
Multi-SDO Joint Working Group face-to-face meeting: Model Alignment S5eMA20038
March 6-8, 2013, Vienna, Austria

Source:
Ericsson

Title:
Comments on S5eMA20034
Document for:
Discussion

1. Decision/action requested

Seek clarification of the attached document
References:

[1]
S5eMA20034 Input for an Operations Model Repertoire
2. Background
This contains comments on the referenced document [1]. The comments are expressed in TRACKED CHANGES (not the YELLOWED text which is part of [1]) of the actual referenced document [1]. We would provide clarification and reasoning for the expressed comments during the meeting.
Multi-SDO Project on Converged Management Model Alignment (Phase 2)
Document number:
S5eMA20034
Source:
Bernd Zeuner, Deutsche Telekom / Convener / Author
Title:
Input for an Operations Model Repertoire - Updated Frankfurt F2F – Enhanced Dec. 20
Meeting date/time:
Tuesday, November 27th, 10:00-18:00 CET
Content
11.
Objective

2.
References
1
3.
Definitions and abbreviations
2
3.1
Definitions
2
3.2
Abbreviations
2
4.
Requirements
2
5.
Model Elements and Notations
3
5.1.
General
3
5.2.
Basic model elements
3
5.2.1.
Interface
3
5.2.1.1.
Description
3
5.2.1.2.
Example
4
5.2.1.3.
Name style
4
5.2.2.
Operation
4
5.2.2.1.
Description
4
5.2.2.2.
Example
5
5.2.2.3.
Name style
5
5.2.2.4.
Exceptions
5
5.2.3.
Parameter
6
5.2.3.1.
Description
6
5.2.3.2.
Example
7
5.2.3.3.
Name style
7

3. Objective

This document provides initial information for an Operations Model Repertoire. The content is based on the NGCOR modelling and tooling requirements defined in [3].
4. References

[1] OMG Unified Modelling Language (OMG UML), Infrastructure, Version 2.4.

[2]
OMG Unified Modelling Language (OMG UML), Superstructure, Version 2.4.

[3]
NGCOR Next Generation Converged Operations Requirements; Version 1.3

[4] Fixed Mobile Convergence (FMC) Model Repertoire; Version 3.0

[5]
3GPP TS 32.300: “3rd Generation Partnership Projects; Technical Specification Group Services and System Aspects; Telecommunication management; Configuration Management (CM); Name convention for Managed Objects”.

[6] 3GPP TS 23.002: “3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Network architecture”.

[7]
ITU-T X.680, OSI networking and system aspects – Abstract Syntax Notation One (ASN.1)

[8]
ITU-T X.501, Information technology – Open Systems Interconnection – The Directory: Models
5. Definitions and abbreviations

For the purposes of this document, the following definitions and abbreviations apply. For definitions and abbreviations not found here, see also …
3.1 Definitions

Distinguished Name: See 3GPP TS 32.300 [5].

Naming attribute: It is a class attribute that holds the class instance identifier.

Lower Camel Case: It is the practice of writing compound words in which the words are joined without spaces. Initial letter of all except the first word shall be capitalized. Examples: ‘managedNodeIdentity’ and ‘minorDetails’ are the LCC for “managed node identity” and “minor details” respectively.

Upper Camel Case: It is the Lower Camel Case except that the first letter is capitalised. Examples: ‘ManagedNodeIdentity’ and ‘MinorDetails’ are the UCC for “managed node identity” and “minor details” respectively.

Well Known Abbreviation: An abbreviation can be used as the modelled element name or as a component of a modelled element name. The abbreviation, when used in such manner, must be documented in the same document where the modelled element is defined.

