3GPP TSG SA WG4 Meeting #98	Tdoc S4-170478
Kista, Sweden, 9-13 April, 2018
3GPP TSG SA WG4 Meeting #96							Tdoc S4-171220
Albuquerque, USA, 11-17 November, 2017
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]Source:	Samsung Electronics Co., Ltd.
Title:	VR Streaming Considerations
Agenda Item:	10.6
Document for:	Discussion and Agreement

1 Introduction
3GPP SA4 has started a work item on VR Streaming [1] support in PSS and MBMS, including streaming optimizations. In this contribution, we propose to document a viewport-dependent streaming solution based on region-wise packing and compliant with the OMAF format specification.
2 Complexity of Region Wise Based Packing (RWBP)
RWBP is a tool that has been introduced by OMAF [2] to allow for packing different patches of the ERP video into a rectangular 2D video with a flexible arrangement of these patches. The syntax of RWBP is shown below:
	aligned(8) class RectRegionPacking(i) {
	unsigned int(32) proj_reg_width[i];
	unsigned int(32) proj_reg_height[i];
	unsigned int(32) proj_reg_top[i];
	unsigned int(32) proj_reg_left[i];
	unsigned int(3) transform_type[i];
	bit(5) reserved = 0;
	unsigned int(16) packed_reg_width[i];
	unsigned int(16) packed_reg_height[i];
	unsigned int(16) packed_reg_top[i];
	unsigned int(16) packed_reg_left[i];
}
aligned(8) class GuardBand(i) {
	unsigned int(8) left_gb_width[i];
	unsigned int(8) right_gb_width[i];
	unsigned int(8) top_gb_height[i];
	unsigned int(8) bottom_gb_height[i];
	unsigned int(1) gb_not_used_for_pred_flag[i];
	for (j = 0; j < 4; j++)
		unsigned int(3) gb_type[i][j];
	bit(3) reserved = 0;
}

[bookmark: _Hlk495499171]aligned(8) class RegionWisePackingStruct() {
	unsigned int(1) constituent_picture_matching_flag;
	bit(7) reserved = 0;
	unsigned int(8) num_regions;
	unsigned int(32) proj_picture_width;
	unsigned int(32) proj_picture_height;
	unsigned int(16) packed_picture_width;
	unsigned int(16) packed_picture_height;
	for (i = 0; i < num_regions; i++) {
		bit(3) reserved = 0;
		unsigned int(1) guard_band_flag[i];
		unsigned int(4) packing_type[i];
		if (packing_type[i] == 0) {
			RectRegionPacking(i);
			if (guard_band_flag[i])
				GuardBand(i);
		}
	}
}

The rectangular regions can be separated by guard bands. The rectangular regions may be transformed through mirroring and rotation.
The complexity of these operations is relatively minor, considering that the rendering process is performed by the GPU. In particular, the fragment shader is the ultimate code that will implement the mapping of color information to a fragment that will be displayed. The fragment shader gets a sampler2D texture variable that contains the RWBP 2D video alongside with the relevant RWBP configuration information. The code could look something like this:
	precision mediump float;

uniform sampler2D rwbp_texture;
varying vec2 u_position;
uniform uint max_regions;
uniform vec2 proj_picture_dimensions;
uniform uvec4 proj_reg[256];
uniform uvec4 packed_reg[256];
uniform mat3 transormations[256];
void main() {
 vec2 texcoord = u_position ;
 for (int i=0;i<max_regions;i++) {
	if (u_position.u > proj_reg[i].x && u_position.u < proj_reg[i].x+porj_reg[i].z &&
		u_position.v > proj_reg[i].y && u_position.v < proj_reg[i].y+porj_reg[i].w) {
 		texcoord = transform_shift_scale(u_position, proj_reg[i], packed_reg[i], transformations, proj_picture_dimensions);
	}
 }
 gl_FragColor = texture2D(rwbp_texture, texcoord);
}

Note that the function transform_shift_scale is a simple function that multiplies the input coordinate by the transformation matrix (to implement any rotation operation), then shifts and scales the coordinate based on the scale factor of packed to projected region.
[bookmark: _GoBack]Theses operations can be performed extremely fast by the GPU in the shaders. To further simplify the implementation, we suggest to restrict the max_regions to a much smaller number than 256.
3 RWBP-based Viewport-dependent Streaming
Fig.1 shows an example of producing the viewport-dependent VR content. It consists of the following three steps:
1) partitioning of the High Resolution (HR) ERP video,
2) down-sampling and rotating of the full ERP in low resolution (LR),
3) packing the HR and the LR videos side-by-side with a guard interval separating the two. The tree steps are depicted in Fig. 1-(a), Fig. 1-(b), Fig. 1-(c), respectively.
In the Fig. 1-(a), the ERR video content is vertically partitioned into 8 overlapping partitions, each of which covers 8 contains the HR part of the EQR content. In this embodiment, under condition of 360 degree for the whole EQR width, each EQR partition covers the 135 degrees horizontal field of view. The shift between two successive partitions is set to be 45 degrees. In the Fig. 1-(b), the full ERP video is down-sampled and rotated by 90 degrees clockwise to produce the LR rotated ERP content. In the Fig. 1-(c), each of the 8 HR partitions is packed side-by-side with the rotated LR to produce the frame-packed video.
[image:]
(a) Partitioning of HR EQR video step
[image:]
(b) Downsampling-90 degree rotating step

