityAssignmentPointerPackage

// GET-REPLACE

in long channelNumber,

// conditional

// channelNumberPackage

// GET, SET-BY-CREATE

in DownstreamConnectivityPointerType

downstreamConnectivityPointer,

// conditional

// downstreamConnectivityPointerPackage

// GET, SET-BY-CREATE

in TPSeqType upstreamConnectivityPointer)

// conditional

// upstreamConnectivityPointerPackage

// GET, SET-BY-CREATE

raises (DuplicateName,

CreateError,

GeneralError);

// DELETE_POLICY: deleteOnlyIfNoContainedObjects

}; // interface CTP_TTP_Factory

/**

4.5.8 ControlPoint

Managed objects supporting the ControlPoint interface control external

devices associated with the managed system, such as relay closure for bell,

lamp, generator, heater, or air conditioner. Each instance of this class

represents one control point.

The current state of a control point can be either closed (i.e., activate) or

open (i.e., released). A control point may optionally have a normal state

(i.e., closed or open, one or the other).

The external device represented by a control point can be remotely operated

through the 'control' action. A control operation can be momentary (i.e.,

momentarily close or open) or continuous (continuously close or open).

Valid control type of a control point may be momentary only, continuous only,

or both. A control action will be denied if the control action type

(continuous or momentary) is not valid for the control point.

The effect of a control action on a control point is given in Table 1/M.3100

Amendment 1.

Current state, valid control type, normal state (optional), text message (such

as user-friendly label or text) and location (optional) of the control points

are by separate attributes.

*/

valuetype ControlPointValueType: ExternalPointValueType

{

public ControlStateType
currentControlState;

// controlPointPackage

// GET

public ValidControlType
validControl;

// controlPointPackage

// GET-REPLACE, SET-BY-CREATE

public ControlStateType
normalControlState;

// conditional

// normalControlStatePackage

// GET-REPLACE

}; // valuetype ControlPointValueType

interface ControlPoint: ExternalPoint

{

/**

This attribute indicates the current state of the control point.

*/

ControlStateType currentControlStateGet ();

/**

This attribute indicates the valid type of control signal for this control

point.

*/

ValidControlType validControlGet ();

void validControlSet

(in ValidControlType validControl);

/**

This attribute indicates the normal state of the control point.

*/

ControlStateType normalControlStateGet ()

raises (CONDITIONAL_PACKAGE

(normalControlStatePackage));

void normalControlStateSet

(in ControlStateType controlState)

raises (CONDITIONAL_PACKAGE

(normalControlStatePackage));

/**

This action instructs the NE to momentarily operate (close of open) or

continuously operate (close or open) an external control device (such

as a relay closure) represented by a control point. The control action

type parameter is included in the request.

*/

ControlResultType externalControl

(in ControlActionType controlAction);

}; // interface ControlPoint

/**

This interface is used to create an controlPoint object relative to an

equipment object.

*/

interface ControlPoint_Equipment_Factory: ManagedObjectFactory

{

/**

The naming of created controlPoint object shall be stringified pointId.

*/

ControlPoint create

(in Equipment superior,

in IstringSetType packageNameList,

in AdminstrativeStateType administrativeState,

// externalPointPackage

// GET-REPLACE

in long exteralPointId,

// externalPointPackage

// GET, SET-BY-CREATE

in Istring externalPointMessage,

// externalPointPackage

// GET-REPLACE

in Istring locationName,

// conditional

// locationNamePackage

// GET-REPLACE

in ValidControlType validControl,

// controlPointPackage,

// GET-REPLACE, SET-BY-CREATE

in ControlStateType normalControlState)

// conditional

// normalControlStatePackage,

// GET-REPLACE

raises (DuplicateName,

CreateError,

GeneralError);

// DELETE_POLICY: deletable

}; // interface ControlPoint_Equipment_Factory

/**

This interface is used to create an controlPoint object relative to an

managedElement object.

*/

interface ControlPoint_ManagedElement_Factory: ManagedObjectFactory

{

/**

The naming of created controlPoint object shall be stringified pointId.

*/

ControlPoint create

(in ManagedElement superior,

in IstringSetType packageNameList,

in AdminstrativeStateType administrativeState,

// externalPointPackage

// GET-REPLACE

in long exteralPointId,

// externalPointPackage

// GET, SET-BY-CREATE

in Istring externalPointMessage,

// externalPointPackage

// GET-REPLACE

in Istring locationName,

// conditional

// locationNamePackage

// GET-REPLACE

in ValidControlType validControl,

// controlPointPackage,

// GET-REPLACE, SET-BY-CREATE

in ControlStateType normalControlState)

// conditional

// normalControlStatePackage,

// GET-REPLACE

raises (DuplicateName,

CreateError,

GeneralError);

// DELETE_POLICY: deletable

}; // interface ControlPoint_ManagedElement_Factory

/**

4.5.9 CrossConnection

A managed object of this class represents an assignment relationship between

the termination point or GTP object listed in the From Termination attribute

and the termination point or GTP objects listed in the To Termination

attribute of this managed object.

The To Termination attribute will always be non-NULL. The From termination

attribute will only be NULL in the case of point-to-multipoint configurations.

If the From Termination attribute has a value of NULL, the assignment

relationship is between the termination point object or the GTP object listed

in the From Termination attribute of the containing Multipoint

Cross-Connection managed object and the termination point object or GTP object

listed in the To Termination attribute of this managed object.

A point to point cross-connection can be established between: one of CTP

(with TPType equal to) Sink, CTP Bidirectional, TTP Source, TTP Bidirectional,

or GTP; and one of CTP Source, CTP Bidirectional, TTP Sink, TTP Bidirectional,

or GTP.

In a unidirectional cross-connection, the termination or GTP object pointed to

by the From Termination and the termination point or GTP object pointed to by

the To Termination attribute (in this object or the containing

mpCrossConnection) are related in such a way that traffic can flow between the

termination points represented by these managed objects. In a bidirectional

cross-connection, information flows in both directions.

If the objects listed in the From Termination and To Termination attributes

are GTPs, the nth element of the From Termination GTP is related to the nth

element of the To Termination GTP (for every n).

If the fromTermination attribute has a value of NULL, the directionality

attribute must have the value 'unidirectional'.

The total rate of the From Terminations must be equal to the total rate of

To Terminations.

The attribute Signal Type describes the signal that is cross-connected. The

termination points or GTPs that are cross-connected must have signal types

that are compatible.

If an instance of this object class is contained in a multipoint

cross-connection and the operational state of the containing multipoint

cross-connection is 'disabled', the operational state of this object will also

be 'disabled'.

The following are the definitions of the administrative state and the

operational state attributes:

Administrative State:

- Unlocked: The Cross-Connection object is administratively unlocked. Traffic

is allowed to pass through the connection.

- Locked: No traffic is allowed to pass through the Cross-Connection. The

connectivity pointers in the cross-connected termination points is NULL.

Operational State:

- Enabled: The Cross-Connection is performing its normal function.

- Disabled: The Cross-Connection is incapable of performing its normal

cross-connection function.

This interface includes the attributes "redline", "userLable", and

"crossConnectionName" that extend Connection to NamedConnection in

M.3100.

*/

valuetype CrossConnectionValueType: ManagedObjectValueType

{

public AdministrativeStateType
adminstrativeState;

// crossConnectionPackage

// GET-REPLACE

public OpearationalStateType
opearationalState;

// crossConnectionPackage

// GET

public SignalIdType

signalId;

// crossConnectionPackage

// GET

public TP

fromTermination;

// crossConnectionPackage

// GET

public TP

toTermination;

// crossConnectionPackage

// GET

public DirectionalityType
directionality;

// crossConnectionPackage

// GET

public boolean

redline;

// conditional

// redlinePackage

// GET-REPLACE

public Istring

userLable;

// conditional

// userLabelPackage

// GET-REPLACE

public Istring

crossConnectionName;

// conditional

// namedCrossConnectionPakcage

// GET-REPLACE

}; // valuetype CrossConnectionValueType

interface CrossConnection : ManagedObject

{

/**

*/

AdministrativeStateType administrativeStateGet ();

void administrativeStateSet

(in AdministrativeStateType adminState);

/**

*/

OperationalStateType operationalStateGet ();

/**

This attribute uniquely identifies the signal type of a cross-

connection, TP pool or GTP. The signal type can either be simple,

bundle, or complex. If the signal type is simple, it consists of a

single type of characteristic information. If the signal type is

bundle, it is made up of a number of signal types all of the same

characteristic information. If the signal type is complex, it consists

of a sequence of bundled signal types. The order in the complex signal

type represents the actual composition of the signal.

*/

SignalIdType signalIdGet ();

/**

This attribute identifies a TTP (source or bidirectional), a CTP

(sink or bidirectional) or a GTP composed of members of one of these

categories

*/

MO fromTerminationGet ();

/**

This attribute identifies a CTP (source or bidirectional), a TTP

(sink or bidirectional) or a GTP composed of members of one of these

categories

*/

MO toTerminationGet ();

/**

The Directionality attribute type specifies whether the associated

managed object is uni- or bi-directional. If it is uni-directional,

the flow of information is from the A end to the Z end.

*/

DirectionalityType directionalityGet ();

/**

This attribute identifies whether the associated managed object is

red lined, e.g. identified as being part of a sensitive circuit.

*/

boolean redlineGet ()

raises (CONDITIONAL_PACKAGE

(redlinePackage));

void redlineSet

(in boolean redline)

raises (CONDITIONAL_PACKAGE

(redlinePackage));

/**

*/

Istring userLabelGet ()

raises (CONDITIONAL_PACKAGE

(userLabelPackage));

void userLabelSet

(in Istring userLable)

raises (CONDITIONAL_PACKAGE

(userLabelPackage));

/**

This attribute is a descriptive name for a cross-connection.

*/

Istring crossConnectionNameGet ()

raises (CONDITIONAL_PACKAGE

(namedCrossConnectionPackage));

void crossConnectionNameSet

(in Istring crossConnectionName)

raises (CONDITIONAL_PACKAGE

(namedCrossConnectionPackage));

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, objectCreation,

createDeleteNotificationsPackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, objectDeletion,

createDeleteNotificationsPackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, attributValueChange,

attributeValueChangePackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, stateChange,

stateChangePackage);

}; // interface CrossConnection

/**

The value of the fromTermination attribute in the Cross-Connection object

shall not be NULL. When an instance of cross-connection is deleted, the

following attributes will be affected. The crossConnctionObjectPointer

attribute in the termination point objects or in the GTP objects that were

pointing to the deleted cross-connection instance shall be set to point to

the Fabric responsible for the connection of the termination points.

The counters in the appropriate TP Pool objects (if applicable) shall be

updated. The connectivityPointer attributes in the disconnected termination

points shall be set to NULL. Deleting a cross-connection object instance

has no effect on the composition of any GTP.

*/

interface CrossConnection_Fabric_Factory: ManagedObjectFactory

{

CrossConnection create

(in Fabric superior,

in Istring name, // no auto-naming, cannot be null

in IstringSetType packageNameList,

in AdministrativeStateType adminstrativeState,

// crossConnectionPackage

// GET-REPLACE

in boolean redline,

// conditional

// redlinePackage

// GET-REPLACE

in Istring userLable)

// conditional

// userLabelPackage

// GET-REPLACE

raises (DuplicateName,

CreateError,

GeneralError);

// DELETE_POLICY: deleteOnlyIfNoContainedObjects

}; // CrossConnection_Fabric_Factory

/**

The value of the fromTermination attribute in the Cross-Connection object

must be NULL. When an instance of cross-connection is deleted, the

following attributes will be affected. The crossConnctionObjectPointer

attribute in the termination point objects or in the GTP objects that were

pointing to the deleted cross-connection instance shall be set to point to

the Fabric responsible for the connection of the termination points.

The counters in the appropriate TP Pool objects (if applicable) shall be

updated. The connectivityPointer attributes in the disconnected termination

points shall be set to NULL. Deleting the last cross-connection object

contained in a multipoint cross-connection object instances has the effect of

also deleting the multipoint cross-connection object instance (and updating the

appropriate pointers). Deleting a cross-connection object instance has no

effect on the composition of any GTP.

*/

interface CrossConnection_MPCrossConnection_Factory:

ManagedObjectFactory

{

CrossConnection create

(in MPCrossConnection superior,

in Istring name, // no auto-naming, cannot be null

in IstringSetType packageNameList,

in AdministrativeStateType adminstrativeState,

// crossConnectionPackage

// GET-REPLACE

in boolean redline,

// conditional

// redlinePackage

// GET-REPLACE

in Istring userLable)

// conditional

// userLabelPackage

// GET-REPLACE

raises (DuplicateName,

CreateError,

GeneralError);

// DELETE_POLICY: deleteOnlyIfNoContainedObjects

}; // CrossConnection_MPCrossConnection_Factory

/**

4.5.10 Equipment

The Equipment interface is modeled after the 1995 M.3100 Equipment R1

object, which is a subclass of the earlier M.3100 Equipment object.

The equipment object class is a class of managed objects that represents

physical components of a managed element, including replaceable components.

An instance of this object class is present in a single geographic location.

An equipment may be nested within another equipment, thereby creating a

containment relationship. The equipment type shall be identified by

sub-classing this object class. Either the name of the sub-class or an

attribute may be used for identifying the equipment type.

When the object supports attribute value change notifications, the

attributeValueChange notification shall be emitted when the value of one of

the following attributes changes: alarm status, affected object list, user

label, version, location name and current problem list. Because support for

the above attributes is conditional, the behaviour for emitting the attribute

value change notification applies only when the corresponding attributes are

supported in the managed object. When the object supports state change

notifications, the stateChangeNotification shall be emitted if the value of

administrative state or operational state changes (if these attributes are

supported).

This value type is used to retreive all of the Equipment attributes

in one operation. Most unsupported attributes will be returned as a null

string or list if they are not supported. Receipt of a null value does

not mean the attribute is not supported, though.

*/

valuetype EquipmentValueType: ManagedObjectValueType

{

public ReplaceableType

replaceable;

// equipmentPackage

// GET, SET-BY-CREATE

public Istring

serialNumber;

// equipmentR1Package

// GET

public Istring

type;

// equipmentR2Package

// GET, SET-BY-CREATE

public MOSetType

supportedByObjectList;

// equipmentR1Package

// GET-REPLACE, ADD-REMOVE

public OperationalStateType
operationalState;

// conditional

// administrativeOperationalStatesPackage

// GET

public AdministrativeStateType
administrativeState;

// conditional

// administrativeOperationalStatesPackage

// GET-REPLACE

public MOSetType

affectedObjects;

// conditional

// affectedObjectListPackage

// GET

public AlarmSeverityAssignmentProfile

alarmSeverityAssignmentProfile;

// conditional

// alarmSeverityAssignmentPointerPackage

// GET-REPLACE

public AlarmStatusType

alarmStatus;

// conditional

// equipmentsEquipmentAlarmR1Package

// GET

public CurrentProblemSetType
currentProblemList;

// conditional

// currentProblemListPackage

// GET

public Istring

userLabel;

// conditional

// userLabelPackage

// GET-REPLACE

public Istring

vendorName;

// conditional

// vendorNamePackage

// GET-REPLACE

public Istring

version;

// conditional

// versionPackage

// GET-REPLACE

public Istring

locationName;

// conditional

// locationNamePackage

// GET-REPLACE

}; // valuetype EquipmentValueType

interface Equipment: ManagedObject

{

/**

The Replaceable attribute type indicates whether the associated

resource is replaceable or non-replaceable.

*/

ReplaceableType replaceableGet ();

/**

This method returns the serial number of the physical resource.

*/

Istring serialNumberGet ();

/**

This method returns a string containing a textual description of the type

of the resource as as defined in the Equipment R2 object in the M.3100

corrigendum.

*/

Istring typeGet ();

/**

This method returns the list of object instances that are capable of

directly affecting a given managed object. The object instances include

both physical and logical objects. This attribute does not force

internal details to be specified, but only the necessary level of

detail required for management. If the object instances supporting the

managed object are unknown to that object, then this method returns an

empty list.

*/

MOSetType supportedByObjectListGet ();

/**

This method is used to replace the list of object instances that are

supporting this object.

*/

void supportedByObjectListSet

(in MOSetType objectList);

/**

This method is used to add to the list of object instances that are

supporting this object.

*/

void supportedByObjectListAdd

(in MOSetType objectList)

raises (DuplicateItem);

/**

This method is used to remove object from the list of object instances

that are supporting this object.

*/

void supportedByObjectListRemove

(in MOSetType objectList)

raises (ItemNotFound);

/**

*/

OperationalStateType operationalStateGet ()

raises (CONDITIONAL_PACKAGE

(administrativeOperationalStatesPackage));

/**

*/

AdministrativeStateType administrativeStateGet ()

raises (CONDITIONAL_PACKAGE

(administrativeOperationalStatesPackage));

void administrativeStateSet

(in AdministrativeStateType admininstrativeState)

raises (CONDITIONAL_PACKAGE

(administrativeOperationalStatesPackage));

/**

The Affected Object List attribute specifies the object

instances which can be directly affected by a change in state or

deletion of this managed object. The attribute does not force

internal details to be specified, but only the necessary level of

detail required for management.

*/

MOSetType affectedObjectsGet ()

raises (CONDITIONAL_PACKAGE

(affectedObjectListPackage));

/**

This method is used to retrieve the alarm severity assignment profile

pointer. If the alarm severity assignment profile pointer is NULL, then one

of the following two choices applies when reporting alarms: a) the managed

system assigns the severity or b) the value 'indeterminate' is used.

*/

AlarmSeverityAssignmentProfile

alarmSeverityAssignmentProfileGet ()

raises (CONDITIONAL_PACKAGE

(alarmSeverityAssigmentPointerPackage));

/**

This method is used to set the alarm severity assignment profile pointer.

*/

void alarmSeverityAssignmentProfileSet

(in AlarmSeverityAssignmentProfile profile)

raises (CONDITIONAL_PACKAGE

(alarmSeverityAssigmentPointerPackage));

/**

This method returns the current alarm status of the object.

*/

AlarmStatusType alarmStatusGet ()

raises (CONDITIONAL_PACKAGE

(equipmentsEquipmentAlarmPackage));

/**

This method returns the current existing problems, with severity,

associated with the managed object.

*/

CurrentProblemSetType currentProblemListGet ()

raises (CONDITIONAL_PACKAGE

(currentProblemListPackage));

/**

This method returns a label that may be used by the management system

to identify the object.

*/

Istring userLabelGet ()

raises (CONDITIONAL_PACKAGE

(userLabelPackage));

/**

This method is used to assign a label to the instance. The value may

have significance to the client but not the object. If this attribute is

supported it should be included in notifications emitted by this object.

*/

void userLabelSet

(in Istring userLabel)

raises (CONDITIONAL_PACKAGE

(userLabelPackage));

/**

This method returns the name of the supplier of the associated resource.

*/

Istring vendorNameGet ()

raises (CONDITIONAL_PACKAGE

(venderNamePackage));

/**

This method sets the name of the supplier of the associated resource.

*/

void vendorNameSet

(in Istring vendorName)

raises (CONDITIONAL_PACKAGE

(venderNamePackage));

/**

This method returns the version of the associated resource.

*/

Istring versionGet ()

raises (CONDITIONAL_PACKAGE

(versionPackage));

/**

This method sets the version of the associated resource.

*/

void versionSet

(in Istring version)

raises (CONDITIONAL_PACKAGE

(versionPackage));

/**

This method returns the physical location of the associated resource.

*/

Istring locationNameGet ()

raises (CONDITIONAL_PACKAGE

(locationNamePackage));

/**

This method sets the physical location of the associated resource.

*/

void locationNameSet

(in Istring locationName)

raises (CONDITIONAL_PACKAGE

(locationNamePackage));

CONDITIONAL_NOTIFICATION

(ITU_M3100::Notifications, equipmentAlarmR1,

equipmentsEquipmentAlarmR1Package);

CONDITIONAL_NOTIFICATION

(ITU_M3100::Notifications, environmentalAlarmR1,

environmentalAlarmR1Package);

CONDITIONAL_NOTIFICATION

(ITU_M3100::Notifications, processingErrorAlarmR1,

processingErrorAlarmR1Package);

CONDITIONAL_NOTIFICATION

(ITU_M3100::Notifications, communicationsAlarmR1,

tmnCommunicationsAlarmInformationPackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, objectCreation,

createDeleteNotificationsPackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, objectDeletion,

createDeleteNotificationsPackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, attributeValueChange,

attributeValueChangeNotificationPackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, stateChange,

stateChangeNotificationPackage);

}; // interface Equipment

/**

This interface is used to create Equipment objects. Auto-naming and creation

by reference are supported.

NOTE:

The operations on this interface do not allow the client to specify which

optional capabilities (those in conditional packages in the CMIP

specification and allowed to throw NotSupported exceptions in IDL) the

managed object is to support. It is left up to the implementation of

the managed object. This is a departure from CMIP, where sometimes the

manager can specify which conditional packages are to be included when

an object is created.

Also note that the methods include parameters that may not be supported in

some implementations. These parameters will simply be ignored. No

exceptions or other indications will be returned. It is up to the client

to query the newly created object to determine its capabilities.

*/

interface Equipment_Equipment_Factory: ManagedObjectFactory

{

/**

This method is used to create an instance of a Equipment relative to

another Equipment instance. The creation of the Equipment object is the

result of system management protocol.

*/

Equipment create

(in Equipment superior,
// superior object

inout Istring name,
// auto-naming if null

in IstringSetType packageNameList,

in ReplaceableType replaceable,

// equipmentPackage

// GET, SET-BY-CREATE

in Istring type,

// equipmentR2Package

// GET, SET-BY-CREATE

in MOSetType supportedByObjectList,
// may be null

// equipmentR1Package

// GET-REPLACE, ADD-REMOVE

in AdministrativeStateType adminState,

// conditional

// administrativeOperationalStatesPackage

// GET-REPLACE

in AlarmSeverityAssignmentProfileType profile,

// conditional

// alarmSeverityAssignmentPointerPackage

// GET-REPLACE

in IstringType userLabel,

// conditional

// userLabelPackage

// GET-REPLACE

in IstringType vendorName,

// conditional

// vendorNamePackage

// GET-REPLACE

in IstringType version,

// conditional

// versionPackage

// GET-REPLACE

in IstringType locationName)

// conditional

// locationNamePackage

// GET-REPLACE

raises (DuplicateName,

CreateError,

GeneralError);

// DELETE_POLICY: deleteOnlyIfNoContainedObjects

}; // interface Equipment_Equipment_Factory

/**

This interface is used to create Equipment objects. Auto-naming and creation

by reference are supported.

