Page 1

3GPP TSG-SA5 (Network Management) Meeting #7

Tampere, Finland, 26-30 October, 1999
[image: image1.png]
Tdoc S5-99238

Title:
Draft Standard. Framework for CORBA-Based TMN Interfaces

Source:
TC TMN Liaison Officer

Agenda item:
5.3 Liaison rapporteurs reports

Document for:
Information

Category:
 Analysis the re-usability of this work in SA5

Document Summary:
This contribution is the text of a working document being developed by the U.S. T1M1.5 standards body. It defines a framework for CORBA-based telecommunications network management interfaces.

Specification(s) involved:
None

Other information:

ITU-T SG4 Q19 Experts’ Meeting

Copenhagen, Denmark

 August 9-13, 1999
TAA03R1

Contribution

Title:
Working Draft of CORBA Framework for TMN

Source:
Editor

Contact:
Keith Allen

SBC Technology Resources

(512) 372-5741 (voice)

(512) 372-5791 (fax)

kallen@tri.sbc.com

Distribution:SG4 Q19

ABSTRACT

This contribution is the text of a working document being developed by the U.S. T1M1.5 standards body. It defines a framework for CORBA-based telecommunications network management interfaces. It covers framework requirements, CORBA Common Object Service usage recommendations, information modeling guidelines, and IDL style conventions. It also defines a set of network management support services with IDL interfaces and an IDL module on which future CORBA-based network management interfaces may be based.

NOTICE

This is a draft document and thus, is dynamic in nature. It does not reflect a consensus of the ITU-T and it may be changed or modified. The ITU-T makes no representation or warranty, express or implied, with respect to the sufficiency, accuracy or utility of the information or opinion contained or reflected in the material utilized. The ITU-T further expressly advises that any use of or reliance upon the material in question is at your risk and the ITU-T shall not be liable for any damage or injury, of whatever nature, incurred by any person arising out of any utilization of the material. It is possible that this material will at some future date be included in a copyrighted work by the ITU-T.

Table Of Contents

ivTable Of Figures

Table Of Tables
iv
Foreword
Error! Bookmark not defined.
1.
Scope and Purpose
1
1.1
Document Roadmap
3
1.1
Updates
3
1.1
Issues
6
1.
Normative References
13
2.
Definitions
14
3.
Framework Goals
14
3.1
General Requirements
14
3.2
Information Model Transparency
14
3.3
Identity of the managed object
14
3.4
Asynchronous operations
15
3.5
Generic GET and SET
15
3.5.1
GET Any
15
3.5.2
GET All
15
3.5.3
SET Any
15
3.6
Set-valued attributes
15
3.6.1
Set-valued Operations of the Filter
15
3.6.2
ADD-REMOVE
16
3.7
Strings
16
3.8
Scoping and Filtering
16
3.8.1
Scoped and filtered GET
16
3.8.2
Scoped and filtered SET
16
3.8.3
Future extensions
16
3.9
Mapping of Existing Models to CORBA Models
16
3.10
Application-Specific Optimizations
17
4.
Framework Protocol Requirements
17
5.
Framework Common Object Services Recommendations
17
5.1
The Naming Service
18
5.2
Notification Service
20
5.3
Telecom Log Service
24
5.4
Messaging Service
25
5.5
Security Service
27
6.
Framework Support Services
27
6.1
The Scoping and Filtering Service
28
6.1.1
The Scoping and Filtering Service Interface
28
6.1.2
The Default Filter Language
33
6.2
Active Alarm Synchronization
38
7.
The Framework IDL Module
39
7.1
The Top Managed Object
40
7.2
The Managed Object Factory
40
7.3
The Notifications Interface
41
7.4
The Data Type Definitions
41
7.5
The Constant Definitions
41
8.
Information Modeling Guidelines
41
8.1
Modules
41
8.2
Interfaces
42
8.3
Attributes
42
8.3.1
Readable Attributes
42
8.3.2
Settable Attributes
42
8.3.3
Set-valued Attributes
43
8.3.4
Exceptions
43
8.4
Actions
43
8.5
Notifications
44
8.6
Conditional Packages
45
8.7
Behavior
46
8.8
Factories
46
8.8.1
Create Operations
46
8.8.2
Delete Rules
46
8.9
Managed Object Class Value Objects
47
8.10
Constants
47
8.11
Registration
48
8.12
Grain-Neutral Conventions
48
8.13
GDMO Translation
48
8.13.1
Managed Object Classes
48
8.13.2
Packages
49
8.13.3
Attributes
49
8.13.4
Attribute Groups
50
8.13.5
Actions
50
8.13.6
Notifications
50
8.13.7
Behaviors
51
8.13.8
Name Bindings
51
8.13.9
Parameters
52
9.
Style Idioms for CORBA IDL Specifications
52
9.1
Use Consistent Indentation
52
9.2
Use Consistent Case for Identifiers
52
9.3
Follow JIDM Approach for IMPORT
53
9.4
Use JIDM Approach for OPTIONAL and CHOICE
54
9.5
Use a Consistent Type Suffix
54
9.6
Use a Consistent Suffix for Sequence Types.
54
9.7
Use a Consistent Suffix for Optional Types
54
9.8
Arrange Operation Parameters in a Consistent Manner
54
9.9
Assume No Global Identifier Spaces
55
9.10
Module Level Definitions
55
9.11
Limit Number of Parameters
55
9.12
Use of Exceptions and Return Codes
55
9.13
Explicit vs. Implicit Operations
55
9.14
Don’t Overly Constrain Data Types
55
9.15
Don’t Create a Large Number of Exceptions
55
9.16
Performance Considerations in IDL Modeling
55
9.16.1
Native Data Types vs. User Data Types
55
9.16.2
Use of the CORBA ANY data type
56
9.16.3
Operation Invocations
56
9.16.4
Abstraction Level of Object Granularity
56
9.16.5
Number of Objects in Implementations
56
9.16.6
Static vs. Dynamic Invocation
57
9.16.7
Number of Parameters for Each Operation
57
9.16.8
Two-way vs. One-way Operations
57
9.16.9
Support for invocation on multiple objects
57
9.17
Interface Versioning for CORBA/IDL
57
9.17.1
Interface Repository Overview
58
9.17.2
Use of RepositoryID for Interface Versioning
59
9.18
CORBA Interoperability Across Domains
60
9.18.1
Exchanging an IOR Out of Band
60
9.18.2
Naming Service Overview
61
9.18.3
Proposal for IOR Exchange
62
10.
Conclusion
62
Appendix A CORBA Interoperability Overview
65
A.1
Introduction
65
A.2
Interoperability Architecture
65
A.3
Interoperable Object References
65
A.4
GIOP Messages
66
A.5
IIOP
67
Appendix B CORBA IDL Module
69
Appendix C Network Management Constant Definitions
89
Appendix D Framework Support Services
93

Table Of Figures

20Figure 1. Naming Graph of Managed Objects

Figure 2. Architecture of the Notification Service
21
Figure 3. Mapping Notifications to Structured Events
23
Figure 4. Telecom Log Service
24
Figure 5. Asynchronous-aware ORB
26

Table Of Tables

17Table 1. CORBA Service Versions

Working Draft of CORBA Framework for TMN

Scope and Purpose

This document defines a framework suitable for use in the specification of interoperable CORBA-based network management interfaces. This framework is intended for applications where both the managed system and the managing system support native CORBA interfaces. It is not expressly intended for “gateway” situations where one system supports a network management protocol other than CORBA.

In particular, this framework is not specifically designed to support the construction of gateways between CORBA and CMIP network management applications. This implies that a management system might have to support multiple protocols, as shown in Figure 1. Even if a gateway converting CMIP to CORBA is used, the syntax on the interface to the gateway will likely differ from that used by the native CORBA interface.

[image: image2.wmf]CORBA

Agent

OSI

Agent

Manager

CORBA

CMIP

Figure 1. Use of CORBA without a Gateway.

There are a few reasons why this framework was not designed to support gateways. The most practical is that a gateway approach has already been developed by the Joint Inter-Domain Management (JIDM) group. Unfortunately, though, the gateway approach requires a great deal of CMIP-specific functionality and can’t go too far in re-using CORBA capabilities. This framework is based on the recognition of a need for standards-based native CORBA network management interfaces.

There is, however, a wealth of information models defined for CMIP in which the telecommunications industry has invested a great deal of time and energy. A prime goal of this framework is to enable the re-use of these information models after translation to CORBA Interface Definition Language (IDL) with little change in semantics.

In addition to taking advantage of CMIP information models, another goal of the framework is to take advantage of CORBA. CORBA provides functions and a set of Common Object Services that are leveraged by this framework. Also, the framework tries to re-use CORBA approaches and design patterns wherever they fit.

Efforts to develop standards for CORBA-based network management interfaces to date have mainly focused on TMN “X” interfaces, which are interfaces between administrations (carriers). The demands placed on these interfaces are not typically as great as those used “inside” an administration, on the so-called “Q3” interfaces. This framework is intended to support Q3 interface functionality throughout most of the TMN architecture. Basically, only the interfaces to the Network Elements are excluded from the scope of this framework. See Figure 2.

[image: image3.wmf]BML

SML

NML

EML

NEL

SML X

CMIP

CORBA

EDI

NE

NE

OS

Q3

CORBA

Proposed

OS

OS

Q3

CORBA

Proposed

OS

OS

Q3

CORBA

Proposed

OS

OS

Q3

CORBA

Proposed

OS

OS

CORBA

Proposed

 Q3

 Q3

 Q3

CORBA

Proposed

CORBA

Proposed

OS

CORBA

Proposed

CORBA

Proposed

CORBA

Proposed

CORBA

Proposed

 Q3

 Q3

 Q3

 Q3

 Q3

SNMP ?

CORBA

Proposed

Figure 2. CORBA Within an Administration’s TMN.

A number of factors are considered in this framework: the version of CORBA to use, the set of CORBA Common Object Services employed, additional services, and translation methodologies. Specifications on each of these and more combine to create the framework.

Initial IDL information models will likely be translations from CMIP models. This framework is accompanied by another document containing an information model based on the ITU-T’s M.3100 generic network model. Other models may follow.

This framework is also intended for re-use by other groups specifying network management interfaces. Re-using a common framework and generic information model for a variety of network technologies and network management applications will speed the introduction of new network services while keeping network management system development costs down.

Document Roadmap

This document has the following structure:

Section 1.
Introduction, document roadmap, updates, and list of issues.

Section 2.
References.

Section 3.
Definitions of terms and abbreviations used throughout the rest of the document.

Section 4.
Requirements for the CORBA network management framework. These are the design goals the framework must meet.

Section 5.
CORBA ORB and Service version requirements.

Section 6.
Recommendations on the use of CORBA Common Object Services on network management interfaces.

Section 7.
Support services that are not standard CORBA Common Object Services. IDL interfaces for the support services are defined in Appendices B ,C, and D.

Section 8.
A CORBA IDL module defining interfaces to be used and sub-classed in network management interface specifications. This section describes what is in the IDL module. The actual IDL is in Appendices B and C.

Section 9.
Information Modeling Guidelines. This section contains recommendations on both translating CMIP information models to IDL, and on defining IDL information models from scratch.

Section 10.
Style idioms for CORBA IDL network management interface specifications.

Appendix A.
CORBA interoperability overview.

Appendix B.
The IDL module for the framework specification.

Appendix C.
Additional IDL defining constants used by the framework.

Appendix D.
IDL defining support service interfaces.

Updates

This section describes the updates from the previous version of the document.

This is revision 1 of the document. It is nearly identical in content to the original contribution TAA-03 made to the Q19/4 interim meeting in Copenhagen, Denmark, 9-13 August, 1999. That contribution was simply the text from a draft standard being developed by the U.S. Committee T1M1.5. It was the version of that document that was submitted to T1M1.5’s 2-6 August, 1999 meeting in Torrance, California, USA.

The changes made to this revision from the original contribution were:

1. Removed T1M1.5 formatting.

2. Removed references to member companies of T1M1.5.

3. Removed editor’s notes that merely reflected updates to the T1M1.5 document from earlier versions.

4. Removed an issue from the issues list (see below) on where within the TMN architecture CORBA is to be used. That issue is being addressed by Q14.

Issues

[Editor’s note: This issues list was developed during discussions on this framework at T1M1.5. It is left here to help identify issues for ITU members. It became clear during the Copenhagen meeting that resolutions reached by T1M1.5 may not be shared by the ITU. Even so, knowing how T1M1.5 is addressing the issues may be of value.]

This section documents issues that have arisen during standardization of this document and their resolutions. It will be removed in the final version of the document.

1) The “ManagedObject” class is the “generic access” superclass for all CORBA managed objects. There will be a derived interface for each managedObject class, which has type-safe operations for obtaining the state (a structure with all the attribute values packed as elements), operations for actions, and accessor operations for getting and setting individual attribute values. In the coarse grained approach there will be one instance of the derived object for multiple managed object instances. What value will be returned by the “getName” generic operation for the coarse grained approach?

T1M1.5 Update 6/99: The group is considering moving to a “fine-grained” interface, which would resolve this issue. If not, an exception could be created indicating that a name cannot be returned by the object.

2) Why is it justified to have the managed object itself having to return the notification channel it is using. In some cases it may not know (there could be a special case implementation for the managed object to dispatch notifications to a sub-agent, which in turn talks to a notification channel). Even if it is justified it might be better to return Object rather than a refined subclass of eventChannel.

T1M1.5 Update 6/99: This issue was discussed at length but not resolved. A concern raised was that the object would not know which channel its events went to. Instead they may go through a hierarchy of channels or supporting objects, so simply querying the object would not give the manager the channel to which it should subscribe. The best alternative to an object attribute was putting name binding(s) for the Event Channel(s) in the Name Server. This could make it difficult to find the channel for a particular object but would make it possible to administer event channels. It would not support objects sending low-priority events to one channel and high-priority to another. Contributions on this subject are requested.

3) With such an efficient mechanism to get all attribute values in a typed structure in the subclasses, why is a getAttributeList operation justified? It is very costly to implement the Any based attribute value processing. Also, is the client expected to supply a “dummy” value of the proper attribute type for each attribute listed?. If the client guaranteed accurate typeCodes in the anyList , a fully generic library implementation of this operation could use the typeCode information in the inputList, without going to a repository. Is the implementation generic, or is it a separate static implementation for each managed object class? Since we are already dealing with the complexity of ANYs in this operation, why not also consider adding a CMISFilter Parameter to the signature?

T1M1.5 Resolution 6/99: Instead of using the “Any” types, value objects containing the attributes for each managed object will be defined. These objects will be retrieved using an operation to be added to Managed Object. In addition, a Scoping and Filtering support service will be defined. This service will be responsible for filtering, not the managed objects.

4) The Managed Object interface defines a method for generically setting a list of attributes. Is it really justified to set multiple attributes in the same operation? The SMI admin state was designed to lock an object, set its attributes to a stable configuration, and then unlock it. The complexity of the ANY based attributeList approach does not seem warranted for setting attributes. Again, if the implementation of the managedObject has to go this far into being CMIP aware, why not also add the filter construct?

T1M1.5 Resolution 6/99: The group tentatively agreed that setting multiple attributes in one operation need not be supported by the managed objects. The generic method for setting a list of attributes will be removed. The Scoping and Filtering service, to be added, will take care of setting lists of attributes in a single operation.

5) The Notification structures defined in the IDL module currently all identify the object that emits the notification with both a CORBA name structure and an object reference. Whenever a CORBA ORB receives an object reference it instantiates a “proxy” object in the local name space for the application receiving it. This could result in the instantiation of large numbers of proxy objects (and the corresponding consumption of memory) in applications that receive a large burst of notifications. (It should not affect the notification channels themselves, though.)

T1M1.5 Resolution 6/99: The MOID structures in the notifications will be replaced with just the CORBA name.

6) The framework currently does not support operations on multiple objects with one method invocation. Is it a requirement that multiple-object operations span classes? What about polymorphic classes? Operations spanning non-polymorphic classes will be a challenge in CORBA. Operations spanning polymorphic classes will be a challenge for the “object manager” approach, but are probably doable with a more generic “scoping and filtering service.”

T1M1.5 Resolution 6/99: A Scoping and Filtering Service is being defined and added to the framework.

7) An issue related to the one above is: what should be the inheritance relationship between “managers” or “factories” for classes that have an inheritance relationship? This framework specification has no sub-classes, but they certainly arise elsewhere. The factories in the generic information model document currently have no inheritance relationships other than a common super-class – “ManagedObjectFactory.”

T1M1.5 Update 6/99: There will be one factory object per name binding, and there will not be an inheritance relationship between them other than they will inherit from the generic factory. Object managers will actually be support services, more like the CORBA common object services, and will not have any prescribed inheritance relationship. A new issue is how does the client find the right factory to delete an object?

8) Is it a requirement that CORBA and OSI managers and agents interwork? This is illustrated by the follow excerpt from one specification[5] from the JIDM that did take this as a requirement.

[image: image4.wmf]CORBA

Manager

OSI

Agent

CORBA-OSI

Gateway

CORBA

CMIS

OSI

Manager

CORBA

Agent

OSI-CORBA

Gateway

CMIS

CORBA

Figure A.

If such interworking is required then the work already done in the JIDM Specification Translations and the JIDM Interaction Translation[6] are the appropriate solution.

If, on the other hand, only a more limited form of interoperable is desired then other approaches are possible. For example, it a Manager only needs the models of "CORBA Agents" and "OSI Agents" to be consistent then a less complete mapping at the protocol level could be used. (See Figure B).

[image: image5.wmf]CORBA

Agent

OSI

Agent

Manager

CORBA

CMIS

Figure B.

T1M1.5 Resolution 6/99: The group agreed that the more limited form of interoperability (shown in Figure B) is the goal for the framework.

9) The framework does not define a way of preserving the packaging of multiple constructs so that they are implemented either all or none. The “NotSupported” exception allows a mix of constructs to be implemented. Defining a way of specifying support for a package at run-time will probably not be possible with CORBA.

T1M1.5 Resolution 6/99: The group agreed to define exceptions for each package but the editors felt this would result in an unnecessarily large number of exceptions. Instead, a single “PackageNotPresent” exception that returns a string containing the package’s name has been defined. A macro for indicating which package name in IDL has also been added. Concurrence on this approach is sought. An operation returning the list of supported packages has been added to ManagedObject. This does not address the ability of a client to declare which packages are to be supported by an object when it is created. This is documented as a separate issue, #18, below

10) The IDL module in the appendices does not strictly follow the style idioms.

T1M1.5 Update 6/99: Type declarations will be named with names ending in “Type” and the idioms will be updated to reflect this. Lists will be named with names ending in “ListType” and the idioms will be updated to reflect. The IDL should be re-checked to see if it follows the other idioms.

11) Naming Service usage in support of both coarse-grain and fine-grain interfaces (see Appendix B) requires further study of way to improve Naming Service scalability. Do we allow object reference to be null in MOID for return and in parameters? (Lucent)
T1M1.5 Update 6/99: It is not clear from Lucent contribution (171) why the object reference needs to be null to solve the naming service storage. The Naming Service does not access the MOID. It was agreed that the proposal is not a solution (for storage of IORs) because it creates the following problem. If IOR is NULL, then how does the client find the IOR which is required for requests by clients? It was noted that the text in section 4.10 needs clarification and Lucent was requested to provide it. It was also noted that one solution is to support federated naming similar to JIDM approach where naming context is defined in top. This will allow for example to distribute names relative to different contexts in different servers, possibly solving the storage issue. This requires further discussion.

A parenthetical statement was added to the IDL comment on the MOID structure. Also, a sentence on the option of using federated naming servers was added to recommendation NAME-1.

12) Methods are needed to reduce the time required for completing a database synchronization, or more generally, the time required for completing any large transfer of information.

T1M1.5 Update 6/99: A section on alarm synchronization has been added to the support services section and corresponding IDL has been added to the appendices. Contributions on other database synchronization needs and solutions are invited. The configuration proposal from Lucent was found to be specific to a class of objects. It was agreed that support of an audit function similar to X.792 is required. This is documented as a new issue below.
13) Do we need linked response?

T1M1.5 Resolution 6/99: Instead of the server sending the responses in linked replies, using the iterator pattern will meet this requirement.

14) Interface “granularity”? Will the framework be the "grain-neural", or "fine-grain", or both?

15) Representation of Containment Relationships? Are containment relationships represented as attributes of the “objects” (either strongly or weakly typed) or as information in a Naming service?

T1M1.5 Resolution 6/99: The containment relationships will be represented in the Naming Service as a tree.

16) How to migrate to different versions of CORBA in the framework? Even though there was agreement to use 2.3, there is still the issue of how to adopt new services and even some defined services such as Automatic Message Interface that are not in 2.3. The OBS team is defining call backs because the support of AMI is not included in all products. This offers them two approaches, which is not desirable. This also led to the discussion of synchronous operation of a thread while supporting multiple threads. There are some new developments and further investigation is required regarding product support. It is however a requirement that multiple requests should be allowed from a client without waiting for a response and multiple clients should be able to access the same information.

17) An issue related to packages is how to handle setting the required conditional packages at creation time?

T1M1.5 Update 6/99: See earlier discussion on supporting packaging functionality of GDMO and the agreements. It may be possible to add a list of strings indicating which packages are to be supported as a parameter to object creation operations. Contributions on this subject are requested.