[image:]
(c) Packaging HR partition and LR ERP
Fig. 1 Packaging for Viewport-dependent VR Streaming
The 8 resulting videos are described as separate disjoint DASH AdaptationSets. The receiver will only have to fetch a single Representation from only 1 of the 8 AdaptationSets at any point of time. Depending on the targeted HMD characteristics, the shift between two consecutive HR partitions may need to be changed (e.g. an HMD of 100 degrees horizontal field of view would result in 35 degrees shift).
The overlap and the side-by-side packing of HR and LR achieve the following benefits:
· A single video stream and a single decoder is used at any point of time and provides a coverage of the full 360 degrees
· Synchronization between the LR and HR videos is guaranteed through the usage of a single video
· The current viewport is always covered by a single HR partition irrespective of the viewing direction
· An LR representation is always available to cover for sudden viewport changes and up until the corresponding HR video is received.
· The shader will only use texels from either the HR or the LR video data, thus preventing any distortion that would result from mixing the two at rendering.
OMAF [2] RegionWisePackingStruct can be used to signal the packaging described above.
The num_regions can be set as 2, and the high resolution partition can be represented as one region using RectRegionPacking(0) and down sampled-rotated region can be represented as another region using RectRegionPacking(1), respectively.
In each RectRegionPacking for the first and second regions, the packed_reg_top[i] and packed_reg_left[i] are used to indicate the top-left corner of the packed picture, and the packed_reg_width[i] and packed_reg_height[i] are used to indicate the ith width and height of the i-th packed region, wherein i is equal to 0 and 1, respectively.
Assuming that the width and height of the original ERP projected content width and height are equal to 3840 and 1920, respectively, each partition width and height are equal to 1440 and 1920, respectively. The down-sampled rotated width and height are equal to 960 and 1920, respectively.
The packed_reg_top[0] and packed_reg_left[0] can be set to 0 and 0, respectively, and the packed_reg_width[0] and packed_reg_height[0] can be set to the 1440 and 1920, respectively, to indicate the top-left coordinate and width and height of the high resolution partition region in the packed picture. Similarly, the packed_reg_top[1] and packed_reg_left[1] can be set to 0 and 1440, respectively, and the packed_reg_width[1] and packed_reg_height[1] can be set to the 960 and 1920, respectively, to indicate that of the rotated low resolution whole ERP region in the packed picture. The transform_type[1] can be set to 5 to denote the rotation by 90 degrees (counter-clockwise).
In the same RectRegionPacking for the first and the second projected regions, the proj_reg_width[i] and proj_reg_height[i] are used to specify the width and the height of the i-th projected region, and proj_reg_top[i] and proj_reg_left[i] are used to specify the top sample row and the left-most sample column, respectively, of the i-th projected region. In the stream containing the Partition 0, the proj_reg_top[0] and proj_reg_left[0] can be set to the 0 and 0 and the proj_reg_width[0] and proj_reg_height[0] can be set to 1440 and 1920, respectively to indicate the corresponding top-left coordinate and the width and height of the region in the projected picture. The proj_reg_top[1] and proj_reg_left[1] can be set to the 0 and 0. The proj_reg_width[1] and proj_reg_height[1] can be set to 3840 and 1920, respectively, to indicate that of the rotated low resolution whole ERP region in projected picture.
The eight versions of the viewport-dependent frame packed OMAF content are encoded independently using AVC or HEVC to produce the representations, each of which will cover a range of viewing directions. Because of the independency in the encoding process, the encoding can be carried out in parallel by deploying multiple encoders. The encoded bitstreams are encapsulated as ISO BMFF track files.
In the receiver side, no additional extension is needed to the ISO BMFF demuxer, in order to parse and decode the frame-packed OMAF content. In order to render the frame-packed OMAF content correctly, the coverage information from the Representation to the ERP region needs to be available at the renderer.
[image:]
Fig. 2 Multiple ISO BMFF bitstream creation for omnidirectional video streaming based on viewport-dependent packaging and encoding
[bookmark: _Ref490493118][bookmark: _Toc490866671]Finally, to provide omnidirectional video streaming based on the viewport-dependent packaging and encoding, only a single ISOBMFF bitstream needs to be delivered to the client at a time and according to the user’s current viewing direction. As the user changes the viewing direction, a different ISOBMFF bitstream can be streamed to the client which may operate in a client-driven or server-driven mode, as is the case in DASH or PSS respectively. To appropriately select and render the omnidirectional video, omnidirectional media encapsulation and signaling is needed which are defined in clause 8 of OMAF [2] for omnidirectional media encapsulation and signaling in DASH.

References
[1]	SP-170612, Virtual Reality Profiles for Streaming Media
[2]	ISO/IEC 23000-20, MPEG-A - Omnidirectional Media Application Format, October 2017.
		

2
	
image6.png

image7.png

image4.png

image5.png