*/

interface Equipment_ManagedElement_Factory: ManagedObjectFactory

{

/**

This operation creates an Equipment object subordinate to a Managed Element

Object.

*/

Equipment create

(in ManagedElement superior,// superior object

inout Istring name,
// auto-naming if null

in IstringSetType packageNameList,

in ReplaceableType replaceable,

// equipmentPackage

// GET, SET-BY-CREATE

in Istring type,

// equipmentR2Package

// GET, SET-BY-CREATE

in MOSetType supportedByObjectList,
// may be null

// equipmentR1Package

// GET-REPLACE, ADD-REMOVE

in AdministrativeStateType adminState,

// conditional

// administrativeOperationalStatesPackage

// GET-REPLACE

in AlarmSeverityAssignmentProfileType profile,

// conditional

// alarmSeverityAssignmentPointerPackage

// GET-REPLACE

in IstringType userLabel,

// conditional

// userLabelPackage

// GET-REPLACE

in IstringType vendorName,

// conditional

// vendorNamePackage

// GET-REPLACE

in IstringType version,

// conditional

// versionPackage

// GET-REPLACE

in IstringType locationName)

// conditional

// locationNamePackage

// GET-REPLACE

raises (DuplicateName,

CreateError,

GeneralError);

// DELETE_POLICY: deleteOnlyIfNoContainedObjects

}; // interface Equipment_ManageElement_Factory

/**

4.5.11 EquipmentHolder

Equipment Holder objects represent the physical resources of a network

element that are capable of holding other physical resources. Examples of

resources represented by instances of this object class are equipment bay,

shelf and slot.

This structure is used to retreive all of the EquipmentHolder attributes

in one operation. Most unsupported attributes will be returned as a null

string or list if they are not supported. Receipt of a null value does

not mean the attribute is not supported, though.

*/

valuetype EquipmentHolderValueType: EquipmentValueType

{

public IstringSetType

equipmentHolderAddress;

// equipmentHolderPackage

// GET, SET-BY-CREATE

public IstringSetType

acceptableCircuitPackTypeList;

// conditional

// subordinateCircuitPackPackage

// GET-REPLACE, ADD-REMOVE

public HolderStatusType
holderStatus;

// conditional

// subordinateCircuitPackPackage

// GET

public SoftwareSetType
subCircuitPackSoftwareLoad;

// conditional

// subordinateCircuitPackPackage

// GET-REPLACE

}; // valuetype EquipmentHolderValueType

interface EquipmentHolder: Equipment

{

/**

This method returns the physical location of the resource represented by

the equipmentHolder instance. Depending on the containment hierarchy of the

equipmentHolder in the managed system, the value of this attribute may

vary. For example, if a system has three levels of equipment holders

representing Bay, Shelf and Slot respectively (i.e. the managed Element

contains multiple Bay equipment holders, each Bay equipment holder

contains multiple Shelf equipment holders and each Shelf equipment

holder contains multiple Slot equipment holders), then:

-for the equipmentHolder representing a Bay, the Frame Identification

code may be used as the value of this attribute;

-for the equipmentHolder representing a Shelf, the Bay Shelf code may

be used as the value of this attribute;

-for the equipmentHolder representing a Slot, the position code may

be used as the value of this attribute.

If the system uses only one level of equipment holder, that represents

the Shelves (i.e., the managedElement contains multiple Shelf equipment

holders, and each Shelf equipment holder contains a circuit pack), then

the value of this attribute is a sequence of the Frame Identification

code and the Bay Shelf Code.

*/

IstringSetType equipmentHolderAddressGet ();

/**

This method returns the list of acceptable circuit pack types that

may be installed in this holder. Values may be added, replaced or removed

to this set-valued attribute.

*/

IstringSetType acceptableCircuitPackTypeListGet ()

raises (CONDITIONAL_PACKAGE

(subordinateCircuitPackPackage));

/**

This method replaces the list of acceptable circuit pack types that

may be installed in this holder. If the equipmentHolder currently contains

a circuitPack, then the value of the corresponding type (of the circuitPack)

shall not be replaced or removed from this attribute. The type of the

circuitPack contained shall be one of the types specified for this attribute.

*/

void acceptableCircuitPackTypeListSet

(in IstringSetType list)

raises (CONDITIONAL_PACKAGE

(subordinateCircuitPackPackage));

/**

This method adds values to the list of acceptable circuit pack types

that may be installed in this holder.

*/

void acceptableCircuitPackTypeListAdd

(in IstringSetType list)

raises (DuplicateItem,

CONDITIONAL_PACKAGE

(subordinateCircuitPackPackage));

/**

This method removes values from the list of acceptable circuit pack types

that may be installed in this holder.

*/

void acceptableCircuitPackTypeListRemove

(in IstringSetType list)

raises (ItemNotFound

CONDITIONAL_PACKAGE

(subordinateCircuitPackPackage));

/**

This method returns the status of the equipment holder.

The status of the holder may be one of the following:

-empty to indicate that there is no replaceable unit in the holder.

-the holder contains a unit that is one of the types in the

acceptableCircuitPackType list.

-the holder contains a unit recognizable by the network element; but

not one of the types in the acceptableCircuitPackTypeList.

-unrecognized replaceable unit.

If the holder contains a unit that is acceptable and its type matches the value

of the circuitPackType attribute of the circuitPack object, then the

availabilityStatus of the circuitPack will be an empty set. In all other cases

the availabilityStatus will include a notInstalled value.

*/

HolderStatusType holderStatusGet

(out Istring circuitPackType)

raises (CONDITIONAL_PACKAGE

(subordinateCircuitPackPackage));

/**

This method returns the software, if any, that is currently designated

to be loaded to the contained circuit pack whenever automatic reload of

software is needed. If the list is null the contained circuit pack is

not software loadable, or no software load has been designated.

Otherwise, the sequence identifies an ordered set of software instances

used to specify the order in which the software is to be loaded. It is

recommended to note in the ICS if the ordering is significant. M.3100

also allows a sequence of strings, the values determined through a

"local" implementation agreement. that option is not supported here.

*/

SoftwareSetType subordinateCircuitPackSoftwareLoadGet ()

raises (CONDITIONAL_PACKAGE

(subordinateCircuitPackPackage));

/**

This method sets the software that is to be loaded to the contained

circuit pack whenever automatic reload of software is needed.

*/

void subordinateCircuitPackSoftwareLoadSet

(in SoftwareSetType list)

raises (CONDITIONAL_PACKAGE

(subordinateCircuitPackPackage));

}; // interface EquipmentHolder

/**

This interface is used to create Equipment Holder objects. Auto-naming and

creation by reference are supported.

NOTE:

The operations on this interface do not allow the client to specify which

optional capabilities (those in conditional packages in the CMIP

specification and allowed to throw NotSupported exceptions in IDL) the

managed object is to support. It is left up to the implementation of

the managed object. This is a departure from CMIP, where sometimes the

manager can specify which conditional packages are to be included when

an object is created.

Also note that the methods include parameters that may not be supported in

some implementations. These parameters will simply be ignored. No

exceptions or other indications will be returned. It is up to the client

to query the newly created object to determine its capabilities.

*/

interface EquipmentHolder_EquipmentHolder_Factory: ManagedObjectFactory

{

/**

This method is used to create an instance of a Equipment Holder relative

to another Equipment Holder instance. The creation of the Equipment Holder

object is the result of system management protocol.

*/

EquipmentHolder create

(in EquipmentHolder superior,// superior object

inout Istring name,
// auto-naming if null

in IstringSetType packageNameList,

in ReplaceableType replaceable,

// equipmentPackage

// GET, SET-BY-CREATE

in Istring type,

// equipmentR2Package

// GET, SET-BY-CREATE

in MOSetType supportedByObjectList,
// may be null

// equipmentR1Package

// GET-REPLACE, ADD-REMOVE

in AdministrativeStateType adminState,

// conditional

// administrativeOperationalStatesPackage

// GET-REPLACE

in AlarmSeverityAssignmentProfileType profile,

// conditional

// alarmSeverityAssignmentPointerPackage

// GET-REPLACE

in IstringType userLabel,

// conditional

// userLabelPackage

// GET-REPLACE

in IstringType vendorName,

// conditional

// vendorNamePackage

// GET-REPLACE

in IstringType version,

// conditional

// versionPackage

// GET-REPLACE

in IstringType locationName,

// conditional

// locationNamePackage

// GET-REPLACE

in IstringSetType equipmentHolderAddress,

// equipmentHolderPackage

// GET, SET-BY-CREATE

in IstringSetType acceptableCircuitPackTypeList,

// conditional

// subordinateCircuitPackPackage

// GET-REPLACE, ADD-REMOVE

in SoftwareSetType subCircuitPackSoftwareLoad)

// conditional

// subordinateCircuitPackPackage

// GET-REPLACE

raises (DuplicateName,

CreateError,

GeneralError);

// DELETE_POLICY: deleteOnlyIfNoContainedObjects

}; //interface EquipmentHolder_EquipmentHolder_Factory

/**

This interface is used to create Equipment Holder objects. Auto-naming and

creation by reference are supported.

*/

interface EquipmentHolder_Equipment_Factory: ManagedObjectFactory

{

/**

/**

This operation creates an Equipment Holder object subordinate to a Managed

Element Object.

*/

EquipmentHolder create

(in ManagedElement superior,// superior object

inout Istring name,
// auto-naming if null

in IstringSetType packageNameList,

in ReplaceableType replaceable,

// equipmentPackage

// GET, SET-BY-CREATE

in Istring type,

// equipmentR2Package

// GET, SET-BY-CREATE

in MOSetType supportedByObjectList,
// may be null

// equipmentR1Package

// GET-REPLACE, ADD-REMOVE

in AdministrativeStateType adminState,

// conditional

// administrativeOperationalStatesPackage

// GET-REPLACE

in AlarmSeverityAssignmentProfileType profile,

// conditional

// alarmSeverityAssignmentPointerPackage

// GET-REPLACE

in IstringType userLabel,

// conditional

// userLabelPackage

// GET-REPLACE

in IstringType vendorName,

// conditional

// vendorNamePackage

// GET-REPLACE

in IstringType version,

// conditional

// versionPackage

// GET-REPLACE

in IstringType locationName,

// conditional

// locationNamePackage

// GET-REPLACE

in IstringSetType equipmentHolderAddress,

// equipmentHolderPackage

// GET, SET-BY-CREATE

in IstringSetType acceptableCircuitPackTypeList,

// conditional

// subordinateCircuitPackPackage

// GET-REPLACE, ADD-REMOVE

in SoftwareSetType subCircuitPackSoftwareLoad)

// conditional

// subordinateCircuitPackPackage

// GET-REPLACE

raises (DuplicateName,

CreateError,

GeneralError);

// DELETE_POLICY: deleteOnlyIfNoContainedObjects

}; // interface EquipmentHolder_Equipment_Factory

/**

4.5.12 ExternalPoint

The ExternalPoint interface is a superclass for controlPoint and scanPoint

object classes which are used to control external devices or monitor external

conditions respectively. This object class contains common aspects of

controlPoint and scanPoint object classes. The operational state and

administrative state represent the state of the control and scan functions,

i.e. not the state of the external entity.

*/

valuetype ExternalPointValueType: ManagedObjectValueType

{

public OperationalStateType
operationalState;

// externalPointPackage

// GET

public AdminstrativeStateType
administrativeState;

// externalPointPackage

// GET-REPLACE

public MOSetType

supportedByObjectList;

// externalPointPackage

// GET

public long

exteralPointId;

// externalPointPackage

// GET, SET-BY-CREATE

public Istring

externalPointMessage;

// externalPointPackage

// GET-REPLACE

public Istring

locationName;

// conditional

// locationNamePackage

// GET-REPLACE

}; // valuetype ExternalPointValueType

interface ExternalPoint: ManagedObject

{

/**

*/

OperatonalStateType operationalStateGet ();

/**

*/

AdministrativeStateType administrativeStateGet ();

void administrativeStateSet

(in AdministrativeStateType adminState);

/**

*/

MOSetType supportedByObjectListGet ();

/**

This attribute identifies the port number where the monitored or controlled

external device is attached. It also serves as the naming attribute for

the managed object. Therefore the id string of NameComponent shall be

stringified integer of port number.

*/

long externalPointIdGet ();

/**

This attribute can provide some textual definition of the external point.

It can also be used for identiifying the location of the external point.

*/

Istring externalPointMessageGet ();

void externalPointMessageSet

(in Istring message);

/**

*/

Istring locationNameGet ()

raises (CONDITIONAL_PACKAGE

(locationNamePackage));

void locationNameSet

(in Istring locationName)

raises (CONDITIONAL_PACKAGE

(locationNamePackage));

MANDATORY_NOTIFICATION

(ITU_X721::Notifications, objectCreation);

MANDATORY_NOTIFICATION

(ITU_X721::Notifications, objectDeletion);

MANDATORY_NOTIFICATION

(ITU_X721::Notifications, attributeValueChange);

MANDATORY_NOTIFICATION

(ITU_X721::Notifications, stateChange);

}; // interface ExternalPoint

/**

This interface is used to create an externalPoint object relative to an

equipment object.

*/

interface ExternalPoint_Equipment_Factory: ManagedObjectFactory

{

/**

The naming of created externalPoint object shall be stringified pointId.

*/

ExternalPoint create

(in Equipment superior,

in IstringSetType packageNameList,

in AdminstrativeStateType administrativeState,

// externalPointPackage

// GET-REPLACE

in long exteralPointId,

// externalPointPackage

// GET, SET-BY-CREATE

in Istring externalPointMessage,

// externalPointPackage

// GET-REPLACE

in Istring locationName)

// conditional

// locationNamePackage

// GET-REPLACE

raises (DuplicateName,

CreateError,

GeneralError);

}; // interface ExternalPoint_Equipment_Factory

/**

This interface is used to create an externalPoint object relative to an

managedElement object.

*/

interface ExternalPoint_ManagedElement_Factory: ManagedObjectFactory

{

/**

The naming of created externalPoint object shall be stringified pointId.

*/

ExternalPoint create

(in ManagedElement superior,

in IstringSetType packageNameList,

in AdminstrativeStateType administrativeState,

// externalPointPackage

// GET-REPLACE

in long exteralPointId,

// externalPointPackage

// GET, SET-BY-CREATE

in Istring externalPointMessage,

// externalPointPackage

// GET-REPLACE

in Istring locationName)

// conditional

// locationNamePackage

// GET-REPLACE

raises (DuplicateName,

CreateError,

GeneralError);

}; // interface ExternalPoint_ManagedElement_Factory

/**

4.5.13 Fabric

This interface supports both the Fabric and FabricR1 (which is a subclass of

Fabric) functionality in M.3100. This means it supports the switchover action

and optionally emits object creation and deletion notifications along with the

base Fabric functionality.

The Fabric object represents the function of managing the establishment and

release of cross-connections. It also manages the assignment of termination

points to TP Pools and GTPs.

Administrative State:

- Unlocked: The Fabric is allowed to perform its normal functions. Actions

will be accepted to setup or remove cross-connections, to rearrange TP Pools,

to add/remove termination points to/from GTPs.

- Locked: The Fabric is not allowed to perform its normal functions. No

actioins will be accepted. No new cross-connection can be setup or removed,

no TP Pool can be rearranged, and no termination points can be added/removed

to/from GTPs.

Operational State:

- Enabled: When the Fabric is in the enabled operational state, it may be

fully operational or partially operational (partially operational is indicated

by the availability status attribute).

- Disabled: The Fabric is incapable of performing its normal function. For

instance, the managing system will not be able to (1) setup or remove any

cross-connection, (2) rearrange TP Pools, and (3) add/remove termination

points to/from GTPs.

Availability Status:

The supported values for this attribute are:

- Degraded: The Fabric is degraded in some respect. For instance, the Fabric

cannot perform the function of establishing new cross-connections while it can

still accept actions to re-arrange TP Pools. The Fabric remains available for

service (i.e. its operational state is enabled) while it is degraded.

- Empty set.

*/

valuetype FabricValueType: ManagedObjectValueType

{

public OperationalStateType
operationalState;

// fabricPackage

// GET

public AdministrativeStateType
administrativeState;

// fabricPackage

// GET-REPLACE

public AvailabilitySetType
availabilityStatus;

// fabricPackage

// GET

public CharacteristicInfoSetType characteristicInfoList;

// fabricPackage

// GET, SET-BY-CREATE

public MOSetType

supportedByObjectList;

// fabricPackage

// GET-REPLACE, ADD-REMOVE

}; // valuetype FabricValueType

interface Fabric: ManagedObject

{

OperationalStateType operationalStateGet ();

AdministrativeStateType administrativeStateGet ();

void administrativeStateSet

(in AdministrativeStateType admininstrativeState);

AvailabilityStatusType availabilityStatusGet ();

/**

Set-By-Create: Values of this attribute of this interface could be specified

in an input parameter to the create operation.

*/

CharacteristicInfoSetType characteristicInfoListGet ();

/**

This method returns the list of object instances that are supported by the

given managed object. The object instances include both physical and logical

objects. This attribute does not force internal details to be specified, but

only the necessary level of detail required for management. If the object

instances supporting the managed object are unknown to that object, then this

method returns an empty list.

*/

MOSetType supportedByObjectListGet ();

/**

This method is used to replace the list of object instances that are

supporting this object.

*/

void supportedByObjectListSet

(in MOSetType objectList);

/**

This method is used to add to the list of object instances that are

supporting this object.

*/

void supportedByObjectListAdd

(in MOSetType objectList)

raises (DuplicateItem);

/**

This method is used to remove object from the list of object instances

that are supporting this object.

*/

void supportedByObjectListRemove

(in MOSetType objectList)

raises (ItemNotFound);

/**

In M.3100:

This method is used to arrange termination points into GTPs. If the group

termination point instance does not exist then a new one is automatically

created and its identity returned in the result. Otherwise the termination

points are added to those already in the GTP. Termination points may be

members of zero or one GTP. This action will fail if the GTP is involved in

a cross-connection, if the GTP is a member of a TP pool or if the termination

point is already a member of a GTP. A bidirectional termination point that can

provide independent unidirectional connectivity may be a member of zero or one

GTP for each direction of connectivity.

Now above was changed in IDL. AddTPsToGTP was changed to createGTP. The GTP

now has an operation to add and remove TPs. This is more "object-oriented"

but operations on multiple GTPs with one call are no longer supported. This

could result in more overhead (if manager aplications often create multiple

GTPs at one time) but simplifies the implementation.

M.3100 allows for the list to include GTPs. Intended behavior is not clear

but likely the TPs in the GTP, if free, should be added to the new GTP and the

old GTP destroyed. We should decide if this is what we want.

If the operation fails no GTP is created.

*/

GTP createGTP

(in PointDirectionalityType pointDirectionality,

in TPSetType tpList)

raises (TPError);

/*

In M.3100:

This method is used to arrange termination points or GTPs into pools of

termination points or GTPs that are all equivalent for some management purpose

such as routing. If the tpPool instance does not exist then a new one is

automatically created and its identity returned in the result. Otherwise the

termination points or GTPs are added to those already in the tpPool.

This was changed from M.3100. AddTPsToTpPool was changed to createTPPool.

The TPPool now has an operation to add and remove TPs. This is more

"object-oriented" but operations on multiple TPPools with one call are no

longer supported. This could result in more overhead (if manager aplications

often create multiple GTPs at one time) but simplifies the implementation.

M.3100 also mentions "Indirect Adaptors." ("If an Indirect Adaptor is

specified, a GTP representing the CTPs contained from the Indirect Adaptor

will be created and it will be added to the tpPool.") Whatever that is, it is

probably not supported here.

If the operation fails no TPPool is created.

*/

TPPool createTPPool

(in PointDirectionalityType pointDirectionality,

in TPSetType tpList)

raises (TPError);

/**

In M.3100:

The "connect" method is based on the M.3100 "connect" action. It is used to

establish a connection between termination points or GTPs. The termination

points to be connected can be specified in one of two ways:

1) by explicitly identifying the two termination points or GTPs;

2) by specifying one termination point or GTP, and specifying a tpPool from

which any idle termination point/GTP may be used. The result, if successful,

always returns an explicit list of termination points or GTP.

There are two basic forms of cross-connection arrangement: point-to-point and

point to multi-point (broadcast). A single cross-connection is created if

either the explicitPtoP or ptoTpPool option is selected in this action. This

cross-connection object points to the termination points or GTPs involved in

the cross-connection. Connections are indicated in termination points by the

connectivityPointer attribute. If the administrativeState in the

crossConnection object is unlocked, this attribute is set, as a result of this

action, to the local name of the termination point to which it is connected.

Also, the crossConnectionObjectPointer in the termination points or GTPs

points to the cross-connection object.

For point to multi-point cross-connection (indicated by choosing the

explicitPtoMp or ptoMPools option), one multi-point cross-connection object

will be created containing one crossConnection object for each termination

point specified in the toTps parameter. In the source TP the

crossConnectionObjectPointer will point at the newly created Multi-point

cross-connect object. In each Tp named in the toTPs list (possibly selected

from a specified tpPool), the CrossConnectionObject pointer will point at the

corresponding cross-connection object. The connectivity pointers in the

connected termination points will be updated to reflect the new connectivity.

The idleTPcount and the connectedTPcount attributes in the tpPool object (if

any) are updated as a result of the action. If a GTP is implicitly defined by

specifying several termination points to be connected together, the GTP object

will be automatically created and its id will be returned in the action reply.

If an Indirect Adaptor is specified, a GTP representing the CTPs contained

from the Indirect Adaptor will be created and it will be connected.

The administrative state of the created cross-connection or multi-point

cross-connection objects is specified as an optional parameter of this action.

If this parameter is omitted, the administrative state will be set to

'unlocked' (unless the addLegs parameter is specified). This action will fail

if any of the termination points specified is already involved in a

cross-connection or if part of an existing GTP is specified.

If the addLeg parameter is specified, one or more Legs will be added to an

existing multi-point cross-connection arrangement. Selected termination points

or GTPs must support a similar signal type to that of the termination points

already connected to the arrangement. The result, if successful, always returns

the termination points or GTPs involved in the multi-point cross-connection.

