PAGE
2
Contribution to 3G TS 32.111 v1.0.0

3GPP TSG-SA5 (Network Management) Meeting #7

Tampere, Finland, 25th-29th October, 1999
[image: image1.png]
Tdoc S5-99232

Title:
Changes for the “Chapter-4” of 32.111

Source:
Italtel (Gaetano Cicchitto, Email: Gaetano.Cicchitto@italtel.it)

Agenda item:
9.5 S5.FM Rapporteur Session

Document for:
Decision

Category:
Contribution to 32.111

Document Summary:
This contribution proposes several changes of different type to Chapter-4 of 32.111. This contribution includes editorial changes, introduces new concepts and proposes changes to existing concepts

This contribution will be discussed for each change it contains and not as a unique proposal to be accepted or rejected.

To read the changes, please enable the Word’s track changes feature.

To read the comments, please move the cursor on the yellowed text.

Specification(s) involved:
32.111 3G Fault Management

4
Fault Management concept

Fault Management is that part of the Telecom Management dedicated to maintain the single NEs and the entire Network always in the best possible operating conditions, when faults occur. Fault Management must also help the Operators to repair the faults and to restore the optimal operating conditions for each single NEs and for the entire network. Fault Management should also perform preventive maintenance, to reduce/control the occurrence of faults.

In general, the management of 3GPP Systems is based on an object oriented representation of the managed NEs. That means that the physical and logical resources of a NE that require to be managed are modelled as “managed objects” which are composed of “attributes”, ”actions” and “notifications”.
For the Fault Management it is essential to have the representation of the operability condition (the health condition), of some or all the resources of the managed NE. These operability conditions are modelled with “state attributes”.
State management is not strictly specific of Fault Management, in the sense that it is used also within Configuration Management [1], Performance Management [4] and other management functions. State Management is defined in this document because it is mostly related to Fault Management.
Any evaluation of the network elements' and the overall network health status will require the detection of faults in the network and, consequently, the notification of alarms to the OS (EM and/or NM). Depending on the nature of the fault, it may be combined with a change of the operational state of the logical and/or physical resource(s) affected by the fault. Detection and notification of these state changes is as essential as it is for the alarms. A list of active alarms and operational state information in the network and alarm/state history data shall be made available to the system operator for further analysis. Additionally, test procedures are required in order to obtain more detailed information if necessary, or to verify an alarm or state or the proper operation of NEs and its logical and physical resources.

The following subsections explain the detection and NE internal handling of faults, alarms, states and tests execution
.
4.1 State management

The state attributes of a managed object may have one or more of the following type of information:
-
Administrative state: gives the information about the instruction of the Operator to make a managed object available for service, or to remove a managed object from service.

-
Operational state: gives the information about the real capability of a managed object to provide or not provide service. A managed object can lose the capability to provide service because of a fault occurring on the object itself, or because another object on which it depends is out of service.

-
Usage state: gives the information about the real current service provided by a managed object.

In addition to the above primary ‘state’ information, a managed object may have a secondary ‘status’ information which gives further detailed information about the reason of the primary state.
The changes of the state and status of a managed object must be notified to the relative manager(s)
For the quality of service provided to the end users, it must be possible to put the objects out of service, by means of the Administrative state, in a graceful way.
Within a managed element, when for any reason a managed object changes its state, the change must be propagated, in a consistent way, to all the other objects that are functionally dependent on the first one. Therefore:

-
In case of a fault occurring on a resource modelled as a managed object, if the current operational state is “enabled”, it shall be changed to “disabled” and a state change notification shall be generated. Then, all the dependant managed objects (following the fault dependency tree) must be checked and, in case they are “enabled” they shall be changed to “disabled” and a state change notification shall be generated. In this process, also the secondary status must be changed consistently, in a way that it shall be easy to recognise whether an object is disabled in consequence of a fault or because of its dependency on another object which is disabled.
-
In case a faulty resource is repaired, the Operational state of the managed object representing the resource is changed from “disabled” to “enabled” and a state change notification is originated. Then all the dependent objects are turned back to “enabled” and for each of them a state change notification must be generated (this is the simple case). In more complex cases, some of the objects may be disabled for different causes (different faults or faults plus locks on different superior objects), in this cases the object can be turned “enabled” only when all the causes are cleared (i.e. faults are repaired and superior objects are unlocked). Also in this process the secondary status must be changed consistently.
· In case a managed object is locked, the process of the state change propagation is similar to the first case (resource failure) except for the first object (the locked one) which does not change its operational state but only the administrative state from “unlocked” to “locked”. The dependent objects are processed as in the first case.

