	
3GPP TSG-SA4 Meeting #99 	S4-180927
Roma, Italy, July 9 – 13, 2018	Revision of S4-180777	
	CR-Form-v11.2

	CHANGE REQUEST

	

	
	26.973
	CR
	0004
	rev
	1
	Current version:
	15.0.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:	
	Corrections, modification of Experiment 4 and addition to fixed-point basic operators

	
	

	Source to WG:
	Qualcomm Incorporated, VoiceAge Corporation, Cadence Design Systems Inc., Ericsson LM

	Source to TSG:
	S4

	
	

	Work item code:
	FS_BASOP
	
	Date:
	2018-07-11

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-15

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	[bookmark: OLE_LINK1]Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
Rel-12	(Release 12)
Rel-13	(Release 13)
Rel-14	(Release 14)
Rel-15	(Release 15)
Rel-16	(Release 16)

	
	

	Reason for change:
	Have subjective testing at low and high input levels with music and mixed content in the test plan for an alternative EVS codec implementation.

Removal of duplicate source code files and inclusion of ITU-T requested changes.
Addition of basic operators, which were introduced for the EVS codec (TS 26.442) development, but were not yet included in the TR.

	
	

	Summary of change:
	Modification of input level in existing experiment. No additional experiment.

Added description of 7 unsigned 32-bit operators that were separately verified and adopted in 3GPP SA4 during the development of the EVS codec, TS 26.442.

Updated the attachment “basic_op_STL_2017.zip” based on recommendations from ITU-T and further additions agreed in 3GPP SA4. The changes are:
· Removal of duplicated source folders
· Updates to remove warnings observed for Visual studio compilers
· Changes to enable the use of Cmake tools
· Added flc folder for backward compatibility
· Added implementation of 7 unsigned 32-bit operators
· [bookmark: _GoBack]Updated BASOP counter tool in basop_cnt.c (“basops” and “blacklist” arrays)
· Correction of compiler macro “IF(a)” in control.h

Updated “TestResultsAndTestFrameworkOfExtendedBASOPValidation.zip” based on recommendations from ITU-T as follows:
· Test framework package is renamed to “Baseop_tst_frmwork.zip”.
· Single makefile and test application: Conducts sanity test or full regression based on “Test_type” command-line parameter.
· Reference output files are provided in package. One needs to compare DUT o/p with REF for bit-exactness.
· All python scripts are deleted.
· Directory structure is updated to work with CMake tools.

NOTE: Changes to the zip-files can only be found in the attachments and are not replicated in this document.

	
	

	Consequences if not approved:
	· Potentially ambiguous behavior for low / high input level cases
· Quality issues
· Ambigious source code package that is not aligned with updates done in the STL GitHub repository.
· An alternative implementation of the EVS codec using the updated set of basic operators in TR 26.973 would be less efficient than the existing implementation in TS 26.442 when it comes to certain unsigned operators.

	
	

	Clauses affected:
	4.2.3, 5.3.3, Annex A, A.5 (new), Annex B

Updates to basic_op_STL_2017.zip:
basic_op_STL_2017/basop.rme
basic_op_STL_2017/basop32.c
basic_op_STL_2017/basop32.h
basic_op_STL_2017/basop_cnt.c
basic_op_STL_2017/complex_basop.c
basic_op_STL_2017/complex_basop.h
basic_op_STL_2017/control.c
basic_op_STL_2017/control.h
basic_op_STL_2017/count.c
basic_op_STL_2017/count.h
basic_op_STL_2017/enh1632.c
basic_op_STL_2017/enh1632.h
basic_op_STL_2017/enh32.c
basic_op_STL_2017/enh32.h
basic_op_STL_2017/enh40.c
basic_op_STL_2017/enh40.h
basic_op_STL_2017/enh64.c
basic_op_STL_2017/enh64.h
basic_op_STL_2017/enhUL32.c (new)
basic_op_STL_2017/enhUL32.h (new)
basic_op_STL_2017/move.h
basic_op_STL_2017/patch.h
basic_op_STL_2017/README.md (new)
basic_op_STL_2017/stl.h
basic_op_STL_2017/typedef.h
basic_op_STL_2017/typedefs.h
basic_op_STL_2017/flc/CMakeLists.txt (new)
basic_op_STL_2017/flc/flc.c (new)
basic_op_STL_2017/flc/flc.h (new)
basic_op_STL_2017/flc/flc_example.c (new)
basic_op_STL_2017/flc/makefile.cl (new)
basic_op_STL_2017/flc/makefile.unx (new)
basic_op_STL_2017/flc/README.md (new)