A cross-connection object is created as a result of this action. This object

will be named from the specified mpCrossConnection object instance. The

administrative state of the created cross-connection object will be the same

as that of the containing multi-point cross-connection object unless otherwise

specified in the action parameters.

Note that the syntax of ConnectInformtion and ConnectResult are both of type

of "sequence of". The n-th element in ConnectResult is related to the n-th

element of the ConnectInformation.

In IDL:

This method is similar to the connect action in M.3100 but simpler. It is

used to create a single instance of a cross-conection (as opposed to possibly

multiple in M.3100.) The "aEnd" parameter is a reference to the A end of the

connection. It may be a TP, GTP, or TPPool. The "zEnds" parameter is a list

of references for the Z ends of the connection. If the length of the list is

1, a point-to-point connection will be created. If it is >1,

a point-to-multipoint connection will be created. The references in the zEnd

list may be TPs, GTPs or TPPools. Need to consider always creating an MP

Connection so that legs may be added later.

The AdministrativeState parameter specifies the administrative state value

with which the new cross-connect(s) will be created. The reference for the

newly-created cross-connect object(s) is returned in the result structure.

This method will fail if any of the termination points specified are already

involved in a cross-connection or if part of an existing GTP is specified.

The directionality and signal types of the TPs must be compatible or the

operation will fail. And, of course, the zEnds list must contain at least

one endpoint.

This operation has some side effects on other objects:

CrossConnections are indicated in termination points by the connectivityPointer

attribute. If the administrativeState in the crossConnection object is

unlocked, this attribute is set, as a result of this action, to the local name

of the termination point to which it is connected. Also, the

crossConnectionObjectPointer in the termination points or GTPs will be set to

point to the cross-connection object.

The idleTPcount and the connectedTPcount attributes in the tpPool object (if

any) are updated as a result of the action.

M.3100 allowed groups of TPs to be submitted in this operation, and a GTP

would automatically be created before the connection was created. This is not

supported here. The GTP must be created in a separate operation first.

Also, M.3100 mentions "Indirect Adaptors." ("If an Indirect Adaptor is

specified, a GTP representing the CTPs contained from the Indirect Adaptor

will be created and it will be connected.") Whatever that is, it is probably

not supported here.

Finally, the operation to add legs to a connection has been separated from the

operation to create a connection to make the syntax simpler.

If the operation fails no cross-connection is created.

*/

ConnectResultType connect

(in DirectionalityType direction,

in TP aEnd,

in TPSetType zEnds,

in AdministrativeState adminState,

in boolean redline,

in Istring crossConnectionName)

raises (TPError);

/**

This operation is used to add legs to an existing connection. The entire

structure of the new connection is returned. The administrative state,

redline, and name parameters will be the values of those attributes in the

newly created cross-connections.

Making the connection parameter in the operation following of type

MPCrossConnection means a connection must be created as multi-point (with

multiple Z ends) in order to later add legs to it. There is no way to add

legs to a pt-pt connection.

If the operation fails no cross-connection is created.

*/

ConnectResult addLegs

(in MPCrossConnection mpxcon,

in MOList zEnds,

in AdministrativeState adminState,

in boolean redline,

in string crossConnectionName)

raises (TPError);

/**

In M.3100:

The "disconnect" method is based on the M.3100 "disconnect" action. It is used

to take down a cross-connection. The connection to be taken down is specified

by identifying termination point(s) [or GTP(s)] of the connection. If the

connection was point-to-point, then the other termination point or GTP is

implicitly disconnected as well and the cross-connection object is deleted. If

the connection was point to multi-point and the action referred to the master,

all the termination points or GTPs that are legs are implicitly disconnected as

well and the multi-point cross-connection and cross-connection objects are

deleted.

If the connection was point-to-multi-point and the action referred to a leg,

then just that leg is disconnected, unless it is the last leg, in which case

the master termination point is also implicitly disconnected and the multipoint

cross-connection and cross-connection objects are deleted. The idleTPcount and

the connectedTPcount attributes in the tpPool objects (if any) are updated as

a result of the action. The connectivity pointers in the disconnected

termination points will be set to NULL as a result of this action.

This action has no effect on the composition of GTPs and GTPs are not deleted

as a result of this action. This action will fail if part of a GTP is

specified.

Note that the syntax of DisconnectInformtion and DisconnectResult are both of

type of "sequence of". The n-th element in DisconnectResult is related to the

n-th element of the DisconnectInformation.

In IDL:

This action is used to take down a cross-connection. The connection to be taken

down is specified by identifying termination point(s) (or GTP(s)) of the

connection. If the connection was point to point then the other termination

point or GTP is implicitly disconnected as well and the cross-connection object

is deleted. If the connection was point to multipoint and the action referred

to the root TP, all the termination points or GTPs that are legs are implicitly

disconnected as well and the multipoint cross-connection and cross-connection

objects are deleted.

If the connection was point to multipoint and the action referred to a leaf TP,

then just that leg is disconnected, unless it is the last leg, in which case

the root termination point is also implicitly disconnected and the multipoint

cross-connection and cross-connection objects are deleted. The idleTPcount and

the connectedTPcount attributes in the tpPool objects (if any) are updated as

a result of the action. The connectivity pointers in the disconnected

termination points will be set to NULL as a result of this action. The list

of TPs disconnected is returned, as in the CMIP operation, though this should

equal the list submitted.

This action has no effect on the composition of GTPs and GTPs are not deleted

as a result of this action. This action will fail if part of a GTP is

specified.

*/

TPSetType disconnect

(in TPSetType tps)

raises (TPError);

/**

In M.3100:

The "switchOver" method is based on the M.3100 "switchOver" action. It offers

the capability, in an atomic way, to:

(1) Switch an existing connection to another one of the same type maintaining

one of the original cross-connected termination points. If the operation

succeeds, this will result in the deletion of the old connection indicated in

the action information and the connection of the new termination point. The new

termination point indicated in the action information must be available

(disconnected for the respective direction prior to this action) in order to

establish the new cross-connection. The switch over of an individual connection

is considered an atomic operation.

(2) Switch a bundle of existing connections. Each of these connections are

switched over as described above. In this case, the action will behave

according to a best effort policy and only those connections that can be

successfully switched over will be performed independently of each other.

In any case, a connection designates a unidirectional or bidirectional

point-to-point connection (i.e. crossConnection), a leg of a multi-point

connection (i.e. crossConnection contained in a mpCrossConnection), or a leg

of a multipoint connection protection defined in Recommendation G.774.04.

Note that the syntax of SwitchOverInformation and SwitchOverResult are both of

type of "sequence of". The n-th element in SwitchOverResult is related to the

n-th element of the SwitchOverInformation.

In IDL:

This action offers the capability, in an atomic way, to:

- Switch an existing connection to another one of the same type maintaining one

of the original cross-connected termination points. If the operation succeeds,

this will result in the deletion of the old connection indicated in the action

information and the connection of the new termination point. The new

termination point indicated in the action information must be available

(disconnected for the respective direction) in order to establish the new

cross-connection. The switch over of an individual connection is considered an

atomic operation.

- Switch a bundle of existing connections. Each of these connections are

switched over as described above. In this case, the action will behave

according to a best effort policy and only those connections which can be

successfully switched over will be performed independently of each other. In

any case, a connection designates a unidirectional or bidirectional

point-to-point connection (i.e. crossConnection), a leg of a multi-point

connection (i.e. crossConnection contained in a mpCrossConnection), or a leg

of a multipoint connection protection defined in Recommendation G.774.04.

This action was simplified from M.3100 so that it only works on a

single cross-connection at a time, instead of a list.

*/

ConnectResult switchover

(CrossConnection xcon,

TP unchangedTP,

TP newTP)

raises (TPError);

/**

The objectCreation and objectDeletion notifications are in the same conditional

package. This package presents if both notifications are supported by an

instance of the Fabric interface.

*/

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, objectCreation,

createDeleteNotificationsPackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, objectDeletion,

createDeleteNotificationsPackage);

}; // interface Fabric

/**

*/

interface Fabric_ManagedElement_Factory: ManagedObjectFactory

{

Fabric create

(in ManagedElement superior,

inout Istring name, // auto naming if null

in IstringListType packageNameList,

in MOSetType supportedByObjectList,
// may be null

// fabricPackage

// GET-REPLACE, ADD-REMOVE

in CharacteristicInfoSetType characteristicInfoList,

// fabricPackage

// GET, SET-BY-CREATE

in AdministrativeStateType adminState)

// fabricPackage

// GET-REPLACE

raises (DuplicateName,

CreateError,

GeneralError);

// DELETE_POLICY: deleteOnlyIfNoContainedObjects

}; // interface Fabric_ManagedElement_Factory

/**

4.5.14 GTP (Group Termination Point)

The Group Termination Point object represents a group of termination points

treated as a single unit for management purposes such as cross-connections.

The signalType attribute describes the composition of the GTP. When a

termination point is involved in a GTP, it cannot be cross-connected

independently of that GTP.

This interface is based on the M.3100 GTP specification.

*/

valuetype GTPValueType: ManagedObjectValueType

{

public CrossConnectionPointerType
crossConnectionPointer;

// gtpPackage

// GET

public SignalIdType

signalIdType;

// gtpPackage

// GET

public MOSeqType

tpsInGTPList;

// gtpPackage

// GET

}; // valuetype GTPValueType

interface GTP: ManagedObject

{

/**

In M.3100:

This attribute points to a managed object such as a cross-connection, a GTP, or

a Fabric. When a termination point is neither connected nor reserved for

connection, its crossConnectionObjectPointer points to the Fabric object

responsible for its connection.

In IDL:

This method returns a reference to the Cross-connection in which the GTP is an

endpoint. If the GTP is not involved in a connection, Null will be returned.

*/

CrossConnectionPointerType crossConnectionPointerTypeGet ();

/**

This method returns a reference to the Fabric object responsible for its

connection. This is a departure from M.3100. In M.3100

"crossConnectionObjectPointerGet" returns the fabric when the GTP is not in a

connection, which can get confusing and is syntactically complex.

*/

Fabric fabricPointerGet ();

/**

This operation returns the signal type of the GTP. The signal type can either

be simple, bundle, or complex. If the signal type is simple, it consists of a

single type of characteristic information. If the signal type is bundle, it is

made up of a number of signal types all of the same characteristic information.

If the signal type is complex, it consists of a sequence of bundle signal type.

The order in the complex signal type represents the actual composition of the

signal.

*/

SignalIdType signalIdTypeGet ();

/**

This method returns a list of reference of the TPs that represented by the GTP.

*/

TPSeqType tpsInGTPListGet ();

/**

The following are changes from M.3100. pointDirectionalityGet was added to

return the direction (source, sink, bidirectional) of the group. addTPs and

removeTPs were moved to this interface from the fabric interface because it is

more "object oriented" (as long as operations on multiple GTPs are not going to

be supported.) When the "add" and "remove" operations were part of the fabric

object, they were disabled when the administrative state of the fabric was set

to locked. That behavior should probably still be followed by the GTP objects

- when the fabric is locked changes should be disabled.

*/

PointDirectionalityType pointDirectionalityGet ();

/**

This method adds termination points to those already in the GTP. Termination

points may be members of zero or one GTP. This action will fail if the GTP is

involved in a cross-connection, if the GTP is a member of a TP pool or if the

termination point is already a member of a GTP. A bidirectional termination

point that can provide independent unidirectional connectivity may be a member

of zero or one GTP for each direction of connectivity.

If operation fails no TPs are added.

*/

void addTPs

(in TPSeqType tps)

raises (TPError);

/**

This action is used to remove termination points from GTPs. This action will

fail if the GTP is involved in a cross-connection or if it is a member of a TP

pool. Removing the last termination point from a GTP has the effect of deleting

the GTP object.

If operation fails no TPs are removed.

*/

void removeTPs

(in TPSeqType tps)

raises (TPError);

}; // interface GTP

/**

Instances of GTP are contained in the Fabric object. They are automatically

created or deleted as the result of the addTPsToGTP and removeTPsFromGTP

methods on the Fabric object. See the Fabric object for details.

*/

interface GTP_Fabric_Factory: ManagedObjectFactory

{

// DELETE_POLICY: notDeletable???

}; // GTP_Fabric_Factory

/**

4.5.15 LayerNetworkDomain

Managed objects supporting the LayerNetworkDomain interface represent a

transport administrative domain in which all resources pertain to the same

G.805 layer. [G.853.1,OBJECT:layerNetworkDomain] <p>

It represents the topological aspects of the transport network layer.

[G.853.1,RELATIONSHIP:layerNetworkDomainIsMadeOf]

*/

valuetype LayerNetworkDomainValueType: NetworkValueType

{

public SignalIdType
signalId;

// layerNetworkDomainPackage

// GET

// ??? who is to assign signalId?

}; // valuetype LayerNetworkDomainValueType

interface LayerNetworkDomain: Network

{

/**

This attribute defines the characteristic information of the layer (in the

G.805 sense) to which the entity under consideration belongs. It is used to

determined whether sub-network connection/connectivity is possible. The

signal Id may be a simple rate and format or may be a bundle of entities with

the same characteristic information which form an aggregate signal.

*/

SignalIdType signalIdGet ();

}; // interface LayerNetworkDomain

/**

*/

interface LayerNetworkDomain_Network_Factory: ManagedObjectFactory

{

LayerNetworkDomain create

(in Network superior,

in Istring name, // no auto-naming, cannot be null

in IstringSetType packageNameList,

in Istring systemTitle,

// networkR1Package

// GET-REPLACE

in Istring userLabel)

// conditional

// userLabelPackage

// GET-REPLACE

raises (DuplicateName,

CreateError,

GeneralError);

// DELETE_POLICY: deleteOnlyIfNoContainedObjects

}; // interface LayerNetworkDomain_Network_Factory

/**

4.5.16 LinkConnection

Managed objects supporting the LinkConnection interface are responsible for

the transparent transfer of information between Network Connection Termination

Points.

A Link Connection may be a component of a Trail. A sequence of one or more

Link Connections (and sub-network connections) may be linked together to form

a Trail.

[Rec.G.853.1,RELATIONSHIP:linkConnectionIsSupportedByTrail],

[Rec.G.853.1,RELATIONSHIP:trailIsMadeOfTransportEntities]

A Link Connection may be either uni- or bi-directional.

[Rec.G.853.1,OBJECT:transportConnection]

A point to point unidirectional Link Connection can be established between a

Network connection termination point source or Network connection termination

point bi-directional; and a Network connection termination point sink or

Network connection termination point bi-directional.

A point to point bi-directional Link Connection can be established between a

Network connection termination point bi-directional; and a Network connection

termination point bi-directional.

An operation to create a Link Connection will not be successful and will fail

with an invalid TP type if a requested endpoint is a Network Trail Termination

Point.

For all types of Link Connection, the network termination point(s) pointed to

by the A End attribute is related to the network termination point(s) pointed

to by the Z End attribute in such a way that traffic can flow between the

network termination points represented by these managed objects in a

unidirectional or bi-directional manner as indicated by the directionality

attribute. [G.853.3, ATTRIBUTE:directionality]

*/

valuetype LinkConnectionValueType: PipeValueType

{

public TrailSetType

serverTrailList;

// conditional

// serverTrailListPackage

// GET, SET-BY-CREATE

public SubnetworkConnection
compositePointer;

// conditional

// compositePointerPackage

// GET

public Trail

clientTrail;

// conditional

// clientTrailPackage

// GET, SET-BY-CREATE

}; // valuetype LinkConnectionValueType

interface LinkConnection: Pipe

{

/**

The value of this attribute identifies the trail objects (in most cases one)

in a lower order network layer which may be used in parallel to serve a

connection object. Supported if the link connection is supported by a server

trail

*/

TrailSetType serverTrailListGet ()

raises (CONDITIONAL_PACKAGE

(serverTrialListPackage);

/**

This attribute is used where the connectivity instance is a component of a

Sub-network Connection within the same layer. This package identifies an

instance of the Sub-network Connection managed object class. Within a given

layer, a given subnetwork connection is composed of a sequence of link

connections and subnetwork connections. This pointer points from one these

components to the composite sub-network connection. Supported if the link

connection is a component of that sub-network connection.

*/

SubnetworkConnection compositePointerGet ()

raises (CONDITIONAL_PACKAGE

(compositePointerPackage);

/**

The value of this attribute identifies the trail object instance in the same

network layer as the connection served by a connection object. Supported if

the link connection serves a client trail.

*/

Trail clientTrailGet ()

raises (CONDITIONAL_PACKAGE

(clientTrailPackage);

}; // interface LinkConnection

/**

*/

interface LinkConnection_LayerNetworkDomain_Factory:

ManagedObjectFactory

{

// DELETE_POLICY: notDeletable

}; // interface LinkConnection_LayerNetworkDomain_Factory

/**

*/

interface LinkConnection_TopLink_Factory:

ManagedObjectFactory

{

// DELETE_POLICY: notDeletable

}; // interface LinkConnection_TopLink_Factory

/**

4.5.17 LogicalLink

Managed objects supporting the LogicalLink interface represent a link that

may be administratively composed of link connections or bandwidth that may be

provided by one or more topological links or other logical links.

*/

valuetype LogicalLinkValueType: AbstractLinkValueType

{

// logicalLinkCapacityPackage, has actions only

public LinkDirectionalityType
linkDirectionality;

// logicalLinkPackage

// GET

public LinkConnectionSetType
linkConnectionPointerList;

// conditional

// linkConnectionPointerListPackage

// GET-REPLACE, ADD-REMOVE

}; // valuetype LogicalLinkValueType

interface LogicalLink : AbstractLink

{

/**

The Link Directionality attribute specifies whether the associated link

managed object is uni- or bi-directional, or undefined.

*/

LinkDirectionalityType linkDirectionalityGet ();

/**

This attribute defines the list of Link Connections in a given layer which

may compose a Logical Link in the same layer. Suppored if pre-provisioned

link connections are supported by the transport technology.

*/

LinkConnectionSetType linkConnectionPointerListGet

raises (CONDITIONAL_PACKAGE

(linkConnectionPointerListPackage));

void linkConnectionPointerListSet

(LinkConnectionSetType connectionList)

raises (CONDITIONAL_PACKAGE

(linkConnectionPointerListPackage));

void linkConnectionPointerListAdd

(in LinkConnectionSetType connectionList)

raises (DuplicateItem,

CONDITIONAL_PACKAGE

(linkConnectionPointerListPackage));

void linkConnectionPointerListRemove

(in LinkConnectionSetType connectionList)

raises (ItermNotFound,

CONDITIONAL_PACKAGE

(linkConnectionPointerListPackage));

/**

The following two actions provide the support for the management of the

capacity of a logical link. It specifies actions to assign and release

link connections and/or bandwidth to a link.

*/

/**

This action assigns link connections to a Logical Link. The pointers to the

link connections that are assigned will be added to the

linkConnectionPointerList attribute of the logicalLink managed object.

<G854-10:OPERATION, assignLinkConnectionOnLink>

*/

void assignLinkConnectionOnLogicalLink

(in LayerNetworkDomain layer,

in LinkConnectionSetType requestedConnectionList,

out LinkConnectionSetType resultingConnectionList)

raises (LinkAndLinkConnectionNotCompatible,

InvalidLinkConnection,

NotEnoughLinkConnections,

LinkConnectionAlreadyAssigned,

InconsistentSignalIdentification,

InconsistentDirectionality,

FailureToSetLinkConnectionCallerId,

FailureToDecreaseCapacity);

/**

This action deassigns a link connection in a layer domain to a logical link

in the same layer domain.

<G854-10:OPERATION, deassignLinkConnectionFromLink>

*/

void deassignLinkConnectionFromLogicalLink

(in LinkConnectionSetType requestedConnectionList)

raises (LinkAndLinkConnectionNotCompatible,

InvalidLinkConnection,

NotAssignedToCaller,

FailureToDeassignLinkConnection,

FailureToIncreaseCapacity);

}; // interface LogicalLink

/**

The logicalLink managed object is created by the establishLink or

establishLinkAndLinkEnds action.

The logicalLink managed object is deleted by the removeLink or

removeLinkAndLinkEnds.

*/

interface LogicalLink_LayerNetworkDomain_Factory:

ManagedObjectFactory

{

// DELETE_POLICY: notDeletable

}; // interface LogicalLink_LayerNetworkDomain_Factory

/**

4.5.18 LogicalLinkEnd

Managed objects supporting the LogicalLinkEnd interface represent the end

of a logical link. <p>

When present, the Network CTPs in Link End List Package identify the

network CTPs that are present in the Logical Link End. There is no name

binding between Logical Link End and the network CTPs that are associated

with the Logical Link.

*/

valuetype LogicalLinkEndValueType: AbstractLinkEndValueType

{

// linkEndCapacityPackage, has actions only

public PointDirectionalityType
logicalEndDirectionality;

// logicalLinkEndPackage

// GET

public NetworkCTPSetType
networkCTPInLinkEndList;

// conditional

// networkCTPsInLinkEndListPackage

// GET

}; // valuetype LogicalLinkEndValueType

interface LogicalLinkEnd: AbstractLinkEnd

{

/**

This attribute specifies whether the associated link end managed object is

sink, source, or bi-directional.

*/

PointDirectionalityType logicalEndDirectionalityGet ();

/**

This attribute lists the networkCTPs that are presented in the Logical Link

End managed object. Supported if pre-provisioned network CTPs are supported

by the transport technology.

*/

NetworkCTPSetType networkCTPInLinkEndListGet ()

raises (CONDITIONAL_PACKAGE

(networkCTPsInLinkEndListPackage));

/**

The following two actions provide the support for the management of the

capacity of a link end. It specifies actions to assign and release

networkCTPs and/or bandwidth to a link end.

*/

/**

This action assigns networkCTPs to a logical link end.

*/

void assignNetworkCTPOnLogicalLinkEnd

(in NetworkCTPSetType requestedNetworkCTPList,

out NetworkCTPSetType resultingNetworkCTPList)

raises (LinkEndAndNetworkCTPNotCompatible,

InvalidNetworkCTP,

NotEnoughNetworkCTPs,

NetworkCTPAlreadyAssigned,

InconsistentSignalIdentification,

InconsistentDirectionality,

FailureToSetNetworkCTPCallerId,

FailureToDecreaseCapacity);

/**

This action de-assigns a link connection in a layer domain to a logical

link in the same layer domain.