· In case a managed object is unlocked, the process of the state change propagation is similar to the second case (fault reparation) except for the first object (the unlocked one) which does not change its operational state but only the administrative state from “locked” to “unlocked”. The dependent objects are processed as in the first case.
4.2
Faults and alarms
Faults that may occur in the network can be grouped into one of the four following categories:

-
hardware failures, i.e. the malfunction of some physical resource within a NE;

-
software problems, e.g. software bugs, database inconsistencies;

· functional faults, i.e. a failure of some functional resource in a NE and no hardware component can be found responsible for the problem;
· communication faults between two NEs, or between NE and OS, or between two OSs.
-

.

In any case, as a consequence of the fault, appropriate alarms and, possibly, associated state changes, related to the physical or logical resource affected by the fault, shall be generated by the NE.

The following subsections focus on the aspects of fault detection, alarm and state change generation and storage, fault recovery and retrieval of stored alarm information.

4.1.3
Fault detection

When any type of fault above described occurs within a 3G network, the affected NEs must be able to detect them as soon as possible.

The NEs accomplish this task using autonomous self-check circuits/procedures, including the observation of measurements, counters and thresholds.. The threshold measurements may be predefined by the manufacturer and executed autonomously in the NE, or they may be based on performance measurements administered by the OMC, cf. [4]. The fault detection mechanism as defined above shall cover both active and standby components of the NEs.

The majority of the faults will have well-defined conditions for the declaration of their presence or absence, i.e. fault occurrence and fault clearing conditions. Any such incident shall be referred to in this TS as a steady fault. The NEs must be able to recognise when a previously detected steady fault is no longer present, i.e. the clearing of the fault, using similar techniques as they use to detect the occurrence of the fault. Manual intervention by the system operator, either locally or at the OMC, may be necessary to repair a permanent fault, e.g. re-initialisation of equipment after replacing a faulty device.
For some faults, no clearing condition exists. For the purpose of this TS, these faults shall be referred to as unsteady faults. An example of this is when the NE has to restart a software process due to some inconsistencies originated by a software bug, and normal operation can be resumed afterwards. In this case, although the inconsistencies are cleared, the software bug is not yet corrected. Manual intervention by the system operator will always be necessary to repair the unsteady faults since these, by definition, cannot be cleared by the NE itself.
For some faults there is no need for any action, neither from the system operator, nor from the NE itself, since the fault lasted for short time and then disappeared. These faults shall be referred to as transient faults.
For each fault, the following information shall be supplied by the fault detection process:

-
for hardware faults, the smallest replaceable unit that caused the fault;

-
for software faults, the corrupted file(s) or data bases or software unit;

-
for functional faults, the affected functionality;

-
for faults caused by overload, information on the reason for the overload;

-
for all the above faults, wherever applicable, an indication of the physical and logical resources that are affected by the fault;

· if applicable, whether the specified operational capability of the resource was reduced due to the fault;

-
the nature of the fault, i.e. steady, unsteady or transient;

-
any other information that will help understanding the cause and the location of the abnormal situation (system/implementation specific).

Each new fault shall be entered into an internal list of pending faults by the NE. Each fault that is cleared shall be removed from the pending faults list. Note that the pending faults list is only a notion for the purpose of describing the fault management concept specified in this TS, and does not constitute a requirement for any specific implementation. An implementation of the pending faults list may be used by the NE for internal housekeeping, however, it is not required to be visible outside of the NE, i.e. to the system operator. Instances of faults shall only be visible to the system operator by virtue of associated alarms and state changes, see following subsections for details.