TestResultsAndTestFrameworkOfExtendedBASOPValidation.zip, replaced by Baseop_tst_frmwork.zip.

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	

	affected:
	
	X
	 Test specifications
	

	(show related CRs)
	
	X
	 O&M Specifications
	

	
	

	Other comments:
	

Start change 1
[bookmark: _Toc507688102][bookmark: _Toc507688110]4.2.3	Test results
For a complete report of the framework used, as well as the results of the test, please see the attachment "TestResultsAndTestFrameworkOfExtendedBASOPValidation.zip".
NOTE: The unsigned basic operators in clause A.5 were verified separately and are used by the EVS codec in TS 26.442 [2].
This attachment has four zipped files as described below:
-	"Baseop_tst_frmwork.zip" – Test framework package. For details of this package, and how to run it, please see the README file in the zipped package. For a summary of the results and the details of the test setup, please see the excel file "Tst_framework.xlsx" available inside the "doc" folder of this zipped package.
-	"precision_abs_err_report.csv" details the test results and reports the average and bits-in-error summary for all the 67 basic operators.
-	"W_mult_32_32.xlsx" shows the details of the test for this example basic operator.
-	"Mpy_32_16_1.xlsx" shows the details of the test for this example basic operator.
Start change 2
5.3.3	Subjective performance evaluation of the alternative EVS implementation
The goal of the subjective performance evaluation of the alternative EVS implementation is to complement the objective validation as a sanity check. It covers all relevant configurations with emphasis on most relevant ones to minimize the number of subjective tests. In particular:
1)	Bitrates: All EVS bitrates are included, both of the EVS native modes (5.9, 7.2, 8, 13.2, 13.2 CAM, 16.4, 24.4, 32, 48, 56, 96, 128 kb/s) and the AMR-WB IO modes (23.85, 23.05, 19.85, 18.25, 15.85, 14.25, 12.65, 8.85 and 6.6 kb/s). This is done through constant bitrate conditions or bitrate switching conditions in order to minimize the necessary number of subjective experiments, and yet cover all the bitrates.
2)	Bandwidth: It is proposed to include only WB and SWB experiments in the subjective evaluation as most relevant for EVS operation. Further, it is assumed that most of the NB technologies are also included within WB or SWB EVS operation. Finally FB operation is algorithmically very similar to the SWB operation.
3)	Input levels: 16, 26, 36 dBov input levels are tested.
4)	Noisy speech is evaluated in one experiment.
5)	Mixed & Music inputs are evaluated in one experiment.
6)	Impaired channel & Jitter Buffer Management (JBM) conditions are spread across all experiments. The Frame Erasure Rates (FERs) or network error profiles have been selected such that they should allow to uncover any issues in operation in impaired channels, yet the channel is not too bad to significantly influence the test resolution for clean channel conditions.
7)	Rate switching is included, as mentioned above.
8)	Tandem conditions were not included in the test as it is assumed that any implementation issues should be uncovered in conditions without tandeming. Further, tandem operation is not foreseen as a major operation use-case for EVS.
The methodology used is P.800 ACR or DCR reflecting the EVS Selection and Characterization tests. It is proposed to use 4 different talkers (two male and two female talkers), and 6 panels of 4 listeners. This set-up gives 96 votes per condition (6panels*4talkers*4listeners).
Similarly to the objective tests, the following 4 configurations will be tested in all experiments:
a)	Ref_fxd encoder	–	Ref_fxd decoder
b)	CuT encoder	–	CuT decoder
c)	Ref_fxd encoder	–	CuT decoder
d)	CuT encoder	–	Ref_fxd decoder