3.2 Abbreviations

CM
Conditional Mandatory

CO
Conditional Optional

DN
Distinguished Name

FMC
Fixed Mobile Convergence

FNOM
Federated Network Operations Model

IOC
Information Object Class

IRP
Integration Reference Point

JWG
Joint Working Group

LCC
Lower Camel Case

M
Mandatory

NA
Not Applicable

NRM
Network Resource Model

O
Optional

OMG
Object Management Group

UCC
Upper Camel Case

UOM

Umbrella Operations Model

UML

Unified Modelling Language (OMG)

WKA

Well Known Abbreviation

6. Requirements

The UML notations and model elements captured in this repertoire shall be used to model behaviours of the systems/entities specified by the JWG Resource Model Alignment work such as the Umbrella Operations Model (UOM) of the FNOM discussed in Converged Management of Fixed/Mobile Network project.

7. Model Elements and Notations

7.1. General

Note that the graphical notation in this document is only used to represent particular model elements. Although the graphical notation is a correct representation of the model element, it may not be a valid representation of a UML class diagram.

The examples used in this document are for illustration purposes only and may or may not exist in specifications.

UML properties not described in this document shall not be used in specifications based on this repertoire.

7.2. Basic model elements

UML has defined a number of basic model elements. This sub-clause lists the subset selected for use in specifications based on this repertoire. The semantics of these selected basic model elements are defined in [1].

For each basic model element listed, there are three parts. The first part contains its description. The second part contains its graphical notation examples and the third part contains the rule, if any, recommended for labelling or naming it.

The graphical notation has the following characteristics:

1. Section 7.2.7 of [2] specifies "A class is often shown with three compartments. The middle compartment holds a list of attributes while the bottom compartment holds a list of operations". This repertoire only allows the use of the name (top) compartment and operations (third) compartment. The attribute (middle) compartment may be present but is always empty [to be investigated], as shown in the figure below.

[image: image1.emf]
2. Interfaces are identified by the stereotype «interface».
3. The use of the decoration, i.e. the symbol in the name (top) compartment ([image: image2.png]), is optional.

4. Each Interface must have at least one operation.
· TBD if signal compartment can be used for notifications
Signals are used to send information between classes; asynchronous or synchronous, unidirectional. See the following links for information:
- http://pic.dhe.ibm.com/infocenter/rsarthlp/v8/index.jsp?topic=/com.ibm.xtools.modeler.doc/topics/csignal.html
- http://pic.dhe.ibm.com/infocenter/rsarthlp/v8/index.jsp?topic=/com.ibm.xtools.modeler.doc/topics/taddsig.html
- http://umlguide2.uw.hu/ch21lev1sec2.html

From UML Superstructure:
13.3.24 Signal (from Communications)
Generalizations
• “Classifier (from Kernel, Dependencies, PowerTypes, Interfaces)” on page 51
Description
A signal is a specification of send request instances communicated between objects. The receiving object handles the received request instances as specified by its receptions. The data carried by a send request (which was passed to it by the send invocation occurrence that caused that request) are represented as attributes of the signal. A signal is defined independently of the classifiers handling the signal occurrence.
Attributes
No additional attributes
Associations
• ownedAttribute: Property [0..*]
The attributes owned by the signal. (Subsets Classifier::attribute, Namespace::ownedMember). This association end is ordered.
Constraints
No additional constraints
Semantics
A signal triggers a reaction in the receiver in an asynchronous way and without a reply. The sender of a signal will not block waiting for a reply but continue execution immediately. By declaring a reception associated to a given signal, a classifier specifies that its instances will be able to receive that signal, or a subtype thereof, and will respond to it with the designated behavior.
Notation
A signal is depicted by a classifier symbol with the keyword «signal».
7.2.1. Interface
7.2.1.1. Description

“An interface is a kind of classifier that represents a declaration of a set of coherent public features and obligations. An interface specifies a contract; any instance of a classifier that realizes the interface must fulfil that contract. The obligations that may be associated with an interface are in the form of various kinds of constraints (such as pre- and post-conditions) or protocol specifications, which may impose ordering restrictions on interactions through the interface.
Since interfaces are declarations, they are not instantiable. Instead, an interface specification is implemented by an instance of an instantiable classifier, which means that the instantiable classifier presents a public facade that conforms to the interface specification. Note that a given classifier may implement more than one interface and that an interface may be implemented by a number of different classifiers (see “InterfaceRealization (from Interfaces)” on page 89).” - see section 7.3.24 “Interface” of [2].
· add 2nd para as well - Done
· add “xxx” when quoting directly - Done
The following table captures the properties of an interface:
Table 1: «Interface» properties
	Property name
	Description
	Legal values