4.1.4
Generation of alarms

For each detected fault, appropriate alarms shall be generated by the NE, regardless of whether it is a steady, unsteady or transient fault. Such alarms shall contain the following information:

· the device/resource/file/functionality/smallest replaceable unit as defined in subsection 4.1.1 above;

-
a description of the loss of capability of the affected resource, if applicable;

-
the type of the alarm (communication, environmental, equipment, processing error, quality of service) according to [9];

-
the severity of the alarm (indeterminate, warning, minor, major, critical), as defined in [9];

-
the probable cause of the alarm;

-
whether or not the alarm can be cleared by the network element,
-
the time at which the fault was detected in the NE; and

-
any other information that will help understanding the problem (system/implementation specific).

To easy the fault localisation and the fault reparation, the NE should generate for each single fault, one single alarm, also in the case a single fault creates problems in more than one physical or logical resource within the network element. An example of this is a hardware fault which affects not only a physical resource but also degrades the logical resource(s) that this hardware supports. In this case the NE shall generate, as far as applicable, one single alarm for the resource containing the fault (i.e. the resource who needs to be repaired) and a number of state change notifications for all the affected physical/logical resources, including the faulty one. The alarm notification and the related state change notifications must be correlated to each other by means of explicit relationship information.
When a fault occurs on the connection media between two NEs or between a NE and an OS, and affects the communication capability between such NE/OS, each affected NE/OS shall detect the fault and generate the associated communication alarm and state change notifications toward the managing OS. In this case it is responsibility of the Manager to correlate alarms received from different NEs/Oss and localise the fault in the best possible way.
Within each NE, all alarms generated by the NE shall be input into a list of pending alarms. The NEs must be able to provide such a list of active alarms to the OS when requested..

Note:
the concept described above will, in principle, also apply if a system does not distinguish between alarms and faults. In that case, the relationship between faults and alarms is always 1:1, i.e. no correlation information is required.

4.1.5
Clearing of alarms

The alarms originated in consequence of steady faults need to be cleared. To clear the alarm it is necessary to repair the relative fault.
The procedures to repair faults are implementation dependent and therefore they are out of the scope of this document, however, in general:

-
the equipment faults are repaired by replacing the faulty units with working ones
-
the software faults are repaired by means of partial or global system initialisations, by means of software patches or by means of updated software loads
-
the communication faults are repaired by replacing the faulty transmission equipment or, in case of excessive noise, by removing the cause of the noise
-
the QOS faults are repaired either by removing the causes that degraded the QOS or by improving the capability of the system to react against the causes that could result in a degradation of the QOS
-
the environment faults (high temperature, high humidity, etc.) are repaired by solving the environmental problem.

It is also possible that a steady fault is spontaneously repaired, without the intervention of the operator. Practically this is the case of transient faults which last for long time so they are detected as steady faults. In this case the NE behaves as for the steady faults repaired by the operator.
When the steady faults are repaired (no matter how), the NE must be able to autonomously recognise that the faults have been corrected, using the same means used for the fault detection.

Once a fault correction is detected, the NE shall generate a clear alarm toward the manager and shall remove the cleared alarm from the active alarm list.
Unsteady faults and transient faults do not need to be repaired. The relative alarms are not put in the active alarm list and do not need to be cleared. These alarms may be the subject of further elaboration on the manager, for the purpose of preventive maintenance and for the detection of latent faults.

·

·

·

·

·

·

A clear alarm is defined as an alarm, as specified in subsection 4.1.2, except that its severity is set to “cleared”. The relationship between the clear alarm and the initial alarm is established

-
by re-using a set of parameters that uniquely identify the initial alarm (cf. subsection 4.1.2), or

· by including a pointer to the initial alarm in the clear alarm.

