
Due to the nature of the Joint Working Groups that developed this document no IPR call was made during the development of the document. TM Forum members are requested to declare any IPR in accordance with the TM Forum By-laws. http://www.tmforum.org/Bylaws/1094/home.html by March 30, 2012
	[image: image1.png]1

((«

A GLOBAL INITIATIVE

	[image: image2.png]tmforum

Fixed Mobile Convergence (FMC)

Model Repertoire

Version 2.0 – REV-1
Source: Joint 3GPP/TM Forum Model Alignment project

Editor: Edwin Tse (Ericsson)
Disclaimer: Final agreement on this document cannot occur until “Governance / Terms of Reference / Working Procedures” agreements between the involved organizations (including 3GPP & TMF) have been established.
Table of Contents

51
Scope

52
References

63
Definitions and abbreviations

63.1
Definitions

63.2
Abbreviations

64
Requirements

75
Model Elements and Notations

75.1
General

75.2
Basic model elements

75.2.1
Attribute

95.2.2
Association relationship

105.2.3
Aggregation association relationship

105.2.4
Composite aggregation association relationship

115.2.5
Generalization relationship

115.2.6
Dependency relationship

115.2.7
Comment

125.2.8
Multiplicity, a.k.a. cardinality in relationships

135.2.9
Role

135.2.10
Xor constraint

145.3
Stereotype

145.3.1
<<ProxyClass>>

155.3.2
<<InformationObjectClass>>

165.3.3
<<names>>

165.3.4
<<dataType>>

175.3.5
<<enumeration>>

185.4
Others

185.4.1
Association class

195.4.2
Abstract class

205.4.3
Predefined data types

206
Qualifier

217
UML Diagram Requirements

218
Design patterns

218.1
Intervening Class pattern and Association Class pattern

218.1.1
Concept and Definition

258.1.2
Usage in the non-transport domain

258.1.3
Usage in the transport domain

268.2
Use of “ExternalXyz class”

27Annex A (informative): Examples of using <<ProxyClass>> to model Link related IOCs

27A.1
First Example

28A.2
Second Example

29Annex B (normative): Attribute properties

Figures

8Figure 1: Attribute notation

9Figure 2: Bidirectional association relationship notation

9Figure 3: Unidirectional association relationship notation

9Figure 4: Non-navigable association relationship notation

10Figure 5: Aggregation association relationship notation

10Figure 6: Composite aggregation association relationship notation

11Figure 7: Generalization relationship notation

11Figure 8: Dependency relationship notation

12Figure 9: Comment notation

12Figure 10: Cardinality notation

13Figure 11: Role notation

14Figure 12: {xor} notation

15Figure 13: <<ProxyClass>> notation

15Figure 14: <<InformationObjectClass>> notation

16Figure 15: <<names>> notation

17Figure 16: <<dataType>> notations

17Figure 17: Usage example of <<dataType>>

18Figure 18: <<enumeration>> notation

19Figure 19: Association class notation

19Figure 20: Abstract class notation

22Figure 21: Various association forms

23Figure 22: Instance view of "intervening class"

24Figure 23: SNC intervening in TP-TP relationship

24Figure 24: Complex relationship interrelationships

25Figure 25: Highlighting the boundary between transport and non-transport domains

27Figure 26: <<ProxyClass>> Notation Example A.1

28Figure 27: <<ProxyClass>> Notation Example A.2

Tables

8Table 1: Attribute properties

12Table 2: Multiplicity-string examples

15Table 3: <<InformationObjectClass>> properties

20Table 4: UML defined data types

20Table 5: Non-UML defined data types

1 Scope
The JWG on Model Alignment work has chosen UML to capture behaviour of systems/entities under management.

UML provides a rich set of concepts, notations and model elements to model distributive systems. Usage of all UML notations and model elements is not necessary for the purpose of JWG Model Alignment work. This paper documents the necessary and sufficient set of UML notations and model elements, including the ones built by the UML extension mechanism <<stereotype>>, for use by JWG Model Alignment work. Collectively, this set of notations and model elements is called the FNM (developed by the Converged Management of Fixed/Mobile Networks project) modelling repertoire.

JWG Model Alignment specifications shall employ the UML notation and model elements of this repertoire. In the course of the JWG Model Alignment work, JWG Model Alignment group may modify (add, delete, modify) UML notation and model elements of this repertoire when necessary.
2 References

[1] OMG Unified Modelling Language (OMG UML), Infrastructure, Version 2.3.
[2] OMG Unified Modelling Language (OMG UML), Superstructure, Version 2.3.
[3] 3GPP TS 32.300: 3rd Generation Partnership Projects; Technical Specification Group Services and System Aspects; Telecommunication management; Configuration Management (CM); Name convention for Managed Objects.
[4] 3GPP TS 23.002: 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Network architecture.

[5] Fixed Mobile Convergence (FMC) Federated Network Information Model (FNIM)
[6] Fixed Mobile Convergence (FMC) Federated Network Information Model (FNIM) Umbrella Information Model (UIM)
[7] ITU-T X.680, OSI networking and system aspects – Abstract Syntax Notation One (ASN.1)
[8] ITU-T X.501, Information technology – Open Systems Interconnection – The Directory: Models
3 Definitions and abbreviations
For the purposes of this document, the following definitions and abbreviations apply. For definitions and abbreviations not found here, see also Fixed Mobile Convergence (FMC) Federated Network Information Model (FNIM) [5], Fixed Mobile Convergence (FMC) Federated Network Information Model (FNIM) Umbrella Information Model [6].
3.1 Definitions

Distinguished Name: See 3GPP TS 32.300 [3].

Naming attribute: See 3GPP TS 32.300 [3].

Lower Camel Case: It is the practice of writing compound words in which the words are joined without spaces. Initial letter of all except the first word shall be capitalized. Examples: ‘mNIdentity’ and ‘minorDetails’ are the LCC for “managed node identity” and “minor details” respectively.

Upper Camel Case: It is the Lower Camel Case except that the first letter is capitalised. Examples: ‘MNI
dentity’ and ‘MinorDetails’ are the UCC for “managed node identity” and “minor details” respectively.

Well Known Abbreviation: An abbreviation can be used as the modelled element name or as a component of a modelled element name. The abbreviation, when used in such manner, must be documented in the same document where the modelled element is defined.

3.2 Abbreviations

CM

Conditional Mandatory

CO

Conditional Optional

DN

Distinguished Name

FNIM

Federated Network Information Model

IOC

Information Object Class

IRP

Integration Reference Point
JWG

(3GPP/TM Forum) Joint Working Group

LCC

Lower Camel Case

M

Mandatory

NA

Not Applicable

NRM

Network Resource Model
O

Optional

OMG

Object Management Group
UCC

Upper Camel Case

UIM

Umbrella Information Model

UML

Unified Modelling Language (OMG)
WKA

Well Known Abbreviation

4 Requirements

The UML notations and model elements captured in this repertoire shall be used to model behaviours of the systems/entities specified by the JWG Resource Model Alignment work such as the Umbrella Information Model (UIM) [6] of the FNIM discussed in Converged Management of Fixed/Mobile Network project.