	documentation
	Contains a textual description of the Interface.
Should refer (to enable traceability) to a specific requirement.
	Any

	isAbstract
	Indicates if the Interface can be instantiated or is just used for inheritance.
	True, False (default)

	supportQualifier
	Identifies the required support of the Interface including a condition – if applicable. See also section 6.
	M, O (default), CM, CO, C

7.2.1.2. Example

This example shows a Xyz «Interface».

[image: image3.emf]
Figure 1: «Interface» notation

7.2.1.3. Name style

The name shall use UCC style.

7.2.2. Operation

7.2.2.1. Description

“An operation is a behavioural feature of a classifier that specifies the name, type, parameters, and constraints for invoking an associated behaviour.” - see section 7.3.37 “Operation” of [2].

Operations are grouped in interface object classes.

The following table captures the properties of an operation:
Table 2: Operation properties

	Property name
	Description
	Legal values

	documentation
	Contains a textual description of the operation.
Should refer (to enable traceability) to the specific requirement.
	any

	isAtomicCommitt
	This property identifies if the operation is best effort or is successful / not successful as a whole.
If true,

· Successful: The operation has completed successful as a whole.
· Not successful: The operation has completed not successful as a whole; i.e., the state of the network is the same as befor the operation (crank back is necessary).
If false,

· Successful: The operation has completed partially successful. Further definition what this means for a specific operation is required.
· Not successful: The operation has completed partially successful. Further definition what this means for a specific operation is required.
	True, False (default)

	pre-condition(s)
	Lists the conditions unambiguously that have to be true before the operation can be started (i.e., if not true, the operation will not be started at all and a general “pre-condition not met” error will be returned).
	any

	post-condition(s)
	Describes unambiguously the state of the system after the operation has been successfully executed.
	any

	
	
	

	bulkTransferPattern
	This property allows the selection of the bulk data transfer implementation style. This is applicable when at least one of the parameter's isBulkPotential property is set to true.

Possible values:

NONE (default): The operation does not require any bulk transfer pattern.

FILE: The operation uses a file transfer pattern for bulk attributes.

ITERATOR: The operation uses an iterator transfer pattern for bulk attributes.

	NONE (default),
ITERATOR,
FILE
(detailed definition & clarification needed

	emitsEvents
	This property indicates the capability of the server operation to emit event notifications. If checked, the operation can emit progress events. The events that can be emitted are listed under the emittedEvents property.
Needs further clarification
	True, False (default)

	emittedEvents
	This property lists the events that can be emitted by the operation. It is a list of event names, separated by commas. The event names should be fully qualified valid events defined in the model.
	List of events defined in the model.

	isOneWay
	This property indicates that the operation is either an input or an output with respect to the service interface. The operation is an input oneWay if it has only input parameters. It is an output oneWay if it has only output parameters.
Needs further clarification (operations vs notification?; one-way as request w/o response?)
	True, False (default)

	operationExceptions
	This property identifies the allowed exceptions together with a failure reason. The allowed exceptions are pre-defined (standardised) and will be appended by a string which describes the specific reason for the exception in detail.

Improve definition for “failure reason”
Use UML Return for “exceptions together with a failure reason”
	See section 5.2.2.4 for exceptions

	supportQualifier
	This property identifies the required support of the operation. See also [4] section 6.
	M, O (default), CM, CO, C

7.2.2.2. Example

This example shows three operations, i.e., a, b and c, listed in the operation (third) compartment of the interface Xyz.

[image: image4.emf]
Figure 2: Operations within an interface
Graphic symbols are optional
7.2.2.3. Name style

An operation name shall use the LCC style.