4.1.6
Acknowledgement of alarms

When an alarm report is received by a Manager, some activities need to be initiated in order to maintain and/or restore the telecommunication network and the management network in the best possible condition. These activities may be of different type (e.g. execute some tests to better localise the fault, open a trouble ticket, change the configuration of the network, etc.) in any case they are dependent on the specific organisation of each operator. The acknowledgement of the alarms is a simple management function that helps the operator to organise the activities triggered by the alarms.

Conceptually, an alarm is acknowledged when somebody starts to take care of it. In general the acknowledgement is done by the operator, however there are cases where it is convenient that the Manager automatically acknowledges some or all the received alarms.
The acknowledgement of alarms is a management function concerning only the Managers (i.e. the NEs are not concerned). Since for the 3G systems the fault management is distributed among different OS, the alarm acknowledgement is accomplished by the co-operation of all the OSs involved in the alarm treatment. In this case the alarm acknowledgement is used also the manage the assignment of the alarm treatment responsibility to the different OSs, e.g. during the different time shifts.
The alarm acknowledgement function requires that:
1. All the involved OSs have the same view of the alarms to be managed

2. All the involved OSs have the information about who is responsible for the acknowledgement of the alarms

3. All the involved OSs have the capability to send and to receive acknowledgement notifications.

4. All the involved OSs create some additional information to be associated to the original alarm report received from the NEs. This additional information shall include but not be limited to:
-
the acknowledgement state

-
the acknowledgement time

-
the OS/Operator identifier

-
the alarm state (active / cleared)

·
·

4.1.8
Logging and transfer of alarms and state information

For fault management purposes, each NE/OS will have to store and retain the following information related to the alarms and state change notifications that they produce:
-
Alarm history information: i.e. alarm and clear alarm records, alarm acknowledgement records
-
State history information: i.e. state change notification records.

The management of these information shall be performed by means of dedicated supporting managed objects, based on the recommendation ITU-T X.735 [15]. The logging management should include the following capabilities:

-
Retrieval of alarm records from the Log;

-
Deletion of alarm records in the Log;

-
Initiation of event report logging;

-
Termination of event report logging;

-
Suspension of event report logging;

-
Resumption of event report logging;

-
Scheduling of event report logging;

-
Modification of logging conditions;

-
Retrieval of logging conditions.

The storage memory dedicated to the logging within each NE/OS should be sufficient to store at least three days worth of alarm and state change history.

In addition to the record retrieval mechanism provided by the logging function, each NE/OS shall provide an efficient mechanism to transfer all or a subset of selected log records from a log instance to the OS, as a file. This “bulk transfer” mechanism shall be used not only for information stored in the logs, but also to transfer some fault and state related information stored within the MIB as attributes, or within internal, not manageable database. Such information are:
-
The list of the alarms not yet cleared (active alarms)
-
The list of alarms not yet acknowledged

-
The list of all the objects whose operational state is equal or different from a specified value.

4.1.9
Fault Recovery

·

After a fault has been detected and the replaceable faulty units have been identified, some management functions are necessary in order to perform system recovery and/or restoration, either automatically by the NE and/or the OS, or manually by the operator.

The fault recovery functions are used in various phases of the fault management:

1)
After a fault detection, the NE shall be able to evaluate the effect of the fault on the telecommunication services and autonomously take recovery actions in order to minimise service degradation.

2)
Once the faulty unit(s) has been replaced or repaired, it shall be possible from the OS to put the previously faulty unit(s) back in to service so that it is restored to its normal operation. This transition should be done in such a way that the currently provided telecommunication services are not, or minimally, disturbed.

3)
At any time the NE shall be able to perform recovery actions if requested by the operator. The operator may have several reasons to require such actions; e.g. he has deduced a faulty condition by analysing and correlating alarm reports, or he wants to verify that the NE is capable of performing the recovery actions (proactive maintenance).

The recovery actions that the NE performs (autonomously or on demand) in case of fault depend on the nature and severity of the faults, on the hardware and software capabilities of the NE and on the current configuration of the NE.

The faults are distinguished in two categories: software faults and hardware faults.

