TSG-SA/WG5 (Telecom Management) meeting #6 TSGS5#6(99)194
Cork, Ireland
31 August - 3 September 1999

 Page 8

Category:
32.104 – Performance Management

Source:
Siemens

Title:
Measurement Report File Format

Document for:
Input for 32.104 Annex A (Normative): Measurement Report File Format

Abstract: This contribution provides input for the Annex A “ Measurement Report File Format” of the 3G 32.104 PM specification. It comprises a list of requirements on a MR file format, a proposal of a MR file format described in ASN.1, and a proposal for basic (BER) as well as ASCII encoding rules that should be applied to ensure proper data transfer of performance measurement files to network management systems.

Recommendation: To be included in 32.104 Annex A (Normative): Measurement Report File Format

Requirements on the Measurement Report File Format

The following major requirements on the measurement report file format are meet by the file format specification described in this Annex.

· The file structure and measurement value representations should be easy to understand and to implement.

· The file format should be independent of the data transfer protocol used to carry the file from one system to another. The file format should be described in ASN.1.

· The file format should match equivalent format specifications defined in the GSM 12.04 standard and ITU-T X.700 and Q.822 recommendations, e.g. measurement type.

· The file format should be generic as possible to store measurements from, different measured objects of different 3G network elements, different measurement types, with different granularity and measurement periods.

· Beside real measurement information the file may include meta-information about the measurements that is necessary for interpretation. The overhead of meta-data should be minimised.

· Header information should indicate the file format version and identify the source of the measurement file. The source of the file (referred as the collector) must not be the same system of which the measurements are in the file. E.g. a network element manager can be the collector where the measurements are from the network elements being managed by this manager system.
· The file format should be appropriate that different up-load cycles of the file transfer can be supported. The up-load cycle may differ from the measurement periods.

· Information about the reliability of the measured item should be included in the file.

· The file format should support easy file merge, file split, and measurement compression functions.

· QoS alarms are to be optionally included in the file. It is to inform PM post processing staff about threshold crossing in the NE. This is useful to understand the behaviour of the NE afterwards and to know that the implemented traffic control respectively automatic measures will work. In general, major alarm information that is essential for the interpretation of the network, network element, and service behaviour should be included in the file.
· The file format and related encoding rules should allow complete file representations in ASCII format.
Measurement Report File Format (ASN.1)

PM_File_Description

DEFINITIONS IMPLICIT TAGS ::= BEGIN

MeasDataCollection ::= SEQUENCE

 {

 measFileHeader

MeasFileHeader,

 measDataHeaders
SEQUENCE OF MeasDataHeader
OPTIONAL,

 measDataLines

SEQUENCE OF MeasDataLine,

 measFileFooter

MeasFileFooter

 }

 -- The measDataHeaders contain the headers of the measDataLines that follow.

-- A MeasDataHeader may be OPTIONAL,when the complete set of measured

-- items (measItem) and associated additional information (measAddInfo)

-- pertaining to the referenced measured object class (keyMeasObjectClass)

-- are provided in the data lines.

-- The measDataLines can be an empty sequence in case no measurement data can

-- be provided.

-- The keyMeasObjectClass field links a MeasDataHeader to a MeasDataLine.

-- The individual MeasDataLine can appear in any order.

-- REMARK: since the provision of the measDataHeaders is not opportune

-- in case of online reporting, this field is classified as OPTIONAL. No SIZE

-- restrictions as the number of measDataLines lines mostly cannot be pre-defined

-- (depends on the actual configuration).

MeasFileHeader ::= SEQUENCE

{

fileFormatVersion
INTEGER,

collector

PrintableSting,

collectorType

PrintableString,

collectionBeginTime
TimeStamp,

collectionEndTime
TimeStamp
OPTIONAL

}

-- The fileFormatVersion has value 1 for the first format defined.

-- The collector refers to the entity that has collected the measurement data.

-- The collectorType refers to a category the collector belongs to.

-- The collectionBeginTime and collectionEndTime give an indication of the overall

-- measurement collection interval that is covered by the collected measurement

-- results that are stored in this file. The collectionEndTime is OPTIONAL as at file

-- creation, it may not be known when the measurement file will be closed and has

-- an indicative value.

MeasFileFooter
::= SEQUENCE

{

collectiontionEndTime
TimeStamp

}

-- The collectionEndTime in the MeasFileFooter refers to the end of the overall

-- measurement collection interval that is covered by the collected measurement

-- results that are stored in this file.

MeasDataHeader ::= CHOICE

{

scannedDataHeader
[0]
ScannedDataHeader,

qosAlarmDataHeader
[1]
QosAlarmDataHeader

}

-- The scannedDataHeader/Lines refer to measurement information that is collected

 -- (this is modelled as a periodic scan of attributes of an object class)

-- The qosAlarmDataHeader/Lines refer to the QoS alarms that are generated when

-- measurement parameters are monitored and corresponding thresholds are

-- exceeded (cfr. ITU-T Q.822). No other alarms are included.