18) Support for mathematical set operations – how to distinguish a sequence from a set in CORBA as they both are modeled as sequence. As noted in contribution TAA-06, support for performing filter operations such as checking for subset, set intersection, superset is required.

T1M1.5 Update 6/99: The added description of the Scoping and Filtering Service defines support for mathematical set operations. Distinguishing sets from sequences is still and issue.

19) How to support X.792 configuration and action in CORBA?

20) What X.7xx series of support service need to support in CORBA (ex. simple scanner, alarm synch Q.821)? Will be in the separate section of 29. (Proposal for alarm synch will be included)

21) Reserved naming structure for attribute names will be required. The structure should be proposed in 29. The following were agreed and this will result in modifying the IDL convention section (currently 5). For Type convention use JIDM Import Type from JIDM as much as possible except: DN (CosName, OID (scoped name, etc… ENUM (INT How to handle multiple string types (do we need to use JIDM approach here?) Time representation (do we need to support representing in UTC time not available in IDL?)
22) Multiple names for an object (CORBA allows this. But in CMIP models this is not available. Should there be a restriction to a single name only?) – propose using one name only.

23) How to handle ASN.1 OPTIONAL in ASN.1 definitions. Use of Unions is one approach but makes the specification complex. May require examining each case and determine where it can be eliminated versus semantics requires the need for optionality.
T1M1.5 Update 6/99: Optional enums and integers were updated to use the JIDM approach. Strings, sequences, and object references have comments indicating they are optional and may be null. Structures and unions are taken on a case-by-case basis. The style idioms reflect this.
24) The scoping and filtering service’s filter language needs to support beginning and ending substrings. (The constraint language used by the CORBA Trader service and extended by the CORBA Notification Service supports substring operations but not the capability to restrict a substring operation to the beginning or ending of a string.)
T1M1.5 Resolution 6/99: The added description of the Scoping and Filtering Service includes regular expression matching in the filtering capabilities. This supports beginning and ending substings as well as other capabilities.
25) A set of standard exceptions across T1M1.5 CORBA/IDL specifications would be extremely useful. Should some or all of the CMISE errors be modeled as exceptions?

T1M1.5 Update 6/99: The framework defines a set of standard exception including an “Object Failure” exception that returns values defined in CMIP.ASN1 including everybody’s favorite, “Processing Failure.” CMIP allows processing failures to also return parameters, and this capabilities is used in M.3100 Corrigendum 1 and other places. To support this capability the Object Failure exception also returns “Additional Information.” The intent here is to enable the inclusion of parameters in the processing failure - Object Failure exceptions the way they are done in notifications.

26) Are there other items from the JIDM that should be used?

27) More study needs to be done to create guidelines for what constitutes a backward compatible change. Adding a new operation to an interface or a new type to a module could be considered backward compatible. On the other hand, changing the signature of an existing operation would make an interface not backward compatible. For modules, changing an existing type would also be considered not backward compatible.

28) How should the prefix pragma be used? A couple of possibilities are that a single prefix could be used for all ITU specifications (e.g. “ITU”) or each specification could have its own (e.g., “ITU M.3100”). Do we want a single prefix for all ITU specifications (e.g., “itu.org”) or do we want to use the standard number (e.g., “itu.m3100”)?

29) The Scoping and Filtering Service’s constraint language does not support sets of object references or sets of complex types including UIDs. Does this need to be added? Does a string comparison on objectClass in the filter suffice for limiting the operation to a class of objects or is some other mechanism needed, perhaps one that would accept sub-classes? Contributions extending the Notification Service’s constraint language’s BNF to match the constraint language defined for the Scoping and Filtering Service are invited.

30) In order to support filtering on Names, the Scoping and Filtering service is required to convert CORBA names to strings. It might be easier to just pass stringified names across the interface.

31) The ManagedObject destroy() operation and the ManagedObjectFactory deleteName() and deleteContained() operations help to indicate how we think the deletion of an object should work but are somewhat implementation-specific.

32) The scoping and filtering service is described as a best-effort service, but add and remove operations on object attributes are not. Should this be changed?

Normative References

[Editor’s note: References need to be double-checked. A Posix reference may be needed, as well as others.]

The following standards contain provisions which, through reference in this text, constitute provisions of this American National Standard. At the time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreements based on this American National Standard are encouraged to investigate the possibility of applying the most recent editions of the standards indicated below.

[1] The Object Management Group (OMG), “The Common Object Request Broker: Architecture and Specification”, Revision 2.2, February 1998.

[2] The Object Management Group (OMG), “CORBA Services: Common Object Services Specification”, Updated version, December 1998.

[3] The Object Management Group (OMG), “Notification Service”, OMG TC Document telecom/98-11-01, November 3, 1998.

[4] The Object Management Group (OMG), “Telecom Log Service”, OMG TC Document telecom/98-12-??, December 16, 1998.

[5] Inter-domain Management: Specification Translation, Open Group

[6] JIDM Interaction Translation, Edition 4.31, October 1998, OMG document telecom/98-10-10

Definitions

This section provides definitions for terms and phrases used throughout the rest of the document.

Framework Goals

This section details the requirements the framework must fulfill. These may be considered the design goals for the framework.

General Requirements

This framework document shall support the following requirements:

1. The CORBA framework shall support unique naming of each entity.

2. The CORBA framework shall be scalable to allow support of up to 10 Million objects or object-equivalent entities.

3. The CORBA framework shall support the capability to access a large number of objects or object equivalent entities in a single operations, for applications such as restoration, synchronization, and back-up

4. Both coarse-grain and fine-grain IDL shall be supported, but coarse-grain is essential to fulfill the above requirement, as well as timely implementations

5. Consistency with the existing GDMO models shall be guaranteed at the protocol-neutral level (e.g., using UML). GDMO model translation to IDL shall be by prescribed methodology with optimization allowed.

6. The IDL should be application-optimized (e.g. SONET EMS/NMS interface), within the framework defined. This framework shall be common to ATM/IP/FR applications, as well as to SONET/SDH/ON applications.

7. The implementation shall support filtering of the notifications, and of the equivalent “get” operations on logs.

Information Model Transparency

If CORBA is used in places within the TMN architecture where existing information models are well established, then the framework must support the reuse of those models without any major changes.

A single standard way to map these information models to CORBA is needed so that the same models are always presented by the application protocol to the application with the same set of services (capabilities).

The focus of the framework must be on the set of services required to allow the existing models to be used as they were originally intended with a reasonable amount of efficiency.

Identity of the managed object

Within OSI SM a managed object is an entity with a persistent identity that ties together all the attributes, notifications and actions related to the resource that the managed object represents. It is required that the CORBA framework provides a similar abstraction of a resource. It is required that it provides a persistent identity that ties together these same items. In particular, notifications must indicate the identity of the managed object that emitted them. This is an extremely important capability to support the operation of NEs.

Asynchronous operations

The managed object must support multiple independent interactions between it and more than one manager. This is important in large networks where many operations support systems manage different aspects of the of a single NE.

Generic GET and SET

GET Any

CMISE supports the ability to read arbitrary sets of attributes in a single operation. This service allows many management tasks to be performed with a single operation and is required to be supported.

GET All

A special case of this is the ability to read all the attributes of a managed object with a single operations. This service also is required.

SET Any

CMISE also supports the ability to write arbitrary sets of attributes in a single operation. This service allows many management tasks to be performed with a single operation and support is desired.

Set-valued attributes

Set-valued Operations of the Filter

CMISE has special capabilities to deal with set-valued attributes. In CMISE these tests are done using the filter construct. This requirement is placed separately from the discussion of scoping and filtering since it could be supported in other ways. CMISE supports the following tests related to set valued attributes:

1) subset of: TRUE if and only if all asserted members are present in attribute.

2) superset of: TRUE if and only if all members of attribute are present in attribute value assertion.

3) non-null set intersection: TRUE if and only if at least one of the asserted members is present in the attribute.

It is required that any use of CORBA that supports information model transparency support an equivalent capability.

ADD-REMOVE

CMISE supports the ability to add members to set-valued attributes and the ability to remove members from set valued attributes. It is highly desirable that any use of CORBA support an equivalent capability.

Strings

CMISE has the ability to test for the presence of substrings in string types. It can test if the substring is at the beginning, end, or any position in the string. Sting-type attributes are very common in the existing models and these kind of tests are important when dealing with strings. It is required that any use of CORBA support an equivalent capability.

Scoping and Filtering

Existing models use the containment relationship extensively. Also the number of managed objects that occur in the telecom domain is quite large (106 to 107 instances are not uncommon.) Some tools are needed to deal with this. The existing models assume the ability to scope through the containment relationship and to then select managed objects from the scoped set by testing attribute values against an assertion of value (including the set-valued attribute tests and the substring tests). Generic GET or SET operations on the attributes of the objects that pass the test are then performed without requiring a separate interaction between the manager and agent for each object.

Scoped and filtered GET

The support for a scoped and filtered GET operation equivalent is required of any use of CORBA that claims information model transparency.

Scoped and filtered SET

The support for a scoped and filtered SET operation equivalent is highly desirable.

Future extensions

It should be pointed out that kinds of multiple object operations not supported by CMISE could be quite useful in the telecom context. Two other relationships are quite common in the TMN models: 1) The supported by/affect object relationship and 2) The connectivity relationship (upstream/downstream). The ability to do scoped and filtered operations along these relationships would be a powerful extension to our management capabilities and would be a positive reason to move to CORBA technology.

Mapping of Existing Models to CORBA Models

The existing models represent a significant investment in time and energy and must be re-usable within the framework

The way in which a model is mapped onto a way of using a software architecture is an aspect of granularity. In the existing OSI SM CMISE world this mapping is one for one with the information modeling. (Any software issues about mapping MOs to the resources they represent are hidden from the interface by the CMISE Agent.) A standard way of using CORBA to access the existing information models is required. A single way of doing this is preferred. If options are needed they should be done in such a way that the client does not need to be aware of them.

Any such mapping must support the requirements for information model transparency and at the same time have reasonable scalability (be able to support 106 to 107 managed object instances) and performance. Care should be taken that performance is not bottle necked at any required CORBA service (in particular the naming service).

Application-Specific Optimizations

The support of specialized “summary”, or “info-object manager” CORBA objects by a server system may be employed for low-latency access to large numbers of info-objects in a smaller number of operations. For example, an “Alarm Synchronization” CORBA object could have operations for accessing the current alarms of a large number objects, using relative distinguished names to identify the affected objects. The information pertaining to the identified info-objects could be passed back using IDL sequences of structures, grouping all the attribute values for each info-object in a compact structure. If all of the return information is too large to send in a singe response message, the IDL “iterator” pattern can be employed to allow the client to obtain the response information in manageable sized chunks.

Framework Protocol Requirements

This section defines the versions of the services that are required to support this framework. CORBA services and protocol specifications are defined by the Object Management Group (OMG). The table below shows which version of the applicable OMG specification must be supported to comply with this framework.

Service
Version

ORB
2.3 [1]

Name Service
1.0 [2]

Telecommunications Logging Service
1.0 [4]

Table 1. CORBA Service Versions

Framework Common Object Services Recommendations

The CORBA ORB provides basic object-to-object interaction capabilities.[1] Additional capabilities are defined as separate, “Common Object Services.”[2] The CORBA Common Object Services are general purpose, domain-independent services that are fundamental for developing CORBA applications composed of distributed objects. They also provide the basic building blocks for application interoperability. The services are defined with object interfaces and can be combined in many different ways and put to many uses in different applications. In a specific domain, CORBA Common Object Services can be used to construct higher-level facilities and object frameworks that can inter-operate across multiple platform environments.

Many of these CORBA Common Object Services have already been implemented and are available as commercial, off-the-shelf software products. Also, programmers working in many industries will likely have experience with them in the near future. Re-using these Common Object Services instead of defining new ones strictly for the telecommunications industry or re-implementing the functionality in application-specific code will result in a quicker, more cost-efficient adoption of CORBA for network management.

The following sub-sections specify recommendations on the use of CORBA Common Object Services to ensure interoperability between different network management systems.

The Naming Service

The OMG Naming Service is CORBA’s directory service, or “white pages.”[2] It allows a client to build a name-to-object association called a name binding that other clients can then use to find the object. (CORBA object addresses can be long and difficult for use by humans.) A name binding is always defined relative to a naming context. A naming context is an object that contains a set of name bindings in which each name is unique. A name binding is a data structure containing two strings and an object reference (address). The “ID” string is the identifier for the binding and must be unique within a context. A second string, called “kind,” is also part of the data structure. Different names can be bound to an object in the same or different contexts at the same time. The naming context can also be bound to a name in another naming context. Binding contexts in other contexts creates a naming graph – a directed graph with nodes and labeled edges where nodes are contexts. Given a context in a naming graph, a sequence of name binding structures can reference an object. This sequence of structures, called a compound name, defines a path in the naming graph that may be navigated to resolve the name and find the object.

There is no requirement that CORBA name bindings represent a containment relationship between objects, but the concept of containment is important in network management and needs to be communicated across network management interfaces. The CORBA Naming Service is the best way to accomplish this. The following paragraphs define a series of recommendations on using the CORBA naming service to represent the containment relationships among object instances.

(R) NAME-1
Every managed object should have an associated name binding representing its position in the containment relationship graph. These name bindings may be spread over multiple, federated servers but will represent a single naming graph.

(R) NAME-2
Since a simple name binding cannot identify an object and also contained objects, each managed object should instead have a corresponding Naming Context. A specially-named binding in each such context will bind the ID value “Object” with a reference to the actual managed object. (The “kind” field of this binding will be null.) Other naming contexts, representing contained managed objects, may also be bound to names in this context.

(R) NAME-3
The “ID” field of a name binding for a naming context representing a managed object will be application-dependent. The “kind” field should be the scoped name of the object’s interface. (A CORBA scoped interface name is one that includes the name of the module where the interface is defined, along with the names of any modules in which that module is nested. The scope information is necessary in case the same interface name is used in multiple modules.)

 (R) NAME-4
The different interface classes of objects contained under a superior object should be grouped into their own naming contexts. This will add value by making it easier to find groups of objects of the same kind and by reducing the likelihood of name collisions. The “ID” field of these naming contexts should be the scoped interface class names. The “kind” field should be null.

(R) NAME-5
Each managed object should have an operation returning its name (of type CosNaming::Name) relative to its root context.

The following figure gives an example of name bindings according to the above recommendations. In the figure, CORBA Naming Contexts are represented as folders. The contents of the folders are name bindings. Each name binding has the format <kind>.<ID> and a pointer (reference) to the object bound to this name. (Some example name bindings do not have a pointer shown in the diagram to reduce the complexity of the diagram.) The graph represents a Network object, named “CentralNet,” that contains a Managed Element object named “Element9” and a Connection named “R5698.”

[image: image6.wmf]MO

.ITU_M3100::Network

ITU_M3100::Network.CentralNet

ITU_M3100::Network.NorthernNet

ITU_M3100::Network.SouthernNet

.Object

.ITU_M3100::ManagedElement

.ITU_M3100::Connection

.ITU_M3100::Trail

ITU_M3100::Connection.C1157

ITU_M3100::Connection.A549

ITU_M3100::Connection.R5968

ITU_M3100::ManagedElement.Element1

ITU_M3100::ManagedElement.Element7

ITU_M3100::ManagedElement.Element9

.ITU_M3100::Equipment

.ITU_M3100::Software

.Object

.Object

MO

MO

(The root

Naming Context)

(The Network

Name Bindings)

(Naming Context

for the

CentralNet

Managed Object)

(The

CentralNet

Network Managed

Object)

(The Element9 ME

Managed Object)

(The R5698

Connection Managed

Object)

(The Naming Context for Element9)

(The Naming Context for Connection

R5968)

(Name Bindings for

Managed Elements)

(Name Bindings for Connections

contained under

CentralNet)

Figure 3. Naming Graph of Managed Objects
Notification Service

The CORBA Notification Service supports the asynchronous exchange of event messages between clients using a subscribe-and-publish paradigm.[3] The Notification Service introduces event channels which broker event messages, notification suppliers which supply event messages, and notification consumers which consume event messages. The CORBA Notification Service preserves all of the semantics specified for the CORBA Event Service, allowing for backward compatibility with Event Service clients. The extended functionality that is important to the network management domain is the structured event, event filtering, and QoS (Quality of Service). The figure below depicts the general architecture of the Notification Service.

[image: image7.wmf]Notification

Service

Event

Channel

Supplier

Supplier

Supplier

Consumer

Consumer

Consumer

QoS

QoS

QoS

QoS

QoS

F

F

QoS

F

F

F

F

= Filter

F

Figure 4. Architecture of the Notification Service

(R) NOTIF-1
The Notification Service should support the push interface model. The managed object interface to the event channel should be a push supplier.

(R) NOTIF-2
The managed system should instantiate the Notification Service event channel objects that it would use. Each managed object will have an object reference attribute pointing to an event channel it interfaces with. Each managed system might require only one event channel.

(R) NOTIF-3
The Notification Service should support structured events. Support for typed events is optional.

(R) NOTIF-4
The form of event messages should be structured events. The use of typed events may be an option and is under study.

The message interface between suppliers and consumers should be defined in IDL as if they were using typed events. This is done to enable capturing the notification in IDL (which cannot be done for structured events except with comments) as well as to potentially support typed notifications for applications that wish to use them.

In addition to the normal IDL definition, the specification should include comments identifying whether a parameter is filterable or not. If this is not identified the parameter will be assumed to be filterable.

(R) NOTIF-5
The suppliers and consumers of structured events should follow these rules, based on the Notification Service specification, for constructing and retrieving the structured event (see the figure below which depicts the Notification Structure and how elements from the IDL notification definition are to be mapped into it):

· The domain_type string in the fixed header of the structured event should be set to "Telecommunications".

· The type_name string in the fixed header of the structured event should be set to the scoped name of the operation defining the notification in IDL, for example, "ITU_X721::Notifications::attributeValueChange".

· The event_name string in the fixed header of the structured event should be null.

· Optional header fields may be included to support features like Quality of Service as appropriate.

· Each parameter in the operation should be placed in a name-value pair in the filterable body portion of the structured event (unless the parameter is identified as non-filterable, in which case it goes in the non-filterable part of the event body). The fd_name string of this pair shall be set to the name of the parameter and the type placed in the associated fd_value will be the type specified for the parameter. Using as an example the attributeValueChange notification from the IDL presented later in this document, the first fd_name string would be set to "attributeValueInfo" and the first fd_value would contain an AttributeValueInfo structure.

· The remainder of the body of the structured event (the non-filterable part) should be null unless non-filterable parameters were identified..

· Parameters named “operation” should be avoided in notification operations to potentially support the use of typed notifications. (When using typed notifications, the parameters of an operation are automatically placed into a notification structure by the event channel. Unfortunately, the rules developed for doing this state that the name of the operation used to issue the notification goes not in the header of the event, but in the body of the of the structure as the first name-value pair. The fd_name string is set to “operation” and the fd_value a string containing the name of the operation. While the notification channel should be able to differentiate a “real” parameter named “operation” from the one added based on their positions in the filterable data list, it could have an impact on filtering as the default filtering language does not have a way to differentiate the parameters based on position.)

[image: image8.wmf]domain_type

type_name

event_name

ohf_name

1

ohf_name

2

…

ohf_name

n

fd_name

1

fd_name

2

…

fd_name

n

remainder_of_body

ohf_value

1

ohf_value

2

ohf_value

n

fd_value

1

fd_value

2

fd_value

n

Event Header

Event Body

Fixed Header

Variable Header

Filterable Body

Fields

Remaining Body

“Telecommunications”

<null>

Optional header fields

may be included to

support features like

Quality of Service

void

attributeValueChange (

in

AttributeValueChangeInfo

attributeValueChangeInfo

);

Other parameters

would go in

additional rows

Figure 5. Mapping Notifications to Structured Events

(R) NOTIF-6
The Notification Service specification identifies filter expressions that are used to determine if the event is to be forwarded and also filter expressions that “map” to parameters used to impact the operation of the event channel in others ways, such as the QoS used in delivering the event. The Notification Service should support event filtering with filter objects that support constraints expressed in the default constraint grammar specified by the OMG. The Notification Service should also support mapping filters.

(R) NOTIF-7
The Notification Service reliability QoS should support EventReliability=Persistent & ConnectionReliability=Persistent.

Each event is guaranteed to be delivered to all consumers registered to receive it at the time the event was delivered to the channel, within expiry limits. If the connection between the channel and a consumer is lost for any reason, the channel will persistently store any events destined for that consumer until each event time out due to expiry limits, or the consumer once again becomes available and the channel is subsequently able to deliver the events to all registered consumers. In addition, upon start from a failure the notification channel will automatically re-establish connections to all clients that were connected to it at the time the failure occurred.

(R) NOTIF-8
The Notification Service order policy QoS should allow the events to be delivered in the order of their arrival, i.e. FIFO. The Notification Service may also optionally support a priority-order QoS in which events could be buffered in priority order, such that higher priority events will be delivered before lower priority events.

(R) NOTIF-9
The Notification Service implementation deployed should be compliant to the conformance statements of the OMG Notification Service specification with the exception of the pull interface model.