In the case of software faults, depending on the severity of the fault, the recovery actions may be: System initialisations (at different levels), activation of a backup software load, activation of a fallback software load, download of a software unit etc.

In the case of hardware faults, the recovery actions depend on the existence and type of redundant (back-up) resources.

If the faulty resource has no redundancy, the recovery actions shall be:

a)
Isolate and remove from service the faulty resource so that it cannot disturb other working resources.

b)
Remove from service the physical and functional resources (if any) which are dependent on the faulty one. This prevents the propagation of the fault effects to other fault-free resources.

c)
Adjust the Operational State and Status attributes of the faulty managed object and the affected managed objects, in a consistent way, reflecting the new situation.

d)
Generate and forward (if possible) the reports to inform the OS about all the changes performed.

If the faulty resource has redundancy, the NE shall perform actions a), c) and d) above and, in addition, the recovery sequence which is specific to that type of redundancy.

In the NE, the redundancy of some resources may be provided to achieve fault tolerance and to improve the system availability. There exist several types of redundancy (e.g. hot standby, cold standby, duplex, symmetric/asymmetric, N plus one or N plus K redundancy, etc.) and for each one, in case of failure, there is a specific sequence of actions to be performed. This EN specifies the management (the monitoring and control) of the redundancies, but does not define the specific recovery sequences of the redundancy types.

The management of the redundancies is strictly related to the way they are modelled in the MIM of the NE. For the modelling of the redundancies, the relationships shall be defined among the objects which participate in each redundancy, according to ITU‑T X.732 [13]. This will identify the objects and the roles that they have in the redundancy. By defining the relationships, also the role of the objects participating in the relationships are implicitly defined by the relationships' attribute values.

The NE shall provide the OS with the capability to monitor and control any redundancy of the NE. The control of a redundancy (which means the capability to trigger a change-over or a change-back) from the OS can be performed by means of the state management services or by means of specific actions.

When the state management services are used, the transitions are triggered by locking/unlocking one of the objects participating in the redundancy. In this case, for the management of the redundancy, the locking and the unlocking should be processed by the NE, with the same logic of disabling/enabling, triggered by the fault detection/fault correction.

In the case of a failure of a resource represented by a managed object providing service, the recovery sequence shall start immediately. Before or during the change-over, a temporary and limited loss of service shall be acceptable. In the case of a management command, the NE should perform the change-over without degradation of the telecommunication services.

4.2
Tests

This management function provides capabilities that can be used in different phases of the fault management. For example:

-
when a fault has been detected and if the information provided through the alarm report is not sufficient to localise the faulty resource, tests can be executed to better localise the fault;

-
during normal operation of the NE, tests can be executed for the purpose of detecting faults;

-
once a faulty resource has been repaired or replaced, before it is restored to service, tests can be executed on that resource to be sure that it is fault free.

However, regardless of the context where the testing is used, its target is always the same: verify if a system's physical or functional resource performs properly and, in case it happens to be faulty, provide all the information to help the operator to localise and correct the faults.

Testing is an activity that involves the operator, the managing system (the OS XE "OMC") and the managed system (the NE). Generally the operator requests the execution of tests from the OS and the managed NE autonomously executes the tests without any further support from the operator.

In some cases, the operator may request that only a test bed is set up (e.g. establish special internal connections, provide access test points, etc.). The operator can then perform the real tests which may require some manual support to handle external test equipment. Since the "local maintenance" and the "inter NE testing" are out of the scope of this EN, this aspect of the testing will not be treated any further.

The requirements for the testing service component are based on ITU‑T X.745 [14], where the testing description and definitions are specified.

