

[bookmark: _Toc325615828]JWG RMA Virtual Meeting	S5vTMFa308

[bookmark: _Toc325615830]Source:	Ericsson
[bookmark: _Toc325615831]Title:	Handling of naming stereotype for Phase 1
[bookmark: _Toc325615832]Document for:	Approval
Agenda Item:	
[bookmark: _Toc325615833]1	Decision/action requested
Seek agreement.
References:
[1] FMC UIM v2.1
[2] FMC Model Repertoire v2.0
[3] S5vTMFa306 Discussion on ME_TPE relation

2	Scope
In [1], the relation between ManagementElement_ (ME_) and Function_ (F_) is via <<names>>. JWG is considering replacing that relation with a <<namedBy>> (see Appendix A for the description of <<names>> and <<namedBy>>).

Figure 1: Extract from [1]
This paper presents the supporting reasons (section 2) for the statements a) and b) below.
a) Replacement of ME_<<names>>F_ with ME_<<namedBy>>F_ in the above figure is premature and is not necessary for RMA (Resource Model Alignment) Phase 1 and
b) Addition of <<namedBy>> in Model Repertoire [2] is premature for RMA Phase 1.
This paper presents a proposal of “going forward” (section 3).
2	Reasons
The replacement of ME_<<names>>F_ with ME_<<namedBy>>F_ is premature because JWG has just begun to look at the behaviour of zombie and its impact to existing standard implementations. See zombie definition and issues in Appendix B.
There is no use case as yet identified to support the need for ME_<<namedBy>>F_.
· There is a use case considered (see Appendix C) where a function, subclass of F_ should not be named by subclass of ME_. However, analysis of this use case indicates the use of <<namedBy>> is not between ME_ and F_ nor necessary (see Appendix C).
The addition of <<namedBy>> in Model Repertoire [2] is premature because the zombie issue (see Appendix B) and lack of use case for its requirement.
3	Proposal
This paper proposes this way-forward:
1. In RMA Phase 1, proceed to change figure 1 to one below (see [3]). This is to satisfy the requirement to connect the two fragments seen in figure 1.

Figure 2: Revised UIM class diagram of Figure 1
With this ‘picture’ in view, one can see the need for caution, when considering replacement of ME_<<names>>F_ with ME_<<namedBy>>F_. The handling of zombie (and can be a large tree branch involving many instances) issue (Appendix B) must be addressed first.
2. In RMA phase 1, leave the current draft [1] description of <<names>> alone (except changes based on SDOs review and independent of the issue at hand in this paper). Add an Information Annex (see Appendix D) to highlight the Phase 1 agreement and identified issues on the usage of various forms of naming stereotype.
3. In Phase 2, identify use cases where the use of <<names>>, described in current draft [1], is not adequate, appropriate, efficient, etc. If a valid use case is found, design new naming stereotype(s).

Appendix A: Semantics of <<names>> and <<namedBy>>
The <<names>> with solid-diamond (see 5.3.3 of [2]) identifies:
· The naming class (close to the solid diamond) and a named class;
· The naming scheme is DN;
· The container (close to the solid diamond) and the content.

The <<namedBy>> with dependency (dotted arrowed line) identifies:
· The naming class (target with regard to arrow direction) and a named class (the source);
· The naming scheme is DN.

Appendix B: Zombie definition and issue
B1:	Zombie definition
When using naming stereotypes for a relation between two classes, the class representing the naming entity and the class representing the named instance(s) are identified. (See Appendix C for the identification of naming and named class for the various forms of naming stereotypes.)
A zombie instance is an instance of a named class whose related naming class instance does not exist (e.g. created before but destroyed now).
The following figure summaries naming stereotypes under consideration at present. Use of any form, except the Class7<<names>>Class8 form, can create zombie in the agent (server) management information base. The following sequence creates a zombie.
· Create a naming instance of Class5 called A.
· Create a named instance of Class6 called B.
· Destroy A. (B is now a zombie.)