Telecom Log Service

The CORBA Telecom Log Service is a CORBA-based log service that fully supports the ITU-T X.735 recommendation.[4] The log is implemented as an Event Service or Notification Service event channel. The Log Service supports the following functionality:

· Writing to the log: Events supplied to the log are persistently stored as log records.

· Forwarding from the log: Events supplied to the log are also forwarded to other logs or to any application that wishes to receive them.

· Log generated events: The log itself will generate events.

Also the Log Service provides functions of log control and management, log record manipulation, log lifecycle management. The following figure gives a graphic representation of the Log Service.

[image: image9.wmf]Notification

Service

Event Channel

Supplier

Supplier

Supplier

Consumer

Consumer

Consumer

QoS

QoS

QoS

QoS

QoS

QoS

Log

Persistent Store

Log Filter

Non-Event

Writer

F

F

F

F

F

F

= Filter

F

Figure 6. Telecom Log Service

By manipulating the Log Filter, a managing system is able to control which events are logged and which aren’t, in exactly the same way it is able to control which events are forwarded and which aren’t. The only exception is the “Non-event Writer,” which is an application that writes data directly to the log.

(R) LOG-1
The Log Service should support all the Notification Service requirements.

(R) LOG-2
The Log Record supported by the Log Service should be the normal struct LogRecord. The support of struct TypedLogRecord is optional.

(R) LOG-3
The Log Service implementation should be compliant with the conformance statement in the OMG Telecom Log Service specification with the exception of the pull interface model.

Messaging Service

The CORBA Messaging Service covers three areas: Asynchronous Method Invocation (AMI), Time Independent Invocation (TII), and Messaging Quality of Service (QoS).[2] Of the three areas, the AMI has a significant role in the network management domain because it allows clients to make non-blocking requests on a CORBA object. Note that without this capability CORBA clients must in most cases wait for a response from the server or make the CORBA call in a separate thread that blocks while other thread continue to process.

The AMI is treated as a client side language mapping issue only. In most cases, server side implementations are not required to change. In certain situations, such as with a transactional server, the asynchrony of a client does matter and requires server side changes if it is expected to handle transactional asynchronous requests. Transactional requests, however, will not be addressed in this document. The following figure depicts the basic concept of the OMG AMI model.

[image: image10.wmf]Async-aware ORB

Sync Client

Async Client

Servant

IDL - Stub (sync)

Implied-IDL -

Stub (

async)

IDL - Skeleton (sync)

Figure 7. Asynchronous-aware ORB

The AMI specification provides two models of asynchronous requests: callback and polling. In the callback model, the client passes an object reference for a ReplyHandler object as a parameter when it invokes a two-way asynchronous operation on a server. When the server responds, the client ORB receives the response and dispatches it to the appropriate method on the ReplyHandler servant so the client can handle the reply. In other words, the ORB turns the response into a request on the client’s ReplyHandler. The ReplyHandler is a normal CORBA object that is implemented by the programmer as with any object implementation. In the polling model, the client makes the request passing in all the parameters needed for the invocation, and is returned a Poller object which can be queried to obtain the results of the invocation. This Poller is an instance of a valuetype, which is a new IDL type introduced by the new Objects-by-Value specification. A valuetype has both data members and methods, which when invoked are just local function calls and not distributed CORBA operation invocations.

The value of the Asynchronous Method Invocation capability in network management applications is that it enables managing systems that wish to use asynchronous method calls to inter-operate with managed systems using the same interface definitions as those used by synchronous clients. No changes are required in the interface definition or the implementation of the managed system. The following recommendations are proposed for implementations that that optionally wish to support asynchronous, non-transactional method invocations.

(O) AMI-1
The AMI-aware CORBA implementation should at least support the callback programming model.

(O) AMI-2
For each operation in an IDL interface, the AMI-aware CORBA implementation should generate corresponding asynchronous callback method signatures. These signatures are described in implied-IDL which is used to generate language-specific operation signatures.

(O) AMI-3
The AMI-aware CORBA ORB should pass a type-specific ExceptionHolder value instance that contains the marshaled exceptions as its state to the ReplyHandler when exception replies are returned from the CORBA object. The AMI-aware IDL compiler would generate a type-specific ExceptionHolder for each IDL interface.

(O) AMI-4
The AMI-aware IDL compiler should generate a type-specific reply handler for each IDL interface. The client will implement and register a reply handler with each asynchronous request and receive a callback when the reply is returned for that request. This reply handler is derived from the generic Messaging::ReplyHandler.

Security Service

The CORBA Security Service comprises the security functionality of authentication of principals (human users and objects), authorization of access to objects by principals, security auditing, communication security, non-repudiation, and administration.[2] All of this may be overkill for many applications. For now, the optional recommendations below require only the communication security and system-level authentication functionality based on Secure Socket Layer (SSL) technology for availability and simplicity reasons.

(O) SEC-1
The CORBA implementation should support SSL version 3.0. The CORBA SECIOP protocol is not required when using SSL since it provides a secure transport layer over TCP/IP. The connection rules of IIOP are applied to SSL.

(O) SEC-2
If manager system to managed system authentication is desired, SSL should support the optional certificate exchanger features.

(O) SEC-3
The IETF has published the next generation of SSL in RFC 2246, the Transport Layer Security (TLS) specification. When the TLS market matures and CORBA products emerge, SSL-based solutions should migrate to TLS.

Framework Support Services

This section defines common support services included in the framework that are not standard OMG CORBA Common Object Services. Many network management applications perform functions that are not commonly required by general-purpose business applications, so it is not reasonable to expect the CORBA framework to supply all the necessary services for network management. This section defines services that will be broadly used by network management applications but are not as likely to be used by many other types of applications and are therefore unlikely to become CORBA Common Object Services. These services also provide functionality required to enable the re-use of existing information models without significant changes in semantics.

The advantages of placing this functionality in common support services is that it unburdens the managed object implementations from providing these services and allows the services to evolve to provide greater functionality without changing the managed object interfaces or implementations.

The Scoping and Filtering Service

With potentially millions of entities to manage, there is a need for the framework to support operations on multiple objects with a single interaction or perhaps a small number of interactions. The Scoping and Filtering Service provides this capability.

It is expected that each network management platform supporting a CORBA interface also provide at least one instance of the Scoping and Filtering Service. Managers will interact with the service using a limited number of interactions requiring relatively low bandwidth. The service will in turn interact with managed objects using either their published CORBA interfaces or some proprietary means. These interactions are expected to require high bandwidth, thus the need to co-locate the service with the managed objects.

The Scoping and Filtering Service Interface

The Scoping and Filtering Service’s interface, included in the IDL in Appendix B, is weakly-typed. It provides a set of generic capabilities that may be invoked on sets of any kinds of managed objects, even objects of different types. The operations supported are:

· Scoped get: Returns the values from each of the objects for a list of attributes.

· Scoped set: Sets a list of attributes in each of the objects to the values provided.

· Scoped add: Adds values to set-valued attributes in each of the objects.

· Scoped remove: Removes values from set-valued attributes in each of the objects.

· Scoped access: Supports a combination of reads and updates to each object.

· Scoped action: Invokes an action on each of the objects using the supplied parameters.

· Scoped delete: Deletes each of the objects

Each of these operations requires five parameters to define the set of objects on which the operation will be performed:

· Base object name: The name of the object at the root of a tree of objects on which the operation will potentially be performed.

· Scope: An enumerated value identifying one of a few options for which relationship to follow from the base object and how. The options are:

· Base object only.

· Entire subtree of objects contained below the base object

· Subtree of objects contained below the base object down to a specified depth.

· Only the objects contained below the base object at the specified depth.

· Depth: The number of relationship hops to follow from the base object. If depth is 0, only the base object is included in the scope. The depth parameter is only used for some values of scope. When it is not needed, it should be set to zero but will be ignored by the service.

Note that because this framework uses additional naming contexts to separate contained name bindings by the class of object, the service has to do a little work to determine the actual depth for containment-based scopes. The goal is to make it as simple as possible for the client. First, the base object name will be the entire complex name including the final component with an ID value of “Object”. The service will have to “back up” to the naming context that contains this binding and start counting from there. Next, due to the additional naming contexts separating bindings by object classes, the service will double the depth value, in essence “hopping over” the additional contexts. Finally, the service will automatically follow the “Object” bindings in the managed object naming contexts within the scope.

· Filter: An expression written in a constraint language that is used to evaluate the attributes of an object. The operation is applied to those objects within the scope for which the filter expression evaluates to “true.”

· Language: a string indicating the language in which the filter expression is written.

The types of these parameters are:

typedef COSNaming::Name NameType
// from COS Naming Service

enum ScopeType {BaseOnly, ContainedTree,

ContainedToDepth, ContainedAtDepth};

typedef wstring Istring;
// for filter & language parameters

Each of the operations raises an InvalidName exception if the base object name is not valid, or an InvalidFilter operation if the syntax of the filter is incorrect. Note that if an expression cannot be evaluated for a particular object because the types of its attributes do not match the expression, the filter is not invalid. That object simply fails to pass the filter.

The other parameters for the operations as well as the return types are specific to the operation. For example, the scoped get operation takes a list of attribute names and returns a sequence of results, one from each object.

The object’s name is associated with the results from that object. The result also indicates if the object raised an exception or if the operation could not be applied to the object because no matching operation was found on its interface.

Because each of the operations could potentially return large amounts of data, the iterator design pattern is used for returning the results.

The following sub-sections give additional details on each of the scoped operations.

Scoped Get

The IDL signature for the scoped get operation on the Scoping and Filtering Service is:

GetResultsListType scopedGet (in NameType baseName,

in ScopeType scope, in ushort depth, in Istring filter,

in Istring language, in IStringListType attributes,

in ushort howMany,

out GetResultsIterator resultsIterator)

raises(InvalidName, InvalidFilter);

As described above, the first five parameters are used to select a set of object on which to perform the get operation. For each of these the service will try to return a value for each of the attributes named in the attributes parameter, which is just a list of strings. The new types involved in the return values are:

struct AttributeValueType {

Istring
attributeName;

any
value;

// type will depend on the attribute

};

typedef sequence <AttributeValueType> AttributeListType;

struct GetResultsType {

NameType

name;

boolean

success;

AttributeListType
attributes;

}

typedef sequence <GetResultsType> GetResultsListType;

The return type is a sequence of structures, one for each object that passed the filter. In that structure is an object’s name and the list of attribute values from that object. If an attribute value could not be retrieved either because the object did not have a matching attribute or some exception was thrown on access, that attribute should be left out of the list for that object. If it turns out that no attribute values may be returned for the object even though it passed the filter, the object’s name and a null attribute list should be returned for that object. The Boolean-typed “success” member should be set to true if all attributes were returned for an object. Thus, a scoped get on a single invalid attribute name will return the list of objects in the scope that passed the filter but with success equal to false and no attribute values. A submitted null attribute list, however, has the special meaning that all attribute values for the objects that pass the filter should be returned.

Scoped Set

The IDL signature for the scoped set operation on the Scoping and Filtering Service is:

UpdateResultsListType scopedSet (in NameType baseName,

in ScopeType scope, in ushort depth, in Istring filter,

in Istring language, in AttributeListType attributes,

in ushort howMany, out UpdateResultsIterator resultsIterator)

raises(InvalidName, InvalidFilter);

Again, the first five parameters are used to select the set of objects on which the set is performed. The attributes parameter is a list of name-value pairs where the name is the name of an attribute and the value is a CORBA “any” type containing the value to which the attribute should be set. (Note that this could be a complex type including a sequence.) The return value is a list of object names along with a Boolean value indicating if the set operation was successful for that object. That is, for each object in the scope that passes the filter, the results list will include a structure with that object’s name. If any of the values in the attributes list can not be set either because the object doesn’t have a matching attribute or because the object threw an exception when the service tried to set the value, the Boolean value will be set to false. The service will try to set all the values in the list, continuing to try the rest even if one operation fails. The new types involved in the return value are:

struct UpdateResultsType {

NameType
name;

boolean

success;

};

typedef sequence <UpdateResultsType> UpdateResultsListType;

Scoped Add

The IDL signature for the scoped add operation on the Scoping and Filtering Service is:

UpdateResultsListType scopedAdd (in NameType baseName,

in ScopeType scope, in ushort depth, in Istring filter,

in Istring language, in AttributeListType attributes,

in ushort howMany, out UpdateResultsIterator resultsIterator)

raises(InvalidName, InvalidFilter);

Notice that the operation has the same signature as the scoped set operation except for the operation’s name. The behavior of this operation is slightly different, though. First, the values contained by the CORBA “any” types in the attributes list must be sequences, even if only a single value is being added. Rather than replacing the contents of the attributes, as the set operation would do, this operation adds the values to the set-valued attributes of the objects selected according to the first four parameters. Like the set operation, the return list has an entry for the name of each object selected and an indication if all of the values were added to all of the attributes in the attributes list. The attempted addition of a value that is already present in an attribute should be considered a success for that object.

Scoped Remove

The IDL signature for the scoped remove operation on the Scoping and Filtering Service is:

UpdateResultsListType scopedRemove (in NameType baseName,

in ScopeType scope, in ushort depth, in Istring filter,

in Istring language, in AttributeListType attributes,

in ushort howMany, out UpdateResultsIterator resultsIterator)

raises(InvalidName, InvalidFilter);

Notice that the operation has the same signature as the scoped set and scoped add operations. The only difference between this operation and the scoped add operation is that the values in the attributes list are removed. The attempted removal of a value that is not present in an attribute should be considered a success for that object.

Scoped Delete

The IDL signature for the scoped delete operation on the Scoping and Filtering Service is:

UpdateResultsListType scopedDelete (in NameType baseName,

in ScopeType scope, in ushort depth, in Istring filter,

in Istring language,

in ushort howMany, out UpdateResultsIterator resultsIterator)

raises(InvalidName, InvalidFilter);

Rather than accessing attribute values, this operation simply attempts to delete each object in the scope that passes the filter. The return value lists the name of each object the service tried to delete and indicates if it was successful. Because many objects cannot be deleted if they contain other objects, for scopes based on containment relationships the service must begin deleting “leaf” objects and work toward the “root” object.

Scoped Action

The scoped action operation is used to perform an action on a set of objects. Its signature is:

typedef GetResultsListType ActionResultsListType;

typedef AttributeListType ParameterListType;

typedef GetResultsIterator ActionResultsIterator;

ActionResultsListType scopedAction (in NameType baseName,

in ScopeType scope, in ushort depth, in Istring filter,

in Istring language,

in Istring actionName, in ParameterListType parameters,

in ushort howMany, out ActionResultsIterator actionIterator)

raises(InvalidName, InvalidFilter);

As above, the first five parameters define the scope and filter. The “actionName” parameter is the name of the method to invoke on each object. The parameter list is a name-value list where the names are the names of the parameters to the action and the values are the values to be submitted to the action. A list of results is returned, one result for each object passing the filter. If the action could not be successfully invoked for the object (either the parameters don’t align with the operation’s signature or the action raised an exception) the success flag for that object will be set to false. Otherwise, the flag will be set to true and values from the operation will be returned in the name-value list for that object. If the operation has a return value, it will be the first value in the list with a null name. If the operation has any out or in/out parameters, their values will come next. The names associated with these values will be the names of the parameters on the operation’s IDL signature.

Scoped Access

The final scoped operation is scoped access. It provides the ability to perform a mix of the above operations (except action and delete) on a set of objects. Its signature is:

GetResultsListType scopedAccess (in NameType baseName,

in ScopeType scope, in ushort depth, in istring filter,

in Istring language,

in IStringListType getAttributes,

in AttributeListType setAttributes,

in AttributeListType addAttributes,

in AttributeListType removeAttributes,

in ushort howMany, out GetResultsIterator getResults,

out UpdateResultsIteratorType updateResults)

The operations are performed on each object in the scope that passes the filter. For each object the values for the attributes listed in “getAttributes” are returned. As above, any attribute name in the list that is not present or cannot be accessed in the object is not included in the returned list of attribute values for that object. A null “getAttributes” list means all attribute values for that object should be returned. The “howMany” attribute indicates the number of values to be included in the return list. If a client does not wish to receive any attribute values it may submit a null “getAttributes” list but set the “howMany” parameter to 0. No get results will be returned and the get results iterator reference will be null.

At the same time, the attributes in the “setAttributes” list are set to the values in the list, the values in the “addAttributes” list are added to the appropriate attributes, and the values in the “removeAttributes” list are removed from the appropriate attributes. A null list for any of these simply means there are no attributes to be updated in that way. Results are returned through the iterator. A success indication associated with an object’s name means all update operations (set, add, remove) succeeded for that object. If the “getAttributes” list has an attribute name for which there is also an update, the update will be performed before returning the value.

The Default Filter Language

This section describes the default filtering constraint language that must be supported by all conformant implementations of the Scoping and Filtering Service. Conformant implementations may support other constraint grammars in addition to the grammar described here. The grammar used is to be indicated by a string-valued parameter named “language” on each scoped operation. A null value or a value of “Default 1.0” (one space between “Default” and “1.0”) shall indicate the grammar described here.

The default grammar supported by each conformant implementation shall be the default constraint grammar defined for version 1.0 of the Notification Service[3] with changes as described in the following sub-sections.

Applying the Constraint Language to Object Attributes

The default Notification Service constraint grammar introduced the special token ‘$’ to denote the current event and run-time variables. For Scoping and Filtering, the ‘$’ token shall denote the “current” object as well as run-time variables. That is, one can think of the Scoping and Filtering Service as selecting a set of objects based on the supplied base name and scope parameter, then applying the filter expression individually to each of the objects in that set. The “current” object is the object against which the expression is being evaluated. The following examples illustrate the use of the ‘$’ token:

$.administrativeState
The administrative state attribute of the current object.

$curtime

A “built-in” variable named “curtime”.

The identifiers that come after the “$.” (dollar-sign period) are names of the attributes of the current object as found in the value object defined to return the attributes of an object. (See Section 8 for more on this.) That is, “$.administrativeState” refers to the member named “administrativeState” in the value object returned by a call to the “getAttributes()” operation on the current object. (It is assumed that many implementations of the Scoping and Filtering Service will use the “getAttributes()” operation to retrieve the attributes from an object before evaluating the filter.)

An operation on an attribute name that is not present in an object always fails. To illustrate, in the expression “(A == 0) || (A != 0)” if there is no attribute named “A” present in the object both comparisons will fail and the expression will actually evaluate to false. The default Notification Service language does support an “exists” operation that can be used to test the existence of an attribute before including it in a comparison.

Notice that the default Notification Service constraint grammar defines a set of runtime variables (which may be better thought of as “built-in” or “pre-defined” variables) but does not allow user-defined variables in filter expressions. In fact, there is no assignment operator that would support the use of user-defined variables. There are currently no built-in variables defined for the Scoping and Filtering Service.

NOTE: Since the Notification Service evaluates objects based on the names of their attributes, care must be taken when defining attribute names (the names of the members of the attribute value object defined for an interface). An attribute of type “AdministrativeStateType” named “adminState” with a value of “unlocked” will fail a filter of “administrativeState == unlocked” because the name does not match.

Support for Regular Expressions

The default Notification Service constraint language defines a substring operator to work like this: “A ~ B” is true if A is a substring of B. The default Scoping and Filtering Service constraint language extends this to allow A to be a regular expression. That is, “A ~ B” evaluates to true if A is a substring of B or if the regular expression defined in A is matched by B. For this framework, regular expressions are “modern” regular expressions as defined in Section 2.8 of POSIX 1003.2.

A regular expression is a pattern that describes a set of strings. Regular expressions are constructed analogously to arithmetic expressions, by using various operators to combine smaller expressions.

The fundamental building blocks are the regular expressions that match a single character. Most characters, including all letters and digits, are regular expressions that match themselves. Any metacharacter with special meaning may be

quoted by preceding it with a backslash.

A list of characters enclosed by ‘[‘ and ‘]’ matches any single character in that list; if the first character of the list is the caret symbol (‘^’) then it matches any character not in the list. For example, the regular expression [0123456789] matches any single digit. The regular expression [^0123456789] matches any character that is not a digit. A range of ASCII characters may be specified by giving the first and last characters, separated by a hyphen. Finally, certain named classes of characters are predefined. Their names are self explanatory, and they are [:alnum:], [:alpha:], [:cntrl:], [:digit:], [:graph:], [:lower:], [:print:], [:punct:], [:space:], [:upper:], and [:xdigit:]. For example, [[:alnum:]] means [0-9A-Za-z], except the latter form is dependent upon the ASCII character encoding, whereas the former is portable. (Note that the brackets in these class names are part of the symbolic names, and must be included in addition to the brackets delimiting the bracket list.)

Most metacharacters lose their special meaning inside lists. A literal ‘]’ is included by placing it first in the list. Similarly, a literal ‘^’ is included by placing it anywhere but first. Finally, a literal ‘-‘ is included by placing it last.

The period (‘.’) matches any single character. The symbol ‘\w’ is a synonym for [[:alnum:]] and ‘\W’ is a synonym for [^[:alnum]].

The caret (‘^’) and the dollar sign (‘$’) are metacharacters that respectively match the empty string at the beginning and end of a line. The symbols ‘\<’ and ‘\>’ respectively match the empty string at the beginning and end of a word. The symbol ‘\b’ matches the empty string at the edge of a word, and ‘\B’ matches the empty string provided it's not at the edge of a word.