-- Example: QoS alarms emittted by the Q.751.1 ss7FirstAndIntervalThresholdData

MeasDataLine ::= CHOICE

{

scannedDataLine
[2]
ScannedDataLine,

qosAlarmDataLine
[3]
QosAlarmDataLine

}

ScannedDataHeader ::= SEQUENCE

{

keyMeasObjectClass
[0]
KeyMeasObjectClass,

numberOfMeasAddInfo
[1]
INTEGER (0..40),

numberOfMeasItem
[2]
INTEGER (1..1024),

measAddInfoNames
[3]
SEQUENCE (SIZE(0..40)) OF IdentifyingName,

measItemInfos

[4]
SEQUENCE (SIZE(1..1024)) OF MeasItemInfo

}

-- The measAddInfoName (referring to measurement additional information) is

-- related to configuration information that cannot be used in calculations, but is

-- anyhow required for evaluation purposes

-- The.measItemInfos is referring to (numerical) information that typically is used in

-- calculations (formulas).

-- The IdentifyingName of each measAddInfoName and measItemName (a field

-- of MeasItemInfo) for a particular key object class is fixed and is to be provided by

-- the supplier.

-- REMARK: the numberOfMeasAddInfo and numberOfMeasItem fields principally

-- can be omitted, but are added to ease processing. The SIZE restrictions are

-- added to limit the number of columns when the information is copied into a table.

IdentifyingName ::= PrintableString

MeasItemInfo ::= SEQUENCE

{

measItemType

[0]
MeasItemType,

measItemName

[1]
IdentifyingName

}

-- The MeasItemInfo groups information about a list of measurements

MeasItemType ::= ENUMERATED

-- as defined in ITU T X.721

{

resetableCounter
(0),

cummulativeCounter
(1),

gauge

(2)

}

-- A reset-table counter typically is reset to zero at the beginning of a new elementary

-- measurement interval (granularity) and increments by 1. It is a non-negative

-- INTEGER.

-- A cummulativeCounter typically increments by 1 up to a maximum value and

-- then set to zero (i.e. wrap around). It is a non-negative INTEGER.

-- A gauge can vary in either direction (increment and decrement). It is a

-- non-negative INTEGER or REAL..

KeyMeasObjectClass ::= SEQUENCE

{

measObjectClass
[0]
MeasObjectClass,

measObjectVersion
[1]
MeasObjectVersion

}

-- Identifies the key measurement object class for which measurement data is

-- collected. The MeasObjectClass is to be unique universe wide (i.e. within the

-- scope of the application that processes the measurement data).

-- The measObjectVersion is added as from one release to another measAddInfos

-- and measItems are added/removed/updated e.g. due to the introduction of new

-- features in a release.

-- REMARK: for simplicity, there is no version indication for measItem/measAddInfo.

-- If the meaning/description of an measItem/measAddInfo changes, then it is a

-- completely new measItem/measAddInfo.

MeasObjectClass ::=
IdentifyingName
(SIZE (1..128))

-- REMARK: to avoid unnecessary complexity and ambiguity regarding the

-- identification of the object class, a CHOICE including the OBJECT IDENTIFIER

-- is not proposed.

MeasObjectVersion ::= PrintableString (SIZE(1..20))

ScannedDataLine ::= SEQUENCE

{

keyMeasObjectClass

[0]
KeyMeasObjectClass,

keyMeasObjectInstance
 [1]
KeyMeasObjectInstance,

timeStamp

[2]
TimeStamp,

-- refers to the time, when the measurement

-- information is scanned (collected).

granularityPeriod

[3]
INTEGER,

-- Number of seconds comprising the measurement

-- interval, e.g. 300 in case of a 5 minutes

-- The measurement interval considered is

-- [timeStamp – granularityPeriod , timeStamp]

-- and is of importance to measItems of that are

-- reset at the beginning of a new measurement interval

-- (MeasItemType=resetableCounter) or that represent

-- a mean value.

suspectFlag

[4]
BOOLEAN,

-- Used as an indication of the quality of the scanned data

-- FALSE in case of reliable data, TRUE if not reliable

measAddInfoValues

[5]
SEQUENCE (SIZE(0..40)) OF MeasAddInfoValue,

measItemValues

[6]
SEQUENCE (SIZE(1..1024)) OF MeasItemValue

}

KeyMeasObjectInstance ::=
SEQUENCE OF IdentifyingName

-- The instance is named starting from the managedElement the object instance is

-- contained in.

TimeStamp ::=
GeneralizedTime

-- Format: YYYYMODDHHMMSS<option1><option2>

-- YYYY
year

-- MO

month
(01..12)

-- DD

day

(01..31)

-- HH

hour
(00..23)

-- MM

minute
(00..59)

-- SS

second
(00..59)

-- <option1> optionally provides an eventual precision up to 1/1000 of a

--
second in the format .sss (0..999)

-- <option2> optionally provides a time differential in the format

-- +HHMM or –HHMM. The time differential applies to the UTC time.

MeasAddInfoValue ::= PrintableString (SIZE(1..512))

-- The PrintableString principally covers all elementary types (INTEGER, REAL,

-- BOOLEAN, ENUMERATED, STRING).