*/

void deassignNetworkCTPFromLogicalLinkEnd

(in NetworkCTPSetType requestedNetworkCTPList);

}; // interface LogicalLinkEnd

/**

*/

interface LogicalLindEnd_LayerNetworkDomain_Factory:

ManagedObjectFactory

{

// DELETE_POLICY: notDeletable

}; // interface LogicalLindEnd_LayerNetworkDomain_Factory

/**

*/

interface LogicalLindEnd_Subnetwork_Factory:

ManagedObjectFactory

{

// DELETE_POLICY: notDeletable

}; // interface LogicalLindEnd_Subnetwork_Factory

/**

4.5.19 ManagedElement

The Managed Element objects are managed objects that

represent telecommunications equipment or TMN entities (either

groups or parts) within the telecommunications network that perform

managed element functions, i.e., provides support and/or service to the

subscriber. Managed elements may or may not additionally perform

mediation/OS functions. A managed element communicates with the

manager over standard CORBA interfaces for the purpose of being

monitored and/or controlled. A managed element contains equipment that

may or may not be geographically distributed. <p>

When the Managed Element object supports attribute value change

notifications, the attributeValueChange notification shall be emitted

when the value of one of the following attributes changes: alarm

status, user label, version, location name, current problem list and

enable audible visual local alarm. For the above attributes that may

not be supported, the behavior for emitting the attribute value change

notification applies only when the attribute is supported by the

managed object. When the object supports state change notifications,

the stateChangeNotification shall be emitted if the value of

administrative state or operational state or usage state changes. <p>

Deletion by management protocol is not allowed. (The object should throw

a DeleteNotAllowed exception in response to a delete operation.) <p>

This interface is based on the M.3100 Managed Element R1

object, which is a subclass of the earlier Managed Element object.

*/

/**

This structure is used to retreive all of the ManagedElement attributes

in one operation. Most unsupported attributes will be returned as a null

string or list if they are not supported. Receipt of a null value does

not mean the attribute is not supported, though.

*/

valuetype ManagedElementValueType: ManageObjectValueType

{

public Istring

systemTitle;

// managedElementPackage

// GET-REPLACE

public AlarmStatusType

alarmStatus;

// managedElementPackage

// GET

public AdministrativeStateType
administrativeState;

// managedElementPackage

// GET-REPLACE

public OperationalStateType
operationalState;

// managedElementPackage

// GET

public UsageStateType

usageState;

// managedElementPackage

// GET

public boolean

enableAudibleVisualLocalAlarm;

// conditional

// audibleVisualLocalAlarmPackage,

// GET-REPLACE

public AlarmSeverityAssignmentProfile

alarmSeverityAssignmentProfile;

// conditional

// alarmSeverityAssignmentPointerPackage

// GET-REPLACE

public CurrentProblemSetType
currentProblemList;

// conditional

// currentProblemListPackage

// GET

public Istring

userLabel;

// conditional

// userLabelPackage

// GET-REPLACE

public Istring

vendorName;

// conditional

// vendorNamePackage

// GET-REPLACE

public Istring

version;

// conditional

// versionPackage

// GET-REPLACE

public Istring

locationName;

// conditional

// locationNamePackage

// GET-REPLACE

public ExternalTimeType

externalTime;

// conditional

// externalTimePackage

// GET-REPLACE

public SystemTimingSourceType
systemTimingSource;

// conditional

// systemTimingSourcePackage

// GET-REPLACE

}; // valuetype ManagedElementValueType

interface ManagedElement: ManagedObject

{

/**

M.3100 specifies a system title attribute which is included here

but we need to discuss what it really means in a CORBA environment.

*/

Istring systemTitleGet ();

/**

This method is used to set the Managed Element's system title.

*/

void systemTitleSet

(in Istring title);

/**

This method returns the current alarm status of the object.

*/

AlarmStatusType alarmStatusGet ();

AdministrativeStateType administrativeStateGet ();

void administrativeStateSet

(in AdministrativeStateType admininstrativeState);

OperationalStateType operationalStateGet ();

UsageStateType usageStateGet ();

/**

This method returns "true" if local audible/visual alarms are

enabled. Setting the value to "false" suppresses local audible/visual

alarms. (Alarms in progress should be silenced.) Resetting the

audible alarm silences the alarm until the next alarm condition occurs.

This is a change from the M.3100 spec, which has "allow" and "inhibit"

actions. An Attribute is preferred because the current setting can be

read and attribute value change notifications issued when changed.

*/

boolean enableAudibleVisualLocalAlarmGet ()

raises (CONDITIONAL_PACKAGE

(audibleVisualLocalAlarmPackage));

/**

This method is used to enable or disable local audible/visual alarms.

*/

void enableAudibleVisualLocalAlarmSet

(in boolean enable)

raises (CONDITIONAL_PACKAGE

(audibleVisualLocalAlarmPackage));

/**

This method is used to silence local audible/visual alarms.

*/

void resetAudibleAlarm ()

raises (CONDITIONAL_PACKAGE

(audibleVisualLocalAlarmPackage));

/**

This method is used to retrieve the alarm severity assignment profile

pointer. If the alarm severity assignment profile pointer is NULL, then one

of the following two choices applies when reporting alarms: a) the managed

system assigns the severity or b) the value 'indeterminate' is used.

*/

AlarmSeverityAssignmentProfile

alarmSeverityAssignmentProfileGet ()

raises (CONDITIONAL_PACKAGE

(alarmSeverityAssigmentPointerPackage));

/**

This method is used to set the alarm severity assignment profile pointer.

*/

void alarmSeverityAssignmentProfileSet

(in AlarmSeverityAssignmentProfile profile)

raises (CONDITIONAL_PACKAGE

(alarmSeverityAssigmentPointerPackage));

/**

This method returns the current existing problems, with severity,

associated with the managed object.

*/

CurrentProblemSetType currentProblemListGet ()

raises (CONDITIONAL_PACKAGE

(currentProblemListPackage));

/**

This method returns a label that may be used by the management system

to identify the object.

*/

Istring userLabelGet ()

raises (CONDITIONAL_PACKAGE

(userLabelPackage));

/**

This method is used to assign a label to the instance. The value may

have significance to the client but not the object. If this attribute is

supported it should be included in notifications emitted by this object.

*/

void userLabelSet

(in Istring userLabel)

raises (CONDITIONAL_PACKAGE

(userLabelPackage));

/**

This method returns the name of the supplier of the associated resource.

*/

Istring vendorNameGet ()

raises (CONDITIONAL_PACKAGE

(vendorNamePackage));

/**

This method sets the name of the supplier of the associated resource.

*/

void vendorNameSet

(in Istring vendorName)

raises (CONDITIONAL_PACKAGE

(vendorNamePackage));

/**

This method returns the version of the associated resource.

*/

Istring versionGet ()

raises (CONDITIONAL_PACKAGE

(versionPackage));

/**

This method sets the version of the associated resource.

*/

void versionSet

(in Istring version)

raises (CONDITIONAL_PACKAGE

(versionPackage));

/**

This method returns the physical location of the associated resource.

*/

Istring locationNameGet ()

raises (CONDITIONAL_PACKAGE

(locationNamePakcage));

/**

This method sets the physical location of the associated resource.

*/

void locationNameSet

(in Istring locationName)

raises (CONDITIONAL_PACKAGE

(locationNamePakcage));

/**

This method returns the Managed Element's time-of-day system time.

This attribute functions as a reference for all time stamp activities

in the managed element.

*/

ExternalTimeType externalTimeGet ()

raises (CONDITIONAL_PACKAGE

(externalTimePackage));

/**

This method sets the Managed Element's time-of-day system time.

This attribute functions as a reference for all time stamp activities

in the managed element.

*/

void externalTimeSet

(in ExternalTimeType externalTime)

raises (CONDITIONAL_PACKAGE

(externalTimePackage));

/**

This method returns the Managed Element's System Timing Source,

which is used to specify the primary and secondary managed element

timing source for synchronization.

*/

SystemTimingSourceType systemTimingSourceGet ()

raises (CONDITIONAL_PACKAGE

(systemTimingSourcePackage));

/**

This method is used to set the Managed Element's System Timing Source,

which is used to specify the primary and secondary managed element

timing source for synchronization.

*/

void systemTimingSourceSet

(in SystemTimingSourceType systemTimingSource)

raises (CONDITIONAL_PACKAGE

(systemTimingSourcePackage));

MANDATORY_NOTIFICATION

(ITU_M3100::Notifications, environmentalAlarmR1);

MANDATORY_NOTIFICATION

(ITU_M3100::Notifications, equipmentAlarmR1);

MANDATORY_NOTIFICATION

(ITU_M3100::Notifications, communicationsAlarmR1);

MANDATORY_NOTIFICATION

(ITU_M3100::Notifications, processingErrorAlarmR1);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, objectCreation,

createDeleteNotificationPackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, objectDeletion,

createDeleteNotificationPackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, attributeValueChange,

attributeValueChangeNotificationPackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, stateChange,

stateChangeNotificationPackage);

}; // interface ManagedElement

/**

4.5.20 ManagedElementComplex

The Managed Element Complex object class is a class of managed objects that

represents a collection of network elements. An OS can reference and manage

one or more NEs belonging to the complex represented by an instance of this

object class.

This interface is based on the M.3100 managedElementComplex specification.

The ManagedElementComplexValueType structure is used to retrieve all of the

ManagedElementComplex attributes in one operation. Most unsupported attributes

will be returned as a null string or list if they are not supported. Receipt

of a null value does not mean the attribute is not supported, though.

*/

valuetype ManagedElementComplexValueType: ManagedObjectValueType

{

public Istring

systemTitle;

// managedElementPackage

// GET-REPLACE

}; // valuetype ManagedElementComplexValueType

interface ManagedElementComplex: ManagedObject

{

/**

M.3100 specifies a system title attribute which is included here but we need

to discuss what it really means in a CORBA environment.

*/

Istring systemTitleGet ();

/**

This method is used to set the Managed Element Complex's system title.

*/

void systemTitleSet

(in Istring title);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, objectCreation,

createDeleteNotificationsPackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, objectDeletion,

createDeleteNotificationsPackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, attributeValueChange,

attributeValueChangeNotificationPackage);

// ???

// M.3100 doesn't have attributeValueChange notification,

// but the systemTitle attribute is GET-REPLACE

// Need to discuss if this notification is needed or not.

}; // interface ManagedElementComplex

/**

4.5.21 MPCrossConnection

The MPCrossConnection object class represents an assignment relationship

between the termination point or GTP object listed in the From Termination

attribute and the termination point or GTP objects listed in the To Termination

attributes of the contained crossConnection managed objects.

A multipoint cross-connection can be established between one of CTP Sink, CTP

Bidirectional, TTP Source, TTP Bidirectional, or GTP; and a set whose members

are CTP Source, CTP Bidirectional, TTP Sink, TTP Bidirectional, or GTP.

The fromTermination attribute will always be non-NULL. The termination point or

GTP object pointed to by the fromTermination attribute is related to all the

termination point or GTP objects pointed to by the toTermination attribute of

the contained crossConnection managed objects in such a way that traffic can

flow between the termination points represented by these managed objects.

Information flows from the From Termination to the To Termination of the

contained cross-connection objects.

If the objects listed in the fromTermination attribute and in the toTermination

attribute of the contained crossConnection objects are GTPs, the nth element of

the From Termination GTP is related to the nth element of the To Termination

GTP (for every n).

The total rate of the From Terminations must be equal to the total rate of To

Terminations in each contained crossConnection object.

The attribute Signal Type describes the signal that is cross-connected. The

termination points or GTPs that are cross-connected must have signal types

that are compatible.

The following are the definitions of the administrative state and the

operational state attributes:

Administrative State:

- Unlocked: The mpCrossConnection object is administratively unlocked. It

allows traffic to pass through each contained connection depending on its

administrative state.

- Locked: No traffic is allowed to pass through the Cross-Connection between

the cross-connected termination points. The effect of this value overrides the

effect of the administrative state of each contained cross-connection.

Operational State:

The operational state of a Multipoint Cross-Connection object reflects the

overall health of the cross- connection including all the Cross-Connection

objects contained in the Multipoint Cross-Connection.

- Enabled: The Cross-Connection is performing its normal function. Note that

some (but not all) of the cross-connection objects contained in the Multipoint

Cross-Connection may be disabled.

- Disabled: The Cross-Connection is incapable of performing its normal

cross-connection function. All the cross-connection objects contained in the

Multipoint Cross-Connection are disabled.

Availability Status:

The supported values for this attribute are:

- In test

- Degraded: The Multipoint Cross-Connection is degraded in some respect. For

instance, if one or more (but not all) Cross-Connection objects contained in

the Multipoint Cross-Connection are disabled, the Multipoint Cross-Connection

will be considered as degraded. The Multipoint Cross-Connection remains

available for service (i.e. its operational state is enabled) while it is

degraded.

- Empty SET.

This interface is based on the M.3100 mpCrossConnection, mpCrossConnectionR1,

and namedMPCrossConnection specifications.

This interface includes the attributes "redline", "userLable", and

"crossConnectionName" that extend MPCrossConnection to NamedMPCrossConnection

in M.3100.

The MPCrossConnectionValueType structure is used to retrieve all of the

MPCrossConnection attributes in one operation. Most unsupported attributes

will be returned as a null string or list if they are not supported. Receipt

of a null value does not mean the attribute is not supported, though.

*/

valuetype MPCrossConnectionValueType: ManagedObjectValueType

{

public AdministrativeStateType
adminState;

// mpCrossConnectionPackage

// GET-REPLACE

public OperationalStateType
operationalState;

// mpCrossConnectionPackage

// GET

public AvailabilitySetType
availabilityStatus;

// mpCrossConnectionPackage

// GET

public SignalIdType

signalIdType;

// mpCrossConnectionPackage

// GET

public MO

fromTermination;

// mpCrossConnectionPackage

// GET

// May be Null

public Istring

userLabel;

// conditional

// userLabelPackage

// GET-REPLACE

public boolean

redline;

// conditional

// redlinePackage

// GET-REPLACE

public Istring

crossConnectionName;

// conditional

// namedCrossConnectionPakcage

// GET-REPLACE

}; // valuetype MPCrossConnectionValueType

interface MPCrossConnection: ManagedObject

{

OperationalStateType operationalStateGet ();

AdministrativeStateType administrativeStateGet ();

void administrativeStateSet

(in AdministrativeStateType admininstrativeState);

AvailabilityStatusType availabilityStatusGet ();

/**

This operation returns the signal type of the MPCrossConnection. The signal

type can either be simple, bundle, or complex. If the signal type is simple,

it consists of a single type of characteristic information. If the signal type

is bundle, it is made up of a number of signal types all of the same

characteristic information. If the signal type is complex, it consists of a

sequence of bundle signal type. The order in the complex signal type represents

the actual composition of the signal.

*/

SignalIdType signalIdTypeGet ();

/**

This method returns a Null value or the reference of a TTP (source or

bidirectional), a CTP (sink or bidirectional) or a GTP composed of members of

one of these categories.

*/

MO fromTerminationGet ();

// the return value could be null

/**

This attribute identifies whether the associated managed object is red lined,

e.g. identified as being part of a sensitive circuit.

*/

boolean redlineGet ()

raises (CONDITIONAL_PACKAGE

(redlinePackage));

void redlineSet

(in boolean redline)

raises (CONDITIONAL_PACKAGE

(redlinePackage));

/**

*/

Istring userLabelGet ()

raises (CONDITIONAL_PACKAGE

(userLabelPackage));

void userLabelSet

(in Istring userLable)

raises (CONDITIONAL_PACKAGE

(userLabelPackage));

/**

This attribute is a descriptive name for a cross-connection.

*/

Istring crossConnectionNameGet ()

raises (CONDITIONAL_PACKAGE

(namedCrossConnectionPackage));

void crossConnectionNameSet

(in Istring crossConnectionName)

raises (CONDITIONAL_PACKAGE

(namedCrossConnectionPackage));

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, objectCreation,

createDeleteNotificationsPackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, objectDeletion,

createDeleteNotificationsPackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, attributeValueChange,

attributeValueChangeNotificationPackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, stateChange,

stateChangeNotificationPackage);

}; // interface MPCrossConnection

/**

Instances of MPCrossConnection are contained in the Fabric object. They are

automatically created or deleted as the result of the connect and disconnect

methods on the Fabric object. See the Fabric object for details.

*/

interface MPCrossConnection_Fabric_Factory: ManagedObjectFactory

{

// DELETE_POLICY: notDeletable???

}; // MPCrossConnection_Fabric_Factory

/**

4.5.22 Network

The Network managed objects are collections of interconnected

telecommunications and management objects (logical or physical) capable

of exchanging information. These objects have one or more common

characteristics, for example they may be owned by a single customer or

provider, or associated with a specific service network. A network may

be nested within another (larger) network, thereby forming a containment

relationship. An example of a network that is contained in another

network is a transmission sub-network. It is owned by a single

administration and can only perform transmission functions. <p>

Deletion by management protocol is not allowed. (The object should throw

a DeleteNotAllowed exception in response to a delete operation.) <p>

This interface is based on the M.3100 NetworkR1 specification.

*/

valuetype NetworkValueType: ManagedObjectValueType

{

public Istring
systemTitle;

// networkR1Package

// GET-REPLACE

public Istring
userLabel;

// conditional

// userLabelPackage

// GET-REPLACE

}; // valuetype NetworkValueType

interface Network: ManagedObject

{

/**

M.3100 specifies a system title attribute which is included here

but we need to discuss what it really means in a CORBA environment.

*/

Istring systemTitleGet ();

/**

This method is used to set the Managed Element's system title.

*/

void systemTitleSet

(in Istring title);

/**

This method returns a label that may be used by the management system

to identify the object.

*/

Istring userLabelGet ()

raises (CONDITIONAL_PACKAGE

(userLabelPackage));

/**

This method is used to assign a label to the instance. The value may

have significance to the client but not the object. If this attribute is

supported it should be included in notifications emitted by this object.

*/

void userLabelSet

(in Istring userLabel)

raises (CONDITIONAL_PACKAGE

(userLabelPackage));

}; // interface Network

/**

4.5.23 NetworkCTP (Network Connection Termination Point)

The Network CTP object class is a class of managed objects that terminates

Link connections and/or originates Sub-network Connections. The resource

receives (sends) information (traffic), via a Link connection, from (to)

an instance representing a NetworkConnection Termination Point, and sends

(receives) it on, via a Sub-network Connection, to (from) instances

representing either NetworkCTP or a NetworkTTP in the same Sub-network.

An instance of this class may only have connectivity relationships (link

connection or sub-network connection) with instances that represent Network

Connection Termination Points which are at the same layer.

[G.852.3,COMMUNITY_POLICY:signalid]

An instance of this class may be sub-network connected, via a Sub-network

Connection, to a single instance which represents a Network Trail Termination

Point at the same layer.

[G.853.1:RELATIONSHIP: subnetworkConnectionIsTerminatedByPointToPoint,

ROLE:a_endCTP]

The Sub-network Connection Pointer attribute points to the managed object

representing the relationship with the network termination point(s), within

the same Sub-network, that receive(s) (send(s)) information (traffic) from (to)

this network termination point, or is null.

[G.853.1: RELATIONSHIP: subnetworkConnectionIsTerminatedByPointToPoint , ROLE:

a_endCTP]

The referenced managed object shall represent a Sub-network Connection. Where

the NetworkCTP participates in many sub-network connections for different

sub-networks, the Sub-network Connection Pointer is null.

Any network termination points identified by the related Sub-network Connection

indicate that a relationship exists, but this does not indicate that information

can flow between the network termination points. This capability is indicated by

a combination of the State Attributes including the Operational State.

The Connectivity Pointer attribute points to the managed object representing the

Connection which relates this instance to the instance representing the Network

Connection Termination Point that sends (receives) information (traffic) to

(from) this network termination point, or is null.

[G.853.1,RELATIONSHIP:, ROLE: z_endCTP]linkConnectionIsTerminatedByPointToPoint

If it is necessary to configure an instance of this object class to be

unidirectional, a subclass may be specified for which directionality is

permitted to be settable.

"[G.852.2,RESOURCE:connection termination point]

*/

valuetype NetworkCTPValueType: NetworkTPValueType

{

public long

channelNumber;

// conditional

// channelNumberPackage

// GET, SET-BY-CREATE

public NetworkCTP

superPartitionPointer;

// conditional

// networkCTPPackage

// GET

public NetworkCTP

subPartitionPointer;

// conditional

// networkCTPPackage

// GET

public NetworkTTPSetType
serverTTPPointer;

// conditional

// serverTTPPointerPackage

// GET

}; // valuetype NetworkCTPValueType

interface NetworkCTP: NetworkTP

{

/**

Supported if the channel number attribute is supported by an instance of this

managed object class.

*/

long channelNumberGet ()

raises (CONDITIONAL_PACKAGE

(channelNumberPackage));

/**

This package identifies instances of the network CTP managed object class

at higher and lower levels of subnetwork partitioning (within a given layer)

by the use of partitioning pointers.

Supported if pointers to instances of network termination points at higher

or lower levels of sub-network partitioning are supported by this managed

object class.

*/

/**

This attribute is a pointer to a network CTP which is in a higher level

partition. It will only be present for those network CTPs in the lower

partition which have a direct correspondence to the network CTPs at the

higher level. It can be null.

*/

NetworkCTP superPartitionPointerGet ()

raises (CONDITIONAL_PACKAGE

(networkCTPPackage));

/**

This attribute is a pointer to a network CTP which is in a lower level

partition. Where the lowest level of network CTP points to a NE CTP

via the NE assignment pointer, the value of the sub partition pointer

is null.

*/

NetworkCTP subPartitionPointerGet ()

raises (CONDITIONAL_PACKAGE

(networkCTPPackage));

/**

This attribute defines the TTP which may serve a CTP and/or linkEnd in

another layer. Usually a TTP or TTPs in a higher order layer will serve

a CTP or CTPs in a lower order layer.

Supported if the server trail termination point pointer attribute is supported

by an instance of this managed object class.

*/

NetworkTTPSetType serverTTPPointerGet ()

raises (CONDITIONAL_PACKAGE

(serverTTPPointerPackage));

}; // interface NetworkCTP

/**

*/

interface NetwortCTP_LayerNetworkDomain_Factory:

ManagedObjectFactory

{

// DELETE_POLICY: notDeletable

}; // interface NetwortCTP_LayerNetworkDomain_Factory

/**

*/

interface NetwortCTP_Subnetwork_Factory:

ManagedObjectFactory

{

// DELETE_POLICY: notDeletable

}; // interface NetwortCTP_Subnetwork_Factory

/**

4.5.24 NetworkTP (Network Termination Point)

Managed objects supporting the NetworkTP interface represent the termination

of a transport entity, such as an instance representing a Trail or a Link

Connection. <p>

The sncPointer is used to point to a Sub-network Connection. However, not all

network termination points will have a flexible connection, and it may be more

appropriate to point to another network termination point, for example in a

regenerator the two network connection termination points would point to each

other as there is no flexibility between them. In this instance the

networkTPPointer shall be used. Both pointers are conditional.