5 Model Elements and Notations

5.1 General
Note that the graphical notation in this document is only used to represent particular model elements. Although the graphical notation is a correct representation of the model element, it may not be a valid representation of a UML class diagram.

The examples used in this document are for illustration purposes only and may or may not exist in specifications.

UML properties not described in this document shall not be used in specifications based on this repertoire.

5.2 Basic model elements

UML has defined a number of basic model elements. This sub-clause lists the subset selected for use in specifications based on this repertoire. The semantics of these selected basic model elements are defined in [1].
For each basic model element listed, there are three parts. The first part contains its description. The second part contains its graphical notation examples and the third part contains the rule, if any, recommended for labelling or naming it.

The graphical notation has the following characteristics:
1. Section 7.2.7 of [2] specifies "A class is often shown with three compartments. The middle compartment holds a list of attributes while the bottom compartment holds a list of operations" and "Additional compartments may be supplied to show other details…" This repertoire only allows the use of the name (top) and attribute (middle) compartments. The operation (bottom) compartment may be present but is always empty, as shown in figure below.

[image: image3.emf]
2. Classes may or may not have attributes. The graphical notation of a class may show an empty attribute (middle) compartment even if the class has attributes, as shown in figure below.
[image: image4.emf]
3. The
 visibility symbol shall not appear along with the class attribute, as shown below.
[image: image5.emf]
5.2.1 Attribute
5.2.1.1 Description

It is a typed element representing a property of a class. See 10.2.5 Property of [1].
An element that is typed implies that the element can only refer to a constrained set of values.

See 10.1.4 Type of [1] for more information on type.
See 5.3.4 and 5.4.3 for predefined data types and user-defined data types that can apply type information to an element.

The following table captures the properties of this modelled element.

Table 1: Attribute properties
	Property name
	Description
	Legal values

	documentation
	Contains a textual description of the attribute.
Should refer (to enable traceability) to the specific requirement.
	Any

	ordered

	For a multi-valued multiplicity; this specifies whether the values of this attribute instance are sequentially ordered. See section 7.3.44 and its Table 7.1 of [2].
	True, False (default)

	unique

	For a multi-valued multiplicity, this specifies whether the values of this attribute instance are unique (i.e., no duplicate attribute values). See section 7.3.44 and its Table 7.1 of [2].
	True (default), False

	read
	Specifies that this attribute can be read by the manager.

	True (default), False

	write
	Specifies that this attribute can be written by the manager under the conditions specified in Annex B.
	True, False (default)

	type
	Refers to a predefined (see section 5.4.3) or user defined data type (see section 5.3.4. See also section 7.3.44 of [2], inherited from StructuralFeature.
	NA

	isInvariant

	Attribute value is set at object creation time and cannot be changed under the conditions specified in Annex B.
	True, False (default)

	allowedValues

	Identifies the values the attribute can have.
	Dependent on type

	notification

	Identifies whether a notification has to be sent in case of a value change.
	True (default), False

	defaultValue
	Identifies a value at specification time that is used at object creation time under conditions defined in Annex B.
	Dependent on type

	multiplicity
	Defines the number of values the attribute can simultaneously have. See section 7.3.44 of [2]; inherited from StructuralFeature.
	See 5.2.8 Default is 1

	supportQualifier

	Identifies the required support of the attribute. See also section 6.
	M, O (default), CM, CO, C

5.2.1.2 Example

This example shows three attributes, i.e., a, b and c, listed in the attribute (the second) compartment of the class Xyz.

[image: image6.emf]
Figure 1: Attribute notation

5.2.1.3 Name style
An attribute name shall use the LCC style.

Well Known Abbreviation (WKA) is treated as a word if used in a name
. However, WKA shall be used as is (its letter case cannot be changed) except when it is the first word of a name; and if so, its first letter must be in lower case.

5.2.2 Association relationship

5.2.2.1 Description

It shows a relationship between two classes and describes the reasons for the relationship and the rules that might govern that relationship.

It has ends. Its end, the association end(s), specifies the role that the object at one end of a relationship performs. Each end of a relationship has properties that specify the role (see 5.2.9), multiplicity (see 5.2.8), visibility and navigability (see the arrow symbol used in Figure 3: Unidirectional association relationship notation) and may have constraints. Note that visibility would not be used (see bullet 3 of 5.1).

See 7.3.3 Association of [2].
Three examples below show a binary association between two model elements
. The association can include the possibility of relating a model element to itself.
The first example (Figure 2) shows a bi-directional navigable association in that each model element has a pointer to the other.
The second example (Figure 3) shows a unidirectional association (shown with an open arrow at the target model element end) in that only the source model element has a pointer to the target model element and not vice-versa. The third example (Figure 4) shows a bi-directional non-navigable association in that each model element does not have a pointer to the other;
 i.e., such associations are just for illustration purposes.

5.2.2.2 Example

An association shall have an indication of cardinality
 (not shown in the examples below; see 5.2.8) and shall, except the case of non-navigable association, have an indication of the role name (see 5.2.9).

The model element involved in an association is said to be “playing a role” in that association. The role has a name such as +theAClass in the examples below. Note that the "+" character in front of the role name, indicating the visibility, is ignored.

[image: image7.emf]
Figure 2: Bidirectional association relationship notation
[image: image8.emf]
Figure 3: Unidirectional association relationship notation
[image: image9.emf]
Figure 4: Non-navigable association relationship notation
Note that some tools do not use arrows in the UML graphical representation for bidirectional
associations. Therefore, absence of arrows is not, but absence of role names is, an indication of a non-navigable association.

5.2.2.3 Name style
A role name shall use the LCC style.

5.2.3 Aggregation association relationship
5.2.3.1 Description

It shows a class as a part of or subordinate to another class.

An aggregation is a special type of association in which objects are assembled or configured together to create a more complex object. Aggregation protects the integrity of an assembly of objects by defining a single point of control called aggregate, in the object that represents the assembly.

See 7.3.2 AggregationKind (from Kernel) of [2].
5.2.3.2 Example

A hollow diamond attached to the end of a relationship is used to indicate an aggregation. The diamond is attached to the class that is the aggregate. The aggregation association shall have an indication of cardinality at each end of the relationship (see 5.2.8).
[image: image10.emf]
Figure 5: Aggregation association relationship notation

5.2.3.3 Name style
It has no name so there is no name style
.
5.2.4
Composite aggregation association relationship

5.2.4.1 Description

A composite aggregation association is a strong form of aggregation that requires a part instance be included in at most one composite at a time. If a composite is deleted, all of its parts are deleted as well.