A regular expression matching a single character may be followed by one of several repetition operators:

?
The preceding item is optional and matched at most once.

*
The preceding item will be matched zero or more times.

+
The preceding item will be matched one or more times.

{n}
The preceding item is matched exactly n times.

{n,}
The preceding item is matched n or more times.

{,m}
The preceding item is optional and is matched at most m times.

{n,m}
The preceding item is matched at least n times, but not more than m times.

Two regular expressions may be concatenated; the resulting regular expression matches any string formed by concatenating two substrings that respectively match the concatenated sub-expressions.

Two regular expressions may be joined by the infix operator ‘|’; the resulting regular expression matches any string matching either sub-expression.

Repetition takes precedence over concatenation, which in turn takes precedence over alternation. A whole sub-expression may be enclosed in parentheses to override these

precedence rules.

The back reference ‘\n’, where ‘n’ is a single digit, matches the substring previously matched by the nth parenthesized sub-expression of the regular expression.

Support for Stringified Names

The framework needs to support the identification of individual entities and CORBA names have been selected for this purpose. Because these names are important pieces of information, it is necessary to include the capability to filter on them. CORBA names are sequences of data structures each containing two strings, however, so including a literal value for a CORBA name in a filter requires a string representation for the structure.

Literal values for CORBA names shall be included in filters as strings (one or more characters enclosed in single quotes) with a format like the following:

‘a.b/c.d/e.f’

In this format, “a” is the value of the ID field and “b” is the value of the Kind field in the first name component data structure in the sequence (with an index of 0). “c” is the value of the ID field and “d” is the value of the Kind field in the second name component (with and index of 1), and so on. The string continues for as many components there are in the name.

As can be seen, components are separated with a forward slash (“/”). Within each component the ID value comes first and a period (“.”) is used to separate the ID value from the Kind value. A null ID value is represented by just a period before the Kind value. If the Kind field is null there should be no period after the ID value. If there is one it shall be ignored (unless preceded by a backslash).

A backslash is used to “escape” the special characters. Two backslashes in a row represent a literal backslash. A backslash before any non-special character should be treated as any other character. That is, it is treated as “\\”.

When an attribute of type CosNaming::Name is included in a filter expression, the Scoping and Filtering Service shall convert it to a string according to the above rules and treat it like a string for the purposes of the operation.

Support for Testing Set-valued Attributes

Network management applications tend to rely heavily on the attributes of the managed objects, and often these attributes are actually sets of values. To support the use of set-valued attributes in filter expressions, the default Notification Service constraint language needs to be extended. Two groups of extensions are required to support the use of sets. The first enables sets of literal values to be included in filter expression. The second defines operators for sets.

Sets of Literal Values

Sets of literal values are included in filter expressions by enclosing a comma-separated list of literal values in curly braces. For example:

{1, 16, 21}

A set of integers

{5.2, 6.8, 7.01}

A set of floating-point numbers

{‘apple’, ‘orange’}

A set of strings

{Critical, Major, Minor}

A set of enumerated values

{‘CentralNet.ITU_X721::Network/
A set of stringified names

Main.ITU_X721::ManagedElement’,

 ‘NorthNet.ITU_X721::Network/

Sub1.ITU_X712::ManagedElement’}

{}

A null set.

The literal values in the sets must be of the “simple” types defined for the Notifications Service constraint language (Boolean, short, unsigned short, long, unsigned long, float, double, char, Ichar, string, Istring), enumerated values, or stringified names. All values in a set must be of the same type.

Set Operators

In order to include set-valued attributes in filter expressions, operators that work on sets are needed. This section extends the Notification Service constraint language by defining how the operators already defined for that service are to be applied to sets. One new operator, using the caret symbol (‘^’), is defined for finding the intersection of two sets.

Note that the default Notification Service constraint language already defines one operator that works on sets, the “in” operator. The expression “A in B” can only be applied if A is a simple type as defined above and B is a sequence of the same simple type. The expression evaluates to true if the value represented by A is equal to a value in B. Also, the default Notification Service constraint language supports the use of the “exist” operation on set-valued parameters. This behavior will also be supported for Scoping and Filtering.

In general, to use any of the set operators in an expression such as “A <operator> B” one or both operands must be a sequence of one of the types listed above in the section on sets of literal values. If one operand is a sequence of type X, the other must either be a sequence of type X or a value of type X. Because one or both of the operands are actually sequences, not sets, the operations must ignore any duplicate values within a sequence and must not depend on any order of the values in a sequence. The operators extended to work on set-valued attributes are defined below:

A == B
True if all the values in each operand are present in the other.

A != B
False if all the values in each operand are present in the other.

A < B
True if all the values in A are in B and B contains at least one other value not in A.

A <= B
True if all the values in A are in B. (If A is a singly-valued attribute this is the same as “A in B”.)

A > B
True if all the values in B are in A and A contains at least one other value not in B.

A >= B
True if all the values in B are in A.

A + B
The union of A and B (the values present in either).

A – B
The set of values in A that are not present in B

A ^ B
The intersection of A and B (the values present in both).

Active Alarm Synchronization

Another need fairly unique to network management applications but nearly ubiquitous among them is the need to quickly assess the condition of a network or sub-network. A crucial component of this assessment is discovering if there are any current problems. This need is met by the Active Alarm Synchronization service. Note that this is different than just querying a log, because a log may contain both active as well as cleared alarms.

Again, due to the relatively low bandwidth needs between the client system and the Active Alarm Synchronization service, and the higher bandwidth needs between the service and the managed objects, each management platform supporting a native CORBA interface is expected to instantiate an Active Alarm Synchronization interface. The service must support the interface described below and detailed in IDL in Appendix D. The service may in turn interact with the managed objects either through their published CORBA interfaces or through some other proprietary means.

The Active Alarm Synchronization interface is defined with the operation getActiveAlarmInfo for retrieving the currently active alarms for all objects or for objects of certain classes. The reply of this operation is a sequence of AlarmInfo structures, which are also used in some alarm notifications. The desired object classes are specified using the input parameter objectClassList. An empty objectClassList implies that all classes will be retrieved.

This operation is also defined with an input parameter howMany, an output parameter of type AlarmInfoIterator, and a companion AlarmInfoIterator interface. This interface allow a large number of active alarms to be retrieved using the iterator design pattern.

The Framework IDL Module

[Editor’s note: this section was not updated but should be. It is unchanged since its original contribution and does not reflect some of the agreements made since then, even though some of these changes are reflected in the IDL. In particular, this section needs to reflect the agreement to use value objects for retrieving the values of attributes in bulk, and it needs to reflect the role of factories in the creation and deletion of managed objects. These are in the IDL but not discussed here.]

The previous sections presented a series of recommendations for re-using the CORBA Object Services and defined some new services to create a framework for network management applications. Even with this rich set of services, however, there are still some missing details that need to be addressed. This section presents a network management module designed to fill in these holes and tie together the recommendations presented above. This network management module is a set of object interfaces and supporting data structures described in CORBA’s Interface Definition Language (IDL). This IDL module is intended to play a role in CORBA-based network management similar to that played by the GDMO definitions in ITU-T Recommendation X.721 for CMIP.

The IDL is included in Appendices B and C of this document. Appendix B is a file containing the IDL structures and interfaces. Appendix C is a separate file containing just constant definitions. Both of these are based heavily on the GDMO definitions found in X.721.

X.721 defines the following objects in GDMO:

· 9 types of record objects (Log Record, Event Log Record, Alarm Record, Attribute Value Change Record, Object Creation Record, Object Deletion Record, Relationship Record, Security Alarm Report Record, State Change Record)

· the Discriminator and Event Discriminator objects

· the Log object

· the System object

· the Top object

Each of these has actions attributes, actions, and supporting data types and parameters. In addition, X.721 defines 15 notifications.

Looking at the objects listed above, it is clear that many of these are covered by the CORBA Common Object Services already included in the framework:

· The CORBA Event Logging service defines a structure for holding log records, so the record objects are not needed. (Note that this framework treats log records as data structures, not objects.)

· The CORBA Notification Service defines a filtering capability, so the discriminator and event discriminator are not needed.

· The CORBA Event Logging service defines the equivalent of X.721’s Log object.

That leaves just the System and Top objects, along with the notifications. The System object is not really a framework object and belongs instead in a generic information model. The IDL in Appendix B, therefore, defines a “top” managed object, called “Managed Object,” that is intended to be subclassed by all other managed objects; a set of notifications; and a generic “factory” object. Each of these is discussed below. There are also sub-sections on the constants defined in Appendix C as well as the issue of registration.

The Top Managed Object

The first interface defined in Appendix B is the “Managed Object” interface, found after all the data type definitions. It is intended to be the “top” managed object class from which all other interfaces inherit. It defines a set of capabilities that all managed object instances must support. These capabilities are:

· A method returning the compound name (beginning with the root naming context for the managed system) of the object. (See Recommendation Name-5 above.)

· A method returning a reference to the Event Channel used by the object to emit events. (See Recommendation Notif-2 above.)

· A method returning the list of notifications supported by the object instance. This enables a managing system to determine which of the conditional notifications an object supports.

· Three methods for generically setting and getting all or part of the attributes of an object using lists of name-value pairs.

· A delete operation.

The Managed Object Factory

Sometimes CMIP objects are created automatically by the managed system, sometimes they are created as a result of an action on another object (such as a cross-connection object created in response to a connect action on a fabric), and sometimes they are created in response to a CMIP M-CREATE message from a manager application. In this latter case, the create operation is typically handled by the CMIP agent framework. It can’t be handled by the object itself because it hasn’t been created yet. In CORBA implementations there is no agent framework, so something needs to be present on the managed system to enable the managing system to create objects. In CORBA systems this is often handled by “factory” objects. The Managed Object Factory class is intended to be the “top” class object from which other factory classes inherit. It will define capabilities that all managed object factories are expected to support. Currently, no such capabilities have been identified, so the interface is null (inherits from nothing and has no attributes or methods). It is a placeholder in which capabilities may be placed in the future if needed.

The Notifications Interface

The third interface defined in Appendix B is the notifications interface. Each of the notifications in X.721 has a corresponding operation on this interface. The notifications are defined as typed method calls as suggested by Recommendation Notif-4 above. Imagine for a moment a network management implementation that did not use the Notification Service to filter and broadcast notifications. In such a scenario the managed system would send notifications to the managing system by invoking the operations defined on this interface. This interface would be supported by the managing system to receive events. In fact, if typed notifications are used with the Notification Service then the operations on this interface would be used directly. When structured notifications are used the operations on this interface specify the data to be included in the notification structure as defined in Recommendation Notif-5 above.

The Data Type Definitions

Preceding the interface definitions in Appendix B are a number of data structure and type definitions. Most of these are used in the notifications. These were derived from the ASN.1 module in X.721 with minor changes to simplify syntax. Where possible, modern object-oriented concepts such as in/out parameters and exceptions have been employed and are reflected in these types.

The Constant Definitions

Interface specifications always contain a number of constants whose values are agreed upon by everyone to mean the same thing. For example, everyone agrees a “1” in a certain field means a loss of signal, a “2” means a loss of frame, etc. X.721 is no exception and defines a number of constants. These are reproduced in IDL form in Appendix C. For details on the mechanism used to convey pre-defined constants, see Section 9.10.

Information Modeling Guidelines

This section presents guidelines for developing information models for use with this framework. Guidelines for the translation of existing models specified in GDMO are also described.

Modules

IDL Modules are used to group together interfaces, type definitions, exceptions, and other IDL constructs. Modules also provide name-space delineation; identifiers within a module must be unique but may be re-used in other modules. In almost all cases, a module should be used to group the constructs used to specify an information model. Modules may be nested within other modules, and modules may span multiple files. The IDL specified for this framework (except for the Alarm Synchronization support service) is contained within a single module, named “ITU_X721”. For example:

module ITU_X721 {

…

}; // end of module ITU_X721

This module has sub-modules for constant definitions. The alarm synchronization interface is defined in a separate module.

Interfaces

Each entity accessible via the CORBA network management interface should have an IDL interface defined for it. Interfaces group together a set of attributes and methods that can be thought of as being provided by a single software object. Interfaces may inherit capabilities from other interfaces and interfaces defined to model an entity must inherit (directly or indirectly) from the interface named “ManagedObject” defined as part of this framework. For example:

interface Equipment : ManagedObject {

…

}; // end of interface Equipment

Such interfaces are referred to as “managed object interfaces.” The objects that support these interfaces are “managed objects.” Because the ManagedObject interface defined in this framework has a set of capabilities that are inherited by all managed object interfaces, each managed object must implement a base set of functions to exist in this framework.

Attributes

Attributes are modeled within interfaces as operations used to access the attribute’s value. The name of the operation, as well as the input and output types, indicate the name of the attribute as well as the type of operation. (CORBA IDL does support attributes in addition to operations, but at this time only operations are allowed to raise user-defined exceptions. As will be seen, user-defined exceptions are needed on attribute accesses. For this reason, operations are defined to access attributes rather than merely defining attributes. Future versions of CORBA plan to allow user-defined exceptions on attribute access, and these guidelines may change to take advantage of this.)

Readable Attributes

Managed objects should have an operation named “get<attribute name>” on their interface for each readable attribute. The type returned by this operation reflects the type of the attribute. For example:

AdministrativeStateType getAdministrativeState(…)…;

Attributes that are settable but not readable, which is rare, should not have a read operation defined on the interface.

Settable Attributes

Managed object interfaces should have an operation named “set<attribute name>” for each settable attribute. The operation return type should be void and the input parameter should reflect the type of the attribute. For example:

void setAdministrativeState (in AdministrativeStateType adminState,…)…;

Attributes that are not settable should not have such an operation on the interface.

Set-valued Attributes

Many managed object attributes may contain sets of values. In these cases, the operations defined above should still be supported (if the attribute is readable and/or writable). The input or return types for these operations will be sequences. Also, it may be necessary to support the addition or removal of values to these attributes. These operations should be named “add<attribute name>” and “remove<attribute name>”. The return types for these operations should be void and the input parameter to each should be a sequence reflecting the type of the attribute. For example:

void addSupportedByObjectList (…

in ManagedObjectListType objects)…;

void removeSupportedByObjectList (…

in ManagedObjectListType objects)…;

Exceptions

Attribute access operations may also raise exceptions. The following exceptions are defined by the framework to be raised on attribute access operations:

1. Object Failure. This is a general-purpose exception that may be raised on most operations, including all attribute access operations. It means some problem was incurred while trying to access the resource or processing the request. It should be included in all attribute access operations.

2. Duplicate Item. This exception may be raised on an add operation if one or more values being added is a duplicate.

3. Item Not Found. This exception may be raised on a remove operation if one or more values being removed is not present in the attribute.

4. PackageNotPresent. This exception may be raised on any attribute access operation if the attribute is part of a conditional package. See the section on packages below for more details.

An example of an attribute access operation that raises an exception is:

AdministrativeStateType getAdministrativeState(…)

raises(ObjectFailure);

Actions

In addition to attributes, many managed objects will have actions – methods for purposes other than accessing an attribute. The parameters and return types for these operations are simply defined to meet the needs of the action. The name of the operation should reflect the purpose of the operation. The following exceptions have been defined by the framework to be raised on action operations:

1. Object Failure. This is a general-purpose exception that may be raised on most operations, including all attribute access operations. It means some problem was incurred while trying to access the resource or processing the request. It should be included in all action operations.

2. PackageNotPresent. This exception may be raised on any action operation if the action is part of a conditional package. See the section on packages below for more details.

Other exceptions specific to the action may and should be defined for other error conditions.

Notifications

Most managed objects are expected to emit notifications under certain conditions. In this framework notifications are conveyed by method invocations from a managed object back to a managing system, with the help of the Notification Service. Thus, the notification operation is actually defined for the managing system’s CORBA interface, not the managed object’s interface. The framework, however, must support documenting which managed objects emit which notifications. Rather than simply noting this through comments in an IDL file, the CORBA Component Object Model conventions are used.

According to these conventions, an object is denoted as emitting a notification named “X” when it’s interface defines operations named addXListener and removeXListener. Both operations accept an input parameter of a reference to an interface where operation “X” is defined. For example, to indicate that an object emits the objectCreation notification defined as an operation on the Notifications interface in module ITU_X721, the object’s interface would include:

addobjectCreationListener (in ITU_X721::Notifications)

raises (UnicastOnly, TooManyListeners);

removeobjectCreationListener (in ITU_X721::Notifications);

The exceptions on the add operation are defined by the CORBA Component Object Model. The exceptions, and the operations themselves, are useful in some component object models but within this framework they are really only used to denote which notifications are emitted by an object. They are not intended to actually be called. Instead, managed objects using this framework should send all notifications they are supposed to emit to their notification service. Clients interested in receiving notifications should register with the notification service instead of trying to register directly with the managed objects. The value of using this approach is that CORBA modeling tools will likely support these conventions in the future.

To make it easier and more concise to define which notifications are emitted by an object, the framework defines two macros, one for use when the notification is mandatory and the other when the notification is part of a conditional package. The macros are intended to be used within a managed object interface and are defined as follows:

MANDATORY_NOTIFICATION(<interface name>,

<notification operation name>);

CONDITIONAL_NOTIFICATION(<interface name>,

<notification operation name>, <package name>);

For example:

interface Equipment : ManagedObject {

…

MANDATORY_NOTIFICATION(ITU_X721::Notifications, objectCreation);

CONDITIONAL_NOTIFICATION(ITU_X&21::Notifications,

equipmentAlarm, equipmentAlarmPackage);

…

}; // end of Equipment interface

The package name used in the conditional notification macro is the same as used elsewhere. See the section on packages for details. The macros simply expand into the add and remove operations described above.

Conditional Packages

This framework supports the notion that not all capabilities defined for a class of managed objects need to be supported by all instances. In fact, groups of capabilities can be defined so that either all or none of the capabilities are supported. These groups of capabilities are referred to as packages. The choices for representing packages in IDL are limited. Defining a separate interface for each package would result in too many interfaces, so instead the approach described here is used.

Each operation that is part of a conditional package may raise an exception named “PackageNotPresent”. Operations that are not part of a conditional package do not raise this exception. The exception returns the name of the package. In order to capture the name of the package in interface IDL files, a macro has been defined:

CONDITIONAL_PACKAGE(<package name>)

This macro is intended to be used in the raises clause of an IDL operation. For example:

AdmininstrativeStateType getAdministrativeState(…)

raises(ObjectFailure, CONDITIONAL_PACKAGE(AdministrativeStatePackage));

The macro simply expands into the PackageNotPresent exception. Unfortunately, though, IDL does not provide a way of including literal values for exceptions, thus the macro. The argument to the macro (“AdministrativeStatePackage” in the example above) is discarded when the macro is expanded, so it doesn’t matter of the string is quoted or not. It is up to the managed object programmer to make sure the string inside the macro is passed back in the exception.

Notifications that are part of a conditional package are denoted with the CONDITIONAL_NOTIFICATION statement as described. The <package name> argument to the macro is discarded as with the CONDITIONAL_PACKAGE macro.

Rules concerning when the capabilities included in a package should be supported and when they shouldn’t are placed in comments related to the managed object interface.

Behavior

CORBA IDL lacks a formal means of capturing object behavior. In the future it is possible that information models will be documented with UML and will include use cases and object interaction diagrams. IDL, however, is limited to comments. Therefore, when necessary or helpful, comments must be used to describe object behavior.

The IDL in this framework contains a number of comments. They are formatted to be parsed by compilers used to convert IDL to HTML for easier reading. A formatted comment begins with /** and ends with */ and is associated with the next IDL construct. HTML formatting tags are allowed with these comments, as are certain keywords (preceded by a ‘@’ symbol) that are converted by the IDL-to-HTML compilers into additional formatting.

Factories

This framework supports the creation of managed objects using the factory design pattern. Factories are objects with interfaces distinct from the objects they are used to create, but usually related. Each class of managed objects will have at least one factory for each type of object by which it may be contained. The name of the factory should be <Subordinate Class Name>_<Superior Class Name>_Factory. The framework defines a base managed object factory from which each factory must inherit. Factories for objects that are subclassed do not inherit from the factories for the superclass. An example of a factory definition is:

interface Equipment_ManagedElement_Factory : ManagedObjectFactory {

…

}; // end of Equipment_ManagedElement_Factory interface

Create Operations

If an object of the subordinate type, contained under an object of the superior type, may be created by a managing system, the factory interface will include operations that may be used to create the object. These operations should accept a type-specific parameter identifying the superior object and a CORBA name component parameter used to name the new object relative to the superior object. If supported, a comment will indicate that the name component may be null, in which case the factory will automatically name the new object. The create operations should return a type-specific reference to the new object. Create operations that accept a parameter for each writable or set-by-create attribute shall be named “create”. Create operations that accept a reference to an existing object of the same class to use as a source for attribute values shall be named “createWithRef”. Some examples of create operations are:

Delete Rules

In addition to object creation, factories also support object deletion. When a managed object is created, its delete policy is set. A managed object’s delete policy is a read-only attribute inherited from the base ManagedObject class. It is set by the factory according to the type of factory and may be either Not Deletable, Delete Only If No Contained Objects, or Delete Contained Objects. The delete policy used by a factory for the objects it creates is noted in a comment preceding the factory’s interface definition and may also be reflected in the interface’s name to make it unique from similar factories with different delete policies. For example:

/** This factory is used to create Equipment objects contained

by Managed Element objects. The objects created by this factory

have a delete policy of NotDeletable. */

interface Equipment_ManagedElement_NotDeletable_Factory

: ManagedObjectFactory {

…

}; // end of Equipment_ManagedElement_NotDeletable_Factory interface

Managed Object Class Value Objects

Constants

Network management systems require the ability to exchange information with previously agreed-upon meanings. For example, a state change notification with a probable cause of “1” might mean it was likely caused by a loss of signal, while a “2” means a loss of frame, etc. It’s simple enough to define an enumeration or set of integer values to be passed across an interface in some field, but it is a little trickier to make this mechanism extensible by multiple groups, likely acting in parallel. The mechanism used within this framework is the Universal Identifier (UID).