Experiment 1 - WB clean speech ACR (17 conditions per codec configuration):
-16 dBov clean channel - 5.9 kb/s, switching: 7.2-9.6 kb/s, 13.2-96 kb/s, AMR-WB IO, DTX ON
-26 dBov clean channel - 7.2 kb/s, 13.2 kb/s, 13.2 kb/s Channel-Aware Mode (CAM), 24.4 kb/s, DTX ON
-36 dBov clean channel - 5.9 kb/s, switching: 7.2-9.6 kb/s, 13.2-96 kb/s, AMR-WB IO, DTX OFF
-26 dBov random 3% FER - 5.9 kb/s, switching: 7.2-9.6 kb/s, 13.2-96 kb/s, AMR-WB IO, DTX ON
-26 dBov Profile 8(6.2%) – 13.2 kb/s Channel-Aware Mode (CAM), DTX ON

Experiment 2 - SWB clean speech DCR (6 conditions per codec configuration):
-16 dBov clean channel - 7.29.6 kb/s, 13.2 kb/s, DTX OFF
-36 dBov clean channel - 24.4 kb/s, switching 32-128 kb/s, DTX ON
-26 dBov Profile 7(3.3%) - switching 9.6 - 24.4 kb/s, DTX ON
-26 dBov Profile 8(6.2%) - 13.2 kb/s CAM, DTX ON

Experiment 3 - SWB noisy speech DCR - 26 dBov, Street noise at 20 dB SNR (6 conditions per codec configuration):
clean channel - 9.67.2 kb/s, DTX ON
clean channel - 13.2 kb/s, DTX ON
clean channel - 24.4 kb/s, DTX ON
3% random FER - switching 9.6 - 24.4 kb/s, DTX ON
3% random FER - switching 32 - 128 kb/s, DTX ON
Profile 8(6.2%) - 13.2 kb/s CAM, DTX ON

Experiment 4 - SWB mixed and music DCR- 26 dB (6 conditions per codec configuration):
-16 dBov clean channel - 9.67.2 kb/s, DTX ON
-26 dBov clean channel - 13.2 kb/s, DTX ON
-36 dBov clean channel - 24.4 kb/s, DTX ON
-26 dBov 3% random FER - switching 9.6 - 24.4 kb/s, DTX ON
-26 dBov 3% random FER - switching 32 - 128 kb/s, DTX ON
-26 dBov Profile 8(6.2%) - 13.2 kb/s CAM, DTX ON

Start change 3
[bookmark: _Toc507688112]Annex A:
Extended Basic Operators
Name: enh64.c, enh32.c, complex_basop.c, enhUL32.c
Associated header file: enh64.h, enh32.h complex_basop.h, enhUL32.h
Variable definitions:
C_var1, C_var2: 16 bit complex variables
CL_var1, CL_var2: 32 bit complex variables
W_var1, W_var2: 64 bit variables
L_var1, L_var2: 32 bit variables
UL_var1, UL_var2, UL_varout_h, UL_varout_l: 32 bit unsigned variables
var1, var2: 16 bit variables
U_var1, U_varout_l: 16 bit unsigned variables
Start change 4
[bookmark: _Toc507688114]A.5	Basic operators for unsigned data types
	UL_addNs (UL_var1, UL_var2, *var1)
	Adds the two unsigned 32-bit variables UL_var1 and UL_var2 with overflow control, but without saturation. Returns 32-bit unsigned result. var1 is set to 1 if wrap around occurred, otherwise 0.