A composite aggregation shall contain a description of its use.

See 7.3.3 Association (from Kernel) of [2].
5.2.4.2 Example

A filled diamond attached to the end of a relationship is used to indicate a composite aggregation. The diamond is attached to the class that is the composite. The composition association shall have an indication of cardinality at each end of the relationship (see 5.2.8).
[image: image11.emf]
Figure 6: Composite aggregation association relationship notation

5.2.4.3 Name style
It has no name so there is no name style.
5.2.5 Generalization relationship
5.2.5.1 Description

It indicates a relationship in which one class (the child) inherits from another class (the parent).
See 7.3.20 Generalization of [2].
5.2.5.2 Example

This example shows a generalization relationship between a more general model element (the IRPAgent) and a more specific model element (the IRPAgentVendorA) that is fully consistent with the first element and that adds additional information.

[image: image12.emf]
Figure 7: Generalization relationship notation
5.2.5.3 Name style
It has no name so there is no name style.

5.2.6 Dependency relationship

5.2.6.1 Description

 “A dependency is a relationship that signifies that a single or a set of model elements requires other model elements for their specification or implementation. This means that the complete semantics of the depending elements is either semantically or structurally dependent on the definition of the supplier element(s)...“, an extract from 7.3.12 Dependency of [2].
5.2.6.2 Example

This example shows that the BClass instances have a semantic relationship with the AClass instances. It indicates a situation in which a change to the target element (the AClass in the example) will require a change to the source element (the BClass in the example) in the dependency.

[image: image13.emf]AClass

<<InformationObjectClass>>

BClass

<<InformationObjectClass>>

Figure 8: Dependency relationship notation
5.2.6.3 Name style
It has no name so there is no name style.

5.2.7 Comment
5.2.7.1 Description

A comment is a textual annotation that can be attached to a set of elements.

See 7.3.9 Comment (from Kernel) from [2].
5.2.7.2 Example

This example shows a comment, as a rectangle with a "bent corner" in the upper right corner. It contains text. It appears on a particular diagram and may be attached to zero or more modelling elements by dashed lines.

[image: image14.emf]Function

<<InformationObjectClass>>

This Function class is conceptually

the same as ManagedFunction class

(in the context of 3GPP NRM IRP).

Figure 9: Comment notation
5.2.7.3 Name style
It has no name so there is no name style.

5.2.8 Multiplicity, a.k.a. cardinality in relationships

5.2.8.1 Description

 “A multiplicity is a definition of an inclusive interval of non-negative integers beginning with a lower bound and ending with a (possibly infinite) upper bound. A multiplicity element embeds this information to specify the allowable cardinalities for an instantiation of this element…“, an extract from 7.3.32 MultiplicityElement of [2].
The symbol star (*) indicates infinite. The use of a standalone symbol zero (0) or star (*) is not allowed

.

5.2.8.2 Example

This example shows a multiplicity attached to the end of an association path. The meaning of this multiplicity is one to many. One Network instance is associated with zero, one or more SubNetwork instances. Other valid examples can show the “many to many” relationship.

[image: image15.emf]Network

<<InformationObjectClass>>

SubNetwork

<<InformationObjectClass>>

*

1

*

1

Figure 10: Cardinality notation
The cardinality zero is not used to indicate the IOC’s so-called “transient state” characteristic. For example, it is not used to indicate that the instance is not yet created but it is in the process of being created. The cardinality zero will not be used to indicate this characteristic since such characteristic is considered inherent in all IOCs. All IOCs defined are considered to have such inherent “transient state” characteristics.
Note that the use of “0..*”, "0..n" or ‘*’ means “zero to many”. The use of “0..*” is recommended.
The
 following table shows some valid examples of multiplicity.

Table 2: Multiplicity-string examples

	Multiplicity
	Explanation

	1
	Attribute has exactly one attribute value.

	5
	Attribute has exactly 5 attribute values.

	0..1
	Attribute has zero or one attribute value.

	0..*
	Attribute has zero or more attribute values.

	1..*
	Attribute has at least one attribute value.

	4..12
	Attribute has at least 4 but no more than 12 attribute values.

5.2.8.3 Name style
It has no name so there is no name style.

5.2.9 Role

5.2.9.1 Description

It indicates a navigation capability between two classes involved in an association relationship. A role is named. The direction of navigation is to the class attached to the end of the association relationship with (or near) the role name.

The use of role name in the graphical representation is mandatory for bidirectional and unidirectional association relationship notations (see Figure 2: Bidirectional association relationship notation and Figure 3: Unidirectional association relationship notation). Role name shall not be used in non-navigable association relationship notation (see Figure 4: Non-navigable association relationship notation).
A role at the navigable end of a relationship becomes (or is mapped into) an attribute in the source class of the relationship. Therefore roles have the same behaviour (or properties) as attributes. See Table 1: Attribute properties

Roles shall have all properties defined for attributes in section 5.2.1 Attribute and in addition the following properties:

· Passed by id;

Identifies if the role (navigable association end that points to an object) contains just a pointer to the object (passed by id = true) or contains the whole object instance itself (passed by id = false).
Legal values: true, false; default value = "false".

5.2.9.2 Example

This example shows that a Person (say instance John) is associated with a Company (say whose DN is “Company=XYZ”). We navigate the association by using the opposite association-end such that John’s Person.theCompany would hold the DN, i.e. "Company=XYZ".
[image: image16.emf]
Figure 11: Role notation
5.2.9.3 Name style
A role has a name. Use noun for the name.
The name style follows the attribute name style; see section 5.2.1.3

.

5.2.10 Xor constraint
5.2.10.1 Description

 “A Constraint represents additional semantic information attached to the constrained elements. A constraint is an assertion that indicates a restriction that must be satisfied by a correct design of the system. The constrained elements are those elements required to evaluate the constraint specification…“, an extract from 7.3.10 Constraint (from Kernel) of [2].
For a constraint that applies to two elements such as two associations, the constraint shall be shown as a dashed line between the elements labeled by the constraint string (in braces). The constraint string, in this case, is xor.

5.2.10.2
Example

This example shows an Account (e.g. account 0960) that is associated with a Person (e.g. John Smith) or a Corporation (e.g. ABC Inc
).
[image: image17.emf]Person

<<InformationObjectClass>>

Corporation

<<InformationObjectClass>>

Account

<<InformationObjectClass>>

{xor}

Figure 12: {xor} notation
5.2.10.3 Name style
It has no name so there is no name style.
5.3 Stereotype

Sub-clause 5.1 listed the UML defined basic model elements. UML defined a stereotype concept allowing the specification of user-defined model elements.