�PAGE \# "'Page: '#'�'" ��

�PAGE \# "'Page: '#'�'" ��

This change has been introduced to separate the State management from the Fault management. It also introduces some basic concepts based on the ITU-T state management. (see also the comment on the deleted 4.1.4)

�PAGE \# "'Page: '#'�'" �Page: 3���

I think the overload management requires a further clarification. I’m not sure it belongs to the fault management area. The NE must be designed to support the overload peaks. In case during the overload peak there are problems (e.g. loss of messages or loss of capabilities) they can generate alarms (processing alarms ?) but, as matter of fact, there are no faults in the system (nothing to repair)

�PAGE \# "'Page: '#'�'" �Page: 4���

I think that the list of pending faults is not matter of standardisation. I think this concept should be applied to the “alarms” and moved into the following section. For what I know, within the ITU recommendations, the faults are defined as events but not as manageable entities. Faults are managed by means of alarms which are fully standardised through the X.series. If you have better information on this point, please let me know. Of course I’m open to any clarification on this point.

�PAGE \# "'Page: '#'�'" �Page: 4���

This concept should be moved to the section describing the Test function

�PAGE \# "'Page: '#'�'" �Page: 5���

This concept is not clear to me and needs to be discussed. In my concept, there is always a one to one relationship between faults and alarms, therefore only the alarms are concrete entities and are really managed by the NE and by the operator. If there is an active alarm there is a fault to be repaired and all the information are contained in the alarm report. Once the fault has been repaired, the NE autonomously recognises that the alarm conditions have been cleared, consequently a clear-alarm notification is generated and the alarm is removed from the active alarm list.

�PAGE \# "'Page: '#'�'" �Page: 5���

This concept is accepted. It is just expressed with different words

�PAGE \# "'Page: '#'�'" �Page: 5���

This concept is accepted. It is just expressed with different words

�PAGE \# "'Page: '#'�'" �Page: 5���

This concept is not accepted: the operator should never be allowed to clear alarms but only to repair faults.

When the faults are repaired, the system will autonomously clear the related alarms

�PAGE \# "'Page: '#'�'" �Page: 5���

I have a different concept: in my view, a faulty device is faulty no matter if it is in service or standby. The alarm should be cleared only when the faulty device is repaired. Of course, in case of redundancy, when the faulty device is standby one, there is no degradation of service which means that there is no functional object in disabled state.

�PAGE \# "'Page: '#'�'" �Page: 5���

This is very similar to the first case (accepted)

�PAGE \# "'Page: '#'�'" �Page: 5���

This concept is accepted. It is just expressed with different words

�PAGE \# "'Page: '#'�'" �Page: 5���

This concept is partially accepted: it is accepted that transient faults are not cleared, but It is not accepted to clear the related alarms.

�PAGE \# "'Page: '#'�'" ��

This concept is new and specific for the superior interfaces (interfaces between OS). It was not included in the GSM 12.11 spec.

�PAGE \# "'Page: '#'�'" �Page: 7���

All the concepts described in this clause are accepted, they are reworded and moved to clause 4.1

This change is proposed for two reasons:

I think it is better to define the State Management as separated by the Fault Management

The introduction of the state concept is necessary before we describe the state change events

�PAGE \# "'Page: '#'�'" �Page: 7���

I propose to reword this clause mainly to distinguish between the alarm and state history (managed by means of logs), and dynamic, fault related information (managed by means of attributes of the MIB).

The file transfer capability is also introduced.

�PAGE \# "'Page: '#'�'" �Page: 7���

The X.735 includes both the “wrap” and “halt” modes under the control of the operator. Since in some situations each one of the two modes can be helpful, and since this X.735 logging function is included in most of the commercial platforms (surely for CMIP interfaces), I propose to do not limit the logging mode to the wrap mode.

�PAGE \# "'Page: '#'�'" �Page: 8���

All these concepts are right, however I think that the same concepts (and more) are described better within the GSM 12.11, therefore I propose to adopt clause 5.3 of GSM 12.11 (Fault correction) to describe the fault recovery as follows

�PAGE \# "'Page: '#'�'" �Page: 9���

Regarding the Test management, I propose to include in our chapter 4 the corresponding clause 5.4 of GSM 12.11.

For chapter 8, where a rigorous definition for the standardisation of the N-Interface must be provided, we have to evaluate if Test management is matter of release 99 or release 2000. In any case, I think that for chapter 4 this simple introduction, based on X.745, can be anticipated.