[G.853.1,RELATIONSHIP:subnetworkConnectionIsTerminatedByPointToPoint, ROLE:

a_endCTP or z_endCTP] <p>

The Connectivity Pointer attribute points to the managed object representing

the Link connection or Trail which relates this instance to other instance(s)

representing the Network Termination Point(s).

[G.853.1,RELATIONSHIP:trailIsTerminatedByPointToPoint, ROLE: a_endCTP or

z_endCTP]

[G.853.1,RELATIONSHIP:linkConnectionIsterminatedByPointToPoint, ROLE: a_endCTP

or z_endCTP] <p>

The NetworkTP interface is not instantiable.

*/

valuetype NetworkTPValueType: TPValueType

{

public PointDirectionalityType
pointDirectionality;

// networkTerminationPointPackage

// GET

public SignalIdType

signalId;

// networkTerminationPointPackage

// GET, SET-BY-CREATE

public ConfiguredConnectivityType

configuredConnectivity;

// conditional

// configuredConnectivityPackage

// GET

public Pipe

connectivityPointer;

// conditional

// connectivityPointerPackage

// GET

public AdministrativeStateType
administrativeState;

// conditional

// administrativeStatePackage

// GET-REPLACE

public AvailabilitySetType
availabilityStatus;

// conditional

// availabilityStatusPackage

// GET

public Istring

locationName;

// conditional

// localtionNamePackage

// GET-REPLACE

public Istring

userLabel;

// conditional

// userLabelPackage

// GET-REPLACE

public MO

neAssignmentPointer;

// conditional

// neAssignmentPakcage

// GET

public SubnetworkConnectionSetType

subnetworkConnectionPointer;

// conditional

// sncPointerPackage

// GET

public NetworkTP

networkTPPointer;

// conditional

// networkTTPointerPackage

// GET

}; // valuetype NetworkTPValueType

interface NetworkTP: TP

{

/**

This attribute indicates the directionality of a networkTP managed object

instance.

*/

PointDirectionality pointDirectionalityGet ();

/**

This attribute defines the characteristic information of the layer to which

the entity under consideration belongs.

*/

SignalIdType signalIdGet ();

/**

This attribute indicates the configured connectivity of a Network Termination

Point managed object (or subclass). The possible values for this attribute are

sourceConnect, sinkConnect, bidirectionalConnect and noConnect.

For a Network Termination Point managed object with pointDirectionality equal

to sink, the allowed values for this attribute are noConnect and sinkConnect.

For a Network Termination Point managed object with pointDirectionality equal

to source, the allowed values for this attribute are noConnect and

sourceConnect.

For a Network Termination Point managed object with pointDirectionality equal

to bidirectional, the allowed values for this attribute are noConnect and

bidirectionalConnect.

For some technologies, sinkConnect and sourceConnect may also be allowed for

a bidirectional Network Termination Point managed object.

Supported if configured connectivity indication is supported by this managed

object instance.

*/

ConfiguredConnectivityType configuredConnectivityGet ()

raises (CONDITIONAL_PACKAGE

(configuredConnectivityPackage));

/**

This package identifies an instance of a Link connectiion or Trail managed

object class which is terminated by the Network Termination Point.

This attribute points to the Link connection or Trail terminated by the

Network Termination Point.

Supported if the network termination point terminates a link connection or

a trail.

*/

Pipe connectivityPointerGet ()

raises (CONDITIONAL_PACKAGE

(connectivityPointerPackage));

/**

Supported if the resource represented by this managed object is capable of

being administratively removed from service (point view).

*/

AdministrativeStateType administrativeStateGet ()

raises (CONDITIONAL_PACKAGE

(administrativeOperationalStatesPackage));

void administrativeStateSet ()

raises (CONDITIONAL_PACKAGE

(administrativeOperationalStatesPackage));

OperationalState operationalStateGet ()

raises (CONDITIONAL_PACKAGE

(administrativeOperationalStatesPackage));

/**

Supported if the resource represented by this managed object is capable of

representing its availability (point view).

*/

AvailabilitySetType availabilityStatusGet ()

raises (CONDITIONAL_PACKAGE

(availabilityStatusPackage));

/**

Supported if the user label attribute is supported by an instance of this

managed object class.

*/

Istring locationNameGet ()

raises (CONDITIONAL_PACKAGE

(locationNamePackage));

void locationNameSet

(in Istring locationName)

raises (CONDITIONAL_PACKAGE

(locationNamePackage));

/**

Supported if the user label attribute is supported by an instance of this

managed object class.

*/

Istring userLabelGet ()

raises (CONDITIONAL_PACKAGE

(userLabelPackage));

void userLabelSet

(in Istring userLabel)

raises (CONDITIONAL_PACKAGE

(userLabelPackage));

/**

This attribute points from the lowest level Network TP in the partitioning

hierarchy to a NE TP which represents the functionality which supports

the Network TP. The sub-partition pointer for a Network CTP which utilises

the NE assignment pointer will be NULL.

Supported if the Network Element view of termination points is available.

*/

MO neAssignmentPointerGet ()

raises (CONDITIONAL_PACKAGE

(neAssignmentPointerPackage));

/**

This attribute points to the ordered list of subnetwork connection(s) which

have a relationship with the network termination point. When no subnetwork

connection is present this pointer points to a subnetwork or is NULL.

This list has a singal entry for point to point applications, and may have

multiple entries for point to multipoint applications.

Supported if a network termination point may be flexibly connected to another

network termination point.

*/

SubnetworkConnectionSetType subnetworkConnectionPointerGet ()

raises (CONDITIONAL_PACKAGE

(sncPointerPackage));

/**

This attributes points to a network termination point.

Supported if there is no flexibity between network termination points

(degenerate case only).

*/

NetworkTP networkTPPointerGet ()

raises (CONDITIONAL_PACKAGE

(networkTTPointerPackage));

MANDATORY_NOTIFICATION

(ITU_X721::Notifications, objectCreation);

MANDATORY_NOTIFICATION

(ITU_X721::Notifications, objectDeletion);

}; // interface NetworkTP

/**

4.5.25 NetworkTTP (Network Trail Termination Point)

Managed objects supporting the NetworkTTP interface terminate Trails and

Sub-network Connections in the Network viewpoint.

An instance of this class may only have Trail relationships with another

Network Trail Termination Points which are at the same layer.

[G.852.3,COMMUNITY_POLICY:signalid]

An instance of this class may be subnetworkconnected, via a Sub-network

Connection, to a single Network Connection Termination Point, or a Network

Trail Termination Point Source at the same layer.

[G.853.1,RELATIONSHIP:subnetworkConnectionIsTerminatedByPointToPoint, ROLE:

z_endCTP]

The Sub-network Connection Pointer attribute points to the managed object

representing the relationship with one or more Network Connection Termination

Points, within the same Sub-network, that send (receive) information (traffic)

to (from) this network termination point, or is null.

Any network termination point identified by the related Sub-network Connection

indicates that a relationship exists, but this does not indicate that

information can flow between the network termination points. This capability is

indicated in a combination of the State attributes, including the Operational

State.

The Connectivity Pointer attribute points to the managed object representing

the Trail which relates this instance to the instances representing the

Network Trail Termination Points, that send (receive) information (traffic)

to (from) this network termination point at the same layer, or is null.

[G.853.1,RELATIONSHIP:trailIsTerminatedByPointToPoint, ROLE: z_endCTP]

If it is necessary to configure an instance of this object class to be

unidirectional, a subclass may be specified for which directionality is

permitted to be settable.

*/

valuetype NetworkTTPValueType: NetworkTPValueType

{

public ObjectClassSetType
supportableClientList;

// conditional

// supportableClientListPackage

// GET, SET-BY-CREATE

public NetworkCTPSetType
clientCTPList;

// conditional

// clientCTPListPackage

// GET

}; // valuetype NetworkTTPValueType

interface NetworkTTP: NetworkTP

{

/**

The value of this attribute is the list of object classes representing

the clients which the particular managed object is capable of supporting.

This may be a subset of the client layers identified in Rec. G.803 by

particular server layer managed object.

*/

ObjectClassSetType supportableClientListGet ()

raises (CONDITIONAL_PACKAGE

(supportableClientListPackage));

/**

This attribute defines the CTP or list of CTPs which are clients of a TTP

or TTPs in another layer. Usually a single TTP in a higher order layer will

support a number of CTPs in a lower order layer. Alternatively, where

concatenation is used, a number of TTPs in a lower order layer may serve a

CTP or CTPs in a higher order layer.

Supported if management of the client networkCTPs of this managed object is

supported.

*/

NetworkCTPSetType clientCTPListGet ()

raises (CONDITIONAL_PACKAGE

(clientCTPListPackage));

}; // interface NetworkTTP

/**

If, during a delete operation, the networkTTP terminates a trail then the

delete operation will fail with a NetworkTTPTerminatesTrail exception.

If, during a delete operation, the networkTTP is associated with a subnetwork

or an access group then the delete operation will fail with the exceptions

NetworkTTPAssociatedWithSubnetwork or NetworkTTPAssociatedWithAccessGroup

respectively.

*/

interface NetworkTTP_LayerNetworkDomain_Factory:

ManagedObjectFactory

{

NetworkTTP create

(in LayerNetworkDomain superior,

in Istring name, // no auto-naming, cannot be null

in IstringSetType packageNameList,

/**

??? Is this correct in M.3100.

in MOSetType supportedByObjectList,

// terminationPointPackage

// GET

*/

in SignalIdType signalId,

// networkTerminationPointPackage

// GET, SET-BY-CREATE

in CharacteristicInfoType characteristicInfo,

// conditional

// characteristicInformationPackage

// GET, SET-BY-CREATE

in MO networkLevelPointer,

// conditional

// networkLevelPackage

// GET-REPLACE

in AlarmSeverityAssignmentProfile profile,

// conditional

// alarmSeverityAssignmentPointerPackage

// GET-REPLACE

in AdministrativeStateType administrativeState,

// conditional

// administrativeStatePackage

// GET-REPLACE

in Istring locationName,

// conditional

// localtionNamePackage

// GET-REPLACE

in Istring userLabel,

// conditional

// userLabelPackage

// GET-REPLACE

in ObjectClassSetType supportableClientList)

// conditional

// supportableClientListPackage

// GET, SET-BY-CREATE

raises (DuplicateName,

CreateError,

GeneralError,

FailureToCreateNetworkTTP);

// DELETE_POLICY: deleteOnlyIfNoContainedObjects

// NetworkTTPTerminatesTrail

// NetwrokTTPAssociatedWithSubnetwork

// NetworkTTPAssociatedWithAccessGroup

// FailureToRemoveNeworkTTP

}; // interface NetworkTTP_LayerNetworkDomain_Factory

/**

If, during a delete operation, the networkTTP terminates a trail then the

delete operation will fail with an exception NetworkTTPTerminatesTrail.

*/

interface NetworkTTP_Subnetwork_Factory:

ManagedObjectFactory

{

NetworkTTP create

(in Subnetwork superior,

in Istring name, // no auto-naming, cannot be null

in IstringSetType packageNameList,

/**

??? Is this correct in M.3100.

in MOSetType supportedByObjectList,

// terminationPointPackage

// GET

*/

in SignalIdType signalId,

// networkTerminationPointPackage

// GET, SET-BY-CREATE

in CharacteristicInfoType characteristicInfo,

// conditional

// characteristicInformationPackage

// GET, SET-BY-CREATE

in MO networkLevelPointer,

// conditional

// networkLevelPackage

// GET-REPLACE

in AlarmSeverityAssignmentProfile profile,

// conditional

// alarmSeverityAssignmentPointerPackage

// GET-REPLACE

in AdministrativeStateType administrativeState,

// conditional

// administrativeStatePackage

// GET-REPLACE

in Istring locationName,

// conditional

// localtionNamePackage

// GET-REPLACE

in Istring userLabel,

// conditional

// userLabelPackage

// GET-REPLACE

in ObjectClassSetType supportableClientList)

// conditional

// supportableClientListPackage

// GET, SET-BY-CREATE

raises (DuplicateName,

CreateError,

GeneralError,

FailureToCreateNetworkTTP);

// DELETE_POLICY: deleteOnlyIfNoContainedObjects

// NetworkTTPTerminatesTrail

// FailureToRemoveNetworkTTP

}; // interface NetworkTTP_Subnetwork_Factory

/**

4.5.26 Pipe

Managed objects supporting the Pipe interface ensure the transfer of

information between two or more termination points.

If an instance of this class is bidirectional, the a- and z-termination points

shall also be bidirectional. If an instance of this class is unidirectional,

the a-point shall be the source TP or bidirectional TPand the z-termination

point shall be the sink TP or bidirectional TP.

For unidirectional connections, the aEndNWTPList attribute shall identify the

source end.

The pipeR2 class is not instantiable because the transfer is effected via

trail and link connection.

*/

valuetype PipeValueType: ManageObjectValueType

{

public DirectionalityType
directionality;

// pipeR2Package

// GET

public SignalIdType

signalId;

// pipeR2Package

// GET, SET-BY-CREATE

public MOSetType

aEndNetworkTPList;

// pipeR2Package

// GET, SET-BY-CREATE

public MOSetType

zEndNetworkTPList;

// pipeR2Package

// GET, SET-BY-CREATE

public AdministrativeStateType
administrativeState;

// conditional

// administrativeStatePackage

// GET-REPLACE

public OperationalStateType
operationalState;

// conditional

// operationalStatePackage

// GET

public AlarmSeverityAssignmentPorfile

alarmSeverityAssignmentProfile;

// conditional

// alarmSeverityAssignmentPointerPackage

// GET-REPLACE

public AvailabilitySetType
availabilityStatue;

// conditional

// availabilityStatusPackage

// GET

public boolean

protected;

// conditional

// protectedPackage

// GET, SET-BY-CREATE

public MO

qualityOfConnectivityService;

// conditional

// qualityOfConnectivityServicePackage

// GET

public MOSetType

supportedByObjectList;

// conditional

// supportedByPackage

// GET-REPLACE, ADD-REMOVE

public CurrentProblemSetType
currentProblemList;

// conditional

// tmnCommunicationsAlarmInformationPackage

// GET

public AlarmStatusType

alarmStatus;

// conditional

// tmnCommunicationsAlarmInformationPackage

// GET

public Istring

userLabel;

// conditional

// userLabelPackage

// GET-REPLACE

}; // valuetype PipeValueType

interface Pipe : ManagedObject

{

/**

The directionality attribute indicates whether transmission is unidirectional

or bi-directional.

*/

DirectionalityType directionalityGet ();

/**

The Signal Id attribute describes the signal that is transferred across a

Connectivity instance. The managed objects representing the network termination

points that are related by this instance must have signal Ids that are

compatible. <p>

*/

SignalIdType signalIdGet ();

/**

The value of this attribute identifies one or more network termination points

of an instance of a sub-class of the Pipe object class. This attribute cannot

be null.

*/

MOSetType aEndNetworkTPListGet ();

/**

The value of this attribute identifies one or more network termination points

of an instance of a sub-class of the Pipe object class.

*/

MOSetType zEndNetworkTPListGet ();

/**

*/

AdminstrativeStateType administrativeStateGet ()

raises (CONDITIONAL_PACKAGE

(administrativeStatePackage));

void administrativeStateSet

(in AdministrativeStateType adminState)

raises (CONDITIONAL_PACKAGE

(administrativeStatePackage));

/**

The operational state indicates the capability to carry a signal. <p>

*/

OperationalStateType operationalStateGet ()

raises (CONDITIONAL_PACKAGE

(operationalStatePackage));

/**

*/

AlarmSeverityAssignmentProfile

alarmSeverityAssignmentProfileGet ()

raises (CONDITIONAL_PACKAGE

(alarmSeverityAssigmentPointerPackage));

void alarmSeverityAssignmentProfileSet

(in AlarmSeverityAssigmentProfile profile)

raises (CONDITIONAL_PACKAGE

(alarmSeverityAssigmentPointerPackage));

/**

*/

AvailabilitySetType availabilityStatusGet ()

raises (CONDITIONAL_PACKAGE

(availabilityStatusPackage));

/**

This attribute identifies whether the associated managed object is protected

or not. The value TRUE implies it is protected.

*/

boolean protectedGet ()

raises (CONDITIONAL_PACKAGE

(protectedPackage));

/**

This attribute identifies the quaility of service for Pipe and its subclass,

and require further definition.

*/

MO quailityOfConnectivityServiceGet ()

raises (CONDITIONAL_PACKAGE

(quailityOfConnectivityServicePackage));

/**

*/

MOSetType supportedByObjectListGet ()

raises (CONDITIONAL_PACKAGE

(supportedByPackage));

void supportedByObjectListSet

(in MOSetType objectList)

raises (CONDITIONAL_PACKAGE

(supportedByPackage));

void supportedByObjectListAdd

(in MOSetType objectList)

raises (DuplicateItem,

CONDITIONAL_PACKAGE

(supportedByPackage));

void supportedByObjectListRemove

(in MOSetType objectList)

raises (ItemNotFound,

CONDITIONAL_PACKAGE

(supportedByPackage));

/**

This method returns the current existing problems, with severity,

associated with the managed object.

*/

CurrentProblemSetType currentProblemListGet ()

raises (CONDITIONAL_PACKAGE

(tmnCommunicationsAlarmInformationPackage));

AlarmStatusType alarmStatusGet ()

raises (CONDITIONAL_PACKAGE

(tmnCommunicationsAlarmInformationPackage));

/**

*/

Istring userLabelGet ()

raises (CONDITIONAL_PACKAGE

(userLabelPackage));

void userLabelSet

(in Istring userLabel)

raises (CONDITIONAL_PACKAGE

(userLabelPackage));

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, attributeValueChange,

attributeValueChangeNotificationPackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, objectCreation,

createDeleteNotificationsPackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, objectDeletion,

createDeleteNotificationsPackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, stateChange,

stateChangeNotificationPackage);

CONDITIONAL_NOTIFICATION

(ITU_M3100::Notifications, communicationAlarmR1,

tmnCommunicatioinsAlarmInformationPackage);

}; // interface Pipe

/**

4.5.27 ScanPoint

Managed objects supporting the ScanPoint interface to monitor external

conditions related to the managed element, for that events of external devices

(such as power failure, fire alarm, door open, humidity, etc.) are monitored.

Each instance of this object class represents one scan point. Environmental

alarm will be emitted if a scan point detects an abnormal condition. The text

message specified in the externalPointMessage attribute is to be included in the

additionalText field of the environmentalAlarm notification when an alarm is

emitted for the scan point. The severity of such alarms can be configured

through an optional package.

The currentProblemList represents the current problems of the external entity

being monitored, i.e. not current problems with the scan function itself. The

probable cause of the currentProblemList is by itself not a precise indicator of

service affecting alarms (e.g. due to standby resources) and the serviceAffected

attribute is used as a unifying indicator of service affecting conditions.

*/

valuetype ScanPointValueType: ExternalPointValueType

{

public CurrentProblemSetType
currentProblemList;

// externalScanPackage

// GET

public boolean

serviceAffected;

// externalScanPackage

// GET

public AlarmSeverityAssignmentProfile

alarmSeverityAssignmentProfile;

// conditional

// alarmSeverityAssignmentPointerPackage

// GET-REPLACE

}; // valuetype ScanPointValueType

interface ScanPoint: ExternalPoint

{

/**

*/

CurrentProblemSetType currentProblemListGet ();

/**

This attributes indicates whether the alarm condition for monitored external

device is service affecting or not.

*/

boolean serviceAffectedGet ();

/**

*/

AlarmSeverityAssignmentProfile

alarmSeverityAssignmentProfileGet

raises (CONDITIONAL_PACKAGE

(alarmSeverityAssignmentPointerPackage));

void alarmSeverityAssignmentProfileSet

(in AlarmSeverityAssignmentProfile profile)

raises (CONDITIONAL_PACKAGE

(alarmSeverityAssignmentPointerPackage));

MANDATORY_NOTIFICATION

(ITU_X721::Notifications, environmentalAlarm);

}; // interface ScanPoint

/**

This interface is used to create an scanPoint object relative to an equipment

object.

*/

interface ScanPoint_Equipment_Factory: ManagedObjectFactory

{

/**

The naming of created scanPoint object shall be stringified pointId.

*/

ScanPoint create

(in Equipment superior,

in IstringSetType packageNameList,

in AdminstrativeStateType administrativeState,

// externalPointPackage

// GET-REPLACE

in long exteralPointId,

// externalPointPackage

// GET, SET-BY-CREATE

in Istring externalPointMessage,

// externalPointPackage

// GET-REPLACE

in Istring locationName,

// conditional

// locationNamePackage

// GET-REPLACE

in AlarmSeverityAssignmentProfile profile)

// conditional,

// alarmSeverityAssignmentPointerPackage,

// GET-REPLACE

raises (DuplicateName,

CreateError,

GeneralError);

}; // interface ScanPoint_Equipment_Factory

/**

This interface is used to create an scanPoint object relative to an

managedElement object.

*/

interface ScanPoint_ManagedElement_Factory: ManagedObjectFactory

{

/**

The naming of created scanPoint object shall be stringified pointId.

*/

ScanPoint create

(in ManagedElement superior,

in IstringSetType packageNameList,

in AdminstrativeStateType administrativeState,

// externalPointPackage

// GET-REPLACE

in long exteralPointId,

// externalPointPackage

// GET, SET-BY-CREATE

in Istring externalPointMessage,

// externalPointPackage

// GET-REPLACE

in Istring locationName,

// conditional

// locationNamePackage

// GET-REPLACE

in AlarmSeverityAssignmentProfile profile)

// conditional,

// alarmSeverityAssignmentPointerPackage,

// GET-REPLACE

raises (DuplicateName,

CreateError,

GeneralError);

}; // interface ScanPoint_ManagedElement_Factory

/**

4.5.28 Software

Software managed objects represent logical information stored in

equipment, including programs and data tables. Software may be nested

within other software, thereby creating a containment relationship. <p>

When the object supports attribute value change notifications, the

attributeValueChange notification shall be emitted when the value of

one of the following atrributes changes: alarm status, affected objects,

user label, version, and current problem list. Because support

for the above attributes is optional, the behaviour for emitting the

attribute value change notification applies only when the corresponding

attribute is supported by the managed object. When the object supports

state change notifications, the stateChangeNotification shall be

emitted if the value of administrative state or operational state

changes (when those attributes are supported). <p>

This interface is based on the M.3100 SoftwareR1 specification.