This sub-clause lists all allowable stereotypes for this repertoire
.

For each stereotype model element listed, there are three parts. The first part contains its description. The second part contains its graphical notation examples and the third part contains the rule, if any, recommended for labelling or naming it.

5.3.1 <<ProxyClass>>

5.3.1.1 Description

It is a form or template representing a number of <<InformationObjectClass>>. It encapsulates attributes, links, methods (or operations), and interactions that are present in the represented <<InformationObjectClass>>.

The semantics of a <<ProxyClass>> is that all behaviour of the <<ProxyClass>> is present in the represented <<InformationObjectClass>>. Since this class is simply a representation of other classes, this class cannot define its own behaviour other than those already defined by the represented <<InformationObjectClass>>.

A particular <<InformationObjectClass>> can be represented by zero, one or more <<ProxyClass>>. For example, the ManagedElement <<InformationObjectClass>> can have MonitoredEntity <<ProxyClass>> and ManagedEntity <<ProxyClass>>.

The attributes of the <<ProxyClass>> are accessible by the source entity that has an association with the <<ProxyClass>>.
5.3.1.2 Example
This shows a <<ProxyClass>> named MonitoredEntity. It represents all NRM <<InformationObjectClass>> (e.g. GgsnFunction <<InformationObjectClass>>) whose instances are being monitored for alarm conditions.

[image: image18.emf]MonitoredEntity

<<ProxyClass>>

It represents all

NRM IOCs that

can have alarms.

Figure 13: <<ProxyClass>> notation
See Annex A for more examples that use <<ProxyClass>>.

5.3.1.3 Name style
For <<ProxyClass>> name, use the same style as <<InformationObjectClass>> (see 5.3.2).
5.3.2 <<InformationObjectClass>>
5.3.2.1 Description

The <<InformationObjectClass>> is identical to UML class except that it does not include/define methods or operations
.
A UML class represents a capability or concept within the system being modelled. Classes have data structure and behaviour and relationships to other elements.

This class can inherit from zero, one or multiple classes (multiple inheritances).

See more on UML class in 10.2.1 of [1].
5.3.2.2 Example
This example shows an RncFunction <<InformationObjectClass>>.

[image: image19.emf]RncFunction

<<InformationObjectClass>>

Figure 14: <<InformationObjectClass>> notation
The following table captures the properties of this modelled element.

Table 3: <<InformationObjectClass>> properties
	Property name
	Description
	Legal values

	documentation
	Contains a textual description of this modelled element.
Should refer (to enable traceability) to a specific requirement.
	Any

	abstract
	Indicates if the class can be instantiated or is just used for inheritance.
	True, False (default)

	notifications

	Identifies the list of the supported notifications.
	List of names of notification

	supportQualifier

	Identifies the required support of the object class. See also section 6.
	M, O (default), CM, CO, C

5.3.2.3 Name style
The name shall use UCC style. The name cannot end with an underscore if it is not an abstract class. The name must end with an underscore if it is an abstract class.

WKA is treated as a word if used in a name. However, WKA shall be used as is (its letter case cannot be changed) except when it is the first word of the name; and if so, its first letter must be in upper case.

Embedded underscore is not allowed except the name is for an Association class (see 5.4.1.)
5.3.3 <<names>>
5.3.3.1 Description

It specifies a unidirectional composition.
 The target instance is uniquely identifiable, within the namespace of the source entity, among all other targeted instances of the same target class and among other targeted instances of other classes that have the same <<names>> composition with the source.
The source class and target class shall each has its own naming attribute.

The composition aggregation association relationship is used as the act of name containment providing a semantic of a whole-part relationship between the domain and the named elements that are contained, even if only by name. From the management perspective access to the part is through the whole. Multiplicity shall be indicated at both ends of the relationship.

A target instance can not have multiple <<names>> with multiple sources, i.e. a target instance can not participate in or belong to multiple namespaces.
5.3.3.2 Example
This shows that all instances of MscFunction are uniquely identifiable within a ManagedElement instance's namespace.
[image: image20.emf]MscFunction

<<InformationObjectClass>>

ManagedElement

<<InformationObjectClass>>

0..*

1

0..*

1

<<names>>

Figure 15: <<names>> notation
5.3.3.3 Name style
It has no name so there is no name style.

5.3.4 <<dataType>>

5.3.4.1 Description

It represents the general notion of being a data type (i.e. a type whose instances are identified only by their values) whose definition is defined by user (e.g. specification authors).

This repertoire uses two kinds of data types: predefined data types and user-defined data types. The former is defined in sub‑clause 5.4.3. The latter is defined by the specifications authors using this <<dataType>> model element.

The user-defined data types supports the modelling of structured data types (see <<dataType>> notations in 5.3.4.2). When user-defined or predefined data type is used to apply type information to a class attribute (see 5.2.1), the data type name is shown along with the class attribute. See user example of <<dataType>> in 5.3.4.2.

5.3.4.2 Example

The following examples are two user-defined data types. The left-most is named PlmnId that consists of Mobile Country Code (MCC) and Mobile Network Code (MNC), whose types are the predefined data types in 5.4.3. The right-most is named Xyz that consists of two predefined data types (i.e., String, Integer and one user-defined data type PlmnId.
[image: image21.emf]
Figure 16: <<dataType>> notations
The following example shows a ZClass using two user-defined data types and two predefined data types.

[image: image22.emf]
Figure 17: Usage example of <<dataType>>
5.3.4.3 Name style
For <<dataType>> name, use the same style as <<InformationObjectClass>> (see 5.3.2).

For <<dataType>> attribute, use the same style as Attribute (see 5.2.1).

5.3.5 <<enumeration>>

5.3.5.1 Description

An enumeration is a data type. It contains sets of named literals that represent the values of the enumeration. An enumeration has a name.

See 10.3.2 Enumeration of [1].

5.3.5.2 Example

This example shows an enumeration model element whose name is Account and it has four enumeration literals. The upper compartment contains the keyword <<enumeration>> and the name of the enumeration. The lower compartment contains a list of enumeration literals.

[image: image23.emf]
Figure 18: <<enumeration>> notation
5.3.5.3 Name style

For <<enumeration>> name, use the same style as <<InformationObjectClass>> (see 5.3.2).

For <<enumeration>> attribute (the enumeration literal), use the following rules:

Enumeration literal is composed of one or more words of upper case characters. Words are separated by the underscore character.

5.4 Others

5.4.1 Association class

5.4.1.1 Description

An association class is an association that also has class properties (or a class that has association properties).
Even though it is drawn as an association and a class, it is really just a single model element
.
See 7.3.4 AssociationClass of [2].
Association classes are appropriate for use when an «InformationObjectClass» needs to maintain associations to several other instances of «InformationObjectClass» and there are relationships between the members of the associations within the scope of the "containing" «InformationObjectClass». For example, a namespace maintains a set of bindings, a binding ties a name to an object. A Binding «IOC» can be modelled as an Association Class that provides the binding semantics to the relationship between a name and some other «InformationObjectClass». This is depicted in the following figure.