	UL_subNs (UL_var1, UL_var2, *var1)
	Subtracts the 32-bit usigned variable UL_var2 from the 32-bit unsigned variable UL_var1 with overflow control, but without saturation. Returns 32-bit unsigned result. var1 is set to 1 if wrap around (to “negative”) occurred, otherwise 0.

	norm_ul (UL_var1)
	Produces the number of left shifts needed to normalize the 32-bit unsigned variable UL_var1 for positive values on the interval with minimum of 0 and maximum of 0xffffffff. If UL_var1 contains 0, return 0.

	UL_Mpy_32_32(UL_var1, UL_var2)
	Multiplies the two unsigned values UL_var1 and UL_var2 and returns the lower 32 bits, without saturation control.
UL_var1 and UL_var2 are supposed to be in Q32 format.
The result is produced in Q64 format, the 32 LS bits.
Operates like a regular 32x32-bit unsigned int multiplication in ANSI-C.

	Mpy_32_32_uu(UL_var1, UL_var2, *UL_var3, *UL_var4)

	Multiplies the two unsigned 32-bit variables UL_var1 and UL_var2.
The operation is performed in fractional mode.
UL_var1 and UL_var2 are supposed to be in Q32 format.
The result is produced in Q64 format: UL_varout_h points to the 32 MS bits while UL_varout_l points to the 32 LS bits.

	Mpy_32_16_uu(UL_var1, U_var1, UL_varout_h, U_varout_l)

	Multiplies the unsigned 32-bit variable UL_var1 with the unsigned 16-bit variable U_var1.
The operation is performed in fractional mode :
UL_var1 is supposed to be in Q32 format.
U_var1 is supposed to be in Q16 format.
The result is produced in Q48 format: UL_varout_h points to the 32 MS bits while U_varout_l points to the 16 LS bits.

	UL_deposit_l(U_var1)
	Deposit the 16-bit U_var1 into the 16 LS bits of the 32-bit output. The 16 MS bits of the output are not sign extended.

Start change 5
[bookmark: _Toc507688117]Annex B:
Weights of the STL basic operators
This annex contains a list of the existing STL2009 and new extensions referred to as STL2017 basic operators and their weights for the modern DSP architectures.