Figure 3: Various forms of naming stereotypes
B1:	Zombie issues
This section lists issues of supporting zombie
a) Standard operations (at least from 3GPP side) exist allowing a Manager to discover the instances that Agent has. These standard operations assume all instances are connected by a naming relation. A Manager cannot discover zombie instances using these standard operations. In other words, zombie instances cannot be discovered by current existing standard operations.
· Should standard considered zombie instances as non-functional, e.g. no further notification can carry zombie DN; attempt to read a zombie attribute value would fail with failure code : instance does not exist.
· If answer to above is negative, should standard provide a revised discovery protocol allowing Manager to discover zombies or should discovery of zombies be left as a vendor-specific non-standard protocol?
b) Suppose we have a naming instance of Class1 of DN=X and a named instance of DN=Y. Suppose now the naming instance is destroyed. Instance of DN=Y becomes a zombie.
· Can Class1 instance with DN=X be created again? If yes, does the standard require this newly created instance to ‘reconnect’ with related zombie(s), i.e. so related zombie(s) is no longer zombie(s)? If no (zombie remains zombie), does the standard require this newly created instance can never have a named instance with DN=Y (same as that of the zombie)?

Appendix C: A use case
Multiple ME_ subclass instances exist.
Operators had licensed a software function that is allowed to run in at most one ME instance at any time.
Operator prefers that the software function not to be named by any ME_ subclass instances in existence or in the future (e.g. it is not meaningful to have a function named by a ME_ subclass instance ME-1 while the function is running in ME-6).
The following class diagram illustrates a draft proposal.
The Class2 represents the software function in question. It is named by Class1 representing a naming entity. The bi-direction association between ManagedElement_ and Class2 is dynamic in that their role-attributes contain valid values only when Class2 instance is running in a ManagedElement_ subclass instance. Class2 inherits from Function_.
The Class1 represents a naming authority. It names Class2 instances. The Class1 itself is recursively related via <<names>>. This represents a set of name registration capabilities arranged in hierarchical structure. Naming schemes, such as the DN scheme, uses such structure.
This draft proposal should also take care of the case when the software function in question is licensed to run, at any one time, in multiple ManagedElement_ subclass instances but no more than a specific number, say 10.
Note that the use of <<namedBy>> is not necessary (since use of <<names>> can work as well) and use of <<namedBy>> required resolution of zombie issues.

Figure 4: Naming capability for Use Case

Appendix D: An Informative Annex for Model Repertoire [2]
The quoted material below is the proposal for a new Annex C for Model Repertoire [2]. It highlights various forms of naming stereotype that in our Phase 1 work conclusion, considered “not-allowed”, ‘allowed’ or “under investigation in Phase 2”.
“
[bookmark: _Ref305669500][bookmark: _Toc311121739][bookmark: _Toc314595349]Annex C (informative): Stereotypes for naming purposes
The following diagram illustrates the various stereotypes for naming purposes.
The <<names>> with solid-diamond (see 5.3.3) identifies:
· The naming class (close to the solid diamond) and a named class;
· The naming scheme is DN;
· The container (close to the solid diamond) and the content.

The <<names>> with other types of associations (and excluding those labelled “Not Allowed”) identifies:
· The naming class (close to the hollow diamond or the source with regard to arrow direction) and a named class (the target);
· The naming scheme is DN.

The <<namedBy>> with dependency (dotted arrowed line) identifies:
· The naming class (target with regard to arrow direction) and a named class (the source);
· The naming scheme is DN.

Referring to the figure, RMA Phase 1 allows the form Class7<<names>>Class8.
The forms “in red” are not allowed.
The rest of the forms are “under investigation in Phase 2” since they all require an agreed standard mechanism on handling (named) instances whose related naming instance have been destroyed. They also lack use case support, thus far.

Figure X: Various forms of naming stereotypes
“
1 of 6
image4.jpeg
,‘7 . @am!b

= t—of oo |- Gt [
, T—
:
+ manageds; «namedBys
e 4 weviagedmienenes [e ik
E T me 1
i f s |
[terninatianPointincapmuation_ et namess
E— | . i

T . 5
o mamean ~aass2

image1.emf

image2.jpeg
“mamass @ Eloomain |
:
:
e Mniauuid
— + managedzienanss | []ManagadEienent_ [repotogtontins_

e names

image3.jpeg
«namedy» [dlass2

anamess 1] Classd
+ g

!| coamen |*[Elgiasss

[Ee L s 2] Hcasss

“““““““ Clclassi4

“““““““ lclassis

+dassts -+ clas

named classes

naming classes 7