5.4.1.2 Example
[image: image24.wmf]Namespace

<<InformationObjectClass>>

Binding

<<InformationObjectClass>>

0..*

0..*

Name

Object

<<InformationObjectClass>>

1

1

1

1

Figure 19: Association class notation
5.4.1.3 Name style
TBD
5.4.2 Abstract class
5.4.2.1 Description

It specifies a special kind of <<InformationObjectClass>> as the general model element involved in a generalization relationship (see 5.2.5). An abstract class cannot be instantiated.

This modelled element has the same properties as class. See 5.3.2.
5.4.2.2 Example

This shows that TP_ is an abstract class. It is the base class for SpecializedTP.
[image: image25.emf]TP_

<<InformationObjectClass>>

SpecialisedTP

<<InformationObjectClass>>

Figure 20: Abstract class notation
5.4.2.3 Name style

For abstract class name, use the same style as <<InformationObjectClass>> (see 5.3.2) and its last character shall be an underscore. Furthermore, the name shall be in italics.
5.4.3 Predefined data types

5.4.3.1 Description
It represents the general notion of being a data type (i.e. a type whose instances are identified only by their values) whose definition is defined by this specification and not by the user (e.g. specification authors).

This repertoire uses two kinds of data types: predefined data types and user-defined data types. The latter are defined in 5.3.4 <<dataType>>and 5.3.5 <<enumeration>>.

The following table lists the UML data types selected for use as predefined data type.

Table 4: UML defined data types
	Name
	Description and reference

	Boolean
	See Boolean type of [7].

	Integer
	See Integer type of [7].

	String
	See PrintableString type of [7].

The following table lists data types that are defined by this repertoire.

Table 5: Non-UML defined data types
	Name
	Description and reference

	DateTime
	See GeneralizedTime of [7]

	DN
	The DN (see Distinguished Name of [8]) of an object contains a sequence of one or more name components. Each initial sub-sequence (note 1) of the object name is also the name of an object. The sequence of objects so identified, starting with the one identified by only the first name component and ending with the object being named, is such that each is the immediate superior (note 2) of that which follows it in the sequence.
Note 1: Suppose an object’s DN is composed of a sequence of 4 name components, i.e., 1st, 2nd, 3rd and 4th components. The “initial sub-sequence” is composed of the 1st, 2nd and 3rd components.

Note 2: Suppose object A is name-contained (see 5.3.3) by object B, object B is said to be the immediate superior of object A.

	Real

	See Real type of [7]

5.4.3.2 Examples
TBD

5.4.3.3 Name style
It shall use the UCC style.

6 Qualifier

This sub-clause defines the qualifiers applicable for model elements specified in this document, e.g., the IOC (see 5.3.2), the Attribute (see 5.2.1
). The possible qualifications are M, O, CM, CO and C. Their meanings are specified in this section. This type of qualifier is called Support Qualifier
.

This sub-clause also defines the qualifiers applicable to individual property of a model element, e.g., see Attributes properties in 5.2.1. The possible qualifications are M, O, CM, CO and ‘-‘. Their meanings are specified in this section. This type of qualifier is simply called Qualifier.

Definition of qualifier M (Mandatory):

· The capability (e.g. the Attribute named abc of an IOC named Xyz; the write property of Attribute named abc of an IOC named Xyz; the IOC named Xyz) shall be supported.

Definition of qualifier O (Optional):

· The capability may or may not be supported.

Definition of qualifier CM (Conditional-Mandatory):

· The capability shall be supported under certain conditions, specifically:
· The class attribute qualified as CM shall have a corresponding constraint defined in the specification. If the specified constraint is met then the capability shall be supported.
Definition of qualifier CO (Conditional-Optional):

· The capability shall be may be
supported under certain conditions, specifically:
· The class attribute qualified as CO shall have a corresponding constraint defined in the specification. If the specified constraint is met then the capability may be supported.
Definition of qualifier C (Conditional):

· The capability shall be supported by at least one but not all solutions.

Definition of qualifier ‘-‘:

· The capability shall not be supported.
Editor’s note: It is clear that M and O are mutually exclusive. For example, an attribute can be qualified as M or O but not both. It is not clear if CM and CO are mutually exclusive. In other words, it is not clear if an attribute can have two qualifications CM and CO at the same time. 3GPP and TM Forum are requested to provide feedback.

7 UML Diagram Requirements
Object classes and their relationships shall be presented in class diagrams.

It is recommended to create:

· An overview class diagram containing all object classes related to a specific management area (Class Diagram).

· The class name compartment should contain the location of the class definition (e.g., "Qualified Name")

· The class attributes should show the "Signature". (see section 7.3.44 of [2] for the signature definition);

·
A separate inheritance class diagram in case the overview diagram would be overloaded when showing the inheritance structure (Inheritance Class Diagram);

· A class diagram containing the user defined data types (Type Definitions Diagram);

· Additional class diagrams to show specific parts of the specification in detail;

· State diagrams for complex state attributes.

8 Design patterns

8.1 Intervening Class pattern and Association Class pattern

8.1.1 Concept and Definition

Classes may be related via simple direct associations or via associations with related association classes.

However, in situations where the relationships between a number of classes is complex and especially where the relationships between instances of those classes are themselves interrelated there may be a need to encapsulate the complexity of the relationships within a class that sits between the classes that are to be related. The term “intervening class” is used here to name the pattern that describes this approach. The name “intervening class” is used as the additional class “intervenes” in the relationships between other classes.

The “intervening class” differs from the association class as the intervening class does break the association between the classes where as the association class does not but instead sits to one side. This can be seen in the following figure. A direct association between class A and C appears the same at A and C regardless of the presence or absence of an association class where as in the case of the “intervening class” there are associations between A and the “intervening class” B and C and the “intervening class” B.

[image: image26.emf]Basic association

Note class A points a C and C at A

Association Class

Association where there is a need to represent: the

associations own features (i.e. that do not belong to

any of the connected classes):

•

Some behavior and state

•

Some additional data related to the association

Note that class A points a C and C at A

“Intervening” class

Where there is a complex assembly of state/data bound

to a number of associations.

Note that Class A and C point to B and potentially B

points to C and A.

Figure 21: Various association forms
The “intervening class” is essentially no different to any other class in that it may encapsulate attributes, complex behaviour etc.
The following figure shows an instance view of both an association class form and an “intervening class” form for a complex interrelationship

[image: image27.emf]Association Class

Many instances of association class, one per

association instance.