	Legends

	
	STL-2009 basic operators

	
	STL-2017 Complex basic operators

	
	STL-2017 64-bit basic operators

	
	STL-2017 Enhanced 32-bit basic operators

	
	STL-2017 Unsigned basic operators

	
	STL-2017 Control code basic operators

	BASOPS
	Complexity Weights
	Comments

	
	 Existing STL2009 as is
	Updated
	

	add
	1
	1
	

	sub
	1
	1
	

	abs_s
	1
	1
	

	shl
	1
	1
	

	shr
	1
	1
	

	extract_h
	1
	1
	

	extract_l
	1
	1
	

	mult
	1
	1
	

	L_mult
	1
	1
	

	negate
	1
	1
	

	round
	1
	1
	

	L_mac
	1
	1
	

	L_msu
	1
	1
	

	L_macNs
	1
	1
	

	L_msuNs
	1
	1
	

	L_add
	1
	1
	

	L_sub
	1
	1
	

	L_add_c
	2
	2
	

	L_sub_c
	2
	2
	

	L_negate
	1
	1
	

	L_shl
	1
	1
	

	L_shr
	1
	1
	

	mult_r
	1
	1
	

	shr_r
	3
	2
	Reduced to reflect modern processor architecture

	mac_r
	1
	1
	

	msu_r
	1
	1
	

	L_deposit_h
	1
	1
	

	L_deposit_l
	1
	1
	

	L_shr_r
	3
	2
	Reduced to reflect modern processor architecture

	L_abs
	1
	1
	

	L_sat
	4
	1
	Reduced to reflect modern processor architecture

	norm_s
	1
	1
	

	div_s
	18
	18
	

	norm_l
	1
	1
	

	move16
	1
	1
	

	move32
	2
	1
	Reduced to reflect modern processor architecture

	Logic16
	1
	1
	

	Logic32
	2
	1
	Reduced to reflect modern processor architecture

	Test
	2
	1
	Reduced to reflect modern processor architecture

	s_max
	1
	1
	

	s_min
	1
	1
	

	L_max
	1
	1
	

	L_min
	1
	1
	

	L40_max
	1
	1
	

	L40_min
	1
	1
	

	shl_r
	3
	2
	Reduced to reflect modern processor architecture

	L_shl_r
	3
	2
	Reduced to reflect modern processor architecture

	L40_shr_r
	3
	2
	Reduced to reflect modern processor architecture

	L40_shl_r
	3
	2
	Reduced to reflect modern processor architecture

	norm_L40
	1
	1
	

	L40_shl
	1
	1
	

	L40_shr
	1
	1
	

	L40_negate
	1
	1
	

	L40_add
	1
	1
	

	L40_sub
	1
	1
	

	L40_abs
	1
	1
	

	L40_mult
	1
	1
	

	L40_mac
	1
	1
	

	mac_r40
	2
	2
	

	L40_msu
	1
	1
	

	msu_r40
	2
	2
	

	Mpy_32_16_ss
	2
	2
	Reduced to reflect modern processor architecture

	Mpy_32_32_ss
	4
	2
	Reduced to reflect modern processor architecture

	L_mult0
	1
	1
	

	L_mac0
	1
	1
	

	L_msu0
	1
	1
	

	lshl
	1
	1
	

	lshr
	1
	1
	

	L_lshl
	1
	1
	

	L_lshr
	1
	1
	

	L40_lshl
	1
	1
	

	L40_lshr
	1
	1
	

	s_and
	1
	1
	

	s_or
	1
	1
	

	s_xor
	1
	1
	

	L_and
	1
	1
	

	L_or
	1
	1
	

	L_xor
	1
	1
	

	rotl
	3
	3
	

	rotr
	3
	3
	

	L_rotl
	3
	3
	

	L_rotr
	3
	3
	

	L40_set
	3
	1
	Reduced to reflect modern processor architecture

	L40_deposit_h
	1
	1
	

	L40_deposit_l
	1
	1
	

	L40_deposit32
	1
	1
	

	Extract40_H
	1
	1
	

	Extract40_L
	1
	1
	

	L_Extract40
	1
	1
	

	L40_round
	1
	1
	

	L_saturate40
	1
	1
	

	round40
	1
	1
	

	IF
	4
	3
	

	GOTO
	4
	2
	

	BREAK
	4
	2
	

	SWITCH
	8
	6
	

	FOR
	3
	3
	

	WHILE
	4
	3
	

	CONTINUE
	4
	2
	

	L_mls
	5
	1
	Reduced to reflect modern processor architecture