7.2.2.4. Exceptions

This Repertoire defines a list of pre-defined exceptions. To increase interoperability, the specifications authors must use these exceptions whenever possible. Additional exceptions, either formed by inheritance of pre-defined exception(s) or not, are only allowed if none of these pre-defined exceptions fit.
This set of pre-defined exceptions is defined corresponding to run-time errors, which may occur during the execution of an operation request.
The following table lists the pre-defined exceptions:

Table 3: Pre-defined Exceptions

	Exception
	Description

	AccessDenied
	This exception shall be raised when the client is not permitted to perform the operation

	
	

	AtomicTransactionFailure
	This exception shall be raised when an atomic operation is not successful due to a failure of one of its sub-parts.

	CapacityExceeded
	This exception shall be raised when the server and its supporting processes do not have sufficient capacity to handle the request.

	CommunicationLoss
	This exception shall be raised when the server is unable to communicate with its supporting process for the handling of the request

	
	

	
	

	FilterNotSupported
	This exception shall be raised when a filter definition, carried in the request parameter, is not supported by the Server.

	InternalError
	This exception shall be raised when an server internal error occurs while processing the request.

	InvalidParameter
	This exception shall be raised when the operation contains an input parameter that is invalid (e.g. syntactically incorrect, identifies an object of the wrong type, is out of range)

	
	

	NotImplemented
	This exception shall be raised when the server does not support this operation

	NotInValidState
	This exception shall be raised when the state of the identified object, involved in the processing of the request, is such that the server cannot perform the operation

	ObjectInUse
	This exception shall be raised when the object identified in the request is currently in use and that the state of the identified object is such that its accessibility is exclusive (i.e. no simultaneous access).

	ObjectNotExist
	This exception shall be raised when the object identified in the request does not exist.

	ObjectExist
	This exception shall be raised if an object instance cannot be created because an object with the same identity/name already exists

	UnableToComply
	This exception shall be raised when the server cannot respond to the request

	UnableToNotify
	This exception shall be raised when the server is unable to connect to the Notification Service

Note: The yellow marked exceptions have to be supported by all operations.
What exceptions are Mandatory is to be discussed.
Detailed reviewed of the exceptions still open.
OS/target OS to be replaced by client/server or requestor/xxx.- Done
7.2.3. Parameter

7.2.3.1. Description

“A parameter is a specification of an argument used to pass information into or out of an invocation of a behavioural feature.” - see section 7.3.42 “Parameter” of [2].

The following table captures the properties of a parameter:

Table 4: Parameter properties

	Property name
	Description
	Legal values

	documentation
	Contains a textual description of the parameter.
Should refer (to enable traceability) to the specific requirement.
	Any

	type
	Refers to a predefined (see section 5.4.3) and user defined data type (see section 5.3.4).

	Refers to section 5.4.3) and 5.3.4).

	isOrdered
	For a multi-valued multiplicity; this specifies if the values of this parameter instance are sequentially ordered. See section 7.3.44 and its Table 7.1 of [2].
	True, False (default)

	isUnique
	For a multi-valued multiplicity, this specifies if the values of this parameter instance are unique (i.e., no duplicate attribute values). See section 7.3.44 and its Table 7.1 of [2].
	True (default), False

	
	
	

	
	
	

	multiplicity
	This property defines the number of values the parameter can simultaneously have.
	See [4] section 5.2.8; default is 1.

	
	

	

	direction
	This property defines the direction of the parameter.
	In, InOut, Out

	passedById
	This property is only applicable when the type of the parameter is a DN
It identifies whether the parameter contains a pointer to the object instance (passedById = true) or contains the entire information of the object instance (passedById = false).
	True (default), False

	supportQualifier
	This property identifies the required support of the parameter. See also section 6.
	M, O (default), CM, CO, C

Consider adding isOrdered & isUnique
7.2.3.2. Example

This example shows three operations and their related parameters.
[image: image5.emf]
Figure 3: Parameters within Operations
Graphic symbols are optional
Class diagram symbol for operations these display details (e.g. a,b,c) are optional
7.2.3.3. Name style

A parameter name shall use the LCC style.

mSDO JWG