“Intervening” class

One instance of intervening class that captures

complex association and intertwining between

Classes.

Also captures behaviour interaction such as

protection switching and state (e.gwhere class

A and C are TPs and class B is an SNC.

Figure 22: Instance view of "intervening class"
The case depicted above does not show interrelationships between the relationships. A practical case from modeling of the relationships between Termination Points in a fixed network does show this relationship interrelationship challenge. In this case the complexity of relationship is between instances of the same class, the Termination Point (TP). The complexity is encapsulated in a SubNetworkConnection (SNC) class.

[image: image28.emf]“Intervening class” instance view

One instance of intervening class that captures complex

association and intertwining between Classes.

Also captures behaviour interaction such as protection

switching and state.

Simplified SNC and TP case

An SNC can not exist without at least 2 TPs being

related.

Some simplifications: In this case the TP and SNC model

is assumed to be bidirectional only. The TPs have roles

with respect to the SNC but these are ignored here.

There are many other attributes and properties related

to protection that are ignored here.

Figure 23: SNC intervening in TP-TP relationship
The SNC also encapsulates the complex behaviour of switching and path selection as depicted below.

[image: image29.emf]Association Class

With protection switching rule

and state.

There is complex creation

transaction interrelationship

etc.

Figure 24: Complex relationship interrelationships
8.1.2 Usage in the non-transport domain

The choice of association class pattern or intervening class pattern is on a case-by-case basis.

The transport domain boundary is highlighted in the following figure.

[image: image30.emf]Function

e.g.

eNodeB

function

Network Element

Link entity (connectivity e.g. X2)

Topological Link

3GPP Managed Function

Association/relationship

Optical fiber

NE with wireless access Wire-line NE

NE with

wireless

access

Management

Environment

Based on Connection Termination Point concept

Based on Physical Termination Point concept

Connection Termination Point

Physical Termination Point

“transport domain”

“non-transport domain”

Boundary between transport

and non-transport domains

Figure 25: Highlighting the boundary between transport and non-transport domains
8.1.3 Usage in the transport domain

The following guidelines must be applied to the models of the “transport domain”.

When considering interrelationships between classes the following guidelines should be applied:

· If considering all current and recognised potential future cases it is expected that the relationship between two specific classes will be 0..1:0..1 then a simple association should be used
· This may benefit from an association class to convey rules and parameters about the association behaviour in complex cases.
· If there is recognised potential for cases currently or in future where there is a 0..*:0..* between two specific classes then intervening classes should be used to encapsulate the groupings etc. so as to convert it to 0..1:n..*.

· Note that the 0..1:n..* association may benefit from an association class to convey rules and parameters about the association behaviour in complex cases but in the instance form this can probably be ignored or folded into the intervening class

· In general it seems appropriate to use an association class when the properties on the relationship instance cannot be obviously or reasonably folded into one of the classes at either end of the association and when there is no interdependency between association instances between a set of instances of the classes.
An example of usage of intervening class is the case of the TP-TP (TerminationPoint) relationship (0..*:0..*) where the SNC (SubNetworkConnection) is added as the intervening class between multiple TPs, i.e. TP-SNC. Note that TP-SNC actually becomes 0..2:n..* due to directionality encapsulation.

Considering the case of the adjacency relationship between PTPs it is known that although the current common cases are 1:1 there are some current and many potential future case of 0..*:0..* and hence a model that has an intervening class, i.e. the TopologicalLink, should be used.

For a degenerate instance cases of 0..*:0..* that happens to be 0..1:0..1 the intervening class pattern should still be used:
· Using the 0..1:0..1 direct association in this degenerate case brings unnecessary variety to the model and hence to the behaviour of the application (the 0..1:n..* model covers the 0..1:0..1 case with one single code form clearly)
· An instance of the 0..1:0..1 model may need to be migrated to 0..1:n..* as a result of some change in the network forcing an unnecessary administrative action to transition the model form where as in the 0..1:n..* form requires no essential change.

8.2 Use of “ExternalXyz class”
This section will be completed for the next release.

Annex A (informative):
Examples of using <<ProxyClass>> to model Link related IOCs
A.1 First Example

This shows a <<ProxyClass>> named YyyFunction. It represents all IOCs listed in the Note under the UML diagram. All the listed IOCs, in the context of this example, inherit from ManagedFunction IOC.

The use of <<ProxyClass>> eliminates the need to draw multiple UML <<InformationObjectClass>> boxes, i.e. those whose names are listed in the Note, in the UML diagram.

[image: image31.emf]ManagedFunction

(from TS 32.622)

<<InformationObjectClass>>

YyyFunction

<<ProxyClass>>

Figure 26: <<ProxyClass>> Notation Example A.1
Note: The YyyFunction <<ProxyClass>> represents AsFunction, AucFunction, BgFunction etc.
A.2 Second Example

This shows a <<ProxyClass>> named YyyFunction. It represents all IOCs listed in the Note right under the UML diagram. All the listed IOCs, in the context of this example, have link (internal and external) relations.

The actual names of the IOC represented by InternalYyyFunction <<ProxyClass>> and by the ExternalYyyFunction <<ProxyClass>> are listed under the subsection of X.Y of the associated YyyFunction. For example, under X.Y.1 for AsFunction, two paragraphs are added to list all peer internal entities and external entities that are linked with AsFunction. See example in quotation below that is using AsFunction as an example for YyyFunction.

The actual names of the IOC represented by Link_a_z <<ProxyClass>> and by ExternalLink_a_z <<ProxyClass>> are listed under the subsection of X.Y of the associated YyyFunction. For example, under X.Y.1 for AsFunction, two paragraphs are added to list the names of the IOCs represented by Link_a_z and by ExternalLink_a_z. See the quoted text below that is using AsFunction as an example for YyyFunction.

“

X.Y.1
AsFunction
X.Y.1.1
Definition
This IOC represents an As functionality. For more information about the As, see 3GPP TS 23.002 [4].
The linked InternalYyyFunction <<ProxyClass>> represents SlsFunction, CscfFunction, HlrFunction ...

The linked ExternalYyyFunction <<ProxyClass>> represents …

The Link_a_z <<ProxyClass>> represents Link_As_Scscf, Link_Bgcf_Scscf …

The ExternalLink_a_z <<ProxyClass>> represents …

“

[image: image32.emf]ExternalYyyFuntion

<<ProxyClass>>

ExternalLink_a_z

<<ProxyClass>>

InternalYyyFunction

<<ProxyClass>>

YyyFunction

<<ProxyClass>>

Link_a_z

<<ProxyClass>>

Figure 27: <<ProxyClass>> Notation Example A.2
NOTE:
The ‘Yyy’ of YyyFunction <<ProxyClass>> represents AsFunction, AucFunction, etc.
Annex B (normative): Attribute properties

	isInvariant

	write
	defaultValue
	manager must provide a value when manager requests object creation
	Meaning

	(
	(
	(
	(
	Not valid.