A UID is a data structure with two fields. The first is a string meant to contain the scoped name of an IDL module containing the constants defined for some field. The second is a “short” (16 bit) integer containing the value. For example, to send a value of “loss of signal” in a probable cause field within this framework, a system would construct a UID structure with a moduleName string equal to “ITU_X721::ProbableCauseConst” and an integer “val” equal to 29. (Appendix C contains the constants defined for this framework. In it is a module named “ProbableCauseConst” which contains a constant named lossOfSignal with a value of 29.)

These conventions should be followed when defining constants for an information model:

1. Constant values should be defined in separate modules, one for each set of constants defined for a particular field. These sub-modules should be contained within the top-level module that contains the other constructs defined for the information model.

2. The name of the module should be the name of the field appended with “Const”. For example, values for the probableCause field (defined as type UIDType) are contained within a module named “ProbableCauseConst”.

3. The constants defined within the sub-module must be of type const short. For example:

const short lossOfSignal = 29;

4. Constants may be kept in a separate file, to reduce the length and complexity of the main IDL file. Even if the constants are in a separate file, the sub-modules should be within an IDL module statement with the same name as the module in the main file. The main file should have a pre-compiler include statement at the top of the file to include the constants in any compilation run.

5. The sub-module should also contain a string constant named “moduleName” that contains the scoped name for that module. For example:

module ITU_X721 {

…

module ProbableCauseConst {

const string moduleName = “ITU_X721::ProbableCauseConst”;

…

}; // end of module ProbableCauseConst

…

}; // end of module ITU_X721

This is really just a courtesy to allow programmers to refer to the module’s name by a constant rather than hard-coding module string names.

Note that other information models may extend the values for probable cause. There could, for example, be a module “ITU_M3100::ProbableCauseConst” with additional values for the probable cause field. These modules can even re-use the value 29. The UID will still be unique because the module names will differ.

Registration

CORBA IDL requires that all the identifiers within a module must be unique. This means that as long as a module name is unique, all of its contents will be uniquely named. CORBA IDL also defines an IDL compiler pragma statement that may be used to define a unique prefix to the module identifiers when they are registered in the CORBA interface repository, a central directory of interface information used by CORBA ORBs. IDL files capturing information models should define a unique prefix to ensure the uniqueness of the IDL module names and all their contents. The registration of these prefixes may be required.

This eliminates the need to register each individual construct.

Grain-Neutral Conventions

GDMO Translation

This section provides guidelines for creating IDL information models from existing information models described using GDMO. The sections below describe how each of the GDMO templates is to be translated to CORBA IDL.

Managed Object Classes

Each Managed Object Class in a GDMO specification should be translated into a managed object interface. Translations of Managed Object Classes derived from the GDMO Top class should inherit from this framework’s ManagedObject interface. Translations of classes not derived from Top should inherit from the translation of whatever class they are derived from. All managed object interfaces must inherit directly or indirectly from the ManagedObject interface. Multiple inheritance is allowed subject to the rules of CORBA IDL.

Templates in mandatory and conditional packages are translated into operations on the interface according to the guidelines below. A comment preceding the interface should describe the conditions under which the capabilities of a conditional package are to be supported by an instance, based on the PRESENT IF clause for that package.

Registration of individual interfaces is not required in this framework.

 Packages

Unfortunately, IDL does not provide a means of defining packages in one place other than by translating a package into an interface. This, though, would result in a large number of extra interfaces and increase the complexity of the CORBA interface. Instead, the framework includes the concept of conditional support for groups of capabilities.

As described above, whenever a GDMO package is included in a Managed Object Class, the translation of that class to an IDL interface includes a translation of each of the templates in the package.

GDMO attributes that are part of a conditional package should be translated into access operations each with a raises clause that includes the CONDITIONAL_PACKAGE macro and the name of the package. GDMO actions that are part of a conditional package should be translated into an operation that also has a raises clause that includes the CONDITIONAL_PACKAGE macro and the name of the package. GDMO notifications that are part of a conditional package should be translated into a CONDITIONAL_NOTIFICATION macro statement.

Registration of packages is not required in this framework.

Attributes

Attributes in GDMO packages that support GET capabilities should have a get<Attribute Name> operation defined for them on each interface that includes the package. The return type for the operation should be a translation of the attribute’s ASN.1 syntax.

Attributes in GDMO packages that support REPLACE capabilities should have a set<Atttribute Name> operation defined for them on each interface that includes the package. The input parameter type for the operation should be a translation of the attribute’s ASN.1 syntax.

Attributes in GDMO packages that support ADD capabilities should have an add<Attribute Name> operation defined for them on each interface that includes the package. Attributes in GDMO packages that support REMOVE capabilities should have a remove<Attribute Name> operation defined for them on each interface that includes the package. The input parameter type for these operations will be IDL sequences translated from the attribute’s ASN.1 syntax.

Attributes in GDMO packages that support the set-by-create capability will accept an initial value for the attribute on a factory create method but will not have a set operation. (The factory create method will also accept values for attributes that are settable, but not attributes that are merely readable.)

A few other attribute-related GDMO capabilities cannot be re-created with IDL. GDMO attributes that are derived from other attributes will have to have the capabilities of the other attribute manually added to the interface. Matching rules are defined by the scoping and filtering service and simply depend on the basic type of the attribute. A set-to-default operation could be defined for an attribute if it is needed. In general, though, default values, initial values, permitted values, and required values must be documented in comments.

Registration of attributes is not required in this framework.

Attribute Groups

This framework does not support the concept of attribute groups. GDMO attribute groups have no equivalent translation. The scoping and filtering service may be used to access multiple attributes in one operation.

Actions

Actions in GDMO packages should be translated to operations on each interface that includes the package. The input parameters, output parameters, and return type for the operation should be translated from the action’s input and output ASN.1 syntax. That is, the input syntax should be translated to IDL in parameters, while the output syntax is translated to a mix of out parameters and the return value. IDL inout (in/out) parameters should be used where appropriate. Also, exceptions should be defined to return values for error conditions rather than returning special values for the main return value.

GDMO actions with a mode of unconfirmed (those that lack the MODE CONFIRMED clause) may be translated to methods with the IDL keyword oneway preceding the return type. Such operations must have a return type of void and no out or inout parameters, though. IDL operations without this keyword are confirmed.

Notifications

This framework defines the 15 notifications found in X.721, which are the notifications used in most GDMO information models. Typically, notifications in GDMO packages will simply be translated to a notification macro statement on each interface that includes the package. A MANDATORY_NOTIFICATION statement is used if the notification is part of a mandatory package and a CONDITIONAL_NOTIFICATION statement is used if it is part of a conditional package.

The mapping of object attributes to notification fields within a notification statement is not supported. If some special mapping is required it should be documented with a comment. Replies to notifications are not supported in this framework.

If a new notification must be defined it should be defined as an operation on an interface named “Notifications” within the information model’s module. The name of the operation should be the name of the notification. The parameters to the operation should be translated from the notification’s information syntax. The scoped interface name and notification operation may then be used within notification macro statements.

Behaviors

GDMO behavior templates should be translated to formatted IDL comments immediately preceding the IDL construct with which each behavior is associated.

Name Bindings

Each GDMO name binding should be translated into a factory interface. The superior class and subordinate class names should be used in the factory’s name as described above and also in the types used in the create operations, if present. If the name binding has a “CREATE” clause the translated interface should have a “create” operation as described above. If the “CREATE” clause has a “WITH-REFERENCE-OBJECT” modifier, the factory interface should have a “createWithRef” operation as described above. If the name binding create clause has a “WITH-AUTOMATIC-INSTANCE-NAMING” modifier, the create operation(s) should have a comment indicating the name component parameter may be null, and if so the factory shall automatically assign a name to the new object.

Parameters on create clauses shall be translated to comments on the create operation(s). In the event of a create failure, these parameters may be returned in the Object Failure exception.

The “AND SUBCLASSES’ modifier on the subordinate object clause cannot be translated to GDMO. New factories have to be defined for each new class, as the class may have additional attributes to set and the return type will be specific to the new object.

The “AND SUBCLASSES” modifier on the superior object clause also cannot be translated. Because CORBA subclasses are polymorphic to their super classes, it will take extra effort to prevent a factory from creating an object under a subclass. The default, therefore, will be to allow objects to be created under subclasses. If for some reason it is important in the model that creation under subclasses be prevented, this will have to be documented in a comment preceding the factory definition.

The translated factory interface should have a comment preceding it stating the delete policy of the created objects. Name bindings with no “DELETE” clause shall create objects with a delete policy of NotDeletable. Name Bindings with a “CONTAINED-OBJECTS” modifier on the “DELETE” clause shall be translated to factories that create objects with a DeleteContainedObjects policy. Name Bindings with a “DELETE-ONLY-IF-NO-CONTAINED-OBJECTS” modifier on the “DELETE” clause shall be translated to factories that create objects with a DeleteOnlyIfNoContainedObjects policy. Name Bindings with no modifier on the DELETE clause shall be translated as if they had a “DELETE-ONLY-IF-NO-CONTAINED-OBJECTS” modifier.

Parameters

Style Idioms for CORBA IDL Specifications

This section defines a set of style idioms for the Interface Definition Language (IDL) of the Common Object Request Broker Architecture (CORBA) to be used in interface specifications. Having a set of style idioms will result in CORBA/IDL specifications with a consistent style. This may require some additional work by editors, but this extra effort is worth the increased readability of the CORBA/IDL specifications. It is important to keep in perspective that style conventions are for the benefit of the reader, not necessarily to the benefit of the author.

Use Consistent Indentation

This section defines the indentation style used in the Security Service modules. As an example an excerpt from the non-repudiation module is shown below:

enum EvidenceType {

 SecProofofCreation,

 SecProofofReceipt,

 SecProofofApproval,

 SecProofofRetrieval,

 SecProofofOrigin,

 SecProofofDelivery,

 SecNoEvidence // used when request-only token desired

};

interface NRPolicy {

 void get_NR_policy_info (

 out Security::ExtensibleFamily NR_policy_id,

 out unsigned long policy_version,

 out Security::TimeT policy_effective_time,

 out Security::TimeT policy_expiry_time,

 out EvidenceDescriptorListType supported_evidence_types,

 out MechanismDescriptorListType supported_mechanisms

);

};

Use Consistent Case for Identifiers

Several languages enforce case rules (such as ASN.1) while others have de-facto rules. These rules allow reader to easily distinguish identifiers of different type leading to increased readability. IDL does not enforce case, so the following rules are proposed.

· Operations, parameters, attributes, and members should have every embedded word capitalized except for the first word capitalized.

· Constants should be in upper case.

· All other identifiers should have the first letter of every embedded word capitalized.

module CarModule {

 struct EngineType {

 PistonType piston;

 RodType pistonRod;

 };

 typedef string KeyType;

 enum WontStartReasonType {

 BatteryIsDead,

 NoGas

 };

 exception WontStart {

 WontStartReasonType reasonEngineWontStart;

 };

 interface FordRanger {

 void startEngine(

 in KeyType key

)

 raises (

 WontStart;

);

 attribute EngineType engine;

 };

};

Follow JIDM Approach for IMPORT

module ImportingModule {

 // Imports

 typedef ExportingModule::SomeType
SomeType;

 typedef ExportingModule::SomeOtherType SomeOtherType;

 typedef ExportingModule::SomethingElse
SomethingElseType;

 ...

};

At the beginning of a module that imports a type from another module, create a local typedef. This explicitly lists the type that the importing module is dependent upon from the exporting module. (Note: the name of the local identifier need not be the same name as the identifier in the exporting module).

Use JIDM Approach for OPTIONAL and CHOICE

For enumerated and numeric (integer and floating) types, use the ASN OPTIONAL and CHOICE mappings to IDL as prescribed in the Open Group and Open-Network Management Forum Joint Inter-domain Management (JIDM) group’s Inter-Domain Management: Specification Translation. An example is given below:

// Choice

enum CarChoiceType {

 Ford,

 Cheverolet,

 Chrysler

};

union CarType switch (CarChoiceType) {

 case Ford: FordType

fordValue;

 case Cheverolet: ChevroletType
chevroletValue;

 case Chrysler: ChryslertType
chryslerValue;

}

// Optional

union SunRoofTypeOpt switch(boolean) {case TRUE: SunRoofType the_value};

For strings, sequences, and object references, a null value can usually be used to represent optional cases where no value is present. In cases where there is a semantic difference between a null and a not present, the above method may be used.

For structures and unions, the above method may be used or a decision may be made to use null values within the structure to represent optional values that are not present. For example, for a structure composed of two strings, two nulls could represent an optional value that is not present. If a value is optional it should be marked as optional with a comment.

Use a Consistent Type Suffix

Append the suffix “Type” to all IDL types. This allows type identifiers and members to use the same name without collisions since IDL is case insensitive. In addition, this idiom increases readability by clearly separating type identifiers from other identifiers.

Use a Consistent Suffix for Sequence Types.

For sequences use a suffix of “ListType” to distinguish lists from singulars.

Use a Consistent Suffix for Optional Types

For optional types use a suffix of “TypeOpt” to distinguish them from the non-optional type.

Arrange Operation Parameters in a Consistent Manner

A consistent ordering of parameters increases readability. Arrange parameters to operations by in, out, then inout.

Assume No Global Identifier Spaces

To reduce name collisions and promote reuse, all identifiers should be scoped to a particular context (e.g., module, and interface).

Module Level Definitions

All type definitions should be at the module level. Nesting type definitions within a lower context leads to difficulties in reuse and duplication.

Limit Number of Parameters

Try to limit the number of parameter to an operation. Operations with a large number of parameters can be difficult to understand and lead to interoperability problems. Similar parameters should be aggregated into structures.

 Use of Exceptions and Return Codes

Exceptions should be used for exceptional conditions such as error conditions. Normal returns should be handled though return codes and output parameters.

Explicit vs. Implicit Operations

An operation should perform an explicit function. Using parameters as a flag to implicitly change the behavior the operation can be confusing. Factor each behavior into a separate explicit operation.

Don’t Overly Constrain Data Types

Find a balance between constrained and unconstrained data types. Over-constraint leads to an inflexible model while under-constraint reduces interoperability.

Don’t Create a Large Number of Exceptions

A large number of exceptions increase the difficulty of understanding an interface definition. Group exceptions by category.

Performance Considerations in IDL Modeling

The following CORBA/IDL performance considerations are provided to those developing interface definitions. The study into these performance considerations did not yield absolute requirements. Rather, if a specific performance consideration is not followed, there is a resulting consequence in terms or performance and scalability. There are tradeoffs where not following a specific performance consideration may be the most efficient way to engineer the CORBA/IDL based application, depending on the application. For example, if a specific suggestion is not followed, and the CORBA/IDL based application supports a TMN function or interaction that is used infrequently, then the overall performance impact could be minor.

Native Data Types vs. User Data Types

When possible, use native type data as a return value or parameters of a method in an object. Experiments have shown that the latency for transferring the native type data is much smaller than that for transferring the richly typed data structures, e.g. sequence, array, and struct data types. This is because the ORB will spend significant amount of time for marshaling and de-marshaling the richly typed data. For the network management applications, it is unavoidable to use data structures, but the rule of thumb is to avoid using complex unnecessary data structures.

Use of the CORBA ANY data type

Be cautious on using CORBA ANY data type. When mapping from GDMO objects to CORBA objects, some user-defined data types in GDMO cannot be mapped to any CORBA built-in data types. One way to solve this problem is to map these data types to CORBA ANY type. The trouble for using CORBA ANY data type is that it could potentially introduce substantial run time overhead (memory, processor cycles and communications).

Operation Invocations

Control the number of operation invocations by accomplishing the same amount of work in possible fewer operation invocations. This avoids the added method invocation overhead for each request the client sends across ORBs. For example, when collecting data from a server (e.g., OS), it is better to collect all the relevant data in one method invocation than to collect the data in several separate method invocations.

Abstraction Level of Object Granularity

In the object-oriented program, the services of a server application are modeled to objects. In other worlds, each object provides some kind service(s). The ways that model services to objects are not unique. Therefore, decisions must be made whether to model a service to an object or as a component of a CORBA object. CORBA object is the only unit for which client can obtain CORBA object reference, CORBA services, interface inheritance. But, being a CORBA object usually incur system resource overhead and slight development complexity. CORBA object granularity is a term used to describe the relative levels at which developer might to choose model some service or application as a CORBA object.

CORBA object granularity must be considered carefully in network management application environments because it directory impacts the number of CORBA objects in the system. Finer-grained approaches mean more CORBA objects, which could mean an increase in system resource requirement due to overhead associated with CORBA objects. Therefore, a model with fewer objects is good for application scalability. But there is also tradeoff because if one tends to model more services into fewer objects, this could lead to complex object implementations.

Number of Objects in Implementations

Control the number of objects in object implementations. This is more or less related to the granularity discussion. Experiments showed that when the number of objects the ORB manages increases, the latencies of operation invocation increase. This is because when the number of objects increases, the time the ORB spends on de-multiplexing between objects increases. The ORB has to search its implementation repository to find the object implementations to deliver the requests.

Static vs. Dynamic Invocation

Use static invocation where possible. For the well-defined services, it’s better use static invocation unless there is no complete knowledge of an object at compiling time. Because in the static implementation all the operations are well defined, the ORB can deliver the request more efficiently. While dynamic invocation is more flexible and general (because it supposed to be able to handle any request), it usually involves more steps to deliver the request. Thus there is a tradeoff between flexibility and performance.

Number of Parameters for Each Operation

Control the number of parameters for each operation in an object. For each parameter appeared in an operation invocation, the ORB has to spend time to do marshaling and de-marshaling. Therefore, minimize the number of parameters when defining each operation for an object. Experiments have shown that parameter-less operations have lower latency and better performance than operations with parameters.

Two-way vs. One-way Operations

If there is no return value required for an operation invocation, use one-way invocation instead of two-way invocation. For static invocation, the two-way operation invocation will block until the operation result returns from the remote object. If one is not expecting any return value, it’s more efficient to use one-way invocation method because the client does not have to wait for the operation returns. Thus it makes more sense to use one-way invocation in this situation.

Support for invocation on multiple objects

There are some situations where one needs to perform the same operation on many objects. This can improve system performance and reduce resource consumption by taking advantage of co-location objects. Therefore, if there is a possibility that an application needs to perform the same operations on many different objects, we can put these objects in the same collection, i.e. in the same server process space. This could reduce network traffic significantly. But in CORBA, for a client to invoke an operation on an object, the client has to have the object reference. One way to solve this problem is in the server, we can define an object as the interface to each of objects in the collection, i.e. define an operation which can access or update each object in the collection. Once the client has the reference of interface object it can invoke the operation on this interface object, which in turn invokes the operation on each object of the collection on the server side.

Interface Versioning for CORBA/IDL

Currently in T1M1.5, new versions of GDMO interfaces are created through inheritance. For example, ANSI T1.227 specifies a managed object class for telecommunications trouble report called telecommunicationsTroubleReport. An additional attribute is needed, so a new managed object class is derived from the existing telecommunicationsTroubleReport called telecommunicationsTroubleReportR1.

This method of added new versions through inheritance has created maintenance difficulties for some implementations. Many GDMO compilers bind managed object classes to an implementation symbol. This symbol will be embedded throughout implementation code. If a new version is created with a different managed object class name; every place where the class is referenced has to be changed. This forces changes in areas that have nothing to do with the class’s new functionality. In a fashion similar to GDMO, CORBA also binds an interface to an implementation symbol.

If a new version of an interface could be created without changing the name, only the implementation code impacted by the change would have to be modified and tested. That being said, it is still recommended to that a full regression test be performed before installing new releases of software in a production environment.

This document explains an interface version method available with the Common Object Request Broker Architecture (CORBA)/ Interface Definition Language (IDL) which allows an interface to have multiple versions with the same name.

Interface Repository Overview

CORBA supports dynamic typing in the Dynamic Invocation Interface (DII) and Dynamic Skeleton Interface (DSI). These mechanisms allow implementers to create clients and servers that do not know the types of the objects they support at compile time. Instead, through a meta-data repository called the Interface Repository (IR), implementations can discover type information at runtime.

To facilitate dynamic typing for the DSI and DII, when an IDL specification is compiled, meta-data information is generated that describes the types in the IDL specification. DII and DSI, retrieve this meta-data through interface to the IR. Included in the meta-data information for each type is an identifier. This identifier is referred to as the RepositoryID.