	div_l
	32
	32
	

	i_mult
	3
	1
	Reduced to reflect modern processor architecture

	CL_shr
	
	1
	

	CL_shl
	
	1
	

	CL_add
	
	1
	

	CL_sub
	
	1
	

	CL_scale
	
	1
	

	CL_dscale
	
	1
	

	CL_msu_j
	
	1
	

	CL_mac_j
	
	1
	

	CL_move
	
	1
	

	CL_Extract_real
	
	1
	

	CL_Extract_imag
	
	1
	

	CL_form
	
	1
	

	CL_multr_32x16
	
	2
	

	CL_negate
	
	1
	

	CL_conjugate
	
	1
	

	CL_mul_j
	
	1
	

	CL_swap_real_imag
	
	1
	

	C_add
	
	1
	

	C_sub
	
	1
	

	C_mul_j
	
	1
	

	C_multr
	
	2
	

	C_form
	
	1
	

	CL_scale_32
	
	1
	

	CL_dscale_32
	
	1
	

	CL_multr_32x32
	
	2
	

	C_mac_r
	
	2
	

	C_msu_r
	
	2
	

	CL_round32_16
	
	1
	

	C_Extract_real
	
	1
	

	C_Extract_imag
	
	1
	

	C_scale
	
	1
	

	C_negate
	
	1
	

	C_conjugate
	
	1
	

	C_shr
	
	1
	

	C_shl
	
	1
	

	move64
	
	1
	

	W_add_nosat
	
	1
	

	W_sub_nosat
	
	1
	

	W_shl
	
	1
	

	W_shr
	
	1
	

	W_shl_nosat
	
	1
	

	W_shr_nosat
	
	1
	

	W_mac_32_16
	
	1
	SIMD and VLIW friendly basops

	W_msu_32_16
	
	1
	SIMD and VLIW friendly basops

	W_mult_32_16
	
	1
	SIMD and VLIW friendly basops

	W_mult0_16_16
	
	1
	SIMD and VLIW friendly basops

	W_mac0_16_16
	
	1
	SIMD and VLIW friendly basops

	W_msu0_16_16
	
	1
	SIMD and VLIW friendly basops

	W_mult_16_16
	
	1
	SIMD and VLIW friendly basops

	W_mac_16_16
	
	1
	SIMD and VLIW friendly basops

	W_msu_16_16
	
	1
	SIMD and VLIW friendly basops

	W_shl_sat_l
	
	1
	

	W_sat_l
	
	1
	

	W_sat_m
	
	1
	

	W_deposit32_l
	
	1
	

	W_deposit32_h
	
	1
	

	W_extract_l
	
	1
	

	W_extract_h
	
	1
	

	W_round48_L
	
	1
	

	W_round32_s
	
	1
	

	W_norm
	
	1
	

	W_add
	
	1
	

	W_sub
	
	1
	

	W_neg
	
	1
	

	W_abs
	
	1
	

	W_mult_32_32
	
	1
	

	W_mult0_32_32
	
	1
	

	W_lshl
	
	1
	

	W_lshr
	
	1
	

	W_round64_L
	
	1
	

	Mpy_32_16_1
	
	1
	

	Mpy_32_16_r
	
	1
	

	Mpy_32_32
	
	1
	

	Mpy_32_32_r
	
	1
	

	Madd_32_16
	
	1
	

	Madd_32_16_r
	
	1
	

	Msub_32_16
	
	1
	

	Msub_32_16_r
	
	1
	

	Madd_32_32
	
	1
	

	Madd_32_32_r
	
	1
	

	Msub_32_32
	
	1
	

	Msub_32_32_r
	
	1
	

	UL_addNs
	
	1
	Previous weight, when used in the EVS codec [2], was 2

	UL_subNs
	
	1
	Previous weight, when used in the EVS codec [2], was 2

	UL_Mpy_32_32
	
	1
	Previous weight, when used in the EVS codec [2], was 2

	Mpy_32_32_uu
	
	2
	Previous weight, when used in the EVS codec [2], was 4

	Mpy_32_16_uu
	
	2
	Previous weight, when used in the EVS codec [2], was 4

	norm_ul
	
	1
	Previous weight, when used in the EVS codec [2], was 2

	UL_deposit_l
	
	1
	Previous weight, when used in the EVS codec [2], was 2

	LT_16
	
	1
	

	GT_16
	
	1
	

	LE_16
	
	1
	

	GE_16
	
	1
	

	EQ_16
	
	1
	

	NE_16
	
	1
	

	LT_32
	
	1
	

	GT_32
	
	1
	

	LE_32
	
	1
	

	GE_32
	
	1
	

	EQ_32
	
	1
	

	NE_32
	
	1
	

	LT_64
	
	1
	

	GT_64
	
	1
	

	LE_64
	
	1
	

	GE_64
	
	1
	

	EQ_64
	
	1
	

	NE_64
	
	1
	

	End changes