This structure is used to retreive all of the Software attributes

in one operation. Most unsupported attributes will be returned as a null

string or list if they are not supported. Receipt of a null value does

not mean the attribute is not supported, though.

*/

valuetype SoftwareValueType: ManagedObjectValueType

{

public OperationalStateType
operationalState;

// conditional

// administrativeOperationalStatePackage

// GET

public AdministrativeStateType
administrativeState;

// conditional

// administrativeOperationalStatePackage

// GET-REPLACE

public MOSetType

affectedObjects;

// conditional

// affectedObjectListPackage

// GET

public AlarmSeverityAssignmentProfile

alarmSeverityAssignmentProfile;

// conditional

// alarmSeverityAssignmentPointerPackage

// GET-REPLACE

public AlarmStatusType

alarmStatus;

// conditional

// softwareProcessingErrorAlarmR1Package

// GET

public CurrentProblemSetType
currentProblemList;

// conditional

// currentProblemListPackage

// GET

public Istring

userLabel;

// conditional

// userLabelPackage

// GET-REPLACE

public Istring

vendorName;

// conditional

// vendorNamePackage

// GET-REPLACE

public Istring

version;

// conditional

// versionPackage

// GET-REPLACE

}; // valuetype SoftwareValueType

interface Software: ManagedObject

{

OperationalStateType operationalStateGet ()

raises (CONDITIONAL_PACKAGE

(administrativeOperationalStatesPackage));

AdministrativeStateType administrativeStateGet ()

raises (CONDITIONAL_PACKAGE

(administrativeOperationalStatesPackage));

void administrativeStateSet

(in AdministrativeStateType admininstrativeState)

raises (CONDITIONAL_PACKAGE

(administrativeOperationalStatesPackage));

/**

The Affected Object List attribute specifies the object

instances which can be directly affected by a change in state or

deletion of this managed object. The attribute does not force

internal details to be specified, but only the necessary level of

detail required for management.

*/

MOSetType affectedObjectsGet ()

raises (CONDITIONAL_PACKAGE

(affectedObjectListPackage));

/**

This method is used to retrieve the alarm severity assignment profile

pointer. If the alarm severity assignment profile pointer is NULL, then one

of the following two choices applies when reporting alarms: a) the managed

system assigns the severity or b) the value 'indeterminate' is used.

*/

AlarmSeverityAssignmentProfile

alarmSeverityAssignmentProfileGet ()

raises (CONDITIONAL_PACKAGE

(alarmSeverityAssignmentPointerPackage));

/**

This method is used to set the alarm severity assignment profile pointer.

*/

void alarmSeverityAssignmentProfileSet

(in AlarmSeverityAssignmentProfile profile)

raises (CONDITIONAL_PACKAGE

(alarmSeverityAssignmentPointerPackage));

/**

This method returns the current alarm status of the object.

*/

AlarmStatusType alarmStatusGet ()

raises (CONDITIONAL_PACKAGE

(softwareProcessingErrorAlarmR1Package));

/**

This method returns the current existing problems, with severity, associated

with the managed object.

*/

CurrentProblemSetType currentProblemListGet ()

raises (CONDITIONAL_PACKAGE

(currentProblemListPackage));

/**

This method returns a label that may be used by the management system

to identify the object.

*/

Istring userLabelGet ()

raises (CONDITIONAL_PACKAGE

(userLabelPackage));

/**

This method is used to assign a label to the instance. The value may

have significance to the client but not the object. If this attribute is

supported it should be included in notifications emitted by this object.

*/

void userLabelSet

(in Istring userLabel)

raises (CONDITIONAL_PACKAGE

(userLabelPackage));

/**

This method returns the name of the supplier of the associated resource.

*/

Istring vendorNameGet

raises (CONDITIONAL_PACKAGE

(vendorNamePackage));

/**

This method sets the name of the supplier of the associated resource.

*/

void vendorNameSet

(in Istring vendorName)

raises (CONDITIONAL_PACKAGE

(vendorNamePackage));

/**

This method returns the version of the associated resource.

*/

Istring versionGet ()

raises (CONDITIONAL_PACKAGE

(versionPackage));

/**

This method sets the version of the associated resource.

*/

void versionSet

(in Istring version)

raises (CONDITIONAL_PACKAGE

(administrativeOperationalStatesPackage));

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, objectCreation,

createDeleteNotificationsPackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, objectDeletion,

createDeleteNotificationsPackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, attributeValueChange,

attributeValueChangeNotificationPackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, stateChange,

stateChangeNotificationPackage);

CONDITIONAL_NOTIFICATION

(ITU_M3100::Notifications, procesingErrorAlarmR1,

softwareProcessingErrorAlarmR1Package);

}; // interface Software

/**

This interface is used to create Software objects. Auto-naming and

creation by reference are supported.

NOTE:

The operations on this interface do not allow the client to specify which

optional capabilities (those in conditional packages in the CMIP

specification and allowed to throw NotSupported exceptions in IDL) the

managed object is to support. It is left up to the implementation of

the managed object. This is a departure from CMIP, where sometimes the

manager can specify which conditional packages are to be included when

an object is created.

Also note that the methods include parameters that may not be supported in

some implementations. These parameters will simply be ignored. No

exceptions or other indications will be returned. It is up to the client

to query the newly created object to determine its capabilities.

*/

interface Software_Equipment_Factory: ManagedObjectFactory

{

/**

This method is used to create an instance of a Software object relative to an

Equipment instance.

*/

Software create

(in Equipment superior,
// superior object

inout Istring name,
// auto-naming if null

in IstringSetType packageNameList,

in AdministrativeStateType adminState,

// conditional

// administrativeOperationalStatePackage

// GET-REPLACE

in AlarmSeverityAssignmentProfile profile,

// conditional

// alarmSeverityAssignmentPointerPackage

// GET-REPLACE

in Istring userLabel,

// conditional

// userLabelPackage

// GET-REPLACE

in Istring vendorName,

// conditional

// vendorNamePackage

// GET-REPLACE

in Istring version)

// conditional

// versionPackage

// GET-REPLACE

raises (DuplicateName,

CreateError,

GeneralError);

// DELETE_POLICY: deleteOnlyIfNoContainedObjects

}; // Software_Equipment_Factory

/**

This interface is used to create Software objects. Auto-naming are supported.

*/

interface Software_ManagedElement_Factory: ManagedObjectFactory

{

/**

This operation creates a Software object subordinate to a Managed Element

Object.

*/

Software create

(in ManagedElement superior,// superior object

inout Istring name,
// auto-naming if null

in IstringSetType packageNameList,

in AdministrativeStateType adminState,

// conditional

// administrativeOperationalStatePackage

// GET-REPLACE

in AlarmSeverityAssignmentProfile profile,

// conditional

// alarmSeverityAssignmentPointerPackage

// GET-REPLACE

in Istring userLabel,

// conditional

// userLabelPackage

// GET-REPLACE

in Istring vendorName,

// conditional

// vendorNamePackage

// GET-REPLACE

in Istring version)

// conditional

// versionPackage

// GET-REPLACE

raises (DuplicateName,

CreateError,

GeneralError);

// DELETE_POLICY: deleteOnlyIfNoContainedObjects

}; // interface Software_ManagedElement_Factory

/**

This interface is used to create Software objects. Auto-naming are supported.

*/

interface Software_Software_Factory: ManagedObjectFactory

{

/**

This operation creates a Software object subordinate to another Software

Object.

*/

Software create

(in Software superior,
// superior object

inout Istring name,
// auto-naming if null

in IstringSetType packageNameList,

in AdministrativeStateType adminState,

// conditional

// administrativeOperationalStatePackage

// GET-REPLACE

in AlarmSeverityAssignmentProfile profile,

// conditional

// alarmSeverityAssignmentPointerPackage

// GET-REPLACE

in Istring userLabel,

// conditional

// userLabelPackage

// GET-REPLACE

in Istring vendorName,

// conditional

// vendorNamePackage

// GET-REPLACE

in Istring version)

// conditional

// versionPackage

// GET-REPLACE

raises (DuplicateName,

CreateError,

GeneralError);

// DELETE_POLICY: deleteOnlyIfNoContainedObjects

}; // interface Software_Software_Factory

/**

4.5.29 Subnetwork

Managed objects supporting the Subnetwork interface represent logical

collections of network termination points.

If present the attribute ContainedSubnetworkList will be null if there are no

contained Sub-networks. The attribute ContainedInSubnetworkList will also be

null if there are no containing (parent) Sub-networks.

*/

valuetype SubnetworkValueType: ManagedObjectValueType

{

public SignalIdType

signalId;

// subnetworkPackage

// GET, SET-BY-CREATE

public AvailabilitySetType
availabilityStatus;

// conditional

// availabilityStatusPackage

// GET

public AccessGroupSetType
containedAccessGroupList;

// conditional

// containedAccessGroupListPackage

// GET-REPLACE, ADD-REMOVE

public SubnetworkSetType
containedInSubnetworkList;

// conditional

// containedInSubnetworkListPackage

// GET-REPLACE, ADD-REMOVE

public AbstractLinkEndSetType
containedLinkEndList;

// conditional

// containedLinkEndListPackage

// GET-REPLACE, ADD-REMOVE

public AbstractLinkSetType
containedLinkList;

// conditional

// containedLinkListPackage

// GET-REPLACE, ADD-REMOVE

public NetworkTPSetType
containedNetworkTPList;

// conditional

// containedNetworkTPListPackage

// GET-REPLACE, ADD-REMOVE

public SubnetworkSetType
containedSubnetworkList;

// conditional

// containedSubnetworkListPackage

// GET-REPLACE, ADD-REMOVE

public AbstractLinkSetType
linkPointerList;

// conditional

// linkPointerListPackage

// GET

public MOSetType

supportedByObjectList;

// conditional

// supportedByPackage

// GET-REPLACE, ADD-REMOVE

public AdministrativeStateType
adminstrativeState;

// conditional

// administrativeOperationalStatePackage

// GET-REPLACE

public OperationalStateType
operationalState;

// conditional

// administrativeOperationalStatePackage

// GET

public UsageStateType

usageState;

// conditional

// usageStatePackage

// GET

public Istring

userLabel;

// conditional

// userLabelPackage

// GET-REPLACE

}; // valuetype SubnetworkValueType

interface Subnetwork : ManagedObject

{

/**

Supported if the availabilityStatus attribute defined in Recommendation X.721

is supported by an instance of this managed object class.

*/

AvailabilitySetType availabilityStatusGet ()

raises (CONDITIONAL_PACKAGE

(availabilityStatusPackage));

/**

This attribute defines the list of access group instances which are contained

the subnetwork. Supported if access group instances are contained in the

sub-network.

*/

AccessGroupSetType containedAccessGroupListGet ()

raises (CONDITIONAL_PACKAGE

(containedAccessGroupListPackage));

void containedAccessGroupListSet

(in AccessGroupSetType accessGroupList)

raises (CONDITIONAL_PACKAGE

(containedAccessGroupListPackage));

void containedAccessGroupListAdd

(in AccessGroupSetType accessGroupList)

raises (DuplicateItem,

CONDITIONAL_PACKAGE

(containedAccessGroupListPackage));

void containedAccessGroupListRemove

(in AccessGroupSetType accessGroupList)

raises (ItemNotFound,

CONDITIONAL_PACKAGE

(containedAccessGroupListPackage));

/**

This attribute defines the list of paraent sub-networks which contain

the subnetwork in a given layer. Supported if this sub-network object

instance is contained in a sub-network (partitioning is supported).

The component subnetwork may be named from a different layerNetworkDomain

(associated with a different networkR1 administrative domain with a compatiable

signal identification) that the aggregate subnetwork if permitted by a policy.

*/

SubnetworkSetType containedInSubnetworkListGet ()

raises (CONDITIONAL_PACKAGE

(containedInSubnetworkListPackage));

void containedInSubnetworkListSet

(in SubnetworkSetType containedInSubnetworkList)

raises (CONDITIONAL_PACKAGE

(containedInSubnetworkListPackage));

void containedInSubnetworkListAdd

(in SubnetworkSetType containedInSubnetworkList)

raises (DuplicateItem,

CONDITIONAL_PACKAGE

(containedInSubnetworkListPackage));

void containedInSubnetworkListRemove

(in SubnetworkSetType containedInSubnetworkList)

raises (ItemNotFound,

CONDITIONAL_PACKAGE

(containedInSubnetworkListPackage));

/**

This attribute is used to describe the internal topology of a subnetwork from

the the point perspective (in a given layer). This topology comprises link ends

and subnetworks. The link ends are listed in this attributes. Supported if

there are contained link end in the sub-network object instance (partitioning

is supported).

*/

AbstractLinkEndSetType containedLinkEndListGet ()

raises (CONDITIONAL_PACKAGE

(containedLinkEndListPackage));

void containedLinkEndListSet

(in AbstractLinkEndSetType linkEndList)

raises (CONDITIONAL_PACKAGE

(containedLinkEndListPackage));

void containedLinkEndListAdd

(in AbstractLinkEndSetType linkEndList)

raises (DuplicateItem,

CONDITIONAL_PACKAGE

(containedLinkEndListPackage));

void containedLinkEndListRemove

(in AbstractLinkEndSetType linkEndList)

raises (ItemNotFound,

CONDITIONAL_PACKAGE

(containedLinkEndListPackage));

/**

This package identifies the links that a subnetwork contain through

partitioning.

This link may be named from a different layerNetworkDomain (associated with

a different networkR1 addministrative domain with a compatible signal

identification) than the aggregate subnetwork if permitted by a policy.

This attribute is used to describe the internal topology of a subnetwork

(in a given layer). This topology comprises links and subnetworks. The links

are listed in this attribute. Supported if there are contained links in the

sub-network object instance (partitioning is supported).

*/

AbstractLinkSetType containedLinkListGet ()

raises (CONDITIONAL_PACKAGE

(containedLinkListPackage));

void containedLinkListSet

(in AbstractLinkSetType linkList)

raises (CONDITIONAL_PACKAGE

(containedLinkListPackage));

void containedLinkListAdd

(in AbstractLinkSetType linkList)

raises (DuplicateItem,

CONDITIONAL_PACKAGE

(containedLinkListPackage));

void containedLinkListRemove

(in AbstractLinkSetType linkList)

raises (ItemNotFound,

CONDITIONAL_PACKAGE

(containedLinkListPackage));

/**

This attribue is a list of pointers to network TPs that are contained in a

subnetwork.

Supported if there are contained network termination points in the sub-network

object instance.

*/

NetworkTPSetType containedNetworkTPListGet ()

raises (CONDITIONAL_PACKAGE

(containedNetworkTPListPackage));

void containedNetworkTPListSet

(in NetworkTPSetType networkTPList)

raises (NetworkTTPAndSubnetworkNotCompatible,

FailureToAssociateNetworkTP,

FailureToDisassociateNetworkTP,

CONDITIONAL_PACKAGE

(containedNetworkTPListPackage));

void containedNetworkTPListAdd

(in NetworkTPSetType networkTPList)

raises (DuplicateItem,

NetworkTTPAndSubnetworkNotCompatible,

FailureToAssociateNetworkTP,

CONDITIONAL_PACKAGE

(containedNetworkTPListPackage));

void containedNetworkTPListRemove

(in NetworkTPSetType networkTPList)

raises (ItemNotFound,

FailureToDisassociateNetworkTP,

CONDITIONAL_PACKAGE

(containedNetworkTPListPackage));

/**

This package identifies the component subnetwork(s) that an aggregate

subnetwork contains through partitioning.

This attribute is used to describe the internal topology of a subnetwork

(in a given layer). This topology comprises links and subnetworks. The

subnetworks are listed in this attributes.

Supported if there are contained sub networks in this sub-network object

instance (partitioning is supported).

*/

SubnetworkSetType containedSubnetworkListGet ()

raises (CONDITIONAL_PACKAGE

(containedSubnetworkListPackage);

void containedSubnetworkListSet

(in SubnetworkSetType subnetworkList)

raises (CONDITIONAL_PACKAGE

(containedSubnetworkListPackage);

void containedSubnetworkListAdd

(in SubnetworkSetType subnetworkList)

raises (DuplicateItem,

CONDITIONAL_PACKAGE

(containedSubnetworkListPackage);

void containedSubnetworkListRemove

(in SubnetworkSetType subnetworkList)

raises (ItemNotFound,

CONDITIONAL_PACKAGE

(containedSubnetworkListPackage);

/**

This attribute points to the links terminated by the subnetwork or the link

terminiated by an access group. Supported if a topological view using links,

sub-networks, and access groups is supported (arc view).

*/

AbstractLinkSetType linkPointerListGet ()

raises (CONDITIONAL_PACKAGE

(linkPointerListPackage));

/**

Supported if an instance supports it.

*/

MOSetType supportedByObjectListGet ()

raises (CONDITIONAL_PACKAGE

(supportedByPackage));

void supportedByObjectListSet

(in MOSetType objectList)

raises (CONDITIONAL_PACKAGE

(supportedByPackage));

void supportedByObjectListAdd

(in MOSetType objectList)

raises (DuplicateItem,

CONDITIONAL_PACKAGE

(supportedByPackage));

void supportedByObjectListRemove

(in MOSetType objectList)

raises (ItemNotFound,

CONDITIONAL_PACKAGE

(supportedByPackage));

/**

Supported if the administrativeState and operationalState attributes defined

in Recommendation X.721 are supported by an instance of this managed object

class.

*/

AdministrativeStateType administrativeStateGet ()

raises (CONDITIONAL_PACKAGE

(administrativeOperationalStatesPackage));

void administrativeStateSet ()

raises (CONDITIONAL_PACKAGE

(administrativeOperationalStatesPackage));

OperationalState operationalStateGet ()

raises (CONDITIONAL_PACKAGE

(administrativeOperationalStatesPackage));

/**

Supported if the usageState attribute defined in Recommendation X.721 is

supported by an instance of this managed object class.

*/

UsageStateType usageStateGet ()

raises (CONDITIONAL_PACKAGE

(usageStatePackage));

/**

Supported if the user label attribute is supported by an instance of this

managed object class.

*/

Istring userLabelGet ()

raises (CONDITIONAL_PACKAGE

(userLabelPackage));

void userLabelSet

(in Istring userLabel)

raises (CONDITIONAL_PACKAGE

(userLabelPackage));

MANDATORY_NOTIFICATION

(ITU_X721::Notifications, objectCreation);

MANDATORY_NOTIFICATION

(ITU_X721::Notifications, objectDeletion);

CONITIONAL_NOTIFICATION

(ITU_X721::Notifications, attributeValueChange,

attributeValueChangeNotificationPackage);

CONITIONAL_NOTIFICATION

(ITU_X721::Notifications, stateChange,

stateChangePackage);

}; // interface Subnetwork

/**

If, during a create operation in which networkTTP managed object instances

are required to be created or associated with the subnetwork, the networkTTP

managed object instances failed to be created or associated then a

FailureToCreateNetworkTTP or FailureToAssociateNetworkTTP exception will be

returned respectively and the create operation will fail.

If, during a delete operation, the subnetwork is found to be in use

(to have subnetwork connection persent) or is bound to other resources

a SubnetworkInUse or BoundSubnetwork exception respectively will returned

and the delete operation will fail.

*/

interface Subnetwork_LayerNetworkDomain_Factory:

ManagedObjectFactory

{

Subnetwork create

(in LayerNetworkDomain superior,

in Istring name, // no auto-naming, cannot be null

in IstringSetType packageNameList,

in SignalIdType signalId,

// subnetworkPackage

// GET, SET-BY-CREATE

in AccessGroupSetType containedAccessGroupList,

// conditional

// containedAccessGroupListPackage

// GET-REPLACE, ADD-REMOVE

in SubnetworkSetType containedInSubnetworkList,

// conditional

// containedInSubnetworkListPackage

// GET-REPLACE, ADD-REMOVE

in AbstractLinkEndSetType containedLinkEndList,

// conditional

// containedLinkEndListPackage

// GET-REPLACE, ADD-REMOVE

in AbstractLinkSetType containedLinkList,

// conditional

// containedLinkListPackage

// GET-REPLACE, ADD-REMOVE

in NetworkTPSetType containedNetworkTPList,

// conditional

// containedNetworkTPListPackage

// GET-REPLACE, ADD-REMOVE

in SubnetworkSetType containedSubnetworkList,

// conditional

// containedSubnetworkListPackage

// GET-REPLACE, ADD-REMOVE

in MOSetType supportedByObjectList,

// conditional

// supportedByPackage

// GET-REPLACE, ADD-REMOVE

in AdministrativeStateType adminstrativeState,

// conditional

// administrativeOperationalStatePackage

// GET-REPLACE

in Istring userLabel)

// conditional

// userLabelPackage

// GET-REPLACE

raises (DuplicateName,

CreateError,

GeneralError,

FailureToAssociateNetworkTTP,

FailureToCreateNetworkTTP,

FailureToCreateSubnetwork);

// DELETE_POLICY: deleteOnlyIfNoContainedObjects

// SubnetworkInUse

// BoundSubnetwork

// FailureToRemoveSubnetwork

}; // interface Subnetwork_LayerNetworkDomain_Factory

/**

4.5.30 SubnetworkConnection

Managed objects supporting the SubnetworkConnection interface associate the

network termination point object identified in the A end attribute and the

network termination point object(s) listed in the Z end attribute of this

managed object. The Sub-network Connection may be set up between network

termination points (or groups of network termination points) specified

explicitly, or implicitly between managed objects acting as containers of

network termination point managed object instances from which any idle network

termination point or group may be used.

If the managed objects listed in the A End and Z End attributes represent

groups, the nth element of the A end group is related to the nth element of

every Z end group (for every n). There shall be n elements in each group

involved in the Sub-network Connection.

For a group with n elements, the Signal Id shall be taken to be a bundle of n

times the characteristic information of the individual elements, all of which

are the same.

A point to point unidirectional Sub-network Connection can be established

between one of Network connection termination point sink, Network connection

termination point bi-directional, Network trail termination point source,

Network trail termination point bi-directional or Network group termination

point; and one of Network connection termination point source, Network

connection termination point bi-directional, Network trail termination point

sink, Network trail termination point bi-directional or Network group

termination point.