	(
	(
	(
	
	May be set by the manager
only during object creation time
; if no value is provided by the manager, the default value is used.

	(
	(
	
	(
	Must be set by the manager during object creation time.

	(
	(
	
	
	May be set by the manager only during object creation time; if no value is provided by the manager, the agent must provide a value.

	(
	
	(
	(
	Not valid.

	(
	
	(
	
	Valid but not useful.

	(
	
	
	(
	Not valid.

	(
	
	
	
	Must be set by the agent during object creation time.

	
	(
	(
	(
	Not valid.

	
	(
	(
	
	May be set by the manager anytime; if no value is provided by the manager at object creation time, it is set to the default value.

	
	(
	
	(
	Must be set by the manager at object creation time and may be changed anytime.

	
	(
	
	
	May be set by the manager at object creation time and may be changed anytime.

	
	
	(
	(
	Not valid.

	
	
	(
	
	Must be set by the agent to the default value at object creation time;
may be changed by the agent anytime.

	
	
	
	(
	Not valid.

	
	
	
	
	May be set by the agent at object creation time and may be changed by the agent anytime.

END OF DOCUMENT
Comments on Naming
These comments resulted from discussion during and subsequent to one of the review meetings. The proposal provided here is essentially focussed on the separation of concerns of naming and composition.
MTOSI uses this representation (Composition association decorated with <<Names>>) and this Repertoire document propose a similar representation to show naming tree and hence the naming tree.

[image: image33.jpg]

It is proposed that instead of intertwining naming considerations with the composition consideration a separated association be used to provide naming rules and hence to convey the naming tree. The figure below shows a dependency association used to convey naming rules. The dependency association highlights the dependency direction. This proposed approach doesn’t overload the composition association.

[image: image34.png]«NamedRelativeTo»

[slot

If the naming dependency is required to be highlighted in a situation where there is also a composition association, then both associations (composition and dependency) are provided. The composition association is independent of dependency << NamedRelativeTo >>, as shown below.

The diagram below reads as “a Chassis contains Slots” and “a Slot is named relative to the Chassis name”.
[image: image35.png]«NamedRelativeTo»

ChassisContainsSlots

1 .

This separation of naming and composition will allow greater flexibility and enable support of cases where naming is not simply conveyed coincident with composition.

�Note that this document covers the usage of UML in the Umbrella model. The document considers the use of UML capabilities to represent models that are oriented towards the generation of implementation interfaces at the boundary between applications. We may be beneficial to add text like this.

It may be that the “repertoire” needs to be extended for other uses of UML. The repertoire is essentially a light weight and non-rigorous metamodel.

Profiles should extend the UML metamodel (you cannot turn things off). It is not clear whether this is what was done. Removing things is “impossible”. This is potentially NOT an extension UML metamodel. We need to ensure that the document and associated metamodel is appropriate extension.

This document is perhaps at this stage more like design guidelines....

Focus should be on taking the standard UML.

Properties defined in this document need to be converted into UML stereotypes so we can generate the appropriate UML profile.

05/14: Nigel to propose tmf reply – along the lines of that this repertoire applies to all participating organizations … the scope should be enhanced to address this as well

�Need to validate that these are OK for TM Forum to reference.

05/14: Nigel? Consider copying from 32.300 and include reference

�Should the N be capitalised?

05/14: use ManagedNodeIdentity … same change in LLC before

Note: �No operations as per SID.

05/14: noted/no change?

�All objects in SID are considered to be public. No private.

05/14: noted/no change?

�Ought to indicate whether any of these are NOT UML standard. Addition/extension v restriction issue.

05/14: Q: do we need to provide this info? Nigel: who requested this? … if yes: Bernd will provide the checking (needs a few weeks) – and we may consider documenting this findings

�isOrdered

05/14: to be discussed further – also check UML standard

�isUnique

05/14: to be discussed further – also check UML standard

�No private attribute. All attributes are readable in SID

05/14: noted/no change?

�ReadOnly in RSA. Need to assess whether this is UML compatible.

�Agreed. Only readonly. If false, then the attribute is writeable.

�Part of the tipAttribute stereotype

�Not defined today in SID

�Part of tipAttribute stereotype, notificationDefinition

�Part of tipAttribute stereotype, support attribute

�

�As per SID?

�SID is pushing to have all associations being bi-directional as it is an information model.

SID is also asking for all to have a name, like AClassRelatestoBClass with verb describing what the association is for.

�RSA does not use this representation. See note at end.

�RSA convention in the SID is to use the role display to highlight navigability.

�Non navigable associations cannot be implemented, so agreed they are just illustrative

�Multiplicity?

�Note: MTOSI used the visibility symbol as specific coding for byValue or byReference. See also comment below on role attribute.

�RSA does not show arrows for bidirectional associations

�Coverage for RSA. We need to make this clearer in the main text.

�This comment applies to all Name Styles for associations. The TM Forum Information Framework (SID) guideline and most UML guidance/practitioners state a name is a required part of the definition of an association. So, why is no name the recommendation here?

What is the implication of this? Does it mean that any SID entities/associations that become part of the umbrella model must have their names removed? Is so, this is quite an issue as it conflicts with good UML practice as noted above.

�The SID uses association names for all associations other than generalisation. `An association name specification should be provided.

�Note that this is often used as the relationship that carries naming. We should work to separate these concepts. A proposal will be provided.

�This appears to state that a * is not allowed but Figure 10 shows a *. Also, the TM Forum’s Information Framework (SID) uses *.

�In RSA, * stands for 0..*

It is a convention that is used a lot.

�The exclusion of standalone 0 makes sense but exclusion of standalone * does not. See also example and note. “0..*” is recommended... “*” should also be allowed.

�0..* should be the preferred approach but “*” should be clearly allowed as an option.

�0..n is not supported today in Tigerstripe.

�This is a key consideration for implementation of associations.

�True also in RSA and JOSIF. The tipAttribute stereotype is applicable also to role, but only if they are navigable.

�Availavle as part ot the tipAttribute stereotype, passedById attribute

�See note above on +/- regarding MTOSI usage. How is this encoded in the SID currently (for JOSIF implementations)?

�Need more clarity.

�The TM Forum Information Framework (SID) currently uses an underscore as a prefix for role names. This is to distinguish them from “true” attributes.

�An underscore is used today in SID as RSA does not distinguish attributes from roles, but the underscore is removed when importing in Tigerstripe.

�Alternative model approach may be considered. A proposal will be provided.

�I don’t think this is supported by Rational Software Architect.

�This view is not possible with RSA. Need to redraw for RSA form or similar.

Constraints are not used in the SID at this point.