Section 8.6.1 of the CORBA specifications [1], describes the RepositoryID format for OMG IDL as (the bold and underline text concerning prefix and version were added to highlight these two items):

“The Repository ID consists of three components, separated by colons, (‘:’)

The first component is the format name, ‘IDL.’

The second component is a list of identifiers, separated by ‘/’ characters. These identifiers are arbitrarily long sequences of alphabetic, digit, underscore (‘_’), hyphen (‘-‘), and period (‘.’) characters. Typically, the first identifier is a unique prefix, and the rest are the OMG IDL identifiers that make up the scoped name of the definition.

The third component is made up of major and minor version numbers, in decimal format, separated by a “.”. When two interfaces have Repository IDs differing only in minor version number it can be assumed that the definition with the higher version number is upwardly compatible with (i.e., can be treated as derived from) the one with the lower minor version number.”

Two IDL pragmas are defined which allow the prefix and version of RepositoryIds to be specified in an IDL specification. A prefix pragma specifies the prefix of the RepositoryID for all IDL types. A prefix pragma affects the RepositoryIDs of all types until the end of the specification or the next prefix pragma.

#pragma prefix “t1.256”

interface foo {

void someOperation();

};

This would generate a RepositoryID for foo of “IDL:t1.256/foo:1.0”.

The version pragma allows an IDL specification to specify the major and minor version numbers of the generated RepositoryIDs. The version pragma specifies the type for which the version pragma applies as well as the major and minor version numbers.

interface foo {

void someOperation();

};

#pragma version foo 1.5

This would generate a RepositoryID of “IDL:/foo:1.5. The CORBA specification [1] describes that a change in the minor number of the interface indicates a backward compatible change while a change in the major number does not.

Use of RepositoryID for Interface Versioning

An object request broker (ORB) makes an object implementation available to another ORB domain by publishing an Interoperable Object Reference (IOR). The format of an IOR is defined in the CORBA’s IOP module and is included below:

// An Interoperable Object Reference is a sequence of

// Object-specific protocol profiles, plus a type ID.

//

struct IOR {

string type_id;

sequence <TaggedProfile> profiles;

};
The type_id member of the IOR structure is the RepositoryID of the most-derived interface that the object implementation supports. This allows interface versions to be exchanged between ORB domains at runtime.

It is very common for interfaces defined in one IDL module to use types defined in another module. If the module not including the interface changes in such a manner to affect the interface, the version of the interface will not suffice to ensure version control.

To solve this problem, the version of the modules should be managed in specifications. Although this information is not exchanged through the IOR, T1M1.5 can administratively control the version of an interface relative to the versions the modules that the interface is dependent upon. This could be done through comments in the modules:

module ModuleA {

typedef string Atype;

}

#pragma version ModuleA 1.3

module ModuleB {

typedef string Btype;

}

#pragma version ModuleB 2.6

module ModuleC {

// Module dependencies

// ====================

//

// Module

Version

// ------

// ModuleA

1.3

// ModuleB

2.6

interface interfaceInC {

void doSomething();

};

#pragma version interfaceInC 1.0

};

#pragma version ModuleC 1.0

In the example above, the interfaceInC has a version of 1.0. An implementation of this interface must use the 1.3 version of the ModuleA and the 2.6 version of ModuleB (or version which are backward compatible.

CORBA Interoperability Across Domains

Exchanging an IOR Out of Band

For a client in one ORB domain to make invocations on objects in another ORB domain, it must have the object’s IOR. One method for exchanging IORs between ORBs is done out of band, (i.e. not over GIOP). CORBA provides standard operations for converting IORs to and from ASCII strings. In the ORB domain that implements the object, the CORBA::object_to_string operation is called to create an ASCII representation of the object’s IOR. The ASCII representation can be given to the other ORB domain through means such as email. A client in the client ORB then uses the CORBA::string_to_object operation to convert the ASCII string back into an IOR. The client can then make invocations on the object.

Naming Service Overview

The CORBA Naming service allows objects to be bound to a name. The Naming Service uses name bindings and naming contexts. A naming context is analogous to a directory in a file system. A naming context can contain name bindings and other naming contexts much like a file system directory can contain files and other directories. By binding naming contexts within other naming contexts, a hierarchical name space can be created.

In the Naming Service IDL specification, the naming context is modeled as an interface (NamingContext) and the name is an IDL type (Name). The Name type is a sequence of NameComponents as shown below:

typedef string Istring;

struct NameComponent {

 Istring id;

 Istring kind;

};

typedef sequence <NameComponent> Name;
The operations of the NamingContext interface that are of primary interest are listed below:

bind
Allows a Name to be bound to an object instance.

unbind
Allows a Name to be unbound from an object instance.

resolve
Allows an object reference bound to a name to be retrieved .

create_new_context
Creates a new NamingContext instance which is not bound to any naming context

bind_context
Allows a Name to be bound to a NamingContext instance. This allows the new NamingContext instance to participate in compound name operations which are described below.

bind_new_context
Combines the create_new_context() and bind_context() operations into a single call.

A compound name is a Name with more than one NameComponent. Compound names allow the user of a NamingContext to bind, unbind, and resolve names that are anywhere within the naming hierarchy of the called NamingContext instance.

To use the CORBA Naming Service, the user must obtain the object reference of the root NamingContext instance. This is performed by calling resolve_initial_reference().

To use the Naming Service in one ORB domain from another ORB domain, an IOR of a NamingContext instance can be exchanged out of band as described in the previous section. The IOR can be either used directly by a client or bound to a NamingContext in the local ORB’s Naming Service.

On the other hand, implementers may wish to define an implementation factory as being responsible for naming the object. This would function as such. The client would always go to the factory to instantiate an object. The factory would, if necessary, name the object through the CORBA Naming Service.

Proposal for IOR Exchange

By using the CORBA Naming Service, only one IOR must be exchanged out of band between two ORB domains wishing to communicate. This will dramatically reduce the administration of X-interface applications convincing most implementers to use the CORBA Naming Service.

CORBA does not define a standard naming hierarchy for the Naming Service. This is an area of CORBA standardization that T1M1.5 could provide. It seems only natural that the naming space hierarchy matches the containment hierarchy that is currently being used in GDMO interfaces.

One difference between what is done in GDMO and CORBA is that the Naming Service only addresses name spaces while GDMO Name Binding represent naming and containment. This should not be a concern since the X-interface applications that have been implemented to date only use the GDMO naming bindings for naming. Where containment is an interface requirement, other mechanisms should be used. This will allow interface not requiring containment to perform naming without additional complexity. This approach would be consistent with other distributed processing environments that have separated naming and containment.

Conclusion

This document has defined a framework for defining CORBA-based network management interface standards. The framework was designed to meet the goals specified in Section 4. Since obviously CORBA plays an important role in this framework, CORBA Service versions (for services such as the ORB itself as well as Naming and Event Logging) are specified in Section 5. Much of the framework is derived through the re-use of CORBA Common Object Services according to a series of recommendations made in Section 6 of this document. Section 7 defined common services needed for network management applications that are not part of the standard CORBA Common Object Services. Section 8 then discussed a module written in CORBA IDL that defines a number of data structures and three CORBA interfaces needed to provide a base for CORBA network management interfaces. Section 9 defined guidelines for translating information models written in GDMO to IDL suitable for use with this framework, and Section 10 defined a set of style guidelines to make the IDL written by information modelers easier to read and more efficient.

The strength of this framework is that it enables the re-use of the wealth of information models developed in GDMO while relying on the innate capabilities of CORBA. To do this, it re-uses upon a number of CORBA Common Object Services to provide a very functional environment and also defines a set of capabilities customized for the demanding needs of network management applications. Adopting this framework will decrease the time and expenses required to implement standards-compliant CORBA-based network management interfaces.

Appendix A CORBA Interoperability Overview

Introduction

One of the most powerful aspects of CORBA technology is that object implementers do not need to understand inter-object communications in order to build distributed object applications. A client wishing to invoke an operation on an object simply makes that invocation as if the object were local. The implementation of the object receives the input parameters and returns as if the invocation had been made locally.

That being said, the general curiosity of human nature causes us to ask the fundamental question, “How does this work?” In the context of T1M1.5, we are particularly curious about how this works between ORB domains. This contribution provides a brief, high-level answer to that question. Remember the information contained in this overview is not required knowledge for an implementer of CORBA objects. GIOP knowledge is only required by ORB venders and is transparent to the ORB user.

This contribution also gives an overview of the Naming service and proposes where T1M1.5 might standardize its use in T1M1.5 CORBA/IDL specifications for X-interface applications.

Interoperability Architecture

The protocol between ORB domains consists of a set of messages, transfer syntax and a method of exchanging these messages over a transport. The General Inter-Orb Protocol (GIOP) as described in [1] defines the set of messages and the transfer syntax. GIOP can be mapped onto any connection-oriented transport that meets a minimum set of assumptions (see [1]). The protocol-specific addressing information needed to send GIOP messages between ORB domains are contained in an Interoperable Object Reference (IOR).

Interoperable Object References

The IOR is a globally unique handle to an object instance. For GIOP, the IOR specifies the protocols that the object supports along with the addressing information required for each. The IOR definition is shown below.

typedef unsigned long ProfileId;

struct TaggedProfile {

 ProfileId tag;

 sequence <octet> profile_data;

};

struct IOR {

 string type_id;

 sequence <TaggedProfile> profiles;

};
The type_id member of the IOR contains the RepositoryID of the interface’s most-derived type. The RepositoryID is a unique identifier for the interface’s type. The profiles member of the IOR contains a list of TaggedProfiles, one for each protocol the object supports. Each method of transporting GIOP messages defines its own tag and profile data structure. GIOP requires that the profile data structure support protocol-specific address information and an object key.

GIOP Messages

The transfer syntax for GIOP messages is the Common Data Representation syntax as described in [1]. GIOP consists of eight messages:

Request
Object Invocation request.

Reply
Response to a Request message. Includes either invocation results or object location information

LocateRequest
Allows a client to inquire about the existence of a particular object implementation at a server location.

LocateReply
Response to a LocateRequest message.

CancelRequest
Allow the client to notify the server that it is no longer waiting for a Reply of LocateReply message.

CloseConnection
Sent by a server to notify a client that the server is closing the connection and to not expect any replies to outstanding messages.

MessageError
Sent in response to a message that either the version of message type is not known or the message is malformed.

FragmentMessage
A fragment of one of the previously described messages.

To make an invocation on an object in another ORB domain, the client ORB uses the protocol address information in the IOR to send a Request message to the server in the other ORB domain that implements the object. The server receiving the Request message passes the arguments to the object implementation that performs the behavior of the invocation. If the invocation was not defined as one way, the server then sends a Reply message to the client ORB with the results of the invocation. If the client ORB wishes to cancel the invocation before the Reply message is received, the CancelRequest message can be sent to the server.

The LocateRequest message allows the client ORB to validate an IOR. The LocateRequest message is sent to the server implementing the object in the other ORB domain. The server receiving the LocateRequest message responds with a LocateReply message indicating whether or not the server will accept Request messages for the object. If the client ORB wishes to cancel the LocateRequest processing before the LocateReply message is received, the CancelRequest message can be sent to the server.

A special status can be sent in a Reply or LocateReply message to allow ORB implementations to provide location brokerage service. The Reply or LocateReply message can contain a LOCATION_FORWARD or OBJECT_FORWARD status, respectively. These statuses tell the client that the object is not at the current location, but provides address information where the object can be found.

The CloseConnection allows the server to notify the client that the connection is to be closed and not to expect any responses for outstanding requests.

The FragmentMessage allows fragmentation of GIOP messages. The first fragment will be the regular message with the “fragments follow” bit in the GIOP header set to true. Each subsequent FragmentMessage will also have the “fragments follow” bit set to true except for the last FragmentMessage.

IIOP

struct Version {

 octet major;

 octet minor;

 };

 struct ProfileBody_1_1 {

 Version iiop_version;

 string host;

 unsigned short port;

 sequence <octet> object_key;

 sequence <IOP::TaggedComponent> components;

 };

IIOP is the mapping of GIOP onto TCP/IP. It is the only transport that is required for an ORB to claim CORBA compliance. The mapping is described in a little over three pages in [1]. The specification defines the format of the IIOP profile body to be used in an IOR.

The IIOP profile body contains the TCP/IP address information (host and port) and the unique key for the object instance. (The components member allows context specific information such as security information to be communicated in the IOR).

When the client ORB needs to make an invocation on an object in another ORB domain, the client ORB initiates a TCP/IP connect to the host and port specified in the IOR. A server in the other ORB domain will be listening on the same host and port and accepts the connection. Once the connection is accepted, the client ORB may send GIOP messages by writing to the new created socket.

GIOP does allow an ORB to multiplex requests over the same connection. In other words, if the client ORB needs to communicate with several objects in the other ORB domain and the entire object’s IORs contain the same host and port, the client ORB can reduce connection overhead by using a single socket for all GIOP messages.

In addition, a client ORB can use a connection management policy that lets it reuse or reclaim idle connections.

Appendix B CORBA IDL Module

#ifndef ITU_X721_IDL

#define ITU_X721_IDL

#include <CosNaming.idl>

#include <CosNotifyChannelAdmin.idl>

#include <CORBAComponents.idl>

#include "ITU_X721Const.idl"

/* Most comments in this file are formatted to be parsed by an IDL-to-HTML

converter such as idldoc or orbacus hidl. */

/** This module provides the fundamental capabilities for implementing network

management interfaces and defines the "managed object" interface. The

interfaces below are modeled after the managed object specifications

found in the CMIP specification document X.721. */

module ITU_X721 {

// IMPORTED TYPES

// Types imported from CosNaming

typedef CosNaming::Name NameType;

// Exceptions imported from CosNaming

typedef CosNaming::InvalidName InvalidName;

typedef CosNaming::AlreadyBound DuplicateName;

// Types imported from CosNotifyChannelAdmin

// (Need to import this from logging service instead)

typedef CosNotifyChannelAdmin::EventChannel EventChannelType;

// Exceptions imported from CORBA Component Object Model

// (will be updated when standard IDL is available)

typedef CORBAComponents::TooManyListeners TooManyListeners;

typedef CORBAComponents::UnicastOnly UnicastOnly;

// FORWARD DECLARATIONS AND TYPEDEFS

interface ManagedObject;
// forward declaration

typedef wstring Istring;
// International strings are wstrings

/** IString Lists are just lists of strings */

typedef sequence <Istring> IStringListType;

/** MO is shorthand for Managed Object. CORBA uses object references of type

"object" to identify objects. These are used instead of ASN.1 object

instances. For network management interfaces, all objects will inherit from

the "ManagedObject" interface. */

typedef ManagedObject MO;

/** MO List is a list of MO references. */

typedef sequence <MO> MOListType;

/** MOListList is a two-dimensional list (list of lists) of managed objects. */

typedef sequence <MOListType> MOListListType;

/** ScopedName is just a string. */

typedef Istring ScopedNameType;

/** Scoped Name Lists are simply lists of Scoped Names. */

typedef sequence <ScopedNameType> ScopedNameListType;

/** In CORBA, strings containing scoped names are used to identify object

classes (actually, "interfaces"). */

typedef ScopedNameType ObjectClassType;

/** Object Class List is a list of object classes */

typedef sequence <ObjectClassType> ObjectClassListType;

/** Generalized time is a basic ASN.1 type. It is usually represented as a

string in computing languages but it has certain, parseable formats. The 3

possible forms are:<p>

1.Local time only. "YYYYMMDDHHMMSS.fff", where the optional fff is

accurate to three decimal places. <p>

2.Universal time (UTC time) only. "YYYYMMDDHHMMSS.fffZ". <p>

3.Difference between local and UTC times. "YYYYMMDDHHMMSS.fff+-HHMM". <p>

The options for representing this in IDL seem to be either a string or the UtcT

structure from the CORBA Time Service. Because UtcT does not seem to make it

possible to differentiate a local time (option 1 above) from a universal time

(option 2 above), a string will be used. */

typedef string GeneralizedTimeType;

/** External Time is generalized time. */

typedef GeneralizedTimeType ExternalTimeType;

// ENUMERATED TYPES

/* The following state objects are used in many interfaces and parallel the

state objects in CMIP standards. */

/** Administrative State is read/write. A "locked" object is usually one that

may not be changed or one which is not providing service. Setting the

Admininstrative State of an object to "shuttingDown" begins the shutdown

process for that object. */

enum AdministrativeStateType {locked, unlocked, shuttingDown};

/** Operational State is read only. It simply reports the current capability

of the object to provide service. */

enum OperationalStateType {disabled, enabled};

/** Usage state is read only. If "idle," the resource is completely unused.

If "busy," the total capacity of the resource is in use. "Active" is in

between. */

enum UsageStateType {idle, active, busy};

/** Delete Policy indicates if an object can be deleted and if so if any contained objects should automatically be deleted. Since objects must not be

orphaned, if an object has a delete policy of “deleteOnlyIfNoContainedObjects”

the object must not be deleted if it has contained objects. A value of

“deleteContainedObjects” means if the object is deleted its contained

objects should also be deleted. */

enum DeletePolicyType {notDeletable, deleteOnlyIfNoContainedObjects,

deleteContainedObjects};

/** PerceivedSeverity reports the severity of an alarm. "Indeterminate" is

used when it is not possible to assign one of the other values */

enum PerceivedSeverityType {indeterminate, critical, major, minor, warning,

cleared};

/** Scope is used to convey the type of relationship to be followed in a

scoped operation, and how it is to be followed. */

enum ScopeType {BaseOnly, ContainedTree,

ContainedToDepth, ContainedAtDepth};

/** Source Indicator is used in many notifications. It identifies whether the

notification is a result of a management operation or something that occurred

on the managed system. */

enum SourceIndicatorType {resourceOperation, managementOperation, unknown};

/** Threshold indication describes if the threshold crossed was an upper

threshold or a lower threshold. */

enum ThresholdIndicationType {upper, lower};

/** TrendIndication values indicate if some observed condition is getting

better, worse, or not changing. */

enum TrendIndicationType {lessSevere, noChange, moreSevere};

// STRUCTURES AND UNIONS

/** Many times interface specifications need to define standard values to be

passed across the interface. Also, often the scheme used to define these

values needs to be extensible as new interfaces are subclassed, so

enumerations don't work well. CMIP uses OIDs, strings of numbers that are

often appended, in standards. To serve this purpose, the Unique ID is used.

It consists of two parts, a string containing a scoped module name, and an

integer value defined as a constant within that module. These UIDs, and the

ObjectClass type defined above, replace ASN.1 OIDs. It is expected that each

module will contain a constant string named "moduleName" that contains the name

of the module for error-free use by the programmer. A null module name will

indicate a null value for the UID. <p>

Code to interpret a UID might look like the following code snippet:

<code><pre>

UIDType
pc;
// probable cause

...

if (pc.moduleName == ITU_X721::ProbableCauseConst::moduleName) // string compare

switch (pc.value) {

case ITU_X721::ProbableCauseConst::adapterError:

...

case ITU_X721::ProbableCauseConst::applicationSubsystemFailure:

...

case ITU_X721::ProbableCauseConst::bandwidthReduced:

...

}

else if (pc.moduleName == BasicNet::ProbableCauseConst::moduleName)

switch (pc.value) {

...

}

</pre></code>

@member moduleName
The scoped module name where values are defined.

@member value

The value defined as a constant within the module.

*/

struct UIDType {

Istring moduleName;
// The scoped module name defining the value

short value;

// defined as a constant within the module

};

typedef sequence <UIDType> UIDListType;

/** Management Extension is a structure for flexibly reporting information.

It is typically used in the Additional Information field of notifications.

@see AdditionalInformation

@member id

identifies the type of information

@member significance
not sure what this is for - from X.721

@member any

contains the actual information, type will depend on

the value of the id member.

*/

struct ManagementExtensionType {

UIDType
id;

// identifies the type of info

boolean
significance;
// not sure what this is for

any
info;

// type will depend on id

};

/** Additional Information is a flexible way to report information that does

not fit into the structure of a notification. It contains a sequence of a

structure called "Management Extension". */

typedef sequence <ManagementExtensionType> AdditionalInformationListType;

/** An Attribute Value structure is used to set or retrieve an attribute value

generically, such as in a batch mode. This is complicated somewhat by the fact

that none of the network management interfaces are expected to define CORBA

attributes, but instead CORBA operations to get or set attribute values. So,

a convention similar to the way CORBA attribute accesses are mapped to

programming languages is adopted, where the retrieval of an attribute value

is done with an operation named get<attribute_name> and setting is done with

set<attribute_name>. In this structure, the string attributeName will contain

the <attribute_name> from the object's attribute access operations. The value

part is used to convey the attribute's value.

@member attributeName
the name of an operation minus the "get" or "set"

@member val

containes the value of the attribute, type will depend

on the attributeName. */

struct AttributeValueType {

Istring
attributeName;

any
val;

// type will depend on the attribute

};

/** Attribute Value Lists are used to set or retrieve attributes generically,

in a batch mode. */

typedef sequence <AttributeValueType> AttributeListType;

/** An Attribute Value Change structure is used in a notification to report an

attribute that has been changed.

@see AttributeValue

@member attributeName
the name of an operation minus the "get" or "set"

@member oldValue
the old value, type will depend on the attributeName

@member newValue
the new value, type will depend on the attributeName.