A point to point bi-directional Sub-network Connection can be established

between one of Network connection termination point bi-directional, Network

trail termination point bi-directional or Network group termination point; and

one of Network connection termination point bi-directional, Network trail

termination point bi-directional or Network group termination point.

A point to multipoint unidirectional Sub-network Connection can be established

between one of Network connection termination point sink, Network connection

termination point bi-directional, Network trail termination point source,

Network trail termination point bi-directional or Network group termination

point; and a set whose members are Network connection termination point sources,

Network connection termination point bi-directionals, Network trail termination

point sinks, Network trail termination point bi-directional or Network group

termination point.

A point to multipoint bi-directional Sub-network Connection can be established

between one of Network connection termination point bi-directional, Network

trail termination point bi-directional or Network group termination; and a set

whose members are Network connection termination point bi-directionals, Network

trail termination point bi-directionals or Network group termination points.

The componentListPackage is supported where the Sub-network Connection is made

up of a number of component Sub-network Connections, and Connections, within the

same layer.

*/

valuetype SubnetworkConnectionValueType: PipeValueType

{

public SubnetworkConnection
compositePointer;

// conditional

// compositePointerPackage

// GET

public PipeSetType

componentPointerList;

// conditional

// componentPointerPackage

// GET

public MO

relatedRoutingProfile;

// conditional

// relatedRoutingProfilePackage

// GET

public Istring

userLabel;

// conditional

// userLabelPackage

// GET-REPLACE

}; // valuetype SubnetworkConnectionValueType

interface SubnetworkConnection: Pipe

{

/**

This attribute is used where the connectivity instance is a component of a

subnetwork connection within the same layer. Supported if the Sub-network

Connection is a component of another Sub-network Connection within the same

layer (partitioned sub-networks).

*/

SubnetworkConnection compositePointerGet ()

raises (CONDITIONAL_PACKAGE

(compositePointerPackage));

/**

This attribute is used where the subnetwork connection is made up of a number

of component subnetwork connections and link connections within the

same layer. Supported if the Sub-network Connection is made up of a number of

component Sub-network Connections, and Connections, within the same layer

(partitioned sub-networks).

*/

PipeSetType componentPointerListGet ()

raises (CONDITIONAL_PACKAGE

(componentPointerPackage));

/**

Supported if routing profiles are supported.

*/

MO relatedRoutingProfileGet ()

raises (CONDITIONAL_PACKAGE

(relatedRoutingProfilePackage));

/**

Supported if a userLabel is supported.

*/

Istring userLabelGet ()

raises (CONDITIONAL_PACKAGE

(userLabelPackage));

void userLabelSet ()

(in Istring userLabel)

raises (CONDITIONAL_PACKAGE

(userLabelPackage));

}; // interface SubnetworkConnection

/**

*/

interface SubnetworkConnection_Subnetwork_Factory:

ManagedObjectFactory

{

// DELETE_POLICY: notDeletable

}; // interface SubnetworkConnection_Subnetwork_Factory

/*

4.5.31 TP (Termination Point)

This managed object represents the termination of a transport entity, such as

a trail or a connection. The characteristic information attribute is used to

identify equivalence between subclasses of termination points in order to

determine whether cross connection or connectivity is possible. The operational

state reflects the perceived ability to generate and/or receive a valid signal.

Subclasses of termination point shall specify the attributes and states for

which attribute value change and state change notifications will be generated.

TP interface is not instantiable.

*/

valuetype TPValueType: ManagedObjectValueType

{

public MOSetType

supportedByObjectList;

// terminationPointPackage

// GET

public OperationalStateType

operationalState;

// conditional

// operationalStatePackage

// GET

public CrossConnectionPointerType
crossConnectionPointer;

// conditional

// crossConnectionPointerPackage

// GET

public CharacteristicInfoType

characteristicInfo;

// conditional

// characteristicInformationPackage

// GET, SET-BY-CREATE

public MO

networkLevelPointer;

// conditional

// networkLevelPackage

// GET-REPLACE

public CurrentProblemSetType

currentProblemList;

// conditional

// tmnCommunicationsAlarmInformationPackage

// GET

public AlarmStatusType

alarmStatus;

// conditional

// tmnCommunicationsAlarmInformationPackage

// GET

public AlarmSeverityAssignmentProfile

alarmSeverityAssignmentProfile;

// conditional

// alarmSeverityAssignmentPointerPackage

// GET-REPLACE

}; // valuetype TPValueType

interface TP : ManagedObject

{

/**

The Supported By List identifies a set of object instances which are

capable of directly affecting a given managed object. The object

instances include both physical and logical objects. This attribute

does not force internal details to be specified, but only the necessary

level of detail required for management. If the object instances

supporting the managed object are unknown to that object, then this

attribute is an empty list.

*/

MOSetType supportedByObjectListGet ();

OperationalStateType operationalStateGet ()

raises (CONDITIONAL_PACKAGE

(operationalStatePackage));

/**

This method returns a reference to the Cross-connection in which the

termination point is an endpoint. If the TP is not involved in a

connection, Null will be returned.

*/

CrossConnectionPointerType crossConnectionPointerGet ()

raises (CONDITIONAL_PACKAGE

(crossConnectionPointerPackage));

/**

Characteristic information is used to verify the connectability of

instances of the termination point subcalsses.

*/

CharacteristicInfoType characteristicInfoGet ()

raises (CONDITIONAL_PACKAGE

(characteristicInformationPackage));

/**

The network level pointer identifies a network level object. The

value of the network level pointer shall only be modified by the

managing system.

*/

MO networkLevelPointerGet ()

raises (CONDITIONAL_PACKAGE

(networkLevelPackage));

void networkLevelPointerSet

(in MO networkLevelPointer)

raises (CONDITIONAL_PACKAGE

(networkLevelPackage));

/**

This method returns the current existing problems, with severity,

associated with the managed object.

*/

CurrentProblemSetType currentProblemListGet ()

raises (CONDITIONAL_PACKAGE

(tmnCommunicationsAlarmInformationPackage));

AlarmStatusType alarmStatusGet ()

raises (CONDITIONAL_PACKAGE

(tmnCommunicationsAlarmInformationPackage));

/* If the alarm severity assignment profile pointer is NULL, then one

of the following two choices applies when reporting alarms: a) managed

system assigns the severity or b) the value 'indeterminate' is used. */

AlarmSeverityAssignmentProfile

alarmSeverityAssignmentProfileGet ()

raises (CONDITIONAL_PACKAGE

(alarmSeverityAssignmentPointerPackage));

void alarmSeverityAssignmentProfileSet

(AlarmSeverityAssignmentProfile profile)

raises (CONDITIONAL_PACKAGE

(alarmSeverityAssignmentPointerPackage));

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, objectCreation,

createDeleteNotificationsPackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, objectDeletion,

createDeleteNotificationsPackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, attributValueChange,

attributeValueChangePackage);

CONDITIONAL_NOTIFICATION

(ITU_X721::Notifications, stateChange,

stateChangePackage);

CONDITIONAL_NOTIFICATION

(ITU_M3100::Notifications, communicationAlarmR1,

tmnCommunicationsAlarmInfomrationPackage);

}; // interface TP

/**

4.5.32 TopLink (Topological Link)

Managed objects supporting the TopLink interface represent a link in a client

layer provided by one and only one server trail.

The serverTrail attribute is a pointer to the trail in the server layer network

domain that supports this topological link. The serverTrail attribute may be

null if the trail in the server layer network domain that supports this

topological link is not assigned.

The use made of the individual attributes and notifications is detailed below:

-total link capacity: the total number of Link Connections or bandwidth

available [G.853.8,ATTRIBUTE:pamMaxProvisionableCapacity];

-maximum link connection count: the maximum number of link connections

available on connection with flexible bandwidth management;

-potential link capacity: the number of potential Link Connections or

potential bandwidth that could be provisioned

[G.853.8, ATTRIBUTE:pamPotentialLinkCapacity];

-provisioned link capacity: the number of provisioned Link Connections or

the provisioned bandwidth [G.853.8, ATTRIBUTE:pamProvisionedLinkCapacity];

-provisioned link connection count: the number of link connections assigned

using flexible bandwidth management.

An attribute value change notification shall be emitted when the value of the

totalLinkCapacity, maximumLinkConnectionCount, potentialLinkCapacity,

provisionedLinkCapacity or provisionedLinkConnectionCount is changed.

*/

valuetype TopLinkValueType: AbstractLinkValueType

{

public DirectionalityType
directionality;

// topologicalLinkPackage

// GET

public Trail

serverTrail;

// topologicalLinkPackage

// GET

public CapacityType

totalLinkCapacity;

// conditional

// totalLinkCapacityPackage

// GET

public long

maximumLinkConnectionCount;

// conditional

// maximumLinkConnectionCountPackage

// GET

public CapacityType

potentialLinkCapacity;

// conditional

// potentialLinkCapacityPackage

// GET

public CapacityType

provisionedLinkCapacity;

// conditional

// provisionedLinkCapacityPackage

// GET

public long

provisionedLinkConnectionCount;

// ??? why need this attribute? CapacityType contains

// number of connection.

// conditional

// provisionedLinkConnectionCountPackage

// GET

}; // valuetype TopLinkValueType

interface TopLink : AbstractLink

{

/**

*/

DirectionalityType directionalityGet ();

/**

This attribute pointers to a trail in the server layer that supports the

link in a client.

*/

Trail serverTrailGet ();

/**

This attribute indicates the total capacity of a link which may be the number

of link connections contained in a link of the total bandwidth available to

the link. Supported if pre-provisioned adaptation or link connection or link

management are supported by the transport technology.

*/

CapacityType totalLinkCapacityGet ()

raises (CONDITIONAL_PACKAGE

(totalLinkCapacityPackage));

/**

This attribute indicates the maximum number of link connections associated

with a link when flexible bandwidth allocation is supported.

*/

long maximumLinkConnectionCountGet ()

raises (CONDITIONAL_PACKAGE

(maximumLinkConnectionCountPackage));

/**

This attribute indicates the number of link connections or the amount of

bandwidth that has not yet been assigned to a link, but that could be

assigned to the link from the server trail. Supported if pre-provisioned

adaptation or link connection or link management are supported by the

transport technology.

*/

CapacityType potentialLinkCapacityPackageGet ()

raises (CONDITIONAL_PACKAGE

(potentialLinkCapacityPackage));

/**

This attribute indicates the number of link connections assigned to a link

or the amount of bandwidth assigned to a link. Supported if pre-provisioned

adaptation or link connection or link management are supported by the

transport technology.

*/

CapacityType provisionedLinkCapacityGet ()

raises (CONDITIONAL_PACKAGE

(provisionedLinkCapacityPackage));

/**

This attribute indicates the number of link connections assigned to that

link when flexible bandwidth allocation is supported.

*/

long provisionedLinkConnectionCountGet ()

raises (CONDITIONAL_PACKAGE

(provisionedLinkConnectionCountPackage));

/**

The following two actions provide the support for the management of the

capacity of a topological link. It specifies actions to assign and release

link connections and/or bandwidth to topological link.

*/

/**

This action adds capacity to a topological link by adding link connections

or increasing the available bandwidth. This action will return an

AddCapacityToTopLinkResult with a resultingLinkConnections field

containing a NULL value when dynamic bandwidth is being assigned.

*/

void addCapacityToTopLink

(in RequestedCapacityType requestedCapacity,

out CapacityType resultingCapacity,

out LinkConnectionSetType resultingLinkConnection)

raises (NoSuchLink,

InsufficientCapacity,

InvalidChannelsNumber,

ChannelsAlreadyProvisioned,

FailureToCreateLCs,

FailureToAssociateLCs,

FailureToSupportLCs,

failureToIncreaseCapacity);

/**

This action removes capacity from the topological link by removing link

connections and/or bandwidth from the link.

*/

void removeCapacityFromTopLink

(in RequestedCapacityType requestedCapacity,

out CapacityType resultingCapacity)

raises (NoSuchLink,

InsufficientCapacity,

InvalidChannelsNumber,

FailureToRemoveLCs,

FailureToDecreaseCapacity);

}; // interface TopLink

/**

The topological link managed object is either automatically created when the

trail in the server network layer domain that supports the link is created

or is created by an establishTopologicalLink or an

establishTopologicalLinkAndLinkEnds action.

The topological link managed object is deleted either by a

removeTopologicalLink or removeTopologicalLinkAndLinkEnds action or by

the deletion of the trail if the topologicalLink managed object had previously

been created automatically.

*/

interface TopLink_LayerNetworkDomain_Factory:

ManagedObjectFactory

{

// DELETE_POLICY: notDeletable

}; // interface TopLink_LayerNetworkDomain_Factory

/**

4.5.33 TopLinkEnd (Topological Link End)

Managed objects supporting the TopLinkEnd interface represent the

end of a topological link when viewed from the point's perspective.

The Top Link End object is related to one and only one network TTP in

the server layer.

The use made of the individual attributes and notifications is detailed below:

-total link end capacity: the total number of network CTPs or the

bandwidth available [G.853.8,ATTRIBUTE: pamMaxProvisionableCapacity];

-maximum network CTP count: the maximum number of network CTPs available

at the LinkEnd when using flexible bandwidth management;

-potential link end capacity: the number of potential network CTPs or

potential bandwidth that could be provisioned

[G.853.8, ATTRIBUTE: pamPotentialLinkCapacity];

-provisioned link end capacity: the number of provisioned network CTPs or

the provisioned bandwidth [G.853.8, ATTRIBUTE: pamProvisionedLinkCapacity];

-provisioned network CTP count: the number of network CTP assigned to the

link end when using flexible bandwidth management.

An attribute value change notification shall be emitted when the value of the

totalLinkEndCapacity, maximumNetworkCTPCount, potentialLinkEndCapacity,

provisionedLinkEndCapacity or provisionedNetworkCTPCount is changed.

*/

valuetype TopLinkEndValueType: AbstractLinkEndValueType

{

public PointDirectionalityType
pointDirectionality;

// topologicalLinkEndPackage

// GET

public NetworkTTPSetType
serverTTPPointer;

// serverTTPPointerPackage

// GET

public PointCapacityType
totalLinkEndCapacity;

// conditional

// totalLinkEndCapacityPackage

// GET

public long

maximumNetworkCTPCount;

// conditional

// maximumNetworkCTPCountPackage

// GET

public PointCapacityType
potentialLinkEndCapacity;

// conditional

// potentialLinkEndCapacityPackage

// GET

public PointCapacityType
provisionedLinkEndCapacity;

// conditional

// provisonedLinkEndCapacityPackage

// GET

public long

provisionedNeworkCTPCount;

// ??? same question: why?

// conditional

// provisionedNetworkCTPCountPackage

// GET

}; // valuetype TopLinkEndValueType

interface TopLinkEnd : AbstractLinkEnd

{

/**

*/

PointDirectionalityType pointDirectionalityGet ();

/**

This attribute defines the TTP which may serve a CTP and/or linkEnd in another

layer. Usually a TTP or TTPs in a higher order layer will serve a CTP or CTPs

in a lower order layer.

*/

NetworkTTPSetType serverTTPPointerGet ();

/**

This attribute indicates the total capacity of a link end which is either

the total number of network CTPs associated with a link end or the total

bandwidth of the link end. Supported if pre-provisioned adaptation or

link connection or link management are supported by the transport technology.

*/

PointCapacityType totalLinkEndCapacityGet ()

raises (CONDITIONAL_PACKAGE

(totalLinkCapacityEndPackage));

/**

This attribute indicates the maximum number of networkCTPs associated

with a link end when flexible bandwidth allocation is supported.

*/

long maximumNetworkCTPCountGet ()

raises (CONDITIONAL_PACKAGE

(maximumNetworkCTPCountPackage));

/**

This attribute indicates the number of network CTP or the amount of

bandwidth that has not yet been assigned to a link end, but that could be

assigned to the link end from the server trail termination point.

Supported if pre-provisioned adaptation or link connection or link management

are supported by the transport technology.

*/

PointCapacityType potentialLinkEndCapacityPackageGet ()

raises (CONDITIONAL_PACKAGE

(potentialLinkEndCapacityPackage));

/**

This attribute indicates the number of network CTPs assigned to a link end

or the amount of bandwidth assigned to a link end. Supported if

pre-provisioned adaptation or link connection or link management are

supported by the transport technology.

*/

PointCapacityType provisionedLinkEndCapacityGet ()

raises (CONDITIONAL_PACKAGE

(provisionedLinkEndCapacityPackage));

/**

This attribute indicates the number of network CTPs associated with a

link end that have been assigned when flexible bandwidth allocation is

supported.

*/

long provisionedNetworkCTPCountGet ()

raises (CONDITIONAL_PACKAGE

(provisionedNetworkCTPCountPackage));

/**

The following two actions provide the support for the management of the

capacity of a topological link end. It specifies actions to assign and release

network CTPs and/or bandwidth to topological link end.

*/

/**

This action adds capacity to a topological link end by adding network CTPs

or by increasing the available bandwidth.

*/

void addCapacityToTopLinkEnd

(in RequestedPointCapacityType requestedCapacity,

out PointCapacityType resultingCapacity,

out NetworkCTPSetType resultingNetworkCTPList,

out PointCapacityType resultingProvisionedCapacity)

raises (NoSuchLinkEnd,

InsufficientCapacity,

InvalidChannelsNumber,

ChannelsAlreadyProvisioned,

FailureToCreateLCs,

FailureToAssociateLCs,

FailureToSupportLCs,

FailureToIncreaseCapacity);

/**

This action removes capacity from a topological link end by removal of

network CTPs from the topological link end and/or by the removal of bandwidth.

This action will return a NULL value resultingLinkConnectionList when

dynamic bandwidth is being unassigned.

*/

void removeCapacityFromTopLinkEnd

(in RequestedPointCapacityType requestedCapacity,

out PointCapacityType resultingCapacity,

out LinkConnectionSetType

resultingLinkConnectionList)

raises (NoSuchLinkEnd,

InsufficientCapacity,

InvalidChannelsNumber,

FailureToRemoveLCs,

FailureToDecreaseCapacity);

}; // interface TopLinkEnd

/**

??? Where is GDMO name binding in M.3100 amd1?

*/

interface TopLinkEnd_LayerNetworkDomain_Factory:

ManagedObjectFactory

{

// DELETE_POLICY: notDeletable

}; // interface TopLinkEnd_LayerNetworkDomain_Factory

/**

4.5.34 TPPool (Termination Point Pool)

The TPPool object represents a set of termination points or GTPs that are used

for some management purpose, such as routing. A termination point that is a

member of a GTP cannot be a member of a TPPool independent of the remainder of

the GTP.

This interface is based on the M.3100 tpPool specification.

The TPPoolValueType structure is used to retrieve all of the TPPool attributes

in one operation. Most unsupported attributes will be returned as a null

string or list if they are not supported. Receipt of a null value does not

mean the attribute is not supported, though.

*/

valuetype TPPoolValueType: ManagedObjectValueType

{

public TPSetType
tpsInTPPool;

// tpPoolPackage

// GET

public short

totalTpCount;

// tpPoolPackage

// GET

public short

connectedTpCount;

// tpPoolPackage

// GET

public short

idleTpCount;

// tpPoolPackage

// GET

}; // valuetype TPPoolType

interface TPPool: ManagedObject

{

/**

This method returns a list of reference to the termination points that are

represented by a TP Pool.

*/

TPSetType tpsInTPPoolGet ();

/**

This method returns the total number of termination points associated with a

TP Pool.

*/

short totalTpCountGet ();

/**

This method returns the total number of termination points associated with a

TP Pool that have been connected.

*/

short connectedTpCountGet ();

/**

This method returns the total number of termination points associated with a

TP Pool that are in an operational state of enabled and that are available for

Cross-Connection.

*/

short idleTpCountGet ();

}; // interface TPPool

/**

Instances of TPPool are contained in the Fabric object. They are automatically

created or deleted as the result of the addTPsToTPPool and removeTPsFromTPPool

methods on the Fabric object. See the Fabric object for details.

*/

interface TPPool_Fabric_Factory: ManagedObjectFactory

{

// DELETE_POLICY: notDeletable???

}; // TPPool_Fabric_Factory

/**

4.5.35 Trail

Managed objects supporting the Trail interface in layer networks are

responsible for the integrity of transfer of characteristic information from

one or more other layer networks.

A Trail is composed of two or more Network Trail Termination Points and one or

more Link Connection or Sub-network Connections, and associated Network

Connection Termination Points.

A point to point unidirectional Trail can be established between a Network TTP

source or Network TTP bid; and a Network TTP sink or Network TTP bid.

A point to point bi-directional Trail can be established between a Network TTP

bid; and a Network TTP bid.

For all types of Trail, the termination point(s) pointed to by the A End

attribute is related to the network termination point(s) pointed to by the

Z End attribute in such a way that traffic can flow between the network

termination points represented by these managed objects in a unidirectional

or bi-directional manner as indicated by the directionality attribute.

The layerConnectionList attribute, when present, lists the subnetwork

connections and link connections (in the same layer) which compose the trail.

This represents a single partitioned view of the decomposition of a trail into

its component subnetwork connections and link connections.

*/

valuetype TrailValueType: PipeValueType

{

public PipeSetType

connectionList;

// conditional

// layerConnectionListPackage

// GET, SET-BY-CREATE

public MO

trafficDescriptor;

// conditional

// trafficDescriptorPackage

// GET-REPLACE

public TopLinkSetType
clientLinkPointerList;

// conditional

// clientLinkPointerPackage

// GET

public LinkConnectionSetType

clientLinkConnectionPointerList;

// conditional

// clientLinkConnectionPointerListPackage

// GET

}; // valuetype TrailValueType

interface Trail: Pipe

{

/**

This attribute defines the list of Link Connections and subnetwork connections

in a given layer which may compose a Trail in the same layer. This composition

of connectivity instances may be a simple sequence or, in the multipoint

case a tree structure. Supported if there is a requirement to view the

sequence of subnetwork connections and link connections which make up the

trail in the same layer.

*/

PipeSetType connectionListGet ()

raises (CONDITIONAL_PACKAGE

(layerConnectionListPackage));

/**

This attribute contains the traffice descriptor of a trail. It is to be

used with flexible bandwidth allocation. Supported if flexible bandwidth

allocation is supported.