�The stereotypes proposed are all simple label decoration and not fully coded stereotypes. Perhaps this should be emphasised in the text.

�The choice in TIP is to have a single stereotype per type of object, like tipClass, tipAttribute, with multiple values within the stereotype. Using multiple stereotypes is functionally but leads to awful diagram representations.

�TIP/JOSIF requires further stereotypes. We need to decide whether these are to be promoted to the Umbrella model.

�From M.3020. Should be referenced in the document.

�All core classes will have this sterotype.

�This is not used in the Umbrella today. Perhaps we should remove it from the repertoire at this point for later potential inclusion. We may want a more sophisticated viewpoint mechanism in the long run.

�All SID classes are like that.

�As part of tipClass, indicate support for OC, OD, ODisc

�Part of tipClass, support attribute

�This has been a concern in several discussions. An alternative approach may be requested.

Note that this is related to the naming authority/name space consideration

�As noted earlier these concepts should be separated. Name should be a separate association to composition. In addition the association orientation should be reversed to that suggested for composition. That is it should be the “named by” orientation rather than the “names” orientation.

A number of figures and explanatory text have been added at the end of this document. “Comments on Naming”

�JoshS: Data types are not heavily used in the SID. Need to consider carefully the implications.

�Agreed datatypes are not used, but there is a difference between a UML datatype and a stereotype “dataType”. We are using the latter today in SID to indicate a class should be transformed in a datatype in JOSIF

�Not used, here we use the true uml enumeration type

�Note the specific 3GPP interpretation and usage. This is what led to the design pattern in section 8.

�We should stick to uml here. An association class is an association with attributes.

�Suggest adding a caution about this because some tools allow an association class to be sub-classed and to participate in other associations. This can lead to model validation errors.

The example shown in the figure below demonstrates this.

�Requires careful review.

�Note all classes in the UIM are abstract. There was a proposal for direct derivation by removal of the “_”. This needs some untwisting.

�Appropriate? Sufficient?

�We have also:

char, byte, double, long, short.

Note real is float for us

DN is not a primitive type, but ObjectName is

�The TM Forum Information Framework uses a stereotype to represent M and O

�It is an attribute of a tipXxx stereotype in SID/JOSIF today. Limited to M/O today.

�JohnR: Qualifiers are not readily added in RSA. Stereotypes are used in the SID.

�Typo (“may be”

�Size/complexity is a concern depending upon what is meant by “management area”

�Should be in a separate document and requires some clarification.

�Need to review this!

�If we map write to readOnly, then this is across the interface, so an invariant object must be readonly and should not be “write=true”

�We don’t have write, but we have settable at creation.

2 of 31

Association Class

Many instances of association class, one per association instance.

“Intervening” class

One instance of intervening class that captures complex association and intertwining between Classes.

Also captures behaviour interaction such as protection switching and state (e.g where class A and C are TPs and class B is an SNC.

image1.png

£ ClassBInstance1
(o classh = Entries{1]
(e lassC = Entries[1]

£ ClassAlnstance1 : - dlassh ~s5C | ¢ classCInstance1 : ClassC
(6 classC = Entries(2] (o classh = Entries(2]
= dassC.
- cassA
£ ClassBInstance3 : ClassB
(G classC = Entries(1]
(o classh = Entries{1]
£ ClassBInstance? : ClassB
(G classh = Entries{1]
(e lassC = Entries[1]
- cassA - classC.
] ClassAlnstance? : ClassA £ ClassClnstance? : ClassC
(G classC = Entries(2] P, ~dassc | EgiclassA = Entiies(2]

£ ClassBInstance4 : ClassB
(6 classC = Entries[1]
(o classh = Entries{1]

image2.png

] ClassAlnstance] : ClassA
(6 classB = ClassBinstance
- classA

- dassA
] ClassAlnstance? : ClassA
fassglnstance

G dlassB

£ ClassBInstance
- cassB

(G classh = Entries(2]

(e lassC = Entries[2]

~dlassB

£ ClassClnstance1 : ClassC
(6 classB = ClassBinstance

- lassC

- dassC

£ ClassClnstance2 : ClassC
(6 cassB = ClassBinstance

Association Class

With protection switching rule and state.

There is complex creation transaction interrelationship etc.

image1.png

g tp = TPinstancel
catp = TPInstance3

“® [E1pmstances : 10
- protection

TPInstance1 : 10 | 1P
58 tp = Entries(2] o 58 tp = Entries(2]
-] Snchssodationinstanced
Egtp = TPinstancel =] ProtectionInstance : Protection
Egtp = TPInstanced - protection
~protect
protecton - protection
‘] SncAssodiationInstance3 ; SncAssociation
-t 5 tp = TPInstance2
-tp Egtp = TPInstance3
i “t | £l TPInstanced : TP

3 tp = Entries(2]

£ TPInstance2
51 = Entries(2]
] SncAssodationinstance? : SncAssodiation

Catp = TPInstance2
& tp = TPInstanced

Function e.g.

eNodeB

function

Network Element

Link entity (connectivity e.g. X2)

Topological Link

3GPP Managed Function

Association/relationship

Optical fiber

NE with wireless access

Wire-line NE

NE with

wireless

access

Management

Environment

Based on Connection Termination Point concept

Based on Physical Termination Point concept

Connection Termination Point

Physical Termination Point

“transport domain”

“non-transport domain”

Boundary between transport and non-transport domains

“Intervening class” instance view

One instance of intervening class that captures complex association and intertwining between Classes.

Also captures behaviour interaction such as protection switching and state.

Simplified SNC and TP case

An SNC can not exist without at least 2 TPs being related.

Some simplifications: In this case the TP and SNC model is assumed to be bidirectional only. The TPs have roles with respect to the SNC but these are ignored here. There are many other attributes and properties related to protection that are ignored here.

image1.png

0.2

Cisnc

-t

-sNC

image2.png

£ Pinstancel

-t

] SNCInstance :SNC

Entries[4]

K

 PInstancez

£l Plnstance3 ; 1P
w

-t

£l Plnstanced : TP

Basic association

Note class A points a C and C at A

Association Class

Association where there is a need to represent: the associations own features (i.e. that do not belong to any of the connected classes):

Some behavior and state

Some additional data related to the association

Note that class A points a C and C at A

“Intervening” class

Where there is a complex assembly of state/data bound to a number of associations.

Note that Class A and C point to B and potentially B points to C and A.

image1.png

 ClassB

[l Classa [l classc

- classA - lassC

image2.png

ElclassA | 0.1 0.1/ Hdassc
- classA - lassC.

image3.png

ClassA ClassB ClassC
= 0.1 . = * 01 2

- classa - dlassC

image4.png

ClassA ClassB ClassC
1 0.1 *

{classa - lassB - classB - dlassC