*/

struct AttributeValueChangeType {

Istring

attributeName;

any

oldValue;
// type will depend on the attribute

any

newValue;
// type will depend on the attribute

};

/** An Attribute Change List is used to report the attributes that have been

changed in an attribute value change notification. */

typedef sequence <AttributeValueChangeType> AttributeChangeListType;

/** A Correlated Notification is identified by the object that emitted the

notification and the notification ID. Both are included in case the

Notification IDs are not unique across objects.

@member source
Reference to object that emitted the correlated notification

@member notifID
ID of the correlated notification. */

struct CorrelatedNotificationType {

NameType
source;

unsigned long
notifID;

/** Correlated Notification lists are lists of Correlated Notification structures. */

typedef sequence <CorrelatedNotificationType> CorrelatedNotificationListType;

/** Get Results structures hold a list of attribute values per object, along

with an indication of whether the operation was successful for that object.

@member name

the CORBA name of the object

@member success

true if the get operation on the object was totally

successful

@mebmer attributes
the list of attributes retrieved from the object. */

struct GetResultsType {

NameType

name;

boolean

success;

AttributeListType
attributes;

};

/** The Get Results List is a list of results returned by a scoped get

operation. */

typedef sequence <GetResultsType> GetResultsListType;

/** The results of a scoped action are returned in a structure similar

to the results of a scoped get. The “attributes” in the list are used

as parameters, though. */

typedef GetResultsListType ActionResultsListType;

/** The Managed Object ID is a structure containing both the name of and

reference to a managed object. It is felt that passing both of these together

across an interface might help to reduce lookups in the name service or calls

to the object to get its name. More importantly, it enables the definition of

interfaces that can be implemented as either coarse or fine. In the coarse

implementations, there will be one instance per class but there will be name

bindings in the naming service (perhaps federated or spread over multiple

servers) as if there were fine-grained objects. All of the bindings for a

single class of objects will reference the same single instance. All

operations on the objects contain the name of the object, so that the

singleton objects can identify the true object being acted upon. <p>

In fine-grained implementations, the name bindings reference separate objects.

In these cases including the object's name in the operations is redundant, but

a reasonable trade-off.

@member name
The fully-qualified Cos name of the object. Will be null for

a null-valued ID.

@member ref
A reference to the object. Will be null for a null-valued ID.

*/

struct MOIDType {

NameType
name;

MO

ref;

};

/** MOIDListType is a list of MOIDs. */

typedef sequence <MOIDType> MOIDListType;

/** MOIDListListType is a two-dimensional list of MOIDs. */

typedef sequence <MOIDListType> MOIDListListType;

/** Object Error attributes identify the type of error that an object has

experienced and are represented by UIDs. */

typedef UIDType ObjectErrorType;

/** Parameter lists are similar to attribute lists except that the attribute

names are actually parameter names. */

typedef AttributeListType ParameterListType;

/** ProbableCause, in CMIP standards, may be either an integer or GDMO OID, a

dot-notation string. The UID type is used instead. */

typedef UIDType ProbableCauseType;

/** Proposed Repair Actions are lists of unique identifiers. */

typedef UIDListType ProposedRepairActionListType;

/** Security Alarm Causes are unique identifiers. */

typedef UIDType SecurityAlarmCauseType;

/** Security Alarm Detector can indicate either a mechanism or a specific

object. According to X.721 a choice is made between one or the other, though

it is not clear why. (Actually, X.721 adds a third choice for an AE-title

which has no equivalent here.) Unless otherwise indicated, then, at most one

of the members will be non-null. Two nulls may be sent if the managed system

does not support this property. May want to consider adding Object Class.

@member mechanism
the scheme or function detecting the alarm, may be null

@member object

the object detecting the alarm, may be null */

struct SecurityAlarmDetectorType {

UIDType

mechanism;
// may be null

NameType
object;

// may be null

};

/** Service User

@member id
the id of the service user

@member details
details about the service user, type will depend on id */

struct ServiceUserType {

UIDType
id;

any
details;
// value will depend on id

};

/** Service Providers share the same representation as Service Users. */

typedef ServiceUserType ServiceProviderType;

/** Specific Problems are lists of unique identifiers. */

typedef UIDListType SpecificProblemListType;

/** Threshold Information indicates some guage or counter attribute passed a

set threshold. The structure differs from X.721 some to simplify the syntax.

@member attributeID
identifies the attribute that crossed the threshold.

Actually, it is an operation name on an interface minus

the "get" or "set". The interface on which the

operation is defined is included elsewhere in the

notification as ObjectClass. A Null value indicates

the entire structure is null.

@member observedValue
attributes that are of type integer will be converted

to floats

@member indication

@member high

high and low members are for multi-level thresholds.

for single-level thresholds they will be equal

@member armTime

may be null */

struct ThresholdInfoType {

Istring

attributeID;

float

observedValue;

ThresholdIndicationType
indication;

float

high;

float

low;

ExternalTimeType

armTIme;

};

/** TrendIndicationTypeOpt is an optional type. If the discriminator is true

the value is present, otherwise the value is null. */

union TrendIndicationTypeOpt switch (boolean) {

TRUE:
TrendIndicationType
val;

};

/** Update Results structures hold the name of an object and an indication

if the result operation on that object was totally successful.

@member name
the CORBA name of the object

@member success
true if all update operations on the object were successful

*/

struct UpdateResultsType {

NameType
name;

boolean

success;

};

/** An Update Results List is returned in response to a scoped update

operation (one that sets, adds to, or removes from the value of an

attribute. */

typedef sequence <UpdateResultsType> UpdateResultsListType;

// ALARM STRUCTURES

/** The Alarm Info structure is used to contain information in Alarm

notifications.

@member eventTime

Managed system's current time.

@member source

Object emitting notification.

@member sourceClass

Class of source object.

@member notificationIdentifier
A unique identifier for this notification

(optional in X.721 but not here)

@member correlatedNotifications
List of correlated notifications. Optional.

Null if not supported.

@member probableCause

@member specificProblems
Optional. Null if not supported.

@member perceivedSeverity

@member backedUpStatus

"True" if backed up (optional in X.721 but not

here. If object is unsure, value should be

"false".

@member backUpObject

Will be null if backedUpStatus is "false"

@member trendIndication

Optional. See type for details.

@member thresholdInfo

Optional. See type for details.

@member stateChangeDefinition
Optional. Null if not supported.

@member monitoredAttributes
Optional. Null if not supported.

@member proposedRepairActions
Optional. Null if not supported.

@member additionalText

Text message. Optional. Null if not supported.

@member additionalInfo

Optional. Null if not supported.

*/

struct AlarmInfoType {

ExternalTimeType

eventTime;

NameType

source;

ObjectClassType

sourceClass;

unsigned long

notificationIdentifier;

CorrelatedNotificationListType
correlatedNotifications;

ProbableCauseType

probableCause;

SpecificProblemListType

specificProblems;

PerceivedSeverityType

perceivedSeverity;

boolean

backedUpStatus;

NameType

backUpObject;

TrendIndicationTypeOpt

trendIndication;

ThresholdInfoType

thresholdInfo;

AttributeChangeListType

stateChangeDefinition;

AttributeListType

monitoredAttributes;

ProposedRepairActionListType
proposedRepairActions;

Istring

additionalText;

AdditionalInformationListType
additionalInfo;

};

/** The Attribute Value Change Info structure is used to contain information in

Attribute Value Change notifications. (X.721 includes an attribute identifier

list that does not seem necessary.)

@member eventTime

Managed system's current time

@member source

Object emitting notification

@member sourceClass

Class of source object

@member notificationIdentifier
A unique identifier for this notification

(optional in X.721 but not here)

@member correlatedNotifications
List of correlated notifications. Optional.

Null if not supported.

@member sourceIndicator

Cause of event. Optional. Use "unknown" if

not supported.

@member attributeChanges
Changed attributes

@member additionalText

Text message. Optional. Null if not supported.

@member additionalInfo

Optional. Null if not supported.

*/

struct AttributeValueChangeInfoType {

ExternalTimeType

eventTime;

NameType

source;

ObjectClassType

sourceClass;

unsigned long

notificationIdentifier;

CorrelatedNotificationListType
correlatedNotifications;

SourceIndicatorType

sourceIndicator;

AttributeChangeListType
attributeChanges;

Istring

additionalText;

AdditionalInformationListType
additionalInfo;

};

/** The Object Info structure is used to contain information in Object

Creation and Deletion notifications. In Object Creation notifications the

"source" parameter should be the new object, not the factory.

@member eventTime

Managed system's current time

@member source

Object emitting notification

@member sourceClass

Class of source object

@member notificationIdentifier
A unique identifier for this notification

(optional in X.721 but not here)

@member correlatedNotifications
List of correlated notifications. Optional.

Null if not supported.

@member sourceIndicator

Cause of event. Optional. Use "unknown" if

not supported.

@member attributeList

Attribute values. Optional. Null if not

supported

@member additionalText

Text message. Optional. Null if not supported.

@member additionalInfo

Optional. Null if not supported.

*/

struct ObjectInfoType {

ExternalTimeType

eventTime;

NameType

source;

ObjectClassType

sourceClass;

unsigned long

notificationIdentifier;

CorrelatedNotificationListType
correlatedNotifications;

SourceIndicatorType

sourceIndicator;

AttributeListType

attributeList;

Istring

additionalText;

AdditionalInformationListType
additionalInfo;

};

/** The Relationship Change Info structure is used to contain information in

Relationship Change notifications. (X.721 includes an attribute

identifier list that does not seem necessary.)

@member eventTime

Managed system's current time

@member source

Object emitting notification

@member sourceClass

Class of source object

@member notificationIdentifier
A unique identifier for this notification

(optional in X.721 but not here)

@member correlatedNotifications
List of correlated notifications. Optional.

Null if not supported.

@member sourceIndicator

Cause of event. Optional. Use "unknown" if

not supported.

@member relationshipChanges
Changed relationship attributes

@member additionalText

Text message. Optional. Null if not supported.

@member additionalInfo

Optional. Null if not supported.

*/

struct RelationshipChangeInfoType {

ExternalTimeType

eventTime;

NameType

source;

ObjectClassType

sourceClass;

unsigned long

notificationIdentifier;

CorrelatedNotificationListType
correlatedNotifications;

SourceIndicatorType

sourceIndicator;

AttributeChangeListType

relationshipChanges;

Istring

additionalText;

AdditionalInformationListType
additionalInfo;

};

/** The Security Alarm Info structure is used to contain information in

Security Alarm notifications.

@member eventTime

Managed system's current time

@member source

Object emitting notification

@member sourceClass

Class of source object

@member notificationIdentifier
A unique identifier for this notification

(optional in X.721 but not here)

@member correlatedNotifications
List of correlated notifications. Optional.

Null if not supported.

@member securityAlarmCause

@member securityAlarmSeverity
Clears allowed? X.721 appears to restrict the

"cleared" value on this alarm but clears should

be allowed.

@member securityAlarmDetector

@member serviceUser

@member serviceProvider

@member additionalText

Text message. Optional. Null if not supported.

@member additionalInfo

Optional. Null if not supported.

*/

struct SecurityAlarmInfoType {

ExternalTimeType

eventTime;

NameType

source;

ObjectClassType

sourceClass;

unsigned long

notificationIdentifier;

CorrelatedNotificationListType
correlatedNotifications;

SecurityAlarmCauseType

securityAlarmCause;

PerceivedSeverityType

securityAlarmSeverity;

SecurityAlarmDetectorType
securityAlarmDetector;

ServiceUserType

serviceUser;

ServiceProviderType

serviceProvider;

Istring

additionalText;

AdditionalInformationListType
additionalInfo;

};

/** The State Change Info structure is used to contain information in or from

State Change notifications. (X.721 includes an attribute identifier list that

does not seem necessary.)

@member eventTime

Managed system's current time

@member source

Object emitting notification

@member sourceClass

Class of source object

@member notificationIdentifier
A unique identifier for this notification

(optional in X.721 but not here)

@member correlatedNotifications
List of correlated notifications. Optional.

Null if not supported.

@member sourceIndicator

Cause of event. Optional. Use "unknown" if

not supported.

@member stateChanges

Changed state attributes

@member additionalText

Text message. Optional. Null if not supported.

@member additionalInfo

Optional. Null if not supported.

*/

struct StateChangeInfoType {

ExternalTimeType

eventTime;

NameType

source;

ObjectClassType

sourceClass;

unsigned long

notificationIdentifier;

CorrelatedNotificationListType
correlatedNotifications;

SourceIndicatorType

sourceIndicator;

AttributeChangeListType

stateChanges;

Istring

additionalText;

AdditionalInformationListType
additionalInfo;

};

// EXCEPTIONS

/** A ContainedObjects exception means the managed system tried to delete an

object but could not because the object contains other objects and was not

deleted with "deleteContainedObjects" asserted. */

exception ContainedObjects {};

/** A DeleteNotAllowed exception means the managing system tried to delete an

object that it is not allowed to delete. */

exception DeleteNotAllowed {};

/** A DuplicateItem exception means an attempt was made to add a duplicate item

to a list. */

exception DuplicateItem {any item;};

/** An invalid filter exception is thrown when a client includes a filter

expression that cannot be parsed. The text surrounding the syntax error

should be returned for trouble-shooting purposes. */

exception InvalidFilter (Istring badText;);

/** An invalid ID exception means the client included an invalid object ID in

an operation.

@param id
the invalid ID */

exception InvalidID {MOIDType id;};

/** An invalid Name exception means the client included an invalid CORBA name

in an operaton.

@param name
the invalid name */

exception InvalidName {NameType name;);

/** An invalid reference exception means the client included an invalid object

ID in an operation.

@param ref
the invalid reference */

exception InvalidReference {object ref;};

/** An ItemNotFound exception means an attempt was made to access an item that

could not be found on the list.

@param item
the item that could not be found. Type will depend on the type

of the list submitted to the operation. */

exception ItemNotFound {any item;};

/** An ObjectFailure exception means the object implementing the interface

could not process the requested operation. <p>

The values included in the exception are a UID (see module ITU_X721::ObjectErrorConst for some possible values) along with a string explanation. <p>

If the value of the UID is ITU_X721::ObjectErrorConst::processingFailure, the

exception may also contain additional information. See module

ITU_X721::ParameterIDConst for possible

values for these parameters. Additional parameters will be defined in

model-specific modules. <p> */

exception ObjectFailure {ObjectErrorType error;

Istring explanation;

AdditionalInformationType additionalInformation};

/** A PackageNotPresent exception means the operation invoked is part of a package of capabilities that is not present on this instance. The name of the package is returned. */

exception PackageNotPresent {Istring package;};

// INTERFACES

/** The Managed Object interface is intended to be the "top" interface from

which all other managed object interfaces inherit. It is a central place to

specify basic functions which all managed objects are expected to support. */

interface ManagedObject {

/** This value object contains members for each of the attributes accessible on this interface. */

value ManagedObjectAttributesType {

NameType

name;

ObjectClassType

objectClass;

IStringListType

packages;

EventChannelType
eventChannel;

SourceIndicatorType
creationSource;

DeletePolicyType
deletePolicy;

};

/** This method returns the fully-qualified name for the object (interface).

This method is used rather than having a "getID" method defined for each

interface, as is done in CMIP specifications. This will ensure that objects

have only a single operation to retrieve names when they are sub-classed. <p>

The response is a sequence of name component structures, starting with a "root"

name defined for the domain. (That is, the name of the top-most managed object

on a particular system.) The client may find the ancestors of this object by

removing components from the tail end of this sequence and performing a

resolve operation on the first part of the name. */

NameType getName()

raises(ObjectFailure);

/** This method returns the most-specific class of the interface. */

ObjectClassType getObjectClass(in NameType name)

raises(ObjectFailure);

/** This method returns a list of all the conditional packages supported by

this instance. */

IStringListType getPackages (in NameType name)

raises(ObjectFailure);

/** This method returns a pointer to the Notification Channel used by this

object when it is a producer. Clients interested in receiving notifications

from this object may then subscribe to this service.

*/

EventChannelType getEventChannel(in NameType name)

raises(ObjectFailure);

/** This method returns an indication of how the object was created. */

SourceIndicatorType getCreationSource(in NameType name)

raises(ObjectFailure);

/** This method returns a value indicating if the object may be deleted

and if it may, if all contained objects are automatically deleted. */

DeletePolicyType getDeletePolicy (in NameType name)

raises(ObjectFailure);

/** This method may be used to generically get all of the attributes supported

by an instance. Each interface is expected to sub-class the Managed Object

Attributes value object and add the other attributes supported by that

interface. The managed object must return a value object of that type. The

client must then narrow the reference to access all the attributes. <p>

The client may also submit a list of names indicating the attributes it

wishes to receive. These names must match the member names in the value

object. For members not on the list, and for members that are part of

packages that are not supported, the server may return any value but it

should be as short as possible. The server also returns the list of

attributes, which may be shorter due to exclusion of attributes in

unsupported packages. The client must regard the value of any member

not in the list as garbage. <p>

A null attribute names list indicates that all supported attributes are to

be returned. The server must return the actual list. */

ManagedObjectAttributesType getAttributes(in NameType name,

inout IStringListType attributeNames)

raises(ObjectFailure);

/** This method deletes the object. If there are contained objects and

the object’s delete policy does not indicate that all contained objects

should be deleted, the ContainedObjects exception will be thrown and the

object will not be deleted. If the object’s delete poloicy indicates

the object is not deletable, the DeleteNotAllowed exception will be

thrown. */

void delete(in NameType name)

raises(ObjectFailure, DeleteNotAllowed, ContainedObjects);

/** This method destroys the object. It differs from the delete

operation by not trying to delete contained objects or clean up the

naming tree. One possible use for this operation is to enable a

factory that is deleting contained objects to delete an object

without incurring recursive calls back to factories. <p>

NOTE: Direct invocation of this operation from a managing system

could corrupt the naming tree and is recommended only under

extraordinary circumstances. Clients wishing to delete an object

should instead invoke that object’s delete operation. */

void destroy(in NameType name)

raises(objectFailure, DeleteNotAllowed);

}; // end of ManagedObject interface

/** This interface defines the generic managed object factory interface. All

Managed Object factories should inherit from this interface. <p>

In addition to providing the means for creating objects by management

operation, the factories are assumed to take responsibility for maintaining

the integrity of the naming tree. Managed Objects may have to keep track

of the factory that created them and use them for help in this area.

*/

interface ManagedObjectFactory {

/** This method is used by a managed object to delete its name and clean

up any other naming details. If there are still objects contained under

this name, the ContainedObjects exception is thrown and the name is not

deleted. <p>

NOTE: A managing system should not directly call this operation. It is

intended for use by Managed Objects to clear their names when they are

deleted. A managing system wishing to delete an object should invoke

that object’s delete method.

*/

void deleteName (in NameType name)

raises (ObjectFailure, ContainedObjects);

/** This method is used by a managed object to delete its name and

contained objects. If any contained objects cannot be deleted, the

operation will fail, raising a DeletNotAllowed exception, without deleting

any objects. If the operation is successful all names contained under the

specified name, as well as the specified name, will be deleted. All objects

contained under the name will be destroyed. It is assumed that the

named object will destroy itself after successful completion of this call.

<p>

NOTE: A managing system should not directly call this operation. It is

intended for use by Managed Objects to clear their names and delete

contained objects when they are being deleted. A managing system wishing

to delete an object should invoke that object’s delete method.

*/

void deleteContainedObjects (in NameType name)

raises (ObjectFailure, DeleteNotAllowed);

}; // end of ManagedObjectFactory interface

/** This interface contains the definitions of notifications emitted by many

managed objects. <p>

The use of "typed" notifications is done here so that the notifications can be

documented in IDL and to support typed notifications for those manager and

managing systems that wish to use them. Note that the OMG's Notification

Service supports both structured and typed notifications. It is not clear if

implementations of the Notification Service will support translation between

them. It is expected that the implementation agreement between the managing and

managed system will specify the use of structured or typed notifications. <p>

Notification users wishing to use typed notifications need only support the

interfaces below. Notification publishers and subscribers wishing to use

structured notifications based on the operations defined below should follow

these rules for constructing and reading the notification structure:

The domain_type string in the fixed header of the structure should be set to

"telecommunications".

The event_type string in the fixed header of the structure should be set to

the scoped name of the operation. For example, for the Attribute Value Change

notification defined below this field would be

"ITU_X721::Notifications::attributeValueChange".

The event_name string in the fixed header of the structure should be null.

Optional header fields may be included to support features like Quality of

Service as appropriate.

Each parameter in the operation should be placed in a name-value pair in the

filterable body portion of the notification. The fd_name string of this pair

shall be set to the name of the parameter and the type placed in the associated

fd_value will be the type specified for the parameter. For example, for the

Attribute Value Change notification defined below a single name-value pair

would be placed in the filterable data portion of the event. The fd_name

string of this pair would be set to "attributeValueInfo" and fd_value would

contain an AttributeValueInfo structure.

The remainder of the body of the notification (the unfilterable part) should

be null.