*/

MO trafficDescriptorGet ()

raises (CONDITIONAL_PACKAGE

(trafficDescriptorPackage));

void trafficDescriptorSet

(in MO descriptor)

raises (NewServiceCharacteristicsExistsAlready,

NewTrafficDescriptorExistsAlready,

InvalidServiceCharacteristicsRequested,

InvalidTrafficDescriptorRequested,

CONDITIONAL_PACKAGE

(trafficDescriptorPackage));

/**

This attribute is a set of pointers to the topological links that reflect

the capacity of a trail in the client layer network domain(s). Supported if

there is a requirement to view the link (s) in a higher layer which are

supported by this trail",

*/

TopLinkSetType clientLinkPointerListGet ()

raises (CONDITIONAL_PACKAGE

(clientLinkPointerPackage));

/**

This attribute of a trail is a set of pointers to the link connections in

the client layer network domain(s) that are supported by the trail.

Supported ifthere is a requirement to view the link connection(s) in a

higher layer which are supported by this trail.

*/

LinkConnectionSetType clientLinkConnectionPointerListGet ()

raises (CONDITIONAL_PACKAGE

(clientLinkConnectionPointerListPackage));

}; // interface Trail

/**

*/

interface Trail_LayerNetworkDomain_Factory:

ManagedObjectFactory

{

// DELETE_POLICY: notDeletable

}; // interface Trail_LayerNetworkDomain_Factory

/**

4.5.36 TTP (Trail Termination Point)

The Trail Termination Point IDL interface is modeled after the M.3100

trailTerminationPointBidirectional/Sink/Source object classes.

The TrailTermintionPoint object class is a class of managed objects that

teminates (originates) a trail. It represents the access point in a layer

network which is a focus for both the trail relationship and the client/server

relationship.

For the sink direction, the operational state reflects the perceived ability

to receive a valid signal. If the termination point detects that a signal

received has failed or it is unable to process the incoming signal, then the

operational state will have the value disabled.

For the source direction, the operational state reflects the perceived ability

to generate a valid signal. If the termination point detects that a valid

signal cannot be generated, then the operational state will have the value

disabled.

For a bidirectional termination point, the operational state is disabled if

either the sink or source part of the termination point is disabled

When the administrative state is locked, the termination point is

administratively removed from service. When the administrative state is

unlocked, the termination point is administratively in service. Changes to

administrative state have no effect on the connectivity pointer.

A change in the operational state shall cause a state change notification. If

administrative state is present in an instance of trail termination point

class, it shall not emit a state change notification. However, subclasses of

trail termination point class may modify this behaviour to require this

notification. Subclasses of trail termination point shall specify the

attributes for which attribute value change notifications should be generated.

The upstream connectivity pointer attribute points to the termination point

managed object, within the same managed element, that sends information

(traffic) to this termination point at the same layer, or is null. The

referenced object shall be an instance of one of the following classes or its

subclasses: Connection Termination Point Sink or Bidirectional (single or a

concatenated sequence) or Trail Termination Point Source or Bidirectional.

The downstream connectivity pointer attribute points to the termination point

managed object, within the same managed element, that receives information

(traffic) from this termination point at the same layer, or is null. The

referenced object shall be an instance of one of the following classes or its

subclasses: Connection Termination Point Source or Bidirectional (single or a

concatenated sequence or a set if connected to more than one connection

termination point source objects) or Trail Termination Point Sink or

Bidirectional (single or a set if connected to more than one trail termination

point sink objects).

Editor's note: In T1M1.5/99-0303, the GDMO networkTTP Bi/Si/So object classes

are mapped to a single IDL interface NetworkTTP. The NE level takes the same

approach. That is, the GDMO connectionTermaintionPoint Bi/Si/So object classes

are mapped to the IDL ConnectionTermintionPoint interface, and the GDMO

trailTerminationPoint Bi/Si/So object classes are mapped to the IDL TTP

interface. In order to indicate the Bi/Si/So characteristic a

unidirectional/bidirectional instance, the pointDirectionality

(PointDirectionalityType) attribute is used for these interface.

The directionality of a termination point of terminating or originating

(or both) a trial, is indicate by the pointDirectionality attribute.

*/

valuetype TTPValueType: TPValueType

{

/**

The following attributes were conditional in TPValueType. They are mandatory

now. And their respective operations shall not raises CONDITIONAL_PACKAGE

exception.

public OperationalStateType
operationalState;

// operationalStatePackage

// GET

*/

public PointDirectionalityType
pointDirectionality;

// GET, SET-BY-CREATE

public DownstreamConnectivityPointerType

downstreamConnectivityPointer;

// conditional

// downstreamConnectivityPointPackage

// present if pointDirectionality = sink or birectional

// GET, SET-BY-CREATE

public TPSeqType

upstreamConnectivityPointer;

// conditional

// upstreamConnectivityPointPackage

// present if pointDirectionality = source or

// birectional

// GET, SET-BY-CREATE

public ObjectClassSetType
supportableClientList;

// conditional

// supportableClientListPackage

// present if can support more than one kind of client

// GET, SET-BY-CREATE

public AdministrativeStateType adminState;

// conditional

// administrativeStatePackage

// present if an instance support it

// GET-REPLACE

}; // valuetype TTPValueType

interface TTP: TP

{

/**

PointDirectionality

Matching for equality is applicable for the syntax of this attribute.

Set-By-Create: Values of this attribute of this interface could be specified

in an input parameter to the create operation.

*/

PointDirectionalityType pointDirectionalityGet ();

/**

DownstreamConnectivityPoint

The matching for equality is applicable for all choices of the syntax. The

matching for SET-COMPARISON and SET-INTERSECTION are permitted only when the

choice of the syntax correspond to either broadcast or concatenated broadcast.

Set-By-Create: Values of this attribute of this interface could be specified

in an input parameter to the create operation.

*/

DownstreamConnectivityPointerType

downstreamConnectivityPointerGet ()

raises
(CONDITIONAL_PACKAGE

(downstreamConnectivityPointerPackage));

/**

UpstreamConnectivityPoint

The matching for equality is applicable for all choices of the syntax.

Set-By-Create: Values of this attribute of this interface could be specified

in an input parameter to the create operation.

*/

TPSeqType upstreamConnectivityPointerGet ()

raises
(CONDITIONAL_PACKAGE

(upstreamConnectivityPointerPackage));

/**

The supportableClientListPackage is supported if the object can support more

than one type of client.

The value of this attribute is the list of object classes representing the

clients which the particular managed object is capable of supporting. This

may be a subset of the client layers identified in Rec. G.803 by particular

server layer managed object.

Set-By-Create: Values of this attribute of this interface could be specified

in an input parameter to the create operation.

*/

ObjectClassSetType supportableClientListGet ()

raises
(CONDITIONAL_PACKAGE

(supportableClientListPackage));

/**

The administrativeStatePackage package is supported if the resource represented

by the managed object is capable of being administratively placed in and out

of service.

*/

AdminstrativeStateType administrativeStateGet ()

raises
(CONDITIONAL_PACKAGE

(administrativeStatePackage));

void administrativeStateSet

(in AdministrativeStateType adminState)

raises
(CONDITIONAL_PACKAGE

(administrativeStatePackage));

MANDATORY_NOTIFICATION

(ITU_X721::Notifications, objectCreation);

MANDATORY_NOTIFICATION

(ITU_X721::Notifications, objectDeletion);

MANDATORY_NOTIFICATION

(ITU_X721::Notifications, stateChange);

MANDATORY_NOTIFICATION

(ITU_M3100::Notifications, attributeValueChange);

MANDATORY_NOTIFICATION

(ITU_M3100::Notifications, communicationsAlarm);

}; // interface TTP

/**

When automatic instance naming is used, the choice of name bindings is left as

a local matter.

*/

interface TTP_ManagedElement_Factory: ManagedObjectFactory

{

TTP create

(in ManagedElement superior,

inout Istring name, // auto naming if null

in IstringListType packageNameList,

in MOSetType supportedByObjectList,
// may be null

// GET-REPLACE, ADD-REMOVE

in PointDirectionalityType pointDirectionality,

// GET, SET-BY-CREATE

in CharacteristicInfoType
characteristicInfo,

// conditional

// characteristicInformationPackage

// GET, SET-BY-CREATE

in MO networkLevelPointer,

// conditional

// networkLevelPackage

// GET-REPLACE

in AlarmSeverityAssignmentProfileType profile,

// conditional

// alarmSeverityAssignmentPointerPackage

// GET-REPLACE

in DownstreamConnectivityPointerType

downstreamConnectivityPointer,

// conditional

// downstreamConnectivityPointerPackage

// GET, SET-BY-CREATE

in TPSeqType upstreamConnectivityPointer,

// conditional

// upstreamConnectivityPointerPackage

// GET, SET-BY-CREATE

in ObjectClassSetType supportableClientList,

// conditional

// supportableClientListPackage

// GET, SET-BY-CREATE

in AdministrativeStateType adminState)

// conditional

// administrativeStatePackage

// GET-REPLACE

raises (DuplicateName,

CreateError,

GeneralError);

// DELETE_POLICY: deleteOnlyIfNoContainedObjects

}; // interface TTP_ManagedElement_Factory

/**

4.6 Notifications

NOTIFICATIONS

*/

/**

This interface defines additional notifications. These notifications

are similar to those in module ITU_X721, but they include additional

information.

Should we use the additional information parameter in the ITU_X721

Notifications instead of defining new notification operations?

Also, in M.3100 all of these except for equipmentAlarmEffectOnService

contain two other parameters, logRecordID (integer) and correlatedRecordName

(object name). The first seems unnecessary since the CORBA log service

automatically assigns a record ID to each log record. The second also

doesn't seem necessary since the notification structures all have fields

identifying correlated notifications. In addition, it looks like in the

CORBA logging service log records will not be objects and hence won't have

names bound to them.

*/

interface Notifications

{

/**

A Communications Alarm notification is used to report when an object

detects a communications error. This notification is different from the

notification defined in the ITU_X721 module because it includes the

suspect object list parameter.

*/

void communicationsAlarmR1

(in AlarmInfoType alarmInfo,

in SuspectObjectSetType suspectObjectList);

/**

An Environmental Alarm notification is used to report a problem in

the environment. This notification is different from the notification

defined in the ITU_X721 module because it includes the suspect object

list parameter.

*/

void environmentalAlarmR1

(in AlarmInfoType alarmInfo,

in SuspectObjectSetType suspectObjectList);

/**

An Equipment Alarm notification is used to report a failure in the

equipment. This notification is different from the notification defined

in the ITU_X721 module because it includes the suspect object list

parameter.

*/

void equipmentAlarmR1

(in AlarmInfoType alarmInfo,

in SuspectObjectSetType suspectObjectList);

/**

An Equipment Alarm notification is used to report a failure in the

equipment. This notification is different from the notification defined

in the ITU_X721 module because it includes the "alarm effect on service"

parameter.

*/

void equipmentAlarmEffectOnService

(in AlarmInfoType alarmInfo,

in boolean alarmEffectOnService);

/**

A Processing Error Alarm notification is used to report processing

failure in a managed object. This notification is different from the

notification defined in the ITU_X721 module because it includes the

suspect object list parameter.

*/

void processingErrorAlarmR1

(in AlarmInfoType alarmInfo,

in SuspectObjectSetType suspectObjectList);

}; // interface Notifications

}; // module ITU_M3100

#endif // _ITU_M3100_IDL_

5. Information Model Constants

#ifndef _ITU_M3100CONST_IDL_

#define _ITU_M3100CONST_IDL_

#include <Naming.idl>

#include <itu_x721.idl>

/**

This module contains IDL interface definition based on objects defined in

M.3100 (as well as one, System, from X.721). The IDL definitions in this

file are only constant values used within this module. The objects from

M.3100 are in the separate files, but included in the "ITU_M3100" module.

*/

module ITU_M3100

{

const string moduleName = "ITU_M3100";

/**

CONSTANTS

*/

/**

5.1 AdditionalInformationConst

This module contains constant values identifying information

elements included in the Additional Information parameters of

notifications.

*/

module AdditionalInformationConst

{

const string moduleName =

"ITU_M3100::AdditionalInformationConst";

const short alarmEffectOnService = 1;

const short suspectObjectList = 2;

const short userLabel = 3;

}; // module AdditionalInformationConst

/**

5.2 CharacteristicInfoConst

This module contains the constant values defined for the

CharacteristicInfo UID. These values were borrowed from M.3100.

*/

module CharacteristicInfoConst

{

const string moduleName =

"ITU_M3100::CharacteristicInfoConst";

/**

opticalSPITTP* object instances with stmLevel attribute = 1

*/

const short opticalSTM1SPICI = 1;

/**

opticalSPITTP* object instances with stmLevel attribute = 4

*/

const short opticalSTM4SPICI = 2;

/**

opticalSPITTP* object instances with stmLevel attribute = 16

*/

const short opticalSTM16SPICI = 3;

/**

electricalSPITTP* object instances with stmLevel attribute = 1

*/

const short electricalSTM1SPICI = 4;

/**

rsCTP* object instances with stmLevel attribute = 1

*/

const short rsSTM1SPICI = 5;

/**

rsCTP* object instances with stmLevel attribute = 4

*/

const short rsSTM4SPICI = 6;

/**

rsCTP* object instances with stmLevel attribute = 16

*/

const short rsSTM16SPICI = 7;

/**

msCTP* object instances with stmLevel attribute = 1

*/

const short msSTM1SPICI = 8;

/**

msCTP* object instances with stmLevel attribute = 4

*/

const short msSTM4SPICI = 9;

/**

msCTP* object instances with stmLevel attribute = 16

*/

const short msSTM16SPICI = 10;

const short au3TU3VC3CI = 11;

const short au4VC4CI = 12;

const short tu11VC11CI = 13;

const short tu12VC12CI = 14;

const short tu2VC2CI = 15;

const short tu12VC11CI = 16;

const short vpCI = 17;

const short vcCI = 18;

const short e0CI = 19;

const short e1CI = 20;

const short e2CI = 21;

const short e3CI = 22;

const short e4CI = 23;

}; // moduel CharacteristicInfoConst

/**

5.3 GeneralErrorCauseConst

This module contains the constant values defined for the General

Error Cause UID. The values were borrowed from the M.3100 corrigendum

General Error Cause type definition.

*/

module GeneralErrorCauseConst

{

const string moduleName =

"ITU_M3100::GeneralErrorCauseConst";

/**

ObjectInIncompatibleState is used to specify that the object

is in a state provided.

*/

const short objectInIncompatibleState = 1;

/**

NoValidRelatedObject is used to specify related objects that

do not exist in the MIB.

*/

const short noValidRelatedObject = 2;

/**

InvolvedInOffering is used to identify object(s) that are

already involved in a conflicting service offering.

*/

const short involvedInOffering = 3;

/**

ServiceNotSupported is used to indicate that the operation is

attempting to initiate a service that is not supported by the

equipment.

*/

const short serviceNotSupported = 4;

/**

ProvisioningOrderConflict is used to identify that a service

is being provisioned in an order that is not supported by the

equipment.

*/

const short provisioningOrderConflict = 5;

/**

EquipmentFailure is used to indicate that an equipment failure

as occured during the operation.

*/

const short equipmentFailure = 6;

/**

MaxNumberExceeded is used to indicate that requested create

operation cannot be completed as the maximum number of instances

are reached.

*/

const short maxNumberExceeded = 7;

/**

ContainedObjects is used to indicate that requested delete

operation cannot be completed as there are contained instances.

*/

const short containedObjects = 8;

}; // module GeneralErrorCauseConst

/**

5.4 ProbableCauseConst

This module contains the constant values defined for the

ProbableCause UID. These values were borrowed from M.3100.

*/

module ProbableCauseConst

{

const string moduleName =

"ITU_M3100::ProbableCauseConst";

const short indeterminate = 0;

/**

The following are used with communications alarms.

*/

const short aIS = 1 ;

const short callSetUpFailure = 2;

const short degradedSignal = 3;

const short farEndReceiverFailure = 4;

const short framingError = 5;

const short lossOfFrame = 6;

const short lossOfPointer = 7;

const short lossOfSignal = 8;

const short payloadTypeMismatch = 9;

const short transmissionError = 10;

const short remoteAlarmInterface = 11;

const short excessiveBER = 12;

const short pathTraceMismatch = 13;

const short unavailable = 14;

const short signalLabelMismatch = 15;

const short lossOfMultiFrame = 16;

const short receiveFailure = 17;

const short transmitFailure = 18;

const short modulationFailure = 19;

const short demodulationFailure = 20;

const short broadcastChannelFailure = 21;

const short connectionEstablishmentError = 22;

const short invalidMessageReceived = 23;

const short localNodeTransmissionError = 24;

const short remoteNodeTransmissionError = 25;

const short routingFailure = 26;

/**

Values 27-50 are reserved for communications alarm related

probable causes

*/

/**

The following are used with equipment alarms.

*/

const short backplaneFailure = 51;

const short dataSetProblem = 52;

const short equipmentIdentifierDuplication = 53;

const short externalIFDeviceProblem = 54;

const short lineCardProblem = 55;

const short multiplexerProblem = 56;

const short nEIdentifierDuplication = 57;

const short powerProblem = 58;

const short processorProblem = 59;

const short protectionPathFailure = 60;

const short receiverFailure = 61;

const short replaceableUnitMissing = 62;

const short replaceableUnitTypeMismatch = 63;

const short synchronizationSourceMismatch = 64;

const short terminalProblem = 65;

const short timingProblem = 66;

const short transmitterFailure = 67;

const short trunkCardProblem = 68;

const short replaceableUnitProblem = 69;

/**

an equipment alarm to be issued if the system detects that the

real time clock has failed.

*/

const short realTimeClockFailure = 70;

const short antennaFailure = 71;

const short batteryChargingFailure = 72;

const short diskFailure = 73;

const short frequencyHoppingFailure = 74;

const short iODeviceError = 75;

const short lossOfSynchronisation = 76;

const short lossOfRedundancy = 77;

const short powerSupplyFailure = 78;

const short signalQualityEvaluationFailure = 79;

const short tranceiverFailure = 80;

/**

Values 81-100 are reserved for equipment alarm related

probable causes.

*/

/**

The following are used with environmental alarms.

*/

const short airCompressorFailure = 101;

const short airConditioningFailure = 102;

const short airDryerFailure = 103;

const short batteryDischarging = 104;

const short batteryFailure = 105;

const short commercialPowerFailure = 106;

const short coolingFanFailure = 107;

const short engineFailure = 108;

const short fireDetectorFailure = 109;

const short fuseFailure = 110;

const short generatorFailure = 111;

const short lowBatteryThreshold = 112;

const short pumpFailure = 113;

const short rectifierFailure = 114;

const short rectifierHighVoltage = 115;

const short rectifierLowFVoltage = 116;

const short ventilationsSystemFailure = 117;

const short enclosureDoorOpen = 118;

const short explosiveGas = 119;

const short fire = 120;

const short flood = 121;

const short highHumidity = 122;

const short highTemperature = 123;

const short highWind = 124;

const short iceBuildUp = 125;

const short intrusionDetection = 126;

const short lowFuel = 127;

const short lowHumidity = 128;

const short lowCablePressure = 129;

const short lowTemperature = 130;

const short lowWater = 131;

const short smoke = 132;

const short toxicGas = 133;

const short coolingSystemFailure = 134;

const short externalEquipmentFailure = 135;

const short externalPointFailure = 136;

/**

Values 137-150 are reserved for environmental alarm related

probable causes.

*/

/**

The following are used with Processing error alarms.

*/

const short storageCapacityProblem = 151;

const short memoryMismatch = 152;

const short corruptData = 153;

const short outOfCPUCycles = 154;

const short sfwrEnvironmentProblem = 155;

const short sfwrDownloadFailure = 156;

/**

A processing error alarm to be issued if the system detects

that it has lost the time in the real time clock but the clock

itself is working. This could happen e.g. during a power cut in a

small NE which does not have battery backup for the real time

clock.

*/

const short lossOfRealTime = 157;

/**

A processing error alarm to be issued after the system has

reinitialised. This will indicate to the management systems that

the view they have of the managed system may no longer be valid.

Usage example: The managed system issues this alarm after a

reinitialization with severity warning to inform the management

system about the event. No clearing notification will be sent.

*/

const short reinitialized = 158;

const short applicationSubsystemFailure = 159;

const short configurationOrCustomisationError = 160;

const short databaseInconsistency = 161;

const short fileError = 162;

const short outOfMemory = 163;

const short softwareError = 164;

const short timeoutExpired = 165;

const short underlayingResourceUnavailable = 166;

const short versionMismatch = 167;

/**

Values 168-200 are reserved for processing error alarm related probable

causes.

*/

const short bandwidthReduced = 201;

const short congestion = 202;

const short excessiveErrorRate = 203;

const short excessiveResponseTime = 204;

const short excessiveRetransmissionRate = 205;

const short reducedLoggingCapability = 206;

const short systemResourcesOverload = 207;

}; // moduel ProbableCauseConst

/**

5.5 ProblemCauseConst

This module contains the constant values defined for the

ProblemCause UID. These values were borrowed from M.3100.

*/

module ProblemCauseConst

{

const string moduleName =

"ITU_M3100::ProblemCauseConst";

/**

An additional value, unknown = -1, that is not in M.3100 was

added here because M.3100 defines problem cause as a choice

between an integer (as above) or null, for unknown. Instead of

the null choice, unknown problems will be represented by an

integer value of -1. Since UID values are signed short, -1 is

acceptable.

*/

const short unknown = -1;

const short noSuchTpInstance = 0;

const short noSuchGtpInstance = 1;

const short noSuchTpPoolInstance = 2;

const short mismatchingTpInstance = 3;

const short mismatchingGtpInstance = 4;

const short partOfGtp = 5;

const short involvedInCrossConnection = 6;

const short memberOfTpPool = 7;

const short alreadyMemberOfGtp = 8;

const short noTpInTpPool = 9;

const short noMoreThanOneTpIsAllowed = 10;

const short noMoreThanTwoTpsAreAllowed = 11;

/**

alreadyConnected is used to indicate the two termination

points requested to be cross-connected are already cross-connected

versus involvedInCrossConnection is used to indicate one or more

termination points are cross-connected but not to each other.

*/

const short alreadyConnected = 12;

const short notAlreadyConnected = 13;

}; // moduel ProblemCauseConst

}; // module ITU_M3100

#endif // _ITU_M3100CONST_IDL_

Last Modification: 06/12/99 11:03

vii
66

 Last Modification: 06/12/99 11:03