-- Complex attributes eventually have to be splitted into multiple elementary types,

-- or the elementary types are concatenated into a single PrintableString

MeasItemValue ::= CHOICE

{

iValue

INTEGER,

rValue

REAL,

noValue

NULL

}

-- Normal values are non-negative INTEGERs and REALs

-- The NULL value is reserved to indicate that the measurement item is not

-- applicable or could not be retrieved for the object instance

QosAlarmDataHeader ::= SEQUENCE

{

keyMeasObjectClass
[0]
KeyMeasObjectClass,

numberOfQosAddInfo
[1]
INTEGER (0..50),

qosAddInfoName
[2]
SEQUENCE (SIZE(0..50)) OF IdentifyingName,

}

QosAlarmDataLine ::= SEQUENCE

{

keyMeasObjectClass
[0]
KeyMeasObjectClass,

keyObjectInstance
[1]
KeyObjectInstance,

timeStamp

[2]
TimeStamp,

probableCause

[3]
QosProbableCause,

perceivedSeverity
[4]
QosPerceivedSeverity,

thresholdInfo

[5]
QosThresholdInfo,

qosAddInfoValue
[6]
SEQUENCE (SIZE(0..50)) OF MeasAddInfoValue

}

-- The fields probableCause, perceivedSeverity and thresholdInfo are explicity

-- listed and not included in the qosAddInfoName/Value, as they are mandatory

-- information to be provided along with a X.721/X.733 QoS alarm

QosProbableCause ::= PrintableString (SIZE(1..1024))

-- For the standardized ProbableCauses by means of Object Identifiers in

-- ITU-T X.721, the corresponding cause text as provided in ITU-T X.733 is to be
provided.

-- REMARK: a PrintableString is chosen as this allows the introduction of

-- proprietary ProbableCauses without the provision of additional information (i.e.

-- what a specific code means) to a managing system.

QosPerceivedSeverity ::=
 ENUMERATED

{

indeterminate
(0),

critical

(1),

major

(2),

minor

(3),

warning

(4),

cleared

(5)

}

-- as provided in ITU T-X.721

QosThresholdInfo ::= SEQUENCE

{

measItemName
 [0]
MeasItemName,

 -- the measItem that is monitored and for which

 -- a QoS threshold is exceeded

measItemValue
 [1]
MeasItemValue

 -- the measured value, exceeding the threshold value

}

Encoding Rules for Measurement Report File Transfer

One of the following encoding rules should be applied :

· Binary Encoding

The BER (Basic Encoding Rules) according to ITU-T X.209.

· ASCII Encoding

A MeasurementDataCollection is encoded as a repetition of

<tag>
;
<line>
<CR> <LF> and ended by an <EOF>

where
<tag>=”0” for <line>=MeasFileHeader

<tag>=”1” for <line>=ScannedDataHeader

<tag>=”2” for <line>=QosAlarmDataHeader

<tag>=”3” for <line>=ScannedDataLine

<tag>=”4” for <line>=QosAlarmDataLine

<tag>=”5” for <line>=MeasFileFooter

<CR> (resp <LF>, <EOF>) is the ASCII character Carriage Return (resp. Line Feed, End-Of-File)

For the ASCII Encoding a <SEPARATOR> character is used. This <SEPARATOR> has the ASCII value <TAB>.

For each individual <line>, the following encoding applies

SIMPLE VALUE (ENUMERATED, BOOLEAN, INTEGER, REAL PrintableString)

For an ENUMERATED type, the corresponding INTEGER value is encoded.

For BOOLEAN type, the value FALSE (resp TRUE) is encoded as the INTEGER value 0 (resp. 1).

A value of type INTEGER, REAL and a PrintableString are encoded as a sequence of ASCII characters. A value of type REAL always contains a (decimal) dot “.” (e.g. –5.)

When the <SEPARATOR> character sign is used within a PrintableString, then this character is to be encoded as <SEPARATOR><SEPARATOR><SEPARATOR> in the PrintableString (this is only required if the <SEPARATOR> character is allowed in the PrintableString.

SEQUENCE OF <dataType>

The individual dataType values are separated by a <SEPARATOR>.

The SEQUENCE OF is terminated by a double separator, i.e.

<SEPARATOR><SEPARATOR>

SEQUENCE

The values of the fields in a SEQUENCE are separated by a <SEPARATOR>.

An exception is made for a field in a SEQUENCE that is of type “SEQUENCE OF”: the “SEQUENCE OF” alread is terminated by a double separator and no separator needs to be added (the double separator of the SEQUENCE OF acts as a separator is this case).

GeneralizedTime

Format: YYYYMODDHHMMSS<option1><option2>

YYYY
year

MO

month
(01..12)

DD

day
(01..31)

HH

hour
(00..23)

MM

minute
(00..59)

SS

second
(00..59)

<option1> optionally provides an eventual precision up to 1/1000 of a

second in the format .sss (0..999)

<option2> optionaly provides a time differential in the format

+HHMM or –HHMM The time differential applies to the UTC time.

Examples: 199906292254, 199906292254.3-0200, 199906292254+0100