Unfortunately, typed notifications are mapped to notification structures

differently, so if one system wants to use typed notifications and the other

structured, the structured notification user must be aware of how the CORBA

Notification Service translates typed notifications to structured

notifications. See the specification for details. In short, however, each of

the parameters in the operations below will be converted into a name-value

pair in the filterable data protion of the structured notification. Also, the

event_type field in the fixed header of the structured notification will be

set to the special value "%TYPED" and the domain_type field will be an empty

string. Finally, a name-value pair will be added as the first element in the

filterable data portion of the notification with the name "operation". The

value associated with this name will be a string with the value set to the

scoped name of the operation used to emit the notification

(e.g. ITU_X721::Notifications::attributeValueChange). <p>

Also, structured notification publishers emitting notifications for typed

notifications users must include all of the parameters listed for each

operation in the filterable data portion of the notification. This is because

if the translation to a typed notification is ambiguous, the notification

channel will not be able to deliver it. While the translation of some

excluded parameters (such as excluded strings to null strings) may be

possible, others (such as enumerated types) are not. Thus, all parameters

must be included. <p>

Parameters named "operation" should be avoided in notification operations to

support the use of typed notifications. While the notification channel should

be able to differentiate the real parameter from the one added based on their

positions in the filterable data list, it could have an impact on filtering as

the default filtering language does not have a way to differentiate parameters

based on position. <p>

Because the scoped operation name is placed in either the event_type string

(when structured notifications are used) or a filterable body name-value pair

with the name "operation" (when typed notifications are used), there is no

"event type" parameter explicitly included in any of the notification

operations defined below. */

interface Notifications {

/** An Attribute Value Change notification is used to report changes to the

attributes of an object such as addition or deletion of members to one or more

set-valued attributes and replacement of the value of one or more attributes.

@param attributeValueChangeInfo
structure containing the notification info

*/

oneway void attributeValueChange (

in AttributeValueChangeInfo
attributeValueChangeInfo

);

/** A Communications Alarm notification is used to report when an object

detects a communications error.

@param alarmInfo
structure containing the notification info

*/

oneway void communicationsAlarm (

in AlarmInfo
alarmInfo

);

/** An Environmental Alarm notification is used to report a problem in the

environment.

@param alarmInfo
structure containing the notification info

*/

oneway void environmentalAlarm (

in AlarmInfo
alarmInfo

);

/** An Equipment Alarm notification is used to report a failure in the

equipment.

@param alarmInfo
structure containing the notification info

*/

oneway void equipmentAlarm (

in AlarmInfo
alarmInfo

);

/** An Integrity Violation notifications is used to report that a potential

interruption in information flow has occurred such that information may have

been illegally modified, inserted or deleted.

@param securityAlarmInfo
structure containing the notification info

*/

oneway void integrityViolation (

in SecurityAlarmInfo
securityAlarmInfo

);

/** An Object Creation notification is used to report the creation of a managed

object to another open system.

@param objectInfo
structure containing the notification info

*/

oneway void objectCreation (

in ObjectInfo
objectInfo

);

/** An Object Deletion notification is used to report the deletion of a managed

object.

@param objectInfo
structure containing the notification info

*/

oneway void objectDeletion (

in ObjectInfo
objectInfo

);

/** An Operational Violation notification is used to report that the provision

of the requested service was not possible due to the unavailability,

malfunction or incorrect invocation of the service.

@param securityAlarmInfo
structure containing the notification info

*/

oneway void operationalViolation (

in SecurityAlarmInfo
securityAlarmInfo

);

/** A Physical Violation notification is used to report that a physical

resource has been violated in a way that indicates a potential security attack.

@param securityAlarmInfo
structure containing the notification info

*/

oneway void physicalViolation (

in SecurityAlarmInfo
securityAlarmInfo

);

/** A Processing Error Alarm notification is used to report a processing

failure in a managed object.

@param alarmInfo
structure containing the notification info

*/

oneway void processingErrorAlarm (

in AlarmInfo
alarmInfo

);

/** A Quality of Service Alarm notification is used to report a failure in the

quality of service of the managed object.

@param alarmInfo
structure containing the notification info

*/

oneway void qualityOfServiceAlarm (

in AlarmInfo
alarmInfo

);

/** A Relationship Change notification is used to report the change in the

value of one or more relationship attributes of a managed object, that result

through either internal operation of the managed object or via management

operation.

@param relationshipChangeInfo
structure containing the notification info

*/

oneway void relationshipChange (

in RelationshipChangeInfo
relationshipChangeInfo

);

/** A Security Service Or Mechanism Violation notification is used to report

that a security attack has been detected by a security service or mechanism.

@param securityAlarmInfo
structure containing the notification info

*/

oneway void securityServiceOrMechanismViolation (

in SecurityAlarmInfo
securityAlarmInfo

);

/** A State Change notification is used to report the change in the the value

of one or more state attributes of a managed object, that result through either

internal operation of the managed object or via management operation.

@param stateChangeInfo
structure containing the notification info

*/

oneway void stateChange (

in StateChangeInfo
stateChangeInfo

);

/** A Time Domain Violation notification is used to report that an event has

occurred at an unexpected or prohibited time.

@param securityAlarmInfo
structure containing the notification info

*/

oneway void timeDomainViolation (

in SecurityAlarmInfo
securityAlarmInfo

);

}; // end of Notifications interface

/** The Get Results Iterator interface is used to return the results from

a scoped get operation using the iterator design pattern. */

interface GetResultsIterator {

/** This method is used to retrieve the next “howMany” results in the

result set. */

GetResultsListType getNext(in ushort howMany);

}; // end of Get Results Iterator interface

/** An interface identical to the Get Results Iterator is used to return

the results from a scoped action invocation. */

typedef GetResultsIterator ActionResultsIterator;

/** The Update Results Iterator interface is used to return the results from

a scoped update (set, add, remove) operation using the iterator design pattern.

*/

interface UpdateResultsIterator {

/** This method is used to retrieve the next “howMany” results in the

result set. */

UpdateResultsListType getNext(in ushort howMany);

}; // end of Update Results Iterator interface

/** The scoping and filtering interface provides a common service for

performing operations on multiple objects.

*/

interface ScopeFilterService {

GetResultsListType scopedGet (in NameType baseName,

in ScopeType scope, in ushort depth, in Istring filter,

in Istring language, in IStringListType attributes,

in ushort howMany,

out GetResultsIterator resultsIterator)

raises(InvalidName, InvalidFilter);

UpdateResultsListType scopedSet (in NameType baseName,

in ScopeType scope, in ushort depth, in Istring filter,

in Istring language, in AttributeListType attributes,

in ushort howMany, out UpdateResultsIterator resultsIterator)

raises(InvalidName, InvalidFilter);

UpdateResultsListType scopedAdd (in NameType baseName,

in ScopeType scope, in ushort depth, in Istring filter,

in Istring language, in AttributeListType attributes,

in ushort howMany, out UpdateResultsIterator resultsIterator)

raises(InvalidName, InvalidFilter);

UpdateResultsListType scopedRemove (in NameType baseName,

in ScopeType scope, in ushort depth, in Istring filter,

in Istring language, in AttributeListType attributes,

in ushort howMany, out UpdateResultsIterator resultsIterator)

raises(InvalidName, InvalidFilter);

UpdateResultsListType scopedDelete (in NameType baseName,

in ScopeType scope, in ushort depth, in Istring filter,

in Istring language,

in ushort howMany, out UpdateResultsIterator resultsIterator)

raises(InvalidName, InvalidFilter);

ActionResultsListType scopedAction (in NameType baseName,

in ScopeType scope, in ushort depth, in Istring filter,

in Istring language,

in Istring actionName, in ParameterListType parameters,

in ushort howMany, out ActionResultsIterator actionIterator)

raises(InvalidName, InvalidFilter);

GetResultsListType scopedAccess (in NameType baseName,

in ScopeType scope, in ushort depth, in istring filter,

in Istring language,

in IStringListType getAttributes,

in AttributeListType setAttributes,

in AttributeListType addAttributes,

in AttributeListType removeAttributes,

in ushort howMany, out GetResultsIterator getResults,

out UpdateResultsIteratorType updateResults)

raises(InvalidName, InvalidFilter);

}; // end of ScopeFilterService interface

}; // end of ITU_X721 module

// MACROS

/* The following macro is provided to identify operations that are part of a

conditional package. This macro is intended to be used in the list of

exceptions defined in the “raises” clause of an operation. For example:

AdministrativeStateType getAdmininstrativeState(in NameType name)

raises(ObjectFailure,

CONDITIONAL_PACKAGE(AdministrativeStatePackage));

Note that the macro simply inserts the PackageNotPresent exception into

the list. While the PackageNotPresent exception returns the string name

of the package, IDL does not allow it to be specified in the raises clause.

Thus, it is up to the managed object programmer to make sure the string in the

macro is returned in the exception if the package is not present.

*/

#define CONDITIONAL_PACKAGE(PackageName) PackageNotPresent

/* The following macros are provided for quickly and concisely defining

the notifications to be supported by an object, following the CORBA

Component Model conventions. Example usage (within an interface):

MANDATORY_NOTIFICATION(ITU_X721::Notifications, objectCreation);

CONDITIONAL_NOTIFICATION(ITU_X721::Notifications, stateChange, statePackage);

For each notification the macros generate two IDL operations, an

add<NotificationName>Listener and a remove<NotificationName>Listener. The

CORBA Component Model states that these operations are to be used to

indicate that the object may emit notifications of type

<NotificationName> using the callback interface reference provided.

The CORBA Component Model follows the Enterprise Java Beans model, in which

objects interested in events register directly with the producer. Network

Management applications will likely use the CORBA Notification Service, so

clients should register with an event channel rather than directly with the

objects. Thus, in most implementations these operations should never

be called. They are generated to indicate what notifications are emitted

following the model's conventions and to support any cases where the

Notification Service is not used.

If an implementation does use the Notification Service and an

add<NotificationName>Listener method is called, the implementation should

throw a TooManyListeners exception to indicate the registration was not

accepted. If the notification is part of a package that is not supported,

the implementation should instead throw the PackageNotSupported

exception, but clients will likely prefer to use the getPackages

operation inherited from ManagedObject to determine what notifications the

implementation supports.

Likewise, the remove<NotificationName>Listener operations will likely never

be called. Implementations should follow the model conventions and throw a

CORBA BAD_PARAM exception if a client tries to remove an unregistered

listener which, if the Notification Service is used, will be always.

*/

#undef MANDATORY_NOTIFICATION

#define MANDATORY_NOTIFICATION(InterfaceName, NotificationName)

\

/ ## *

\

This operation was generated by a macro to indicate that this object
\

must support the emitting of NotificationName notifications.

\

* ## /

\

\

void add ## NotificationName ## Listener (in NameType name,

\

in InterfaceName listener)

\

raises (UnicastOnly, TooManyListeners);

\

\

/ ## **

\

This operation was generated by a macro to indicate that this object
\

must support the emitting of NotificationName notifications.

\

@see

\

add ## NotificationName ## Listener

\

* ## /

\

\

void remove ## NotificationName ## Listener (in NameType name,

\

in InterfaceName listener)

#undef CONDITIONAL_NOTIFICATION

#define CONDITIONAL_NOTIFICATION(InterfaceName, NotificationName,
\

PackageName)

\

/ ## *

\

This operation was generated by a macro to indicate that this object
\

must support the emitting of NotificationName notifications if

\

package PackageName is present.

\

* ## /

\

\

void add ## NotificationName ## Listener (in NameType name,

\

in InterfaceName listener)

\

raises (UnicastOnly, TooManyListeners, PackageNotPresent);
\

\

/ ## **

\

This operation was generated by a macro to indicate that this object
\

must support the emitting of NotificationName notifications if

\

package PackageName is present.

\

@see

\

add ## NotificationName ## Listener

\

* ## /

\

\

void remove ## NotificationName ## Listener (in NameType name,

\

in InterfaceName listener)

#endif // end of ifndef ITU_X721_IDL

Appendix C Network Management Constant Definitions

#ifndef ITU_X721Const_IDL

#define ITU_X721Const_IDL

module ITU_X721 {

/** This module contains the constant values defined for the

Object Error UID. These values were borrowed from cmip.asn1

and many may not be needed. */

module ObjectErrorConst {

const string moduleName = "ITU_X721::ObjectErrorConst";

const short accessDenied = 2;

const short classInstanceConflict = 19;

const short complexityLimitation = 20;

const short duplicateManagedObjectInstance = 11;

const short getListError = 7;

const short invalidArgumentValue = 15;

const short invalidAttributeValue = 6;

const short invalidFilter = 4;

const short invalidObjectInstance = 17;

const short invalidOperation = 24;

const short invalidScope = 16;

const short missingAttributeValue = 18;

const short mistypedOperation = 21;

const short noSuchAction = 9;

const short noSuchArgument = 14;

const short noSuchAttribute = 5;

const short noSuchEventType = 13;

const short noSuchInvokeId = 22;

const short noSuchObjectClass = 0;

const short noSuchObjectInstance = 1;

const short noSuchReferenceObject = 12;

const short operationCancelled = 23;

const short processingFailure = 10;

const short setListError = 8;

const short syncNotSupported = 3;

}; // end of ObjectErrorConst module

/** This module contains the constant values defined for parameters. The

only value was taken from X.721. */

module ParameterIDConst {

const string moduleName = “ITU_X731::ParameterIDConst”;

/** When a processing error failure has occurred and the error

condition encountered does not match any of the object's defined

specific error types, this value is used. The data type accompanying

this parameter is null. */

const short miscellaneousError = 1;

};
// end of ParameterIDConst module

/** This module contains the constant values defined for the

ProbableCause UID. These values were borrowed from X.721. */

module ProbableCauseConst {

const string moduleName = "ITU_X721::ProbableCauseConst";

const short adapterError = 1;

const short applicationSubsystemFailure = 2;

const short bandwidthReduced = 3;

const short callEstablishmentError = 4;

const short communicationsProtocolError = 5;

const short communicationsSubsystemFailure = 6;

const short configurationOrCustomizationError = 7;

const short congestion = 8;

const short corruptData = 9;

const short cpuCyclesLimitExceeded = 10;

const short dataSetOrModemError = 11;

const short degradedSignal = 12;

const short dTE_DCEInterfaceError = 13;

const short enclosureDoorOpen = 14;

const short equipmentMalfunction = 15;

const short excessiveVibration = 16;

const short fileError = 17;

const short fireDetected = 18;

const short floodDetected = 19;

const short framingError = 20;

const short heatingOrVentilationOrCoolingSystemProblem = 21;

const short humidityUnacceptable = 22;

const short inputOutputDeviceError = 23;

const short inputDeviceError = 24;

const short lANError = 25;

const short leakDetected = 26;

const short localNodeTransmissionError = 27;

const short lossOfFrame = 28;

const short lossOfSignal = 29;

const short materialSupplyExhausted = 30;

const short multiplexerProblem = 31;

const short outOfMemory = 32;

const short ouputDeviceError = 33;

const short performanceDegraded = 34;

const short powerProblem = 35;

const short pressureUnacceptable = 36;

const short processorProblem = 37;

const short pumpFailure = 38;

const short queueSizeExceeded = 39;

const short receiveFailure = 40;

const short receiverFailure = 41;

const short remoteNodeTransmissionError = 42;

const short resourceAtOrNearingCapacity = 43;

const short responseTimeExcessive = 44;

const short retransmissionRateExcessive = 45;

const short softwareError = 46;

const short softwareProgramAbnormallyTerminated = 47;

const short softwareProgramError = 48;

const short storageCapacityProblem = 49;

const short temperatureUnacceptable = 50;

const short thresholdCrossed = 51;

const short timingProblem = 52;

const short toxicLeakDetected = 53;

const short transmitFailure = 54;

const short transmitterFailure = 55;

const short underlyingResourceUnavailable = 56;

const short versionMismatch = 57;

}; // end of ProbableCauseConst module

/** This module contains the constant values defined for the

SecurityAlarmCause UID. These values were borrowed from

X.721. */

module SecurityAlarmCauseConst {

const string moduleName = "ITU_X721::SecurityAlarmCauseConst";

const short authenticationFailure = 1;

const short breachOfConfidentiality = 2;

const short cableTamper = 3;

const short delayedInformation = 4;

const short denialOfService = 5;

const short duplicateInformation = 6;

const short informationMissing = 7;

const short informationModificationDetected = 8;

const short informationOutOfSequence = 9;

const short intrusionDetection = 10;

const short keyExpired = 11;

const short nonRepudiationFailure = 12;

const short outOfHoursActivity = 13;

const short outOfService = 14;

const short proceduralError = 15;

const short unauthorizedAccessAttempt = 16;

const short unexpectedInformation = 17;

const short unspecifiedReason = 18;

}; // end of SecurityAlarmCauseConst module

}; // end of ITU_X721 module

#endif // end of ifndef ITU_X721_IDL

Appendix D Framework Support Services

#ifndef ITU_Q821_IDL

#define ITU_Q821_IDL

#include "ITU_X721.idl"

/**

The Q821 Module contains IDL for support services defined in ITU recommendation

Q.821.

*/

module ITU_Q821 {

// import types from X721

#typedef ITU_X721::ObjectClassType ObjectClassType

#typedef ITU_X721::AlarmInfoType AlarmInfoType

typedef sequence <AlarmInforType> AlarmInfoListType

/**

The Alarm Info Interator is used to iterate through a set of alarms.

@see #AlarmSynchronizer

*/

interface AlarmInfoIterator {

/** This method retrieves the next alarm info structure. A value of false

is returned if there are no more alarms to be returned.

*/

boolean nextOne (out AlarmInfoType alarmInfo);

/** This method returns up to “howMany” alarm info structures. A value

of false is returned if there are no more alarms to be returned.

*/

boolean nextN (in unsigned long howMany,

out AlarmInfoListType activeAlarms);

/** This method is used to destroy the iterator. The client should do

this to release resources on the server.

*/

void destory ();

}; // end of interface ActiveAlarmInfoIterator

/** The Alarm Synchronizer interface is used to retrieve all or a subset of

the current alarms on a system.

*/

interface AlarmSynchronizer {

/** This method returns the active alarms for objects of the types specified

in the object class list. A null object class list means all active alarms

should be returned.

*/

void getActiveAlarmInfo (

in ObjectClassList
objectClasses,

in unsigned long
howMany,

out AlarmInfoListType
activeAlarms,

out AlarmInfoIterator
activeAlarmInfoIterator);

}; // end of interface AlarmSynchronizer

}; // end of ITU_Q821 module

PAGE 2

_995371873.doc

MO

.ITU_M3100::Network

ITU_M3100::Network.CentralNet

ITU_M3100::Network.NorthernNet

ITU_M3100::Network.SouthernNet

.Object

.ITU_M3100::ManagedElement

.ITU_M3100::Connection

.ITU_M3100::Trail

ITU_M3100::Connection.C1157

ITU_M3100::Connection.A549

ITU_M3100::Connection.R5968

ITU_M3100::ManagedElement.Element1

ITU_M3100::ManagedElement.Element7

ITU_M3100::ManagedElement.Element9

.ITU_M3100::Equipment

.ITU_M3100::Software

.Object

.Object

MO

MO

(The root Naming Context)

(The Network Name Bindings)

(Naming Context for the CentralNet Managed Object)

(The CentralNet Network Managed Object)

(The Element9 ME Managed Object)

(The R5698 Connection Managed Object)

(The Naming Context for Element9)

(The Naming Context for Connection R5968)

(Name Bindings for

Managed Elements)

(Name Bindings for Connections

contained under CentralNet)

_995371877.doc

domain_type

type_name

event_name

ohf_name1

ohf_name2

…

ohf_namen

fd_name1

fd_name2

…

fd_namen

remainder_of_body

ohf_value1

ohf_value2

Event Header

ohf_valuen

fd_value1

fd_value2

Event Body

fd_valuen

Fixed Header

Variable Header

Filterable Body

Fields

Remaining Body

“Telecommunications”

<null>

Optional header fields may be included to support features like Quality of Service

void attributeValueChange (

in AttributeValueChangeInfo

attributeValueChangeInfo

);

Other parameters would go in additional rows

_995371881.doc

Sync Client

Async Client

Async-aware ORB

Servant

IDL - Stub (sync)

Implied-IDL - Stub (async)

IDL - Skeleton (sync)

_996396362.doc

OS

OS

OS

SML

BML

NML

EML

NEL

OS

OS

Q3

CORBA

Proposed

OS

OS

Q3

CORBA

Proposed

OS

OS

Q3

CORBA

Proposed

OS

SML X

CMIP

CORBA

EDI

 Q3

NE

NE

 Q3

 Q3

CORBA

Proposed

Q3

CORBA

Proposed

CORBA

Proposed

CORBA

Proposed

CORBA

Proposed

CORBA

Proposed

CORBA

Proposed

CORBA

Proposed

 Q3

 Q3

 Q3

 Q3

 Q3

SNMP ?

CORBA

Proposed

_995371879.doc

Supplier

Supplier

Supplier

Consumer

Consumer

Consumer

F

F

Notification

Service

Event Channel

QoS

QoS

QoS

QoS

QoS

QoS

Log Filter

Log

Persistent Store

Non-Event Writer

F

F

F

F

F

= Filter

_995371875.doc

Supplier

Supplier

Supplier

Consumer

Consumer

Consumer

F

F

Notification

Service

Event

Channel

QoS

QoS

QoS

QoS

QoS

QoS

F

F

F

F

= Filter

F

_995371868.doc

Manager

CORBA

Agent

OSI

Agent

CORBA

CMIP

